ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Propulsion and Power
  • INSTRUMENTATION AND PHOTOGRAPHY
  • Life and Medical Sciences
  • 2000-2004  (98)
  • 1975-1979
  • 1960-1964
  • 1950-1954
  • 1930-1934
  • 2002  (98)
Collection
Years
  • 2000-2004  (98)
  • 1975-1979
  • 1960-1964
  • 1950-1954
  • 1930-1934
Year
  • 1
    Publication Date: 2004-12-03
    Description: The objectives of this report was to develop a methodology to predict the time-dependent reliability (probability of failure) of brittle material components subjected to transient thermomechanical loading, taking into account the change in material response with time. This methodology for computing the transient reliability in ceramic components subjected to fluctuation thermomechanical loading was developed, assuming SCG (Slow Crack Growth) as the delayed mode of failure. It takes into account the effect of varying Weibull modulus and materials with time. It was also coded into a beta version of NASA's CARES/Life code, and an example demonstrating its viability was presented.
    Keywords: Aircraft Propulsion and Power
    Type: Fifth Annual Workshop on the Application of Probabilistic Methods for Gas Turbine Engines; 555-586; NASA/CP-2002-211682
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: This paper presents performance results for pulse detonation engines taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.
    Keywords: Aircraft Propulsion and Power
    Type: 26th JANNAF Airbreathing Propulsion Subcommittee Meeting; Volume 1; 337-349; CPIA-Publ-713-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: In 1939, W. Weibull developed what is now commonly known as the "Weibull Distribution Function" primarily to determine the cumulative strength distribution of small sample sizes of elemental fracture specimens. In 1947, G. Lundberg and A. Palmgren, using the Weibull Distribution Function developed a probabilistic lifing protocol for ball and roller bearings. In 1987, E. V. Zaretsky using the Weibull Distribution Function modified the Lundberg and Palmgren approach to life prediction. His method incorporates the results of coupon fatigue testing to compute the life of elemental stress volumes of a complex machine element to predict system life and reliability. This paper examines the Zaretsky method to determine the probabilistic life and reliability of a model gas turbine disk using experimental data from coupon specimens. The predicted results are compared to experimental disk endurance data.
    Keywords: Aircraft Propulsion and Power
    Type: Fifth Annual Workshop on the Application of Probabilistic Methods for Gas Turbine Engines; 603-625; NASA/CP-2002-211682
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: In an era of shrinking development budgets and resources, where there is also an emphasis on reducing the product development cycle, the role of system assessment, performed in the early stages of an engine development program, becomes very critical to the successful development of new aeropropulsion systems. A reliable system assessment not only helps to identify the best propulsion system concept among several candidates, it can also identify which technologies are worth pursuing. This is particularly important for advanced aeropropulsion technology development programs, which require an enormous amount of resources. In the current practice of deterministic, or point-design, approaches, the uncertainties of design variables are either unaccounted for or accounted for by safety factors. This could often result in an assessment with unknown and unquantifiable reliability. Consequently, it would fail to provide additional insight into the risks associated with the new technologies, which are often needed by decision makers to determine the feasibility and return-on-investment of a new aircraft engine. In this work, an alternative approach based on the probabilistic method was described for a comprehensive assessment of an aeropropulsion system. The statistical approach quantifies the design uncertainties inherent in a new aeropropulsion system and their influences on engine performance. Because of this, it enhances the reliability of a system assessment. A technical assessment of a wave-rotor-enhanced gas turbine engine was performed to demonstrate the methodology. The assessment used probability distributions to account for the uncertainties that occur in component efficiencies and flows and in mechanical design variables. The approach taken in this effort was to integrate the thermodynamic cycle analysis embedded in the computer code NEPP (NASA Engine Performance Program) and the engine weight analysis embedded in the computer code WATE (Weight Analysis of Turbine Engines) with the fast probability integration technique (FPI). FPI was developed by Southwest Research Institute under contract with the NASA Glenn Research Center. The results were plotted in the form of cumulative distribution functions and sensitivity analyses and were compared with results from the traditional deterministic approach. The comparison showed that the probabilistic approach provides a more realistic and systematic way to assess an aeropropulsion system. The current work addressed the application of the probabilistic approach to assess specific fuel consumption, engine thrust, and weight. Similarly, the approach can be used to assess other aspects of aeropropulsion system performance, such as cost, acoustic noise, and emissions. Additional information is included in the original extended abstract.
    Keywords: Aircraft Propulsion and Power
    Type: Fifth Annual Workshop on the Application of Probabilistic Methods for Gas Turbine Engines; 139-164; NASA/CP-2002-211682
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-23
    Description: Aircraft fan and compressor blade leading edges suffer from atmospheric particulate erosion that reduces aerodynamic performance. Recontouring the blade leading edge region can restore blade performance. This process typically results in blades of varying chord length. The question therefore arises as to whether performance of refurbished fans and compressors could be further improved if blades of varying chord length are installed into the disk in a certain order. To investigate this issue the aerodynamic performance of a transonic compressor rotor operating with blades of varying chord length was measured in back-to-back compressor test rig entries. One half of the rotor blades were the full nominal chord length while the remaining half of the blades were cut back at the leading edge to 95% of chord length and recontoured. The rotor aerodynamic performance was measured at 100, 80, and 60% of design speed for three blade installation configurations: nominal-chord blades in half of the disk and short-chord blades in half of the disk; four alternating quadrants of nominal-chord and short-chord blades; nominal-chord and short-chord blades alternating around the disk. No significant difference in performance was found between configurations, indicating that blade chord variation is not important to aerodynamic performance above the stall chord limit if leading edges have the same shape. The stall chord limit for most civil aviation turbofan engines is between 94-96% of nominal (new) blade chord.
    Keywords: Aircraft Propulsion and Power
    Type: Journal of Turbomachinery; Volume 24; 351-357
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-23
    Description: This paper presents progress on the development of a generic component level model of a turbofan engine simulation, with a digital controller, in an advanced graphical simulation environment. The goal of this effort is to develop and demonstrate a flexible simulation platform for future research in propulsion system control and diagnostic technology. A FORTRAN-based model of a modem, high performance, military-type turbofan engine is being used to validate the platform development. The implementation process required the development of various innovative procedures, which are discussed in the paper. Open-loop and closed-loop comparisons are made between the two simulations. Future enhancements that are to be made to the modular engine simulation are summarized.
    Keywords: Aircraft Propulsion and Power
    Type: 26th JANNAF Airbreathing Propulsion Subcommittee Meeting; Volume 1; 249-257; CPIA-Publ-713-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-29
    Description: Two methods are commonly used to control the secondary/separated flows (and associated losses) in supersonic turbines: endwall contouring and airfoil stacking. In the current investigation the flow path between the first-stage vanes and rotors, and the stacking of the first-stage vanes were varied in an effort to improve turbine performance. The geometric variations have been studied by performing a series of unsteady three-dimensional numerical simulations for the two-stage turbine.
    Keywords: Aircraft Propulsion and Power
    Type: 2002 AIAA Aerospace Sciences Meeting; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center is working with the aeronautics industry to develop highly fuel-efficient and environmentally friendly gas turbine combustor technology. This effort includes testing new hardware designs at conditions that simulate the high-temperature, high-pressure environment expected in the next-generation of high-performance engines. Glenn has the only facilities in which such tests can be performed. One aspect of these tests is the use of nonintrusive optical and laser diagnostics to measure combustion species concentration, fuel/air ratio, fuel drop size, and velocity, and to visualize the fuel injector spray pattern and some combustion species distributions. These data not only help designers to determine the efficacy of specific designs, but provide a database for computer modelers and enhance our understanding of the many processes that take place within a combustor. Until recently, we lacked one critical capability, the ability to measure temperature. This article summarizes our latest developments in that area. Recently, we demonstrated the first-ever use of spontaneous Raman scattering to measure combustion temperatures within the Advanced Subsonics Combustion Rig (ASCR) sector rig. We also established the highest rig pressure ever achieved for a continuous-flow combustor facility, 54.4 bar. The ASCR facility can provide operating pressures from 1 to 60 bar (60 atm). This photograph shows the Raman system setup next to the ASCR rig. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of air inlet temperatures, pressures, and fuel/air ratios.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-02
    Description: System Power Analysis for Capability Evaluation (SPACE) is a computer model of the International Space Station's (ISS) Electric Power System (EPS) developed at the NASA Glenn Research Center. This uniquely integrated, detailed model can predict EPS capability, assess EPS performance during a given mission with a specified load demand, conduct what-if studies, and support on-orbit anomaly resolution.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-02
    Description: As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-05
    Description: The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing the initial Visual-Based Syntax (VBS) capability, and developing additional capabilities to support space transportation. NPSS was supported under NASA's High Performance Computing and Communications Program. Through the NASA/Industry Cooperative Effort agreement, NASA Glenn and its industry and Government partners are developing NPSS. The NPSS team consists of propulsion experts and software engineers from GE Aircraft Engines, Pratt & Whitney, The Boeing Company, Honeywell, Rolls-Royce Corporation, Williams International, Teledyne Continental Motors, Arnold Engineering Development Center, Wright Patterson Air Force Base, and the NASA Glenn Research Center. Glenn is leading the way in developing NPSS--a method for solving complex design problems that's faster, better, and cheaper.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-05
    Description: The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-05
    Description: The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.
    Keywords: Aircraft Propulsion and Power
    Type: Department of Energy, National Technology Lab. High Efficiency Engines and Turbines-University Turbine Systems Research (HEET-UTSR) Program: Aero-Heat Transfer workshop-V Program Review; Nov 11, 2002 - Nov 13, 2002; Baton Rouge, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MSFC 2002 Undergraduate Student Research Program Technical Report Collection; Nov 01, 2002; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: The ability of the WIND Navier-Stokes code to predict the physics of multi-species gases is investigated in support of future high-speed, high-temperature propulsion applications relevant to NASA's Space Transportation efforts. Three benchmark cases are investigated to evaluate the capability of the WIND chemistry model to accurately predict the aerodynamics of multi-species chemically non-reacting (frozen) gases. Case 1 represents turbulent mixing of sonic hydrogen and supersonic vitiated air. Case 2 consists of heated and unheated round supersonic jet exiting to ambient. Case 3 represents 2-D flow through a converging-diverging Mach 2 nozzle. For Case 1, the WIND results agree fairly well with experimental results and that significant mixing occurs downstream of the hydrogen injection point. For Case 2, the results show that the Wilke and Sutherland viscosity laws gave similar results, and the available SST turbulence model does not predict round supersonic nozzle flows accurately. For Case 3, results show that experimental, frozen, and 1-D gas results agree fairly well, and that frozen, homogeneous, multi-species gas calculations can be approximated by running in perfect gas mode while specifying the mixture gas constant and Ratio of Specific Heats.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-212015 , NAS 1.26:212015 , E-13704 , ICOMP-2002-07 , AIAA Paper 2003-0546 , 41st Aerospace Sciences Meeting and Exhibit; Jan 06, 2003 - Jan 09, 2003; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: The drive towards high-work turbines has led to designs which can be compact, transonic, supersonic, counter rotating, or use a dense drive gas. These aggressive designs can lead to strong secondary flows and airfoil flow separation. In many cases the secondary and separated flows can be minimized by contouring the hub/shroud endwalls and/or modifying the airfoil stacking. In this study, three-dimensional unsteady Navier-Stokes simulations were performed to study three different endwall shapes between the first-stage vanes and rotors, as well as two different stackings for the first-stage vanes. The predicted results indicate that changing the stacking of the first-stage vanes can significantly impact endwall separation (and turbine performance) in regions where the endwall profile changes.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2002-0078 , 40th AIAA Aerospace Sciences Meeting and Exhibit; Jan 14, 2002 - Jan 17, 2002; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The present work details a computational study, using the Glenn HT code, that analyzes the use of vortex generator jets (VGJs) to control separation on a low-pressure turbine (LPT) blade at low Reynolds numbers. The computational results are also compared with the experimental data for steady VGJs. It is found that the code determines the proper location of the separation point on the suction surface of the baseline blade (without any VGJ) for Reynolds numbers of 50,000 or less. Also, the code finds that the separated region on the suction surface of the blade vanishes with the use of VGJs. However, the separated region and the wake characteristics are not well predicted. The wake width is generally over-predicted while the wake depth is under-predicted.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-211689 , NAS 1.26:211689 , E-13419 , GT-2002-30229 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: A combined experimental and numerical study to investigate the heat transfer distribution in a complex blade trailing edge passage was conducted. The geometry consists of a two pass serpentine passage with taper toward the trailing edge, as well as from hub to tip. The upflow channel has an average aspect ratio of roughly 14:1, while the exit passage aspect ratio is about 5:1. The upflow channel is split in an interrupted way and is smooth on the trailing edge side of the split and turbulated on the other side. A turning vane is placed near the tip of the upflow channel. Reynolds numbers in the range of 31,000 to 61,000, based on inlet conditions, were simulated numerically. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-omega turbulence model. A structured multi-block grid is used with approximately 4.5 million cells and average y+ values on the order of unity. Pressure and heat transfer distributions are presented with comparison to the experimental data. While there are some regions with discrepancies, in general the agreement is very good for both pressure and heat transfer.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-211701 , NAS 1.26:211701 , ASME-2002-GT-30213 , E-13430 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Flights of the F-15B/Propulsion Flight Test Fixture (PFTF) with a Cone Drag Experiment (CDE) attached have been accomplished at NASA Dryden Flight Research Center. Mounted underneath the fuselage of an F-15B airplane, the PFTF provides volume for experiment systems and attachment points for propulsion experiments. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. The force balance mounts between the PFTF and experiment and measures three forces and moments. The CDE has been attached to the force balance for envelope expansion flights. This experiment spatially and inertially simulates a large propulsion test article. This report briefly describes the F-15B airplane, the PFTF, and the force balance. A detailed description of the CDE is provided. Force-balance ground testing and stiffness modifications are described. Flight profiles and selected flight data from the envelope expansion flights are provided and discussed, including force-balance data, the internal PFTF thermal and vibration environment, a handling qualities assessment, and performance capabilities of the F-15B airplane with the PFTF installed.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-210736 , NAS 1.15:210736 , H-2507 , 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Various electrolyte materials for solid oxide fuel cells were fabricated by hot pressing 10 mol% yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina, particulates and platelets, each containing 0 to 30 mol% alumina. Flexure strength and fracture toughness of both particulate and platelet composites at ambient temperature increased with increasing alumina content, reaching a maximum at 30 mot% alumina. For a given alumina content, strength of particulate composites was greater than that of platelet composites, whereas, the difference in fracture toughness between the two composite systems was negligible. No virtual difference in elastic modulus and density was observed for a given alumina content between particulate and platelet composites. Thermal cycling up to 10 cycles between 200 to 1000 C did not show any effect on strength degradation of the 30 mol% platelet composites, indicative of negligible influence of CTE mismatches between YSZ matrix and alumina grains.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211580 , NAS 1.15:211580 , G-1:P03 , E-13365 , CIMTEC 2002, International Conferences on Modern Materials and Technologies; Jul 14, 2002 - Jul 19, 2002; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The presentation will discuss Microelectromechanical Systems (MEMS) research and development activities and technologies being conducted at NASA Glenn Research Center to address the needs of harsh environment applications. The focus will be on silicon carbide based h4EMS for high temperature, high power and high radiation environment as well as high temperature sensor technologies which are made possible by MEMS processing techniques. These technologies can enable new measurements and capabilities for future turbine engines. All the presentation materials are publicly available and have been presented/published before.
    Keywords: Aircraft Propulsion and Power
    Type: Spring 2002 Meeting of RTO/AVT MEMS Task Group; Apr 22, 2002 - Apr 26, 2002; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-10
    Description: As interest in pollutant emission from stationary and aero-engine gas turbines increases, combustor engineers must consider various configurations. One configuration of increasing interest is the staged, rich burn - quick mix - lean burn (RQL) combustor. This report summarizes an investigation conducted in a recently developed high pressure gas turbine combustor facility. The model RQL combustor was plenum fed and modular in design. The fuel used for this study is Jet-A which was injected from a simplex atomizer. Emission (CO2, CO, O2, UHC, NOx) measurements were obtained using a stationary exit plane water-cooled probe and a traversing water-cooled probe which sampled from the rich zone exit and the lean zone entrance. The RQL combustor was operated at inlet temperatures ranging from 367 to 700 K, pressures ranging from 200 to 1000 kPa, and combustor reference velocities ranging from 10 to 20 m/s. Variations were also made in the rich zone and lean zone equivalence ratios. Several significant trends were observed. NOx production increased with reaction temperature, lean zone equivalence ratio and residence time and decreased with increased rich zone equivalence ratio. NOx production in the model RQL combustor increased to the 0.4 power with increased pressure. This correlation, compared to those obtained for non-staged combustors (0.5 to 0.7), suggests a reduced dependence on NOx on pressure for staged combustors. Emissions profiles suggest that rich zone mixing is not uniform and that the rich zone contributes on the order of 16 percent to the total NOx produced.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-211992 , NAS 1.26:211992 , E-13663
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-10
    Description: Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211832 , E-13281-1 , NAS 1.15:211832
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-10
    Description: Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-211867 , E-13540 , NAS 1.26:211867
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-10
    Description: Foreign object damage (FOD) behavior of two commercial gas-turbine grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through strength testing of flexure test specimens impacted by steel-ball projectiles with a diameter of 1.59 mm in a velocity range from 220 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (K(sub IC)). Additionally, the FOD response of an equiaxed, fine-grained silicon nitride (NC132) was also investigated to provide further insight. The NC132 silicon nitride exhibited the lowest fracture toughness of the three materials tested, providing further evidence that K(sub IC) is a key material parameter affecting FOD resistance. The observed damage generated by projectile impact was typically in the forms of well- or ill-developed ring or cone cracks with little presence of radial cracks.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211821 , NAS 1.15:211821 , E-13513
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: A low Reynolds number, high subsonic mach number flight regime is fairly uncommon in aeronautics. Most flight vehicles do not fly under these aerodynamic conditions. However, recently there have been a number of proposed aircraft applications (such as high altitude observation platforms and Mars aircraft) that require flight within this regime. One of the main obstacles to flight under these conditions is the ability to reliably generate sufficient thrust for the aircraft. For a conventional propulsion system, the operation and design of the propeller is the key aspect to its operation. Due to the difficulty in experimentally modeling the flight conditions in ground-based facilities, it has been proposed to conduct propeller experiments from a high altitude gliding platform (APEX). A preliminary design of a propeller experiment under the low Reynolds number, high mach number flight conditions has been devised. The details of the design are described as well as the potential data that will be collected.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-211866 , NAS 1.26:211866 , E-13539
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-10
    Description: A pulse detonation engine (PDE) uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Lack of mixture uniformity is commonly ignored when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform H2/air mixtures were analyzed using the SPARK two-dimensional Navier-Stokes CFD code with 7-step H2/air reaction mechanism. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios (phi), stoichiometric (phi = 1.00), fuel lean (phi = 0.90), and fuel rich (phi = 1.10), were studied. All mixtures were detonable throughout the detonation tube. It was found that various mixtures representing the same test section equivalence ratio had specific impulses within 1 percent of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211712 , E-13463 , NAS 1.15:211712
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-10
    Description: The successful development of an advanced powder metallurgy disk alloy, ME3, was initiated in the NASA High Speed Research/Enabling Propulsion Materials (HSR/EPM) Compressor/Turbine Disk program in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. This alloy was designed using statistical screening and optimization of composition and processing variables to have extended durability at 1200 F in large disks. Disks of this alloy were produced at the conclusion of the program using a realistic scaled-up disk shape and processing to enable demonstration of these properties. The objective of the Ultra-Efficient Engine Technologies disk program was to assess the mechanical properties of these ME3 disks as functions of temperature in order to estimate the maximum temperature capabilities of this advanced alloy. These disks were sectioned, machined into specimens, and extensively tested. Additional sub-scale disks and blanks were processed and selectively tested to explore the effects of several processing variations on mechanical properties. Results indicate the baseline ME3 alloy and process can produce 1300 to 1350 F temperature capabilities, dependent on detailed disk and engine design property requirements.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211796 , NAS 1.15:211796 , E-13491
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-10
    Description: Spray jet in crossflow has been a subject of research because of its wide application in systems involving pollutant dispersion, jet mixing in the dilution zone of combustors, and fuel injection strategies. The focus of this work is to investigate dispersion of a 2-dimensional atomized spray jet into a 2-dimensional crossflow. A quick computational method is developed using available software. The spreadsheet can be used for any 2D droplet trajectory problem where the drop is injected into the free stream eventually coming to the free stream conditions. During the transverse injection of a spray into high velocity airflow, the droplets (carried along and deflected by a gaseous stream of co-flowing air) are subjected to forces that affect their motion in the flow field. Based on the Newton's Second Law of motion, four ordinary differential equations were used. These equations were then solved by a fourth-order Runge-Kutta method using Excel software. Visual basic programming and Excel macrocode to produce the data facilitate Excel software to plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user's manual on how to use the program is also included in this report.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211710 , E-13459 , NAS 1.15:211710
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-10
    Description: Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: ODURF-101511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-10
    Description: A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft per s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASE's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude and also noise in the reference frame of the nozzle. This volume is divided into three parts: in the first two parts, we collate the plume survey data in graphical form (line, contour and surface plots) and analyze it; in part 3, we tabulate the aerodynamic data for the acoustics tests and the acoustic data in one-third octave band levels.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-210823/VOL2 , E-12741/VOL2 , NAS 1.26:210823/VOL2 , EDR-18581/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-10
    Description: A comprehensive database for the acoustic and aerodynamic characteristics of several model-scale lobe mixers of bypass ratio 5 to 6 has been created for mixed jet speeds up to 1080 ft/s at typical take-off (TO) conditions of small-to-medium turbofan engines. The flight effect was simulated for Mach numbers up to 0.3. The static thrust performance and plume data were also obtained at typical TO and cruise conditions. The tests were done at NASA Lewis anechoic dome and ASK's FluiDyne Laboratories. The effect of several lobe mixer and nozzle parameters, such as, lobe scalloping, lobe count, lobe penetration and nozzle length was examined in terms of flyover noise at constant altitude. Sound in the nozzle reference frame was analyzed to understand the source characteristics. Several new concepts, mechanisms and methods are reported for such lobed mixers, such as, "boomerang" scallops, "tongue" mixer, detection of "excess" internal noise sources, and extrapolation of flyover noise data from one flight speed to different flight speeds. Noise reduction of as much as 3 EPNdB was found with a deeply scalloped mixer compared to annular nozzle at net thrust levels of 9500 lb for a 29 in. diameter nozzle after optimizing the nozzle length.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-210823/VOL1 , NAS 1.26:210823/VOL1 , E-12741-1-VOL1 , EDR-18580/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-10
    Description: The purpose of this study on micro-scale secondary flow control (MSFC) is to study the aerodynamic behavior of micro-vane effectors through their factor (i.e., the design variable) interactions and to demonstrate how these statistical interactions, when brought together in an optimal manner, determine design robustness. The term micro-scale indicates the vane effectors are small in comparison to the local boundary layer height. Robustness in this situation means that it is possible to design fixed MSFC robust installation (i.e.. open loop) which operates well over the range of mission variables and is only marginally different from adaptive (i.e., closed loop) installation design, which would require a control system. The inherent robustness of MSFC micro-vane effector installation designs comes about because of their natural aerodynamic characteristics and the manner in which these characteristics are brought together in an optimal manner through a structured Response Surface Methodology design process.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211686 , NAS 1.15:211686 , E-13415
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-10
    Description: An effective design methodology was established for composite jet engine containment structures. The methodology included the development of the full and reduced size prototypes, and FEA models of the containment structure, experimental and numerical examination of the modes of failure clue to turbine blade out event, identification of materials and design candidates for future industrial applications, and design and building of prototypes for testing and evaluation purposes.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-13
    Description: With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with the U.S. aerospace industry and academia to develop advanced controls and health management technologies that will help meet these challenges. These technologies are being developed with a view towards making the concept of "Intelligent Engines" a reality. The major research activities of the Controls and Dynamics Technology Branch are described in the following.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211590 , E-13375 , NAS 1.15:211590 , Combustion, Airbreathing Propulsion, Propulsion Systems Hazards, and Modelling and Simulation Subcommittees Joint Meeting; Apr 08, 2002 - Apr 12, 2002; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-13
    Description: This paper presents performance results for pulse detonation engines (PDE) taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211575 , NAS 1.15:211575 , E-13359 , ICOMP-2002-02 , Combustion, Airbreathing Propulsion, Propulsion Systems Hazards, and Modelling and Simulation Subcommittees Joint Meeting; 8-12 Apr. 202; Destin, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-10
    Description: It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-212000 , E-13672 , NAS 1.15:212000
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-10
    Description: Most organizations seek to design and develop new products in increasingly shorter time periods. At the same time, increased performance demands require a team-based multidisciplinary design process that may span several organizations. One approach to meet these demands is to use 'Geometry Centric' design. In this approach, design engineers team their efforts through one united representation of the design that is usually captured in a CAD system. Standards-based interfaces are critical to provide uniform, simple, distributed services that enable the 'Geometry Centric' design approach. This paper describes an industry-wide effort, under the Object Management Group's (OMG) Manufacturing Domain Task Force, to define interfaces that enable the interoperability of CAD, Computer Aided Manufacturing (CAM), and Computer Aided Engineering (CAE) tools. This critical link to enable 'Geometry Centric' design is called: Cad Services V1.0. This paper discusses the features of this standard and proposed application.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211902 , NAS 1.15:211902 , E-13590
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-10
    Description: Open loop, experimental force and power measurements of a three-axis, radial, heteropolar magnetic bearing at room temperature for rotor speeds up to 20,000 RPM are presented in this paper. The bearing, NASA Glenn Research Center's and Texas A&M's third generation high temperature magnetic bearing, was designed to operate in a 1000 F (540 C) environment and was primarily optimized for maximum load capacity. The experimentally measured force produced by one C-core of this bearing was 630 lb. (2.8 kN) at 16 A, while a load of 650 lbs (2.89 kN) was predicted at 16 A using 1D circuit analysis. The maximum predicted radial load for one of the three axes is 1,440 lbs (6.41 kN) at room temperature. The maximum measured load of an axis was 1050 lbs. (4.73 kN). Results of test under rotating conditions showed that rotor speed has a negligible effect on the bearing's load capacity. A single C-core required approximately 70 W of power to generate 300 lb (1.34 kN) of magnetic force. The room temperature data presented was measured after three thermal cycles up to 1000 F (540 C), totaling six hours at elevated temperatures.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211904 , NAS 1.15:211904 , ARL-TR-2858 , E-13594
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Extensive flight test data obtained from two recent performance tests of a UH 60A aircraft are reviewed. A power difference is calculated from the power balance equation and is used to examine power measurement errors. It is shown that the baseline measurement errors are highly non-Gaussian in their frequency distribution and are therefore influenced by additional, unquantified variables. Linear regression is used to examine the influence of other variables and it is shown that a substantial portion of the variance depends upon measurements of atmospheric parameters. Correcting for temperature dependence, although reducing the variance in the measurement errors, still leaves unquantified effects. Examination of the power difference over individual test runs indicates significant errors from drift, although it is unclear how these may be corrected. In an idealized case, where the drift is correctable, it is shown that the power measurement errors are significantly reduced and the error distribution is Gaussian. A new flight test program is recommended that will quantify the thermal environment for all torque measurements on the UH 60. Subsequently, the torque measurement systems will be recalibrated based on the measured thermal environment and a new power measurement assessment performed.
    Keywords: Aircraft Propulsion and Power
    Type: American Helicopter Society Aerodynamics, Acoustics and Test and Evaluation Technical Specialist Meeting; Jan 23, 2002 - Jan 25, 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: An experiment and numerical investigation is presented of a lifted turbulent H2/N2 jet flame in a coflow of hot, vitiated gases. The vitiated coflow burner emulates the coupling of turbulent mixing and chemical kinetics exemplary of the reacting flow in the recirculation region of advanced combustors. It also simplifies numerical investigation of this coupled problem by removing the complexity of recirculating flow. Scalar measurements are reported for a lifted turbulent jet flame of H2/N2 (Re = 23,600, H/d = 10) in a coflow of hot combustion products from a lean H2/Air flame ((empty set) = 0.25, T = 1,045 K). The combination of Rayleigh scattering, Raman scattering, and laser-induced fluorescence is used to obtain simultaneous measurements of temperature and concentrations of the major species, OH, and NO. The data attest to the success of the experimental design in providing a uniform vitiated coflow throughout the entire test region. Two combustion models (PDF: joint scalar Probability Density Function and EDC: Eddy Dissipation Concept) are used in conjunction with various turbulence models to predict the lift-off height (H(sub PDF)/d = 7,H(sub EDC)/d = 8.5). Kalghatgi's classic phenomenological theory, which is based on scaling arguments, yields a reasonably accurate prediction (H(sub K)/d = 11.4) of the lift-off height for the present flame. The vitiated coflow admits the possibility of auto-ignition of mixed fluid, and the success of the present parabolic implementation of the PDF model in predicting a stable lifted flame is attributable to such ignition. The measurements indicate a thickened turbulent reaction zone at the flame base. Experimental results and numerical investigations support the plausibility of turbulent premixed flame propagation by small scale (on the order of the flame thickness) recirculation and mixing of hot products into reactants and subsequent rapid ignition of the mixture.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-212082 , NAS 1.26:212082 , E-13735 , 29th International Symposium on Combustion; Jul 21, 2002 - Jul 26, 2002; Sapporo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2002-0230 , 40th AIAA Aerospace Sciences Meeting and Exhibit; Jan 14, 2002 - Jan 17, 2002; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: A statistically designed experiment to characterize thrust augmentation for unsteady ejectors has been conducted at the NASA Glenn Research Center. The variable parameters included ejector diameter, length, and nose radius. The pulsed jet driving the ejectors was produced by a shrouded resonance (or Hartmann-Sprenger) tube. In contrast to steady ejectors, an optimum ejector diameter was found, which coincided with the diameter of the vortex ring created at the pulsed jet exit. Measurements of ejector exit velocity using a hot-wire permitted evaluation of the mass augmentation ratio, which was found to correlate to thrust augmentation following a formula derived for steady ejectors.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211474 , E-13239 , NAS 1.15:211474 , AIAA Paper 2002-3632 , 38th Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211351 , NAS 1:15:211351 , E-13169 , Aerospace Numerical Simulation Symposium; Jun 20, 2001 - Jun 22, 2001; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: This report is intended as a status report for activities covered May through July 2002 under the auspices of NASA Glenn's Revolutionary Aeropropulsion Concepts (RAC) project. This is the first phase I quarterly report and as such, considerable focus will be given to defining the basic need and motivation driving this research effort. In addition, background research has been ongoing for the past several months and has culminated in considerable information pertaining to the state-of-the-art in work potential analysis methods. This work is described in detail herein. Finally, the proposed analysis approach is described, as are the various ancillary concepts required for its implementation.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211805 , NAS 1.15:211805 , E-13500 , AIAA Paper 2002-4075 , 38th Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent compared to the current technology.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211797 , E-13492 , NAS 1.15:211797 , AIAA Paper 2002-3919 , 38th Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: This paper describes the calculation of flutter stability characteristics for a transonic forward swept fan configuration using a viscous aeroelastic analysis program. Unsteady Navier-Stokes equations are solved on a dynamically deforming, body fitted, grid to obtain the aeroelastic characteristics using the energy exchange method. The non-zero inter-blade phase angle is modeled using phase-lagged boundary conditions. Results obtained show good correlation with measurements. It is found that the location of shock and variation of shock strength strongly influenced stability. Also, outboard stations primarily contributed to stability characteristics. Results demonstrate that changes in blade shape impact the calculated aerodynamic damping, indicating importance of using accurate blade operating shape under centrifugal and steady aerodynamic loading for flutter prediction. It was found that the calculated aerodynamic damping was relatively insensitive to variation in natural frequency.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211818 , E-13511 , NAS 1.15:211818 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211559 , NAS 1.15:211559 , E-13339 , Eighth Aeroacoustics Conference; Jun 17, 2002 - Jun 19, 2002; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: A low NO(x) emissions combustor has been demonstrated in flame-tube tests. A multipoint, lean-direct injection concept was used. Configurations were tested that had 25- and 36- fuel injectors in the size of a conventional single fuel injector. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers and fuel manifold into a single element. Test conditions were inlet temperatures up to 810 K, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation was developed relating the NO(x) emissions with the inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 10 percent of the combustion air would be used for liner cooling and using a hypothetical engine cycle, the NO(x) emissions using the correlation from flame-tube tests were estimated to be less than 20 percent of the 1996 ICAO standard.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211347 , NAS 1.15:211347 , E-13163 , Conference on Technologies and Combustion for a Clean Environment; Jul 09, 2001 - Jul 12, 2001; Oporto; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: An extensive set of unsteady pressure data was acquired along the midspan of a modern transonic fan blade for simulated flutter conditions. The data set was acquired in a nine-blade linear cascade with an oscillating middle blade to provide a database for the influence coefficient method to calculate instantaneous blade loadings. The cascade was set for an incidence of 10 dg. The data were acquired on three stationary blades on each side of the middle blade that was oscillated at an amplitude of 0.6 dg. The matrix of test conditions covered inlet Mach numbers of 0.5, 0.8, and 1.1 and the oscillation frequencies of 200, 300, 400, and 500 Hz. A simple quasiunsteady two-dimensional computer simulation was developed to aid in the running of the experimental program. For high Mach number subsonic inlet flows the blade pressures exhibit very strong, low-frequency, self-induced oscillations even without forced blade oscillations, while for low subsonic and supersonic inlet Mach numbers the blade pressure unsteadiness is quite low. The amplitude of forced pressure fluctuations on neighboring stationary blades strongly depends on the inlet Mach number and forcing frequency. The flowfield behavior is believed to be governed by strong nonlinear effects due to a combination of viscosity, compressibility, and unsteadiness. Therefore, the validity of the quasi-unsteady simplified computer simulation is limited to conditions when the flowfield is behaving in a linear, steady manner. Finally, an extensive set of unsteady pressure data was acquired to help development and verification of computer codes for blade flutter effects.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211723 , E-13474 , GT-2002-30312 , NAS 1.15:211723 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: The September 2002 activities are described. These encompassed multiple hardware, software, and computer system administration activities in support of the Space Transportation Directorate.
    Keywords: Aircraft Propulsion and Power
    Type: TR-4025-02-09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The purpose of this study was to examine the effects of extended exposures on the near-surface fatigue resistance of a disk superalloy. Powder metallurgy processed, supersolvus heat-treated Udimet 720 (U720) fatigue specimens were exposed in air at temperatures from 650 to 705 C for 100 hr to over 1000 hr. They were then tested using conventional fatigue tests at 650 C to determine the effects of exposure on fatigue resistance. The exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Fractographic evaluations indicated the failure mode was shifted by the exposures from internal to surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211570 , NAS 1.15:211570 , E-13354 , 131st Annual Meeting and Exhibition; Feb 17, 2002 - Feb 21, 2002; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The fatigue lives of modern powder metallurgy (PM) disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary due to the different steps of materials/component processing and machining. One of these variables, the presence of nonmetallic inclusions, has been shown to significantly degrade low-cycle fatigue (LCF) life. Nonmetallic inclusions are inherent defects in powder alloys that are a by-product of powder-processing techniques. Contamination of the powder can occur in the melt, during powder atomization, or during any of the various handling processes through consolidation. In modern nickel disk powder processing facilities, the levels of inclusion contamination have been reduced to less than 1 part per million by weight. Despite the efforts of manufacturers to ensure the cleanliness of their powder production processes, the presence of inclusions remains a source of great concern for the designer. the objective of this study was to investigate the effects on fatigue life of these inclusions. Since natural inclusions occur so infrequently, elevated levels of inclusions were carefully introduced in a nickel-based disk superalloy, Udimet 720 (registered trademark of Special Metals Corporation), produced using PM processing. Multiple strain-controlled fatigue tests were then performed on this material at 650 C. Analyses were performed to compare the LCF lives and failure initiation sites as functions of inclusion content and fatigue conditions. A large majority of the failures in specimens with introduced inclusions occurred at cracks initiating from inclusions at the specimen surface. The inclusions could reduce fatigue life by up to 100 times. These effects were found to be dependent on strain range and strain ratio. Tests at lower strain ranges and higher strain ratios produced larger effects of inclusions on life.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211571 , E-13355 , NAS 1.15:211571 , ARL-TR-2804 , Advanced Materials and Processes for Gas Turbines Symposium; Sep 22, 2002 - Sep 26, 2002; Copper Mountain, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: An experimental and numerical investigation is presented of a H2/N2 turbulent jet flame burner that has a novel vitiated coflow. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces. Additionally, since the vitiated gases are coflowing, the burner allows for exploration of recirculation chemistry without the corresponding fluid mechanics of recirculation. Thus the vitiated coflow burner design facilitates the development of chemical kinetic combustion models without the added complexity of recirculation fluid mechanics. Scalar measurements are reported for a turbulent jet flame of H2/N2 in a coflow of combustion products from a lean ((empty set) = 0.25) H2/Air flame. The combination of laser-induced fluorescence, Rayleigh scattering, and Raman scattering is used to obtain simultaneous measurements of the temperature, major species, as well as OH and NO. Laminar flame calculation with equal diffusivity do agree when the premixing and preheating that occurs prior to flame stabilization is accounted for in the boundary conditions. Also presented is an exploratory pdf model that predicts the flame's axial profiles fairly well, but does not accurately predict the lift-off height.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-212081 , NAS 1.26:212081 , E-13734 , WSS/CI-2001-288 , 2001 Spring Joint Meeting; Mar 26, 2001 - Mar 28, 2001; Berkeley, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211698 , NAS 1.15:211698 , E-13431 , ICOMP-2002-03 , AIAA Paper 2002-3629 , 38th Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211589 , E-13374 , NAS 1.15:211589 , ARL-TR-2781 , AIAA Paper 2002-3793 , 38th Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2002-5188 , 11th AIAA/AAAF International Space Planes and Hypersonic Systems; Sep 24, 2002 - Oct 04, 2002; Orleans; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Pratt & Whitney (P&W) is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed during the National Aero Space Plane (NASP) program using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current emphasis on hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Office has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of a liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. Fuel-cooled superalloys and lightweight structures are being developed to improve thermal protection and durability and to reduce propulsion system weight. The application of scramjet engine technology as part of combined cycle propulsion systems is also being pursued under NASA and U.S. Air Force sponsorship. The combination of scramjet power and solid rocket booster acceleration is applicable to hypersonic cruise missiles. Scramjets that use gas turbines for low speed acceleration and scramjets using rocket power for low speed acceleration are being studied for application to reusable launch systems and hypersonic cruise vehicles. P&W's recent activities and future plans for hypersonic propulsion will be described.
    Keywords: Aircraft Propulsion and Power
    Type: 11th AIAA/AAAF International Conference on Space Planes and Hypersonic Systems and Technologies; Sep 29, 2002 - Oct 04, 2002; Orleans; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: This paper describes implementation of a technique used to obtain a high fidelity fluid-thermal-structural solution of a combined cycle engine at its scram design point. Single-discipline simulations are insufficient here since interactions from other disciplines are significant. Using off-the-shelf, validated solvers for the fluid, chemistry, thermal, and structural solutions, this approach couples together their results to obtain consistent solutions.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211971 , NAS 1.15:211971 , E-13614 , AIAA Paper 2002-5127 , 11th International Conference on Space Planes and Hypersonic Systems and Technologies; Sep 29, 2002 - Oct 04, 2002; Orleans; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211888 , NAS 1.15:211888 , E-13570 , AIAA Paper 2002-3630 , ICOMP-2002-05 , 38th Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: This paper discusses a method of the nitrogen oxides (NOx) emission reduction through the injection of water in commercial turbofan engines during the takeoff and climbout cycles. In addition to emission reduction, this method can significantly reduce turbine temperature during the most demanding operational modes (takeoff and climbout) and increase engine reliability and life.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211978 , NAS 1.15:211978 , E-13647 , AIAA Paper 2002-3623 , 38th Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: A comprehensive test program was performed in the Propulsion Systems Laboratory at the NASA Glenn Research Center, Cleveland Ohio using a highly instrumented Pratt and Whitney Canada PW 545 turbofan engine. A key objective of this program was the development of a high-altitude database on small, high-bypass ratio engine performance and operability. In particular, the program documents the impact of altitude (Reynolds Number) on the aero-performance of the low-pressure turbine (fan turbine). A second objective was to assess the ability of a state-of-the-art CFD code to predict the effect of Reynolds number on the efficiency of the low-pressure turbine. CFD simulation performed prior and after the engine tests will be presented and discussed. Key findings are the ability of a state-of-the art CFD code to accurately predict the impact of Reynolds Number on the efficiency and flow capacity of the low-pressure turbine. In addition the CFD simulations showed the turbulent intensity exiting the low-pressure turbine to be high (9%). The level is consistent with measurements taken within an engine.
    Keywords: Aircraft Propulsion and Power
    Type: GT-2002-30004 , ASME Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.
    Keywords: Aircraft Propulsion and Power
    Type: 38th AIAA Joint Propulsion Conference; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211475 , E-13242 , NAS 1.15:211475 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211908 , E-13598 , NAS 1.15:211908 , Paper-17-5169 , 11th International American Inst. of Aeronautics and Astronautics and Association Aeronautique et Astronautique de France Conference; Sep 29, 2002 - Oct 04, 2002; Orleans; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: The following report represents a compendium of selected speaker presentation materials and observations made by Prof. O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial, and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic bearings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210059/REV1 , E-12261-2/REV1 , NAS 1.15:210059/REV1 , Tribological Limitations in Gas Turbine Engines; Sep 15, 1999 - Sep 17, 1999; Albany, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: An experimental investigation was completed in the NASA Ames 7- by 10-Foot Wind Tunnel with the objective of determining the performance characteristics of a ducted fan. The model was an annular duct with a 38-in diameter, 10-in chord, and a 5-bladed fixed-pitch fan. Model variations included duct angle of attack, exit vane flap length, flap deflection angle, and duct chord length. Duct performance data were obtained for axial and forward flight test conditions. Axial flow test data showed figure of merit decreases with increasing advance ratio. Forward flight data showed an increasing propulsive force with decreasing duct angle of attack. Exit vane flap deflection angle and flap chord length were shown to be an effective way of providing side force. Extending the duct chord did not effect the duct performance.
    Keywords: Aircraft Propulsion and Power
    Type: American Helicopter Society Aerodynamics, Acoustics and Test and Evaluation Technical Specialists Meeting; Jan 23, 2002 - Jan 25, 2002; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: This paper offers a detailed review and analysis of more than 100 papers on the physics and chemistry of scramjet ignition and flameholding combustion processes, and the known effects of air vitiation on these processes. The paper attempts to explain vitiation effects in terms of known chemical kinetics and flame propagation phenomena. Scaling methodology is also examined, and a highly simplified Damkoehler scaling technique based on OH radical production/destruction is developed to extrapolate ground test results, affected by vitiation, to flight testing conditions. The long term goal of this effort is to help provide effective means for extrapolating ground test data to flight, and thus to reduce the time and expense of both ground and flight testing.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2002-3880 , 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Experimental and analytical aeroacoustic properties of several distributed exhaust nozzle (DEN) designs are presented. Significant differences between the designs are observed and correlated back to Computational Fluid Dynamics (CFD) flowfield predictions. Up to 20 dB of noise reduction on a spectral basis and 10 dB on an overall sound pressure level basis are demonstrated from the DEN designs compared to a round reference nozzle. The most successful DEN designs acoustically show a predicted thrust loss of approximately 10% compared to the reference nozzle. Characteristics of the individual mini-jet nozzles that comprise the DEN such as jet-jet shielding and coalescence are shown to play a major role in the noise signature.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2002-2555 , 8th AIAA/CEAS Aeroacoustic Conference; Jun 17, 2002 - Jun 19, 2002; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: An experimental investigation is described in which thrust augmentation and mass entrainment were measured for a variety of simple cylindrical ejectors driven by a gasoline-fueled pulsejet. The ejectors were of varying length, diameter, and inlet radius. Measurements were also taken to determine the effect on performance of the distance between pulsejet exit and ejector inlet. Limited tests were also conducted to determine the effect of driver cross-sectional shape. Optimal values were found for all three ejector parameters with respect to thrust augmentation. This was not the case with mass entrainment, which increased monotonically with ejector diameter. Thus, it was found that thrust augmentation is not necessarily directly related to mass entrainment, as is often supposed for ejectors. Peak thrust augmentation values of 1.8 were obtained. Peak mass entrainment values of 30 times the driver mass flow were also observed. Details of the experimental setup and results are presented. Preliminary analysis of the results indicates that the enhanced performance obtained with an unsteady jet (primary source) over comparably sized ejectors driven with steady jets is due primarily to the structure of the starting vortex-type flow associated with the former.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211711 , NAS 1.15:211711 , E-13462 , AIAA Paper 2002-3915 , 38th AIAA/ASME/SAE/ASEE Joint Propulsion Meeting and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: We have applied formal experiment design and analysis to optimize the measurement of temperature in a supersonic combustor at NASA Langley Research Center. We used the coherent anti-Stokes Raman spectroscopy (CARS) technique to map the temperature distribution in the flowfield downstream of an 1160 K, Mach 2 freestream into which supersonic hydrogen fuel is injected at an angle of 30 degrees. CARS thermometry is inherently a single-point measurement technique; it was used to map thc flow by translating the measurement volume through the flowfield. The method known as "Modern Design of Experiments" (MDOE) was used to estimate the data volume required, design the test matrix, perform the experiment and analyze the resulting data. MDOE allowed us to match the volume of data acquired to the precision requirements of the customer. Furthermore, one aspect of MDOE, known as response surface methodology, allowed us to develop precise maps of the flowfield temperature, allowing interpolation between measurement points. An analytic function in two spatial variables was fit to the data from a single measurement plane. Fitting with a Cosine Series Bivariate Function allowed the mean temperature to be mapped with 95% confidence interval half-widths of +/- 30 Kelvin, comfortably meeting the confidence of +/- 50 Kelvin specified prior to performing the experiments. We estimate that applying MDOE to the present experiment saved a factor of 5 in data volume acquired, compared to experiments executed in the traditional manner. Furthermore, the precision requirements could have been met with less than half the data acquired.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2002-2914 , AIAA Aerodynamic Measurement Technology and Ground Testing Conference; Jun 24, 2002 - Jun 26, 2002; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.
    Keywords: Aircraft Propulsion and Power
    Type: 26th JANNAF Airbreathing Propulsion Subcommittee Meeting; 1; 177-207; CPIA-Publ-713-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. In this paper, the major enhancements to NASA's engine-weight estimate computer code (WATE) are described. These enhancements include the incorporation of improved weight-calculation routines for the compressor and turbine disks using the finite-difference technique. Furthermore, the stress distribution for various disk geometries was also incorporated, for a life-prediction module to calculate disk life. A material database, consisting of the material data of most of the commonly-used aerospace materials, has also been incorporated into WATE. Collectively, these enhancements provide a more realistic and systematic way to calculate the engine weight. They also provide additional insight into the design trade-off between engine life and engine weight. To demonstrate the new capabilities, the enhanced WATE code is used to perform an engine weight/life trade-off assessment on a production aircraft engine.
    Keywords: Aircraft Propulsion and Power
    Type: GT-2002-30500 , ASME Turbo Expo 2002: Land, Sea and Air 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: A state-of-the-art CFD code (APNASA) was employed in a computationally based investigation of the impact of casing bleed and injection on the stability and performance of a moderate speed fan rotor wherein the stalling mass flow is controlled by tip flow field breakdown. The investigation was guided by observed trends in endwall flow characteristics (e.g., increasing endwall aerodynamic blockage) as stall is approached and based on the hypothesis that application of bleed or injection can mitigate these trends. The "best" bleed and injection configurations were then combined to yield a self-recirculating casing treatment concept. The results of this investigation yielded: 1) identification of the fluid mechanisms which precipitate stall of tip critical blade rows, and 2) an approach to recirculated casing treatment which results in increased compressor stall range with minimal or no loss in efficiency. Subsequent application of this approach to a high speed transonic rotor successfully yielded significant improvements in stall range with no loss in compressor efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211569 , E-13353 , NAS 1.15:211569 , ARL-TR-2748 , GT-2002-30368 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: In this work computational models were developed and used to investigate applications of vortex generators (VGs) to turbomachinery. The work was aimed at increasing the efficiency of compressor components designed for the NASA Ultra Efficient Engine Technology (UEET) program. Initial calculations were used to investigate the physical behavior of VGs. A parametric study of the effects of VG height was done using 3-D calculations of isolated VGs. A body force model was developed to simulate the effects of VGs without requiring complicated grids. The model was calibrated using 2-D calculations of the VG vanes and was validated using the 3-D results. Then three applications of VGs to a compressor rotor and stator were investigated: 1) The results of the 3-D calculations were used to simulate the use of small casing VGs used to generate rotor preswirl or counterswirl. Computed performance maps were used to evaluate the effects of VGs. 2) The body force model was used to simulate large part-span splitters on the casing ahead of the stator. Computed loss buckets showed the effects of the VGs. 3) The body force model was also used to investigate the use of tiny VGs on the stator suction surface for controlling secondary flows. Near-surface particle traces and exit loss profiles were used to evaluate the effects of the VGs.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211551 , E-13326 , NAS 1.15:211551 , GT-2002-30677 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: A continuously rotating rake with radial microphones was developed to measure the inlet and exhaust duct modes on a TFE731-60 turbofan engine. This was the first time the rotating rake technology was used on a production engine. The modal signature for the first three fan harmonics was obtained in the inlet and exhaust. Rotor-stator and rotor-strut interaction modes were measured. Total harmonic power was calculated over a range of fan speeds. Above sonic tip speed, the rotor locked mode was not strong enough to be identified, but the 'buzz-saw' noise at fan sub-harmonics was identified.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211573 , NAS 1.15:211573 , E-13310 , Eighth Aeroacoustics Conference; Jun 17, 2002 - Jun 19, 2002; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to respond to that feedback. NPSS was supported in fiscal year 2001 by the High Performance Computing and Communications Program.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211197 , E-13037 , NAS 1.15:211197 , 2001 Numerical Propulsion System Simulation Review; Nov 07, 2001 - Nov 08, 2001; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211579 , NAS 1.15:211579 , E-13364 , SV-5:L05 , CIMTEC 2002: International Conferences of Modern Materials and Technologies; Jul 14, 2002 - Jul 19, 2002; Florence, Italy; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211705 , E-13450 , NAS 1.15:211705 , ARL-TR-2769 , International Joint Tribology Conference; Oct 27, 2002 - Oct 30, 2002; Cancun; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The objective of this research is to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. We have just completed 2 1/2 years of Phase I of this research. The work within the past six months was concentrated on the following two subjects: (1) Development of the joint velocity-scalar filtered density function (VSFDF) scheme for LES. (2) Implementation of our previously developed scalar filtered density function (SFDF) for flame simulations.
    Keywords: Aircraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: In one-dimensional calculations of pulsed detonation engine (PDE) performance, the exit boundary condition is frequently taken to be a constant static pressure. In reality, for an isolated detonation tube, after the detonation wave arrives at the exit plane, there will be a region of high pressure, which will gradually return to ambient pressure as an almost spherical shock wave expands away from the exit, and weakens. Initially, the flow is supersonic, unaffected by external pressure, but later becomes subsonic. Previous authors have accounted for this situation either by assuming the subsonic pressure decay to be a relaxation phenomenon, or by running a two-dimensional calculation first, including a domain external to the detonation tube, and using the resulting exit pressure temporal distribution as the boundary condition for one-dimensional calculations. These calculations show that the increased pressure does affect the PDE performance. In the present work, a simple model of the exit process is used to estimate the pressure decay time. The planar shock wave emerging from the tube is assumed to transform into a spherical shock wave. The initial strength of the spherical shock wave is determined from comparison with experimental results. Its subsequent propagation, and resulting pressure at the tube exit, is given by a numerical blast wave calculation. The model agrees reasonably well with other, limited, results. Finally, the model was used as the exit boundary condition for a one-dimensional calculation of PDE performance to obtain the thrust wall pressure for a hydrogen-air detonation in tubes of length to diameter ratio (L/D) of 4, and 10, as well as for the original, constant pressure boundary condition. The modified boundary condition had no performance impact for values of L/D 〉 10, and moderate impact for L/D = 4.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211299 , E-13099 , NAS 1.15:211299 , 18th International Colloquium on the Dynamics of Explosions and Reactive Systems; Jul 29, 2001 - Aug 03, 2001; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: A study was conducted in the NASA Glenn Research Center linear cascade on the intermittent flow on the suction surface of an airfoil section from the tip region of a modern low aspect ratio fan blade. Experimental results revealed that, at a large incidence angle, a range of transonic inlet Mach numbers exist where the leading-edge shock-wave pattern was unstable. Flush mounted high frequency response pressure transducers indicated large local jumps in the pressure in the leading edge area, which generates large intermittent loading on the blade leading edge. These measurements suggest that for an inlet Mach number between 0.9 and 1.0 the flow is bi-stable, randomly switching between subsonic and supersonic flows. Hence, it appears that the change in overall flow conditions in the transonic region is based on the frequency of switching between two stable flow states rather than on the continuous increase of the flow velocity. To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the byproduct of an endwall restricted linear cascade.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211375 , E-13199 , NAS 1.15:211375 , Ninth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery; Feb 10, 2002 - Feb 14, 2002; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: A study of noise benefit, vis-a-vis thrust penalty, and its correlation to turbulence intensities was conducted for free jets issuing from lobed nozzles. Four convergent nozzles with constant exit area were used in the experiments. Three of these were of rectangular lobed configuration having six, ten and fourteen lobes; the fourth was a circular nozzle. Increasing the number of lobes resulted in a progressive reduction in the turbulence intensities as well as in the overall radiated noise. The noise reduction was pronounced at the low frequency end of the spectrum. However, there was an increase in the high frequency noise that rendered the overall benefit less attractive when compared on a scaled-up A-weighted basis. A reduction in noise was accompanied by a commensurate reduction in the turbulent kinetic energy in the flow field. As expected, increasing the number of lobes involved progressive reduction in the thrust coefficient. Among the cases studied, the six-lobed nozzle had the optimum reduction in turbulence and noise with the least thrust penalty.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2002-0569 , 40th AIAA Aerospace Sciences Meeting and Exhibit; Jan 14, 2002 - Jan 17, 2002; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-10
    Description: An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-212083 , NAS 1.26:212083 , E-13736
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-10
    Description: As a direct response to the need for further performance gains from current multistage axial compressors, an investigation of advanced aerodynamic design concepts that will lead to compact, high-efficiency, and wide-operability configurations is being pursued. Part I of this report describes the projected level of technical advancement relative to the state of the art and quantifies it in terms of basic aerodynamic technology elements of current design systems. A rational enhancement of these elements is shown to lead to a substantial expansion of the design and operability space. Aerodynamic design considerations for a four-stage core compressor intended to serve as a vehicle to develop, integrate, and demonstrate aerotechnology advancements are discussed. This design is biased toward high efficiency at high loading. Three-dimensional blading and spanwise tailoring of vector diagrams guided by computational fluid dynamics (CFD) are used to manage the aerodynamics of the high-loaded endwall regions. Certain deleterious flow features, such as leakage-vortex-dominated endwall flow and strong shock-boundary-layer interactions, were identified and targeted for improvement. However, the preliminary results were encouraging and the front two stages were extracted for further aerodynamic trimming using a three-dimensional inverse design method described in part II of this report. The benefits of the inverse design method are illustrated by developing an appropriate pressure-loading strategy for transonic blading and applying it to reblade the rotors in the front two stages of the four-stage configuration. Multistage CFD simulations based on the average passage formulation indicated an overall efficiency potential far exceeding current practice for the front two stages. Results of the CFD simulation at the aerodynamic design point are interrogated to identify areas requiring additional development. In spite of the significantly higher aerodynamic loadings, advanced CFD-based tools were able to effectively guide the design of a very efficient axial compressor under state-of-the-art aeromechanical constraints.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TP-2002-211568 , NAS 1.60:211568 , E-13352 , ARL-TR-2859
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-10
    Description: In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211894 , NAS 1.15:211894 , E-13576
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-10
    Description: Turbomachines onboard aircraft operate in a highly complex and harsh environment. The unsteady flowfield inherent to turbomachines leads to several problems associated with safety, stability, performance and noise. In-flight surge or flutter incidents could be catastrophic and impact the safety and reliability of the aircraft. High-Cycle-Fatigue (HCF), on the other hand, can significantly impact safety, readiness and maintenance costs. To avoid or minimize these problems generally a more conservative design method must be initiated which results in thicker blades and a loss of performance. Actively controlled turbomachines have the potential to reduce or even eliminate the instabilities by impacting the unsteady aerodynamic characteristics. By modifying the unsteady aerodynamics, active control may significantly improve the safety and performance especially at off-design conditions, reduce noise, and increase the range of operation of the turbomachine. Active control can also help improve reliability for mission critical applications such as the Mars Flyer. In recent years, HCF has become one of the major issues concerning the cost of operation for current turbomachines. HCF alone accounts for roughly 30% of maintenance cost for the United States Air-Force. Other instabilities (flutter, surge, rotating-stall, etc.) are generally identified during the design and testing phase. Usually a redesign overcomes these problems, often reducing performance and range of operation, and resulting in an increase in the development cost and time. Despite a redesign, the engines do not have the capabilities or means to cope with in-flight unforeseen vibration, stall, flutter or surge related instabilities. This could require the entire fleet worldwide to be stood down for expensive modifications. These problems can be largely overcome by incorporating active control within the turbomachine and its design. Active control can help in maintaining the integrity of the system in unforeseen events and provide for more aggressive designs to reduce the weight and improve efficiency of the turbomachine. Another area where active control can be useful is in controlling and suppressing rotating stall and surge in compressors, thereby increasing its operating range. Although some of these benefits will be offset by the added cost and weight penalty of the control system, the potential benefits in safety, reliability, performance, and noise characteristics are significant enough to warrant research in the area of active control of turbomachines. There is renewed interest within industry to understand unsteady aerodynamic behavior. This improved understanding not only leads to better design of turbomachines, which avoid instabilities but also which helps in understanding the controllability of the instabilities. The proliferation of micro-electro-mechanical-system (MEMS) devices has made available new tools to designers for employing feedback controls at reasonable costs. MEMS have also made the control devices small and unobtrusive enough to be implemented within the turbomachine without significant obstruction to the flow path. This has made active-control very attractive especially for systems requiring extreme confidence.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-10
    Description: The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2002-211485 , NAS 1.26:211485 , E-13253
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-10
    Description: To further reduce pollutant emissions, such as CO, NO(x), UHCs, etc., in the next few decades, innovative concepts of gas turbine combustors must be developed. Several concepts, such as the LIPP (Lean- Premixed- Prevaporized), RQL (Rich-Burn Quick-Quench Lean-Burn), and LDI (Lean-Direct-Injection), have been under study for many years. To fully realize the potential of these concepts, several improvements, such as inlet geometry, air swirler, aerothermochemistry control, fuel preparation, fuel injection and injector design, etc., must be made, which can be studied through the experimental method and/or the numerical technique. The purpose of this proposal is to use the CFD technique to study, and hence, to guide the design process for low emission gas turbine combustors. A total of 13 technical papers have been (or will be) published.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-10
    Description: This White Paper examines the current state of Hypersonic Airbreathing Propulsion at the NASA Langley Research Center and the factors influencing this area of work and its personnel. Using this knowledge, the paper explores beyond the present day and suggests future directions and strategies for the field. Broad views are first taken regarding potential missions and applications of hypersonic propulsion. Then, candidate propulsion systems that may be applicable to these missions are suggested and discussed. Design tools and experimental techniques for developing these propulsion systems are then described, and approaches for applying them in the design process are considered. In each case, current strategies are reviewed and future approaches that may improve the techniques are considered. Finally, the paper concentrates on the needs to be addressed in each of these areas to take advantage of the opportunities that lay ahead for both the NASA Langley Research Center and the Aerodynamic Aerothermodynamic, and Aeroacoustics Competency. Recommendations are then provided so that the goals set forth in the paper may be achieved.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211951 , L-18110 , NAS 1.15:211951
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-10
    Description: The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211493 , E-13206 , NAS 1.15:211493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-10
    Description: Extensive slow-crack-growth (SCG) analysis was made using a primary exponential crack-velocity formulation under three widely used load configurations: constant stress rate, constant stress, and cyclic stress. Although the use of the exponential formulation in determining SCG parameters of a material requires somewhat inconvenient numerical procedures, the resulting solutions presented gave almost the same degree of simplicity in both data analysis and experiments as did the power-law formulation. However, the fact that the inert strength of a material should be known in advance to determine the corresponding SCG parameters was a major drawback of the exponential formulation as compared with the power-law formulation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2002-211153/PT1 , NAS 1.15:211153/PT1 , E-13009-1/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: The Johns Hopkins University Applied Physics Laboratory (JHU/APL), in support of the NASA Glenn Research Center (NASA GRC), is investigating performance methodologies and system integration issues related to Pulsed Detonation Engine (PDE) nozzles. The primary goal of this ongoing effort is to develop design and performance assessment methodologies applicable to PDE exit nozzle(s). APL is currently focusing its efforts on a common plenum chamber design that collects the exhaust products from multiple PDE tubes prior to expansion in a single converging-diverging exit nozzle. To accomplish this goal, a time-dependent, quasi-one-dimensional analysis for determining the flow properties in and through a single plenum and exhaust nozzle is underway. In support of these design activities, parallel modeling efforts using commercial Computational Fluid Dynamics (CFD) software are on-going. These efforts include both two and three-dimensional as well as steady and time-dependent computations to assess the flow in and through these devices. This paper discusses the progress in developing this nozzle design methodology.
    Keywords: Aircraft Propulsion and Power
    Type: 26th JANNAF Airbreathing Propulsion Subcommittee Meeting; 1; 351-363; CPIA-Publ-713-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Aeroelastic codes with advanced capabilities for modeling flow require substantial computational time. On the other hand, fast-running linear aeroelastic codes lack the capability to model three-dimensional, transonic, vortical, and viscous flows. The goal of this work was to develop an aeroelastic code with accurate modeling capabilities and small computational requirements.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...