ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (57)
  • AGU (American Geophysical Union)  (34)
  • AMS (American Meteorological Society)  (23)
  • 2010-2014
  • 2000-2004  (57)
  • 1985-1989
  • 1960-1964
  • 2002  (57)
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 59 . pp. 2951-2965.
    Publication Date: 2018-04-16
    Description: This study investigates and accounts for the influence of various ice cloud parameters on the retrieval of the surface solar radiation budget (SSRB) from reflected flux at the top of the atmosphere (TOA). The optical properties of ice clouds depend on ice crystal shape, size distribution, water content, and the vertical profiles of geometric and microphysical structure. As a result, the relationship between the SSRB and TOA-reflected flux for an ice cloud atmosphere is more complex and differs from that for water cloud and cloudless atmospheres. The sensitivities of the relationship between the SSRB and TOA-reflected flux are examined with respect to various ice cloud parameters. Uncertainties in the retrieval of the SSRB due to inadequate knowledge of various ice cloud parameters are evaluated thoroughly. The uncertainty study is concerned with both pure ice clouds and multiphase clouds (ice cloud above water cloud). According to the magnitudes of errors in the SSRB retrieval caused by different input variables, parameterized correction terms were introduced. If the input variables are known accurately, errors in the retrieval of the SSRB under a wide range of ice cloud conditions are expected to diminish substantially, to less than 10 W m−2 for 91% of the simulated ice cloud cases. In comparison, the same accuracy may be attained for only 19% of the retrievals for the same ice cloud cases using the retrieval algorithm designed for non-ice-cloud conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 2 (7).
    Publication Date: 2018-01-30
    Description: [1] The structural and chemical evolution of palagonite was studied as a function of glass composition, alteration environment, and time by applying a range of analytical methods (electron microprobe, infrared photometry, atomic force microscopy, X-ray fluorescence, and X-ray diffraction). Palagonitization of volcanic glass is a continuous process of glass dissolution, palagonite formation, and palagonite evolution, which can be subdivided into two different reaction stages with changing element mobilities. The first stage is characterized by congruent dissolution of glass and contemporaneous precipitation of “fresh,” gel-like, amorphous, optically isotropic, mainly yellowish palagonite. This stage is accompanied by loss of Si, Al, Mg, Ca, Na, and K, active enrichment of H2O, and the passive enrichment of Ti and Fe. The second stage is an aging process during which the thermodynamically unstable palagonite reacts with the surrounding fluid and crystallizes to smectite. This stage is accompanied by uptake of Si, Al, Mg, and K from solution and the loss of Ti and H2O. Ca and Na are still showing losses, whereas Fe reacts less consistently, remaining either unchanged or showing losses. The degree and direction of element mobility during palagonitization was found to vary mainly with palagonite aging, as soon as the first precipitation of palagonite occurs. This is indicated by the contrasting major element signatures of palagonites of different aging steps, by the changes in the direction of element mobility with palagonite aging, and by the general decrease of element loss with increasing formation of crystalline substances in the palagonite. Considering the overall element budget of a water-rock system, the conversion of glass to palagonite is accompanied by much larger element losses than the overall alteration process, which includes the formation of secondary phases and palagonite aging. The least evolved palagonitized mafic glass studied has undergone as much as 65 wt% loss of elements during palagonite formation, compared to ∼28 wt% element loss during bulk alteration. ABout 33 wt% element loss was calculated for one of the more evolved, in terms of the aging degree, rocks studied, compared to almost no loss for bulk alteration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-04
    Description: North Atlantic synoptic-scale processes are analyzed by bandpassing 6-hourly NCEP–NCAR reanalysis data (1958–98) for several synoptic ranges corresponding to ultrahigh-frequency variability (0.5–2 days), synoptic-scale variability (2–6 days), slow synoptic processes (6–12 days), and low-frequency variability (12–30 days). Climatological patterns of the intensity of synoptic processes are not collocated for different ranges of variability, especially in the lower troposphere. Intensities of synoptic processes demonstrate opposite trends between the North American coast and in the northeast Atlantic. Although north of 40°N the intensity of ultrahigh-frequency variability and synoptic-scale processes show similar interannual variability, further analysis indicates that secular changes, and decadal-scale and interannual variability in the intensities of synoptic processes may not be necessarily consistent for different synoptic timescales. Magnitudes of winter ultrahigh-frequency variability are highly correlated with the intensity of synoptic-scale processes in the 1960s and early 1970s. However, they show little agreement with each other during the last two decades, pointing to the remarkable change in atmospheric variability over the North Atlantic in late 1970s. North Atlantic ultrahigh-frequency variability in winter is highly correlated with surface temperature gradient anomalies in the Atlantic–American sector. These gradients are computed from the merged fields of SST and surface temperature over the continent. They demonstrate a dipolelike pattern associated with the North American coast on one hand, with the subpolar SST front and continental Canada on the other. High-frequency variability and its synoptic counterpart demonstrate different relationships with the North Atlantic Oscillation. Reliability of these results and their sensitivity to the filtering procedures are addressed by comparison to radiosonde data and application of alternative filters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-18
    Description: The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 107 (C1). 10.1029-10.1040.
    Publication Date: 2018-04-18
    Description: Three deep anticyclonic eddies of a species only reported once before [ Gordon and Greengrove, 1986 ] were intersected by hydrographic lines of the World Ocean Circulation Experiment (WOCE) and South Atlantic Ventilation Experiment (SAVE) programs in the Argentine Basin. The vortices are centered near 3500 m depth at the interface between North Atlantic Deep Water and Bottom Water. They have ∼1500-m-thick cores containing Lower Circumpolar Deep Water and a dynamic influence that may span up to two thirds of the water column. As one eddy was observed just downstream of the western termination of the Falkland Escarpment, a destabilization of the deep boundary current by the sudden slope relaxation is suggested as a potential cause of eddy formation. Besides isopycnal interleaving at the eddy perimeters, strongly eroded core properties in the upper parts of the lenses, associated with low density ratios, hint at double diffusion at the top of the structures as another major decay mechanism. The presence of an eddy in the northern Argentine Basin shows the possibility for a northward drift of the vortices, in this basin at least. Deep events in recent current measurements from the Vema Channel are presented that raise the question of further equatorward motion to the Brazil Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (2). pp. 401-410.
    Publication Date: 2019-09-23
    Description: Turbulent fluxes of momentum and sensible heat were estimated from sonic anemometer measurements gathered over the Labrador Sea during a winter cruise of the R/V Knorr. The inertial dissipation method was used to calculate turbulent fluxes of momentum. The resulting drag coefficients agree well with earlier findings. Sensible heat fluxes were computed using both cross-correlation and inertial dissipation techniques. There is good agreement between results from both methods, although there is more scatter in the correlation fluxes than the dissipation fluxes. The inertial dissipation method gives reasonable results even under conditions of high wind speeds and low air temperatures, which combined with the relatively warm sea surface temperatures lead to sensible heat fluxes of several hundred watts per square meter. Sensible heat fluxes obtained from the sonic anemometer measurements agree well with bulk turbulent fluxes according to the formulation of Isemer and Hasse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (3). p. 1081.
    Publication Date: 2018-03-15
    Description: Methane in surface waters and marine air off Oregon (44°24′N–44°54′N, 124°36′W–125°24′W) was continuously surveyed in July 1999. During a high-resolution survey after a period of steady winds from the north, CH4 concentrations were high in the northeastern region, near the shelf edge. The highest CH4 concentrations were 2.5 times higher than equilibrium with the atmospheric partial pressure. In contrast, concentrations were near equilibrium in the western part of the survey area, the Hydrate Ridge. The increase in CH4 from southwest to northeast correlates with a drop in sea surface temperature (SST), from 16.5°C to 〈13.5°C, toward the shelf edge. The observed SST pattern was caused by summer upwelling off Oregon. The results suggest that CH4 derived from bottom sources near the shelf/slope break and methane found in connection with shallow (100–300 m) turbidity layers is transported to the surface by coastal upwelling, which causes an enhanced net flux of CH4 to the atmosphere. Vertical profiles of the methane distribution on the shelf in October demonstrate the accumulation of methane introduced by shelf sources. Surface concentrations at these stations in October (during nonupwelling conditions) were lower than in July (during upwelling) and were only slightly oversaturated with respect to the atmosphere. An acoustic Doppler current profiler survey indicates that the observed trend cannot be attributed to a surface flow reversal in the area. The low-salinity waters in the core of the Columbia River plume (S 〈 31) showed no enhanced CH4 concentrations. The trend of higher CH4 concentrations at lower temperatures existed over the whole 17-day survey, but large spatial and temporal variations existed. The presence of methane sources in regions of coastal upwelling worldwide, such as shallow seeps, gas hydrates, and intermediate nepheloid layers, suggests that the enhancement of CH4 fluxes to the atmosphere by coastal upwelling occurs on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-10
    Description: Deep marine currents are strongly influenced by climatic changes. They also deposit, rework, and sort sediment, and can generate kilometer-scale sedimentary bodies (drifts). These drifts are made of thoroughly bioturbated, stacked sedimentary sequences called contourites [Gonthier et al., 1984]. As a consequence, change in the direction or intensity of currents can be recorded in the sediments
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-10
    Description: This paper presents data to support the presence of (1) intra-annual signals in the chemical composition (δ18O and Sr/Ca) of the skeletons of sclerosponges from the Bahamas and (2) variable rates of skeletal accretion. These conclusions are based on data obtained by using a microsampling method for the stable oxygen and carbon isotopes in which material was extracted at a resolution of one sample every 34 μm and a laser microprobe which obtained trace element data every 20 μm (Sr, Mg, and Pb). An age model was established using a combination of changes in the concentration of Pb, the change in the δ13C of the skeleton of the sclerosponges, and U/Th isotopic measurements. These methods yield a mean growth rate of 220 μm/yr but suggest that the growth rate in this particular sclerosponge was not constant. The calculated growth rate is within error identical to that determined by U/Th methods. The variable growth rate was confirmed through spectral analysis of the δ18O and Sr/Ca data that showed peaks corresponding to the annual cycle in these parameters as well as peaks corresponding to growth rates of approximately 128, 212, 270, and 400 μm/yr. The presence of these additional frequencies suggests a growth rate between approximately 100 and 300 μm/yr. These conclusions were supported by modeling of oxygen isotopic data measured on a scleractinian coral as well as model isotope data generated on synthetic time series. These findings have important implications for the use of sclerosponges as proxies of paleoclimate because they emphasize the need for a precise yearly chronology in order that proxy data can be compared with climatic variables.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (22). p. 2081.
    Publication Date: 2018-02-20
    Description: We report on controlled experiments to document the fate of naturally occurring methane hydrate released from the sea floor (780 m, 4.3°C) by remotely operated vehicle (ROV) disturbance. Images of buoyant sediment-coated solids rising (∼0.24 m/s) from the debris cloud, soon revealed clear crystals of methane hydrate as surficial material sloughed off. Decomposition and visible degassing began close to the predicted phase boundary, yet pieces initially of ∼0.10 m size easily survived transit to the surface ocean. Smaller pieces dissolved or dissociated before reaching the surface ocean, yet effectively transferred gas to depths where atmospheric ventilation times are short relative to methane oxidation rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 19 (5). pp. 794-807.
    Publication Date: 2017-01-25
    Description: Lowered acoustic Doppler current profilers (LADCPs) have matured from an experimental instrument to an operational hydrographic tool to study ocean dynamics. The data processing, however, is still in a rather primitive state. First, a method to estimate bottom-track velocities using the standard water profile data was developed. Then inverse solutions are presented that enhance the standard data processing by adding external constraints such as bottom-referenced velocity profiles. Depending on the depth of the profile and the ADCP range the inclusion of bottom-track data can reduce the local velocity errors by a significant factor. The least squares framework also allows for simplified error analysis of the LADCP system and some of the trade-offs are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (8). pp. 2205-2235.
    Publication Date: 2018-04-10
    Description: Zonal transports of North Atlantic Deep Water (NADW) in the South Atlantic are determined. For this purpose the circulation of intermediate and deep water masses is established on the basis of hydrographic sections from the World Ocean Circulation Experiment (WOCE) and some pre-WOCE sections, using temperature, salinity, nutrients, and anthropogenic tracers. Multiple linear regression is applied to infer missing parameters in the bottle dataset. A linear box-inverse model is used for a set of closed boxes given by sections and continental boundaries. After performing a detailed analysis of water mass distribution, 11 layers are prescribed. Neutral density surfaces are selected as layer interfaces, thus improving the description of water mass distribution in the transition between the subtropical and subpolar latitudes. Constraints for the inverse model include integral meridional salt and phosphorus transports, overall salt and silica conservation, and transports from moored current meter observations. Inferred transport numbers for the mean meridional thermohaline overturning are given. Persistent zonal NADW transport bands are found in the western South Atlantic, in particular eastward flow of relatively new NADW between 20° and 25°S and westward flow of older NADW to the north of this latitude range. The axis of the eastward transport band corresponds to the core of property distributions in this region, suggesting Wüstian flow. Part of the eastward flow appears to cross the Mid-Atlantic Ridge at the Rio de Janeiro Fracture Zone. Results are compared qualitatively with deep float observations and results from general circulation models
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 573-584.
    Publication Date: 2020-08-04
    Description: Fifteen profiling floats were injected into the deep boundary current off Labrador. They were ballasted to drift in the core depth of Labrador Sea Water (LSW) at 1500-m depth and were deployed in two groups during March and July/August 1997. Initially, for about three months, the floats were drifting within the boundary current, and the flow vectors were used to determine the mean horizontal structure of the Deep Labrador Current, which was found to be about 100 km wide with an average core speed of 18 cm s−1. North of Flemish Cap the boundary current encounters complicated topography around “Orphan Knoll,” and there the LSW outflow splits up into different routes. One obvious LSW path is eastward through the Charlie Gibbs Fracture Zone and another route is a narrow recirculation toward the central Labrador Sea. A surprising result was that none of the floats were able to follow the boundary current southward to the Grand Banks area and exit into the subtropics. Trajectories and temperature profiles of the eastward drifting floats indicate the importance of the North Atlantic Current for dispersing the floats, even at the level of LSW.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-02-20
    Description: A seismic wide-angle section offshore Costa Rica is presented across the boundary between oceanic crust generated at the East Pacific rise (EPR) and at the Galápagos spreading center (GSC) as indicated by magnetic anomalies. This suture, where the Farallon plate broke up ∼23 Ma ago, is marked by pronounced velocity variations throughout the crust including a low-velocity body in the lower crust. This body is well constrained by refracted waves above the inversion zone and by strong PmP reflections from its lower boundary. The distinctness of this body and the local gravity field point to an igneous intrusion rather than serpentinized rock. Typical oceanic crust is found adjacent to the suture zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 1567-1573.
    Publication Date: 2020-08-04
    Description: The analysis of high-resolution oceanographic data referring to velocity measurements carried out by means of a vessel-mounted acoustic Doppler current profiler on 12 November 2000 in the equatorial Atlantic, at 44°W between 4.5° and 6°N, reveals the presence of three large-amplitude internal solitary waves superimposed on the velocity field associated with the North Equatorial Countercurrent (NECC). These waves were found in the deep ocean, more than 500 km off the continental shelf and far from regions of topographic variations. They propagated toward the north-northeast, strongly inclined with respect to the main axis of the NECC and perpendicular to the Brazilian shelf, as well as to the North Brazil Current, and were characterized by maximum horizontal velocities of about 2 m s−1 and maximum vertical velocities of about 20 cm s−1. The large magnitudes of the measured velocities indicate that the observed waves represent disturbances evolving in a strongly stratified ocean. The distance separating the waves (about 70 km) indicates that the observed features cannot be considered as elements of a single train of internal solitary waves. The waves consist, instead, of truly disconnected, pulselike intense solitary disturbances. This behavior, which strongly differs from that typically observed for trains of tidally generated internal solitary waves, indicates that different mechanisms were possibly involved in their generation and/or evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 107 (C12).
    Publication Date: 2018-04-18
    Description: A description of the near-surface circulation and its properties is the result of the analysis of a drifting buoy data set in the eastern North Atlantic between the Iberian Peninsula, the Azores, and the Canary Islands. World Ocean Circulation Experiment-Tropical Ocean-Global Atmosphere experiment drifters equipped with holey sock drogues centered at 15 m depth collected a total of 14.4 years of data. The drifters sampled a rather inhomogeneous velocity field with a weak mean flow regime and eddies of different scales. They meandered southward everywhere in the study region, except in the Iberian coastal transition zone north of 41degreesN where they headed northward. The near-surface mean velocity field obtained from the drifter data set shows all important mean currents, including the poleward Portugal Coastal Countercurrent during the fall, winter, and early spring off western and northern Iberia, the southward Portugal Coastal Current, the slow offshore southward flow of the Portugal Current during the whole year, the southwestward Canary Current, and the eastward Azores Current, which extends to the vicinity of the African coast near the Gulf of Cadiz. Maps of the eddy kinetic energy field were obtained from the drifters and from satellite altimetry. It provides the largest part of the total kinetic energy. The rate of dispersion is estimated from the Lagrangian statistics of the drifting buoys. The dispersion of the drifters in the study region is well modeled by a simple description of eddy diffusion assuming homogeneous turbulence. Ensemble mean diffusivities K and the Langrangian integral length scales and timescales (L and T) were obtained for the zonal and meridional directions. The sea surface temperature measured along the drifter trajectories is used to produce estimates of the eddy diffusivity, which is compared with the diffusivity estimates obtained from the theory of Taylor. The eddy diffusivity is found to be approximately proportional to the eddy kinetic energy. Discrete eddies and meanders were observed using drifters and altimetry in order to map and describe their geographical distribution and characteristics in the eastern North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 83 (29). 309; 314-315.
    Publication Date: 2017-02-14
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 3020-3038.
    Publication Date: 2018-04-09
    Description: The ventilation of the permanent thermocline of the Southern Hemisphere gyres is quantified using climatological and synoptic observational data. Ventilation is estimated with three independent methods: the kinematic method provides subduction rates from the vertical and horizontal fluxes through the base of the mixed layer, the water age uses in situ age distribution of thermocline waters, and the annual-mean water mass formation through air–sea interaction is calculated. All three independent estimates agree within their error bars, which are admittedly large. The subduction rates are mainly controlled through their vertical and lateral components with only minor transient eddy contributions. The vertical transfer, derived from Ekman pumping, ventilates over most of the areas of the subtropical gyres, while lateral transfer occurs mainly along the Subtropical and Subantarctic Fronts, where it injects mode and intermediate waters. For the permanent thermocline the overall ventilation of the South Atlantic is about 21 Sv (Sv ≡ 106 m3 s−1). Of this, lateral transfer contributes 10 Sv, mainly in the Brazil–Malvinas confluence zone and to the northeast of Drake Passage. The effective vertical transfer at the bottom of the mixed layer is only two-thirds of the Ekman pumping due to strong northward forcing of the mixed layer itself. The Indian Ocean is ventilated at a rate of 35 Sv with equal lateral and vertical contributions. The South Pacific's overall ventilation is 44 Sv of which the lateral input contributes little more than half. West of 130°W, the South Pacific is ventilated through Ekman pumping and with only minor lateral transfer. In the east lateral transfer dominates between 10° and 20°S and along the Subantarctic Front in a narrow density range. Combining overall transports with earlier estimates for the Northern Hemisphere gives a ventilation of the World Ocean's permanent thermocline of about 160 Sv. Analysis of atmospheric reanalysis air–sea flux data reveals an overall increase in the formation of thermocline waters for all three Southern Hemisphere oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (17). p. 1840.
    Publication Date: 2018-02-19
    Description: Within the context of the German CLIVAR program, an observational program in the western tropical Atlantic with shipboard sections, profiling floats and a moored array aims at studying the role of the shallow thermohaline subtropical cell (STC) in tropical-subtropical interactions and the cold water transports underneath. From 6 repeated shipboard profiling sections off Brazil near 5°S a northward warm water transport above 1100 m of 25.0 ± 4.4 Sv is determined, of which 13.4 ± 2.7 Sv occur in the thermocline layer supplying the Equatorial Undercurrent. Trajectories of 15 profiling floats released near the western boundary are presented that drift at shallow levels (200 m and 400 m) and delineate the different STC branches. For the southward flow of North Atlantic Deep Water (NADW) a section-mean transport of −31.7 ± 9.2 Sv was determined at 5°S. However, different from the steady NADW flow observed earlier along the topography north of the equator, the NADW currents at 5–10°S are much more variable with long periods of northward counterflow along the topography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (4). p. 1106.
    Publication Date: 2021-01-26
    Description: An eddy-resolving coupled ecosystem-circulation model of the North Atlantic is used to investigate the impact of mesoscale variability on the nitrate supply to the light-lit euphotic zone. The focus is on the oligotrophic subtropical gyre where eddies have been suggested to reconcile apparently contradictory observational estimates of nutrient supply and export production. Comparison with observations indicates that the numerical model provides a realistic description of the subtropical eddy field and its interaction with biogeochemical tracers. The model results illustrate that the eddy-induced nitrate flux into the euphotic zone is largest near the margins of the oligotrophic gyre where both vertical and lateral nutrient supply by eddies are effective. Typical values of simulated eddy-induced nitrate supply are 0.05 mol m-2 yr-1, which is much lower than has been suggested previously. This new estimate of eddy-induced nitrate supply is not sufficient to reconcile seemingly contradictory observational estimates of biological production in the subtropics. Alternative sources of fixed nitrogen, deviations from standard elemental stoichiometry, and possible effects of interannual variability will have to be considered in order to resolve apparent observational discrepancies in the oligotrophic subtropical gyres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 687-701.
    Publication Date: 2018-04-06
    Description: The quasi-decadal salinity fluctuations in the upper 300 m of the Labrador Sea are investigated by partitioning all available salinity station data since 1948 by region and bottom depth. There are major freshwater anomalies in the early 1970s (the Great Salinity Anomaly), mid-1980s, and early 1990s. These vary in amplitude throughout the region, being least on the shelf and greatest over the slope region near the Labrador Current. The Labrador Sea cannot be considered a simple conduit for freshwater anomalies originating in the East Greenland Current. There is evidence that local processes modulate the anomaly. The freshwater anomalies in the Labrador Current are approximately twice as large as those in the East Greenland Current. The Baffin Island Current flowing southward through the western Davis Strait is the only local source of freshwater with sufficient volume to account for this increase. The propagation speed, 2–3 cm s−1, of the anomaly along the Labrador Sea margin is much less than the advection speed indicating a highly damped system. The connection of the North Atlantic Oscillation (NAO) with these quasi-decadal salinity fluctuations is most obvious in the Labrador Sea interior, where increased surface buoyancy flux during positive NAO drives deep convective mixing and thus terminates the fresh surface anomalies. Less clear are the processes by which NAO-forced changes of lateral freshwater flux modulate the salinity along the margin. The authors propose a feedback mechanism where, during years of low wind speed, freshwater accumulates offshore of the slope front in the surface layer. The increased upper-layer buoyancy prohibits further mixing, and low salinities persist.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-04
    Description: In 1997, a unique hydrographic and chlorofluorocarbon (CFC: component CFC-11) dataset was obtained in the subpolar North Atlantic. To estimate the synopticity of the 1997 data, the recent temporal evolution of the CFC and Labrador Sea Water (LSW) thickness fields are examined. In the western Atlantic north of 50°N, the LSW thickness decreased considerably from 1994–97, while the mean CFC concentrations did not change much. South of 50°N and in the eastern Atlantic, the CFC concentration increased with little or no change in the LSW thickness. On shorter timescales, local anomalies due to the presence of eddies are observed, but for space scales larger than the eddies the dataset can be treated as being synoptic over the 1997 observation period. The spreading of LSW in the subpolar North Atlantic is described in detail using gridded CFC and LSW thickness fields combined with Profiling Autonomous Lagrangian Circulation Explorer (PALACE) float trajectories. The gridded fields are also used to calculate the CFC-11 inventory in the LSW from 40° to 65°N, and from 10° to 60°W. In total, 2300 ± 250 tons of CFC-11 (equivalent to 16.6 million moles) were brought into the LSW by deep convection. In 1997, 28% of the inventory was still found in the Labrador Sea west of 45°W and 31% of the inventory was located in the eastern Atlantic. The CFC inventory in the LSW was used to estimate the lower limits of LSW formation rates. At a constant formation rate, a value of 4.4–5.6 Sv (Sv ≡ 106 m3 s−1) is obtained. If the denser modes of LSW are ventilated only in periods with intense convection, the minimum formation rate of LSW in 1988–94 is 8.1–10.8 Sv, and 1.8–2.4 Sv in 1995–97
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 666-686.
    Publication Date: 2018-04-06
    Description: Time series of hydrographic and transient tracer (3H and 3He) observations from the central Labrador Sea collected between 1991 and 1996 are presented to document the complex changes in the tracer fields as a result of variations in convective activity during the 1990s. Between 1991 and 1993, as atmospheric forcing intensified, convection penetrated to progressively increasing depths, reaching 2300 m in the winter of 1993. Over that period the potential temperature (θ)/salinity (S) properties of Labrador Sea Water stayed nearly constant as surface cooling and downward mixing of freshwater was balanced by excavating and upward mixing of the warmer and saltier Northeast Atlantic Deep Water. It is shown that the net change in heat content of the water column (150–2500 m) between 1991 and 1993 was negligible compared to the estimated mean heat loss over that period (110 W m−2), implying that the lateral convergence of heat into the central Labrador Sea nearly balances the atmospheric cooling on a surprisingly short timescale. Interestingly, the 3H–3He age of Labrador Sea Water increased during this period of intensifying convection. Starting in 1995, winters were milder and convection was restricted to the upper 800 m. Between 1994 and 1996, the evolution of 3H–3He age is similar to that of a stagnant water body. In contrast, the increase in θ and S over that period implies exchange of tracers with the boundaries via both an eddy-induced overturning circulation and along-isopycnal stirring by eddies [with an exchange coefficient of O(500 m2 s−1)]. The authors construct a freshwater budget for the Labrador Sea and quantitatively demonstrate that sea ice meltwater is the dominant cause of the large annual cycle of salinity in the Labrador Sea, both on the shelf and the interior. It is shown that the transport of freshwater by eddies into the central Labrador Sea (140 cm between March and September) can readily account for the observed seasonal freshening. Finally, the authors discuss the role of the eddy-induced overturning circulation with regard to transport and dispersal of the newly ventilated Labrador Sea Water to the boundary current system and compare its strength (2–3 Sv) to the diagnosed buoyancy-forced formation rate of Labrador Sea Water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-04-10
    Description: Comparisons are made between a time series of meteorological surface layer observational data taken on board the R/V Knorr, and model analysis data from the European Centre for Medium-Range Weather Forecasting (ECMWF) and the National Centers for Environmental Prediction (NCEP). The observational data were gathered during a winter cruise of the R/V Knorr, from 6 February to 13 March 1997, as part of the Labrador Sea Deep Convection Experiment. The surface layer observations generally compare well with both model representations of the wintertime atmosphere. The biases that exist are mainly related to discrepancies in the sea surface temperature or the relative humidity of the analyses. The surface layer observations are used to generate bulk estimates of the surface momentum flux, and the surface sensible and latent heat fluxes. These are then compared with the model-generated turbulent surface fluxes. The ECMWF surface sensible and latent heat flux time series compare reasonably well, with overestimates of only 13% and 10%, respectively. In contrast, the NCEP model overestimates the bulk fluxes by 51% and 27%, respectively. The differences between the bulk estimates and those of the two models are due to different surface heat flux algorithms. It is shown that the roughness length formula used in the NCEP reanalysis project is inappropriate for moderate to high wind speeds. Its failings are acute for situations of large air–sea temperature difference and high wind speed, that is, for areas of high sensible heat fluxes such as the Labrador Sea, the Norwegian Sea, the Gulf Stream, and the Kuroshio. The new operational NCEP bulk algorithm is found to be more appropriate for such areas. It is concluded that surface turbulent flux fields from the ECMWF are within the bounds of observational uncertainty and therefore suitable for driving ocean models. This is in contrast to the surface flux fields from the NCEP reanalysis project, where the application of a more suitable algorithm to the model surface-layer meteorological data is recommended
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-05-10
    Description: Ice sheets in the North American Arctic and, to a lesser extent, those in northern Eurasia calved large quantities of icebergs that drifted through Fram Strait into the Greenland Sea several times during the late Pleistocene. These icebergs deposited Fe oxide grains (45–250 mm) and coarse lithic clasts 〉250 mm matched to specific circum-Arctic sources. Four massive Arctic iceberg export events are identified from the Laurentide and the Innuitian ice sheets, between 14 and 34 ka (calendar years) in a sediment core from Fram Strait. These relatively short duration (〈1–4 kyr) events contain 3–5 times the background levels of Fe oxide grains. They began suddenly, as indicated by a steep rise in the number of grains matched to an ice sheet source, suggesting rapid purges of ice through Fram Strait, due perhaps to collapse of ice sheets. The larger events from the northwestern Laurentide ice sheet are preceded by events from the Innuitian ice sheet. Despite the chronological uncertainties, the Arctic export events appear to occur prior to Heinrich events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (3). pp. 891-902.
    Publication Date: 2020-08-04
    Description: The so-called equatorial stacked jets are analyzed with ship-board observations and moored time series from the Atlantic Ocean. The features are identified and isolated by comparing vertical wavenumber spectra at the equator with those a few degrees from the equator. Mode-filtering gives clear views of the jets in meridional sections, the typical extent being ±1° in latitude. The vertical structure can be well described (explaining 82% of the variance) by N−1-stretched cosines, with a Gaussian amplitude tapering in the vertical. The stretched wavelengths are somewhat variable. Fitting jets of a fixed (stretched) wavelength to four moored sensors in the depth range 1300–1900 m, allows one to track the vertical phase of the jets with an rms error of 30°–45°. The resulting fit from a 20-month moored time series shows long periods of unchanging jet conditions and intermittent times of high variability. There is no significant vertical propagation on these timescales nor a seasonal reversal. Using a composite from many different experiments, interannual variability is visible, however. A possible mechanism for the stacked jets is inertial instability, resulting from background meridional shears at the equator. A condition is that the Ertel potential vorticity becomes zero somewhere, due to meridional asymmetries in the zonal flows. The ship-board observations show that this may be approximately fulfilled by the instantaneous zonal low-mode flows at various depths, resulting from an excess of zonal momentum south of the equator most of the time. Inertial instability should act to redistribute this zonal momentum, and our mooring data show indeed persistent northward momentum flux, but not at the depth levels expected. The momentum transport might suggest that the jets can also flux or mix other properties across the equator.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (21).
    Publication Date: 2018-02-20
    Description: The early major warming in December 2001 is described and compared to the two other December major warmings in 1998 and 1987, showing a strong tropospheric-stratospheric coupling in all three cases. We argue that the occurrence of free westward propagating Rossby waves interacting with a forced quasi-stationary wave number 1 led to these three early events. The possible excitation of these waves is discussed with respect to the tropospheric circulation, which showed strong blockings over the northern Atlantic prior to the early major warmings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (9). p. 1291.
    Publication Date: 2018-02-20
    Description: An atmospheric general circulation model (AGCM) sensitivity study has been performed with the ECHAM4 model forced by anomalous sea surface temperatures to investigate the role of the horizontal resolution (T42 versus T106) in determining the El Niño/Southern Oscillation (ENSO) response in the North Atlantic/European region. The higher resolution has been chosen in order to represent more realistically the transient eddy activity that is supposed to play a crucial role in the signal communication to regions remote from the tropical Pacific. In contrast to the T42 experiments, the T106 experiments reveal significant changes both in the mean of selected atmospheric variables (sea level pressure, temperature, precipitation) over Europe and in the transient and stationary wave activity. A cyclone tracking analysis reveals a southward shift of the North Atlantic low pressure systems in the winter season during El Niño events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 15 . pp. 1358-1368.
    Publication Date: 2018-07-24
    Description: The interannual variability of the tropical Indian Ocean sea surface temperature (SST) is studied with observational data and a hierarchy of coupled general circulation models (CGCMs). Special attention is given to the question whether an oscillatory dipole mode exists in the tropical Indian Ocean region with centers east and west of 80°E. Our observational analyses indicate that dipole-like variability can be explained as an oscillatory mode only in the context of ENSO (El Nino/Southern Oscillation). A dipole-like structure in the SST anomalies independent of ENSO was found also. Our series of coupled model experiments shows that ocean dynamics is not important to this type of dipole-like SST variability. It is forced by surface heat flux anomalies that are integrated by the thermal inertia ofthe oceanic mixed layer, which reddens the SST spectrum.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (4). 4-1-4-17.
    Publication Date: 2018-03-15
    Description: The mean depth distribution of the POC:PIC ratio of sinking particles, measured with particle interceptor traps deployed in the Atlantic Ocean, is fitted by an exponential function (POC:PIC = 64.3Z−0.56; r2 = 0.69) The function is successfully evaluated by comparison with (a) estimates of the POC:PIC ratio of export production, computed from seasonal changes of nitrate and alkalinity and (b) estimates of the POC:PIC ratio of remineralization on shallow isopycnals. The basin mean POC:PIC ratio of export production is 4.2–4.37. The POC:PIC-depth function is combined with empirical relationships between the flux of particulate organic matter, primary production and depth, satellite derived primary production data sets, and the regional distribution of ψ (the ratio of released CO2:precipitated carbonate during CaCO3 formation) in order to estimate the effective carbon flux (Jeff) in the Atlantic Ocean. Remineralization of organic carbon above the winter mixed layer (11–17%) and CaCO3 sequestration from the winter mixed layer (13–16%), which is the balance between CaCO3 production and shallow dissolution, are the two main processes which control the difference between export production (0.9 and 2.9 GT C yr−1) and Jeff (0.64 and 2.2 GT C yr−1) on the basin scale (65°N to 65°S). CaCO3 sequestration is the dominant process modulating effective carbon export in the tropics, while shallow POC remineralization dominates in temperate and polar waters. Observed regional patterns like polarward increases of the POC:PIC export ratio and of ψ counteract each other largely when Jeff is computed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 15 (2). pp. 216-225.
    Publication Date: 2018-07-24
    Description: Empirical orthogonal function (EOF) analyses (rotated or not) are widely used in climate research. In recent years there have been several studies in which EOF analyses were used to highlight potential physical mechanisms associated with climate variability. For example, several SST modes were identified such as the “Tropical Atlantic Dipole,” the “Tropical Indian Ocean Dipole,” and different SLP modes in the Northern Hemisphere winter. In this note it is emphasized that caution should be used when trying to interpret these statistically derived modes and their significance. Indeed, from a synthetic example it is shown that patterns derived from EOF analyses can be misleading at times and associated with very little climate physics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (4). pp. 85-1.
    Publication Date: 2018-03-15
    Description: The influence of the overturning circulation on the anthropogenic carbon sink in the North Atlantic is investigated with a simple box model. The net air-sea flux of anthropogenic carbon in the North Atlantic is the result of two opposing fluxes: The first is the uptake caused by the disequilibrium between the rapidly rising atmospheric pCO2 and the dissolved carbon content in the ocean, depending mainly on the water exchange rate between mixed layer and interior North Atlantic ocean. Superimposed is a second flux, related to the northward transport of heat within the Atlantic basin, that is directed out of the ocean, contrary to conventional wisdom. It is caused by a latitudinal gradient in the ratio of seawater alkalinity to total dissolved inorganic carbon that in turn is related to the cooling and freshening of surface water on its way north. This flux depends strongly on the vertical structure of the upper branch of the overturning circulation and on the distribution of undersaturation and supersaturation of CO2 in Atlantic surface waters. A data-based estimate of anthropogenic carbon inventory in the North Atlantic is consistent with a dominance of the disequilibrium flux over the heat-flux-related outgassing at the present time, but, in our model, does not place a strong constraint on the net anthropogenic air-sea flux. Stabilization of the atmospheric pCO2 on a higher level will change the relative role of the two opposing fluxes, making the North Atlantic a source of anthropogenic carbon to the atmosphere. We discuss implications for the interpretation of numerical carbon cycle models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 107 (B2). p. 2034.
    Publication Date: 2018-04-25
    Description: Seismic investigations across the convergent Sunda margin off Indonesia provide a detailed image of the crustal architecture of the Sunda plate boundary. The combined analysis and interpretation of wide-angle and reflection seismic data along two coincident profiles across the subduction zone are complemented by additional lines within the forearc domain, which yield some three-dimensional (3-D) constraints on the velocity-depth structure across the margin. A detailed cross section of the subduction zone is presented, which is confirmed by supplementary gravity modeling. The Sunda convergence zone is a prime example of an accretionary margin, where sediment accretion has led to the formation of a massive accretionary prism, with a total width of 〉110 km between the trench and the forearc basin. It is composed of a frontal wedge which documents ongoing accretion and a fossil part behind the present backstop structure which constitutes the outer high. Moderate seismic velocities derived from wide-angle modeling indicate a sedimentary composition of the outer high. The subducting oceanic slab is traced to a depth of almost 30 km underneath the accretionary prism. The adjacent forearc domain is characterized by a pronounced morphological basin which is underlain by a layer of increased seismic velocities and a shallow upper plate Moho at 16 km depth. We speculate that remnant fragments of oceanic crust might be involved in the formation of this oceanic-type crust found at the leading edge of the upper plate beneath the forearc basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 . p. 2104.
    Publication Date: 2018-02-20
    Description: We study the effect of ocean biology on tropical surface temperatures using a simplified coupled atmosphere-ocean model. It is shown that moderate phytoplankton blooms, occuring e.g. during La Niña conditions, lead to a vertical redistribution of heat in the surface layers and an associated surface layer warming of about 20 W/m2. The positive air-sea coupling in the eastern equatorial Pacific plays an important role in amplyfying this signal, thereby damping La Niña conditions. This temperature-regulating feedback acts as a biological thermostat within the surface ocean and influences also the amplitude and asymmetry of the El Niño-Southern Oscillation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (10). p. 1423.
    Publication Date: 2018-03-21
    Description: In samples of pure natural gas hydrates from Hydrate Ridge, Cascadia Margin, virtually no helium and neon components are present providing evidence that the light noble gases are not incorporated into the structure of natural methane hydrates. In contrast, the hydrates contain significant amounts of argon, krypton and xenon. These gases show a distinct fractionation pattern, with the heavier ones preferentially incorporated into the gas hydrate structure. The hydrate methane is devoid of 14C indicating that there is no contribution of a recent (14C-active) organic carbon reservoir to the hydrate carbon pool. On the basis of the δ13C and δ2H signature, it appears that microbial CO2-reduction is the dominant CH4 production pathway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-01-30
    Description: Coralline sponge skeletons are excellent tools for reconstructing the carbon isotope history ofdissolved inorganic carbon (DIC) in tropical surface waters. Carbon isotope records from corallinesponges clearly reflect the industrial12C increase in atmospheric CO2with a precision that permitsquantitative interpretations. We find from a set of d13C records of four Caribbean sponge specimensthat the isotopic response of surface water DIC to the changing isotopic composition of atmosphericCO2varied dynamically during the last century, depending on the rate of atmospheric change. Three ofour sponges provide 600 year long d13C records. For the first time, we can reconstruct surface waterd13CDICfor the full history of the industrial CO2release as well as the preceding preindustrial periodback to the beginning of the Little Ice Age. This provides a well-founded estimate of theanthropogenically uninfluenced, preindustrial background level of surface water13C/12C ratios. Ourrecords show small but systematic variations that appear to be linked to the climate fluctuations of theLittle Ice Age.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (12). pp. 3346-3363.
    Publication Date: 2020-08-04
    Description: Experiments with a suite of North Atlantic general circulation models are used to examine the sources of eddy kinetic energy (EKE) in the Labrador Sea. A high-resolution model version (112°) quantitatively reproduces the observed signature. A particular feature of the EKE in the Labrador Sea is its pronounced seasonal cycle, with a maximum intensity in early winter, as already found in earlier studies based on altimeter data. In contrast to a previously advanced hypothesis, the seasonally varying eddy field is not related to a forcing by high-frequency wind variations but can be explained by a seasonally modulated instability of the West Greenland Current (WGC). The main source of EKE in the Labrador Sea is an energy transfer due to Reynolds interaction work (barotropic instability) in a confined region near Cape Desolation where the WGC adjusts to a change in the topographic slope: Geostrophic contours tend to converge upstream of Cape Desolation, such that the topographically guided WGC narrows as well and becomes barotropically unstable. The eddies spawned from the WGC instability area, dominating the EKE in the interior Labrador Sea, are predominantly anticyclonic with warm and saline cores in the upper kilometer of the water column, while the few cyclones originating as well from the instability area show a more depth-independent structure. Companion experiments with a ⅓° model exhibit the strength of the WGC, influenced by either changes in the wind stress or heat flux forcing, as a leading factor determining seasonal to interannual changes of EKE in the Labrador Sea
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 83 (28). pp. 301-304.
    Publication Date: 2020-07-31
    Description: How well do we know the composition of oceanic crust? Countless studies have described the occurrence of mid-ocean ridge basalt (MORB) at spreading centers, and few would argue that the bulk composition of oceanic crust is other than basaltic. Nevertheless, silicic volcanism (〉55 wt.% SiO2) does occur along part of the northern East Pacific Rise (10.5°N; Thompson et al. [1989]),on the 095° propagator of the Galápagos Spreading Center [Clague et al., 1981],and was recently discovered on the Pacific-Antarctic Ridge (PAR) near its intersection with the Foundation seamount chain [Hekinian et al., 1997, 1999]. Silicic lavas were recovered from a 290-km-long section of the northern PAR adjacent to the active Foundation plume (Figure 1) during cruise 157 of the F/S Sonne, which took place in June and July 2001. Furthermore, widespread hydrothermal activity indicates that the volcanogenic massive sulfidesilicic lava association is not only restricted to subduction and back arc settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 3 (1). 2001GC000169.
    Publication Date: 2019-03-13
    Description: An inductively coupled plasma‐atomic emission spectroscopy (ICP‐AES) method for the accurate and precise simultaneous measurement of the Mg/Ca and Sr/Ca content of carbonates was established. While a precision of 〈0.3% (1σ standard deviation (SD)) is easily obtainable for both Mg/Ca and Sr/Ca analysis, a Ca matrix effect complicates achieving similar levels of accuracy with conventional calibration procedures. An alternative ratio calibration procedure is proposed which overcomes the Ca matrix effects and ensures the accuracy of the Mg/Ca and Sr/Ca analysis of marine carbonates to 〈0.3%, almost an order of magnitude better than conventional calibration methods. The longer‐term precision is 〈0.1% if the batch run average values are corrected for longer‐term drift. The method is suitable for analysis of foraminiferal calcite and coral aragonite and can easily be adjusted for the analysis of other carbonates or microsamples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (1). p. 1003.
    Publication Date: 2018-02-20
    Description: Based on the analysis of a low-order tropical atmosphere-ocean model we propose a nonlinear mechanism explaining several features of the observed El Niño-Southern Oscillation (ENSO) phenomenon: ENSO irregularity, ENSO Amplitude Modulations and decadal tropical climate variability. The mechanism suggested here is based on the idea of homoclinic/heteroclinic orbits, an inherently nonlinear concept. It turns out that this mechanism operates even in the presence of wind noise and is consistent with results from intermediate ENSO model simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 107 (C5). C000275.
    Publication Date: 2019-08-06
    Description: An eddy‐permitting coupled ecosystem‐circulation model with accurate descriptions of advection and turbulent mixing is used to estimate the nitrate supply to the euphotic zone in the North and equatorial Atlantic Ocean. The simulated annual mean input of nitrate into the euphotic zone is separated into different supply routes, namely, turbulent vertical mixing, vertical advection, and horizontal transport. Vertical mixing is found to be the dominant supply mechanism in the subpolar North Atlantic, while horizontal advection provides most of the simulated nitrate input into the subtropical gyre. Contributions by vertical advection are largest in the equatorial upwelling region and in the subpolar gyre. A comparison with observational estimates of nitrate flux into euphotic zone of the subtropical gyre reveals that the model can simultaneously fit the estimates by Lewis et al. [1986] and Jenkins [1988] that were previously thought to be contradictory. The simulated nitrate supply is, on the other hand, not consistent with estimates of export production based on oxygen consumption [Jenkins, 1982]. The model results are used to investigate to what extent the advective input of organic matter could possibly explain a local imbalance between new and export production. It turns out that the simulated advective input of organic matter alone, which in the model provides nitrogen at a rate similar to that arising from nitrate supply, is not sufficient to explain observed oxygen consumption rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 . p. 2193.
    Publication Date: 2018-02-20
    Description: Using a box model of the North Atlantic Ocean and a parameterization of Heinrich Events, we suggest that self-sustained oscillations of the large-scale oceanic circulation provide a framework to accommodate crucial elements of late Pleistocene climate variability: (i) Dansgaard-Oeschger-style oscillations with varying interstadial length, (ii) synchronization between Dansgaard-Oeschger stadials and Heinrich Events, and (iii) Younger Dryas-type events. The latter result from the restart of the oscillations after a glacial maximum and can be regarded as Dansgaard-Oeschger stadials, overprinted by rapidly changing boundary conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 107 (C12).
    Publication Date: 2018-04-18
    Description: Sea surface salinity (SSS) was measured since 1896 along 60°N between Greenland and the North Sea and since 1993 between Iceland and Newfoundland. Along 60°N away from the shelves, and north of 53°N, the amplitude of the seasonal cycle is comparable to or less than interannual variability. In these parts of the North Atlantic subpolar gyre, large-scale deviations from the seasonal cycle correlate from one season to the next. This suggests that in these regions, summer and autumn surface data are useful for monitoring changes in upper ocean salinity best diagnosed from less common winter surface data. Further south near the subarctic front, the Labrador Current or near shelves where seasonal variability is strong, this is not the case. Along 60°N, the multiannual low-frequency variability is well correlated across the basin and exhibits fresher surface water since the mid 1970s than in the late 1920s to 1960s. SSS in the Irminger Sea along 60°N lags by 1-year SSS farther east in the Iceland Basin. Variability between Iceland and Newfoundland within the Irminger Sea north of 54°N presents similar characteristics to what is observed along 60°N. Variability near the northwest corner of the North Atlantic Current (52°N/45°W) is larger and is not correlated to what is found further north. Maps of SSS were constructed for a few recent seasons between July 1996 and June 2000, which illustrate the fresh conditions found usually during that period across the whole North Atlantic subpolar gyre, although this includes an episode of higher salinity. The SSS anomaly maps have large uncertainties but suggest that the highest SSS occurred before the spring of 1998 in the Iceland Basin, and after that, in the Irminger Sea. This is followed by fresher conditions, first in the Labrador and Iceland Basin, reaching recently the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (20). pp. 51-1.
    Publication Date: 2018-02-19
    Description: We present an approach to describe the evolution of distributed seismicity by configurational entropy. We demonstrate the detection of phase transitions in the sense of a critical point phenomenon in a 2D site-percolation model and in temporal and spatial vicinity to the 1992, M7.3 Landers earthquake in Southern California. Our findings support the assumption of intermittent criticality in the Earth's crust. We also address the potential usefulness of the method for earthquake catalogue declustering.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 188-201.
    Publication Date: 2018-04-06
    Description: Aspects of the decay of stable frontal warm-core eddies in the deep ocean are investigated using a new numerical layered “frontal” model that solves the nonlinear, reduced-gravity, shallow-water equations for a horizontally inhomogeneous, viscous fluid on an f plane. After a discussion on aspects of the numerical techniques implemented to allow for the eddy expansions and contractions at the sea surface, for the first time the capability of a numerical model of reproducing the evolution of analytical nonstationary frontal vortices is explored. This step is necessary, as far as different phenomena related to the dynamics of these oceanic features are to be studied numerically. In fact the comparison between numerical and analytical inviscid solutions allows for a quantification of the numerical dissipation affecting the simulated solutions. This dissipation is found to be very small in this numerical model: The simulated lifetimes are larger than those of most of the frontal eddies observed in the World Ocean. On this basis, the eddy decay due to interfacial (linear and quadratic) friction, harmonic horizontal momentum diffusion, as well as linear ambient-water entrainment is investigated. It is found that interfacial friction represents a much more efficient mechanism than horizontal diffusion and water entrainment in inducing the eddy decay as well as in damping the eddy pulsations. It is thus suggested that internal wave radiation due to vortex pulsation can represent a relevant mechanism for the dissipation of the vortex energy in a stratified ambient ocean only episodically. Finally, a critical discussion about the appropriateness of the different approximations assumed in the investigation is presented. In particular, the appropriateness of the reduced-gravity assumption is discussed. Results are consistent with those obtained analytically in the frame of the frontal-geostrophic theory: Although the effect of an active ambient layer on the vortex dynamics is found to be virtually absent only for unrealistically large water depths, it appears that the reduced-gravity model describes warm-core eddies acceptably for values of the ratio between maximum vortex thickness and total water depth typical for Gulf Stream rings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 107 (B9). p. 2180.
    Publication Date: 2018-04-25
    Description: The three-dimensional (3-D) reflection-seismic data set ISO-89 3D was recorded near the deep borehole KTB in southeastern Germany. Reflections from the SE1 reflector and from the top of the Erbendorf body (EB) in the upper crystalline crust can be identified in 5–10% of the single-shot sections. The reflectors have been first identified in previous studies of stacked and migrated seismic data. In this paper the velocity and density variations of these two structures are estimated in a new way using true amplitude single-shot (vibroseis) data. The method uses the direct wave Pg as a reference phase and models the amplitude ratios of the SE1 and EB reflections to Pg. Modeling in this paper uses a combination of ray theory and the reflectivity method, and the SE1 and the top of the EB are assumed to be obliquely oriented 1-D structures. Pg modeling shows that a depth-dependent velocity function within the uppermost crystalline basement explains the amplitudes and travel times of this phase with sufficient accuracy. The largest observed amplitude ratios SE1/Pg and EB/Pg are explained by laminated models with strong velocity contrasts and with reflection coefficients of magnitude 0.1–0.2 (SE1) and 0.05–0.15 (EB). The total thickness of the reflecting zones is less than ∼300 m. Pg amplitude modeling requires low Qp factors (〈100) to a depth of ∼1 km, whereas at larger depths, values of several hundred are necessary to keep the SE1 and EB velocity contrasts in realistic ranges. Both reflectors can be interpreted as cataclastic zones. For the SE1 this interpretation agrees with the view that it is a steeply dipping thrust fault which continues the tectonic Franconian Lineament into the upper crust. We assume that the EB is the fractured top of a high-velocity zone at depths below ∼10 km, known from earlier wide-angle measurements. Both reflectors have large weakly reflecting or nonreflecting parts. The SE1 is nonreflecting at the intersection with the KTB borehole.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 15 . pp. 3043-3057.
    Publication Date: 2018-07-24
    Description: Zonally symmetric fluctuations of the midlatitude westerly winds characterize the primary mode of atmospheric variability in the Southern Hemisphere during all seasons. This is true not only in observations but also in an unforced 15 000-yr integration of a coarse-resolution (R15) coupled ocean–atmosphere model. Here it is documented how this mode of atmospheric variability, known as the Southern Annular Mode (SAM), generates ocean circulation and sea ice variations in the model integration on interannual to centennial timescales that are tightly in phase with the SAM. The positive phase of the SAM is associated with an intensification of the surface westerlies over the circumpolar ocean (around 60°S), and a weakening of the surface westerlies farther north. This induces Ekman drift to the north at all longitudes of the circumpolar ocean, and Ekman drift to the south at around 30°S. Through mass continuity, the Ekman drift generates anomalous upwelling along the margins of the Antarctic continent, and downwelling around 45°S. The anomalous flow diverging from the Antarctic continent also increases the vertical tilt of the isopycnals in the Southern Ocean, so that a more intense circumpolar current is also closely associated with positive SAM. In addition, the anomalous divergent flow advects sea ice farther north, resulting in an increase in sea ice coverage. Finally, positive SAM drives increases in poleward heat transport at about 30°S, while decreases occur in the circumpolar region. Ocean and sea ice anomalies of the opposite sign occur when the SAM is negative. The ocean and sea ice fluctuations associated with the SAM constitute a significant fraction of simulated ocean variability poleward of 30°S year-round. The robustness of the mechanisms relating the SAM to oceanic variability suggests that the SAM is likely an important source of large-scale variability in the real Southern Hemisphere ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 2277-2298.
    Publication Date: 2020-08-04
    Description: Two configurations of a primitive-equation model of the North Atlantic are analyzed with respect to the simulated cycling of energy, mass, and heat in the upper ocean. One model is eddy-permitting (1/3° horizontal resolution), the other one is eddy-resolving (1/9° resolution), with both models using identical topographies and identical forcing fields at the surface and lateral boundaries. Besides showing some improvement in the simulated mean circulation and heat budgets, the eddy-resolving model reaches good agreement with satellite altimeter measurements of sea surface height variability. An unexpected finding of the model intercomparison is that simulated winter mixed layer depths in mid and high latitudes turn out to be systematically shallower by some 50 to 500 m in the higher resolution run, thereby agreeing better with observations than the 1/3° model results. This model improvement is related to enhanced levels of baroclinic instability leading to a decrease in potential energy and an associated increase in stratification. In the high-resolution model, shear-induced tilting of lateral density gradients generates stratification within the mixed layer itself, at a rate sufficient to set off an average surface heat loss of 5 W m–2 in mid and high latitudes. Although this is small compared to present uncertainties in surface heat fluxes, the resulting reduction in mixed layer depths may be important for an accurate simulation of water mass formation, air–sea gas exchange, and marine biological production. With traditional formulations of mixed layer physics assuming that properties are set by purely vertical mixing, and parameterizations of lateral subgrid-scale mixing often being tapered to zero in the mixed layer, present mixing schemes would have to be modified in order to account for eddy-induced generation of stratification in the surface mixed layer in noneddy-resolving ocean models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (10). p. 1466.
    Publication Date: 2018-02-19
    Description: For certain, but realizable, states of the thermohaline and wind driven circulation of the North Atlantic Ocean, we demonstrate the possibility of making statements regarding the likely range of values to be taken by the annual average of the NAO-index on time scales out to a decade. Given that the North Atlantic is currently in such a predictable state, a simple surrogate model yields a prediction that the NAO index is more likely to be positive than negative for the next couple of years, followed by several years in which the NAO index is more likely to be negative.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (15). p. 1731.
    Publication Date: 2018-02-20
    Description: We have made direct comparisons of the dissolution and rise rates of methane and argon bubbles experimentally released in the ocean at depths from 440 to 830 m. The bubbles were injected from the ROV Ventana into a box open at the top and the bottom, and imaged by HDTV while in free motion. The vehicle was piloted upwards at the rise rate of the bubbles. Methane and argon show closely similar behavior at depths above the methane hydrate stability field. Below that boundary (∼520 m) markedly enhanced methane bubble lifetimes are observed, and are attributed to the formation of a hydrate skin. This effect greatly increases the ease with which methane gas released at depth, either by natural or industrial events, can penetrate the shallow ocean layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: The Ostracoda: Applications in Quaternary Research. , ed. by Holmes, J. A. and Chivas, A. R. Geophysical Monograph, 131 . AGU (American Geophysical Union), Washington D.C., pp. 279-299.
    Publication Date: 2020-08-04
    Description: A sediment core, covering marine isotope stage (MIS) 7 to I, and several urface sediment samples, all from the Iceland Plateau, were investigated for deep- ea ostracode carbon and oxygen isotopes. In contrast to the benthic foraminiferal species Cibicidoides wuellerstorfi and Oridorsalis umbonatus, which both di play well-known negative off ets from the oxygen isotope value of the equilibrium calcite, the investigated ostracode genera Krithe and Henryhowella reveal positive offsets. We calculated an offset of about+ 1.4 %o for Krithe and about +0.4 %o for Henryhowella with respect to the equilibrium calcite. Downcore isotope analyses revealed differences between the oxygen i otope records of the infaunai-Iiving foraminiferal species 0 . umbonatus and the epifaunal-living species C. wuellerstorfi during periods of increa ed deposition of IRD (iceberg rafted debris). These differences between infaunal and epifaunal oxygen isotope signals have been recognized before within the area of the Nordic Seas and were likely caused by environmental conditions during late MIS 6 and MIS 2, affecting mainly the epifaunal-living taxa. The oxygen isotope record of Henryhowella reveal the same trend as the record of C. wuellerstorfi, whereas the oxygen i otope records of Krithe and 0 . wnbonatus are parallel to each other. This sugge ts an epifaunal habitat for Henryhowella and an infaunal habitat for Krithe, which is in agreement with the faunal abundance data as well as with other ostracode studie . The carbon isotope records of Henryhowella and 0. umbonatus display a globally ob erved trend of low o''C values during the glacial and high value during the interglacial periods, whereas the one record of Kritlze shows no such climate-related trend, probably due to strong vital effects.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 666-686.
    Publication Date: 2018-04-06
    Description: Time series of hydrographic and transient tracer (3H and 3He) observations from the central Labrador Sea collected between 1991 and 1996 are presented to document the complex changes in the tracer fields as a result of variations in convective activity during the 1990s. Between 1991 and 1993, as atmospheric forcing intensified, convection penetrated to progressively increasing depths, reaching 2300 m in the winter of 1993. Over that period the potential temperature (θ)/salinity (S) properties of Labrador Sea Water stayed nearly constant as surface cooling and downward mixing of freshwater was balanced by excavating and upward mixing of the warmer and saltier Northeast Atlantic Deep Water. It is shown that the net change in heat content of the water column (150–2500 m) between 1991 and 1993 was negligible compared to the estimated mean heat loss over that period (110 W m−2), implying that the lateral convergence of heat into the central Labrador Sea nearly balances the atmospheric cooling on a surprisingly short timescale. Interestingly, the 3H–3He age of Labrador Sea Water increased during this period of intensifying convection. Starting in 1995, winters were milder and convection was restricted to the upper 800 m. Between 1994 and 1996, the evolution of 3H–3He age is similar to that of a stagnant water body. In contrast, the increase in θ and S over that period implies exchange of tracers with the boundaries via both an eddy-induced overturning circulation and along-isopycnal stirring by eddies [with an exchange coefficient of O(500 m2 s−1)]. The authors construct a freshwater budget for the Labrador Sea and quantitatively demonstrate that sea ice meltwater is the dominant cause of the large annual cycle of salinity in the Labrador Sea, both on the shelf and the interior. It is shown that the transport of freshwater by eddies into the central Labrador Sea (140 cm between March and September) can readily account for the observed seasonal freshening. Finally, the authors discuss the role of the eddy-induced overturning circulation with regard to transport and dispersal of the newly ventilated Labrador Sea Water to the boundary current system and compare its strength (2–3 Sv) to the diagnosed buoyancy-forced formation rate of Labrador Sea Water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 1165-1180.
    Publication Date: 2020-08-04
    Description: Vertical profiles of horizontal currents and hydrographic measurements from three cruises along 80.5°E from the coast of Sri Lanka to 6°S between December 1990 and September 1994 are used to investigate the scales of the Indian Ocean deep jets as well as internal wave parameters and dissipation at the equator. The deep jets at 80.5°E have a vertical wavelength of 660 sm (stretched meters) and amplitudes exceeding 10 cm s−1 in zonal velocity. They are observed throughout the water column and their flow direction reverses at 2° off the equator. The vertical positions of the jets differ among the cruises and are consistent with a flow reversal between the data collected in winter and summer. During September 1994, the jets were less pronounced. Due to the meridional distribution of their zonal velocity and the phase relationship between zonal velocity and vertical displacement, the jets are best described as nondispersive first-mode equatorial Rossby waves. The hydrographic data revealed thick layers of low stratification with vertical scales of 15–55 m in the upper 2000 m of the water column. They are found primarily within 1° of the equator and there is some evidence of correlation between the vertical position as well as the extent and the high strain zones of the deep jets. At vertical wavenumbers larger than those of the deep jets, shear and strain levels are five times larger than at off-equatorial locations and the compliant internal wave range (“roll-off range”) begins at a smaller wavenumber (kc ≈ 0.02 cpsm). An estimate of the average dissipation rate within the deep jets yielded = 7.5 × 10−10 W kg−1 between 500- and 2000-m depth. The elevated finescale internal wave field appears to be the main cause for the existence of the low stratification layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 83 (253). pp. 258-259.
    Publication Date: 2017-02-14
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-12-06
    Description: Multiple proxy data reveal that the early to middle Holocene (ca. 8–6 kyr B.P.) was warmer than the preindustrial period in most regions of the Northern Hemisphere. This warming is presumably explained by the higher summer insolation in the Northern Hemisphere, owing to changes in the orbital parameters. Subsequent cooling in the late Holocene was accompanied by significant changes in vegetation cover and an increase in atmospheric CO2 concentration. The essential question is whether it is possible to explain these changes in a consistent way, accounting for the orbital parameters as the main external forcing for the climate system. We investigate this problem using the computationally efficient model of climate system, CLIMBER‐2, which includes models for oceanic and terrestrial biogeochemistry. We found that changes in climate and vegetation cover in the northern subtropical and circumpolar regions can be attributed to the changes in the orbital forcing. Explanation of the atmospheric CO2 record requires an additional assumption of excessive CaCO3 sedimentation in the ocean. The modeled decrease in the carbonate ion concentration in the deep ocean is similar to that inferred from CaCO3 sediment data [Broecker et al., 1999]. For 8 kyr B.P., the model estimates the terrestrial carbon pool ca. 90 Pg higher than its preindustrial value. Simulated atmospheric δ13C declines during the course of the Holocene, similar to δ13C data from the Taylor Dome ice core [Indermühle et al., 1999]. Amplitude of simulated changes in δ13C is smaller than in the data, while a difference between the model and the data is comparable with the range of data uncertainty.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-03-09
    Description: A unique open-ocean upwelling exists in the tropical South Indian Ocean (SIO), a result of the negative wind curl between the southeasterly trades and equatorial westerlies, raising the thermocline in the west. Analysis of in situ measurements and a model-assimilated dataset reveals a strong influence of subsurface thermocline variability on sea surface temperature (SST) in this upwelling zone. El Niño–Southern Oscillation (ENSO) is found to be the dominant forcing for the SIO thermocline variability, with SST variability off Sumatra, Indonesia, also making a significant contribution. When either an El Niño or Sumatra cooling event takes place, anomalous easterlies appear in the equatorial Indian Ocean, forcing a westward-propagating downwelling Rossby wave in the SIO. In phase with this dynamic Rossby wave, there is a pronounced copropagation of SST. Moreover, a positive precipitation anomaly is found over, or just to the south of, the Rossby wave–induced positive SST anomaly, resulting in a cyclonic circulation in the surface wind field that appears to feedback onto the SST anomaly. Finally, this downwelling Rossby wave also increases tropical cyclone activity in the SIO through its SST effect. This coupled Rossby wave thus offers potential predictability for SST and tropical cyclones in the western SIO. These results suggest that models that allow for the existence of upwelling and Rossby wave dynamics will have better seasonal forecasts than ones that use a slab ocean mixed layer. The lagged-correlation analysis shows that SST anomalies off Java, Indonesia, tend to precede those off Sumatra by a season, a time lead that may further increase the Indian Ocean predictability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-09-19
    Description: The Eurofloat experiment was a joint initiative to examine the large-scale spreading of Mediterranean Water (MW) and Labrador Sea Water in the northeast North Atlantic. RAFOS float data from the southern (MW) portion of the Eurofloat experiment have been examined in conjunction with historical float data in order to calculate quasi-Eulerian means in an effort to separate and quantify the constituents of the spreading of the MW tongue east of the Mid-Atlantic Ridge. While recent studies focussed chiefly on the role of meddies in the shaping of the MW tongue, this analysis also examines the tongue's second constituent, that is, the “background” (non-meddy advective and diffusive) flow. The results suggest the existence of two regimes approximately to the north and south of the 36°N parallel (i.e., the latitude of the Gulf of Cadiz), which are distinguished by different types of dominant spreading mechanisms for MW. To the south of the Gulf of Cadiz, the background flow shows an incoherent and weak mean, whereas the mean velocity of the salt enhanced meddies is strong and to the southwest. In contrast, to the north of 36°N the mean velocity of the meddies seems to be less pronounced and the background flow is shown to be a major component in the northwestward spreading of the MW tongue. The two regimes are separated by the Azores Current, which previously has been hypothesized to act as a dynamic barrier to the southward advective spreading of the background regime, which the meddies are able to penetrate because of their high kinetic energy. Overall, the meddies are calculated to contribute to approximately half of the total salinity anomaly flux.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...