ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (392)
  • Astrophysics  (209)
  • Spacecraft Propulsion and Power  (183)
  • ddc:330
  • 2000-2004  (392)
  • 2001  (392)
  • 1
    Publication Date: 2011-08-23
    Description: The ISO and IUE spectra of the elliptical nebulae NGC 7662 and NGC 6741 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, .spectrum. The chemical composition of the nebulae is then calculated and compared to previous determinations. The abundances found are compared to determinations made in other nebulae using ISO data. A discussion is given to see if possible evolutionary effects can be found from the abundance differences.
    Keywords: Astrophysics
    Type: Astronomy and Astrophysics (ISSN 0004-6361); Volume 380; 684-694
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) 〉 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha 〈 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains 〉 100.
    Keywords: Spacecraft Propulsion and Power
    Type: Journal of Propulsion and Power; Volume 17; No. 5; 988-994
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: One signature of expulsion of coronal mass ejections (CMEs) from the solar corona is the appearance of transient intensity dimmings in coronal images. These dimmings have generally been assumed to be due to discharge of CME material from the corona, and thus the 'dimming regions' are thought of as an important signature of the sources of CMEs. We present spectral observations of two dimming regions at the time of expulsion of CMEs, using the Coronal Diagnostic Spectrometer (CDS) on the SOHO satellite. One of the dimming regions is at the solar limb and associated with a CME traveling in the plane of the sky, while the other region is on the solar disk and associated with an Earth-directed 'halo' CME. From the limb event, we see Doppler signatures of approximately 30 km/s in coronal (Fe XVI and Mg IX) emission lines, where the enhanced velocities coincide with the locations of coronal dimming. This provides direct evidence that the dimmings are associated with outflowing material. We also see larger (approximately 100 km/s) Doppler velocities in transition region (O V and He I) emission lines, which are likely to be associated with motions of a prominence and loops at transition region temperatures. An 'EIT wave' accompanies the disk event, and a dimming region behind the wave shows strong blueshifted Doppler signatures of approximately 100 km/s in O V, suggesting that material from the dimming regions behind the wave may be feeding the CME.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 561; L215-L218
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: We discuss the imprints left by a cosmological evolution of the star formation rate (SFR) on the evolution of X-ray luminosities Lx of normal galaxies, using the scheme earlier proposed by us, wherein the evolution of LX of a galaxy is driven by the evolution of its X-ray binary population. As indicated in our earlier work, the profile of Lx with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. We report here the first calculation of the expected evolution of X-ray luminosities of galaxies, updating our work by using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on Lx evolution are beginning to probe the SFR profile of bright spiral galaxies; the early results are consistent with predictions based on current SFR models. Using these new SFR profiles, the resolution of the "birthrate problem" of low-mass X-ray binaries and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We discuss the possible impact of the variations in the SFR profile of individual galaxies and galaxy types.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 559
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Astrophysics
    Type: AIP Conference Proceedings; Volume 587; 106
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The purpose of this grant was to develop and to start to apply new precision methods for measuring the power spectrum and redshift distortions from the anticipated new generation of large redshift surveys. A highlight of work completed during the award period was the application of the new methods developed by the PI to measure the real space power spectrum and redshift distortions of the IRAS PSCz survey, published in January 2000. New features of the measurement include: (1) measurement of power over an unprecedentedly broad range of scales, 4.5 decades in wavenumber, from 0.01 to 300 h/Mpc; (2) at linear scales, not one but three power spectra are measured, the galaxy-galaxy, galaxy-velocity, and velocity-velocity power spectra; (3) at linear scales each of the three power spectra is decorrelated within itself, and disentangled from the other two power spectra (the situation is analogous to disentangling scalar and tensor modes in the Cosmic Microwave Background); and (4) at nonlinear scales the measurement extracts not only the real space power spectrum, but also the full line-of-sight pairwise velocity distribution in redshift space.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: A rocket engine gas generator component development test was recently conducted at the Marshall Space Flight Center. This gas generator is intended to power a rocket engine turbopump by the combustion of Lox and RP-1. The testing demonstrated design requirements for start sequence, wall compatibility, performance, and stable combustion. During testing the gas generator injector was modified to improve distribution of outer wall coolant and the igniter boss was modified to investigate the use of a pyrotechnic igniter. Expected chamber pressure oscillations at longitudinal acoustic mode were measured for three different chamber lengths tested. High amplitude discrete oscillations resulted in the chamber-alone configurations when chamber acoustic modes coupled with feed-system acoustics modes. For the full gas generator configuration, which included a turbine inlet manifold, high amplitude oscillations occurred only at off-design very low power levels. This testing led to a successful gas generator design for the Fastrac 60,000 lb thrust engine.
    Keywords: Spacecraft Propulsion and Power
    Type: The Tenth Thermal and Fluids Analysis Workshop; NASA/CP-2001-211141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-07
    Description: Propellant injector development at MSFC includes experimental analysis using optical techniques, such as Raman, fluorescence, or Mie scattering. For the application of spontaneous Raman scattering to hydrocarbon-fueled flows a technique needs to be developed to remove the interfering polycyclic aromatic hydrocarbon fluorescence from the relatively weak Raman signals. A current application of such a technique is to the analysis of the mixing and combustion performance of multijet, impinging-jet candidate fuel injectors for the baseline Mars ascent engine, which will burn methane and liquid oxygen produced in-situ on Mars to reduce the propellant mass transported to Mars for future manned Mars missions. The present technique takes advantage of the strongly polarized nature of Raman scattering. It is shown to be discernable from unpolarized fluorescence interference by subtracting one polarized image from another. Both of these polarized images are obtained from a single laser pulse by using a polarization-separating calcite rhomb mounted in the imaging spectrograph. A demonstration in a propane-air flame is presented.
    Keywords: Spacecraft Propulsion and Power
    Type: The Tenth Thermal and Fluids Analysis Workshop; NASA/CP-2001-211141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.
    Keywords: Spacecraft Propulsion and Power
    Type: The Tenth Thermal and Fluids Analysis Workshop; NASA/CP-2001-211141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-07
    Description: This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.
    Keywords: Spacecraft Propulsion and Power
    Type: The Tenth Thermal and Fluids Analysis Workshop; NASA/CP-2001-211141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-06-07
    Description: The Science Laboratory operated by GB Tech was tasked by the Environmental Office at the NASA Marshall Space Flight Center (MSFC) to collect rocket plume samples and to measure gaseous components and airborne particulates from the hot test firings of the Atlas III/RD 180 test article at MSFC. This data will be used to validate plume prediction codes and to assess environmental air quality issues.
    Keywords: Spacecraft Propulsion and Power
    Type: Proceedings of The 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-06-07
    Description: In this viewgraph presentation, IMWG (IHPRPT Materials Working Group) government and industry members, together with the IHPRPT (Integrated High Payoff Rocket Propulsion Technologies Program Material Development Plan) National Component Leads, have developed a materials plan to address the critical needs of the IHPRPT community: (1) liquids boost and orbit transfer; (2) solids boost and orbit transfer; (3) tactical propulsion; and (4) spacecraft propulsion. Criticality of materials' role in achieving IHPRPT goals is evidenced by the significant investment over the next five years.
    Keywords: Spacecraft Propulsion and Power
    Type: Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2001-210427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-08-29
    Description: The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-08-29
    Description: We show that short-term perturbations among massive planets in multiple planet systems can result in radial velocity variations of the central star which differ substantially from velocity variations derived assuming the planets are executing independent Keplerian motions. We discuss two alternate fitting methods which can lead to an improved dynamical description of multiple planet systems. In the first method, the osculating orbital elements are determined via a Levenberg-Marquardt minimization scheme driving an N-body integrator. The second method is an improved analytic model in which orbital elements such as the periods and longitudes of periastron are allowed to vary according to a simple model for resonant interactions between the planets. Both of these methods can potentially determine the true masses for the planets by eliminating the sin(i) degeneracy inherent in fits that assume independent Keplerian motions. As more radial velocity data is accumulated from stars such as GJ876, these methods should allow for unambiguous determination of the planetary masses and relative inclinations.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-08-29
    Description: We report on X-ray sources detected in the Chandra images of the elliptical galaxy NGC 1399 and identified with globular clusters (GCs). The 8'x 8' Chandra image shows that a large fraction of the 2-10 keV X-ray emission is resolved into point sources, with a luminosity threshold of 5 x 10 (exp 37) ergs s-1. These sources are most likely Low Mass X-ray Binaries (LMXBs). More than 70% of the X-ray sources, in a region imaged by Hubble Space Telescope (HST), are located within GCs. Many of these sources have super-Eddington luminosity (for an accreting neutron star) and their average luminosity is higher than the remaining sources. This association suggests that, in giant elliptical galaxies, luminous X-ray binaries preferentially form in GCs. The spectral properties of the GC and non-GC sources are in most cases similar to those of LMXBs in our galaxy. Two of the brightest sources, one of which is in GC, have a much softer spectra as seen in the high state black hole. The "apparent" super-Eddington luminosity in many cases may be due to multiple LMXB systems within individual GC, but with some of the most extreme luminous systems containing massive black holes.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-08-29
    Description: We have obtained 1-2 A resolution optical Echellette spectra of the nuclear star cluster in the nearby starburst galaxy NGC4449. The light is clearly dominated by a very young (6 - 10 Myr) population of stars. For our age dating, we have used recent population synthesis models to interpret the observed equivalent width of stellar absorption features such as the H I Balmer series and the Ca II triplet around 8500 A. We also compare the observed spectrum of the nuclear cluster to synthesized spectra for stellar populations of varying ages. All these approaches yield a consistent cluster age. Metallicity estimates based on the relative intensities of various ionization lines yield no evidence for significant enrichment in the center of this low mass galaxy: the metallicity of the nuclear cluster is about one fourth of the solar value, in agreement with independent estimates for the disk material of NGC4449.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-08-29
    Description: The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D 〈 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-08-29
    Description: Metal ions found in the atmosphere above 60 km are the result of incoming meteoroid atmospheric ablation. Layers of metal ions are detected by sounding rocket in situ mass spectrometric sampling in the 80 to 130 km region, which coincides with the altitude region where meteors are observed. Enhancements of metal ion concentrations occur during meteor showers. Even outside of shower periods, the metal ion altitude profiles vary from measurement to measurement. Double layers are frequent at middle latitudes. More than 40 different meteoric atomic and molecular ions, including isotopes, have been detected. Atmospheric metal ions on average have an abundance that matches chrondritic material, the same composition as the early solar system. However there are frequently local departures from this composition due to differential ablation, species dependent chemistry and mass dependent ion transport. Metal ions react with atmospheric O2, O, O3, H2O and H2O2 to form oxygenated and hydrogenated ionic compounds. Metal atomic ions at high altitudes have long lifetimes. As a result, these ions, in the presence of Earth's magnetic field, are transported over long distances by upper atmospheric winds and ionospheric electric fields. Satellite measurements have detected metal ions as high as, approximately 1000 km and have revealed circulation of the ions on a global scale.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-08-29
    Description: This massive reference work (hereafter EAA) summarizes a great deal of what we knew in the astronomical sciences at the most recent Millennium. An associated website may keep much of it up-to-date for years to come. The contents are extensive indeed: the index alone consists of 76 pages, each with three columns of fine-type listings, and there are 'nearly 700 main articles'. The main articles are what make EAA worthwhile. They are generally by experts, who took much care in their preparation. The degree to which the articles are illustrated and referenced, however, seems to depend on the inclination of the individual author. On the other hand, articles on Saturn's rings and on its satellites are heavily illustrated, but with just two or three citations in each. The coverage of solar physics is especially thorough in EAA. There are numerous articles on major topics, notably in the physics and phenomena of the corona and the chromosphere, and some on more specialized areas, such as 'Polar Plumes' and 'Coronal Cavities.'
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-08-29
    Description: Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-29
    Description: The NASA Office of Space Science Structure and Evolution of the Universe (SEU) theme covers a wide variety of scientific investigations, from the nearest bodies to the farthest observable distances just after the time of the Big Bang. SEU supports experiments that sense radiation of all wavelengths, together with particle and gravitational wave detection. Recently completed road mapping and strategic planning exercises have identified a number of near- and medium-term space initiatives for the 2003-2023 time frame. Each of these experiments pushes the state of the art technically, but will return incredible new insights on the formation and evolution of the universe, as well as probe fundamental laws of physics in regimes never before tested. The scientific goals and technological highlights of each mission are described.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-08-31
    Description: Observations of OH are a useful proxy of the water production rate (Q(sub H2O)) and outflow velocity (V(sub out)) in comets. We use wide field images taken on 03/28/1997 and 04/08/1997 that capture the entire scale length of the OH coma of comet C/1995O1 (Hale-Bopp) to obtain Q(sub H2O) from the model-independent method of aperture summation. We also extract the radial brightness profile of OH 3080 angstroms out to cometocentric distances of up to 10(exp 6) km using an adaptive ring summation algorithm. Radial profiles are obtained as azimuthal averages and in quadrants covering different position angles relative to the comet-Sun line. These profiles are fit using both fixed and variable velocity two-component spherical expansion models to determine VOH with increasing distance from the nucleus. The OH coma of Hale-Bopp was more spatially extended than in previous comets, and this extension is best matched by a variable acceleration of H2O and OH that acted across the entire coma, but was strongest within 1-2 x 10(exp 4) km from the nucleus. This acceleration led to VOH at 10(exp 6) km that was 2-3 times greater than that obtained from a 1P/Halleytype comet at 1 AU, a result that is consistent with gas-kinetic models, extrapolation from previous observations of OH in comets with Q(sub H2O) 〉 10(exp 29)/s, and radio measurements of the outer coma Hale-Bopp OH velocity profile. When the coma is broken down by quadrant, we find an azimuthal asymmetry in the radial distribution that is characterized by an increase in the spatial extent of OH in the region between the orbit-trailing and anti-sunward directions. Model fits to this area and comparison with radio OH measurements suggest greater acceleration in this region, with VOH UP to 1.5 times greater at 10(exp 6) km radial distance than elsewhere in the coma.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-08-31
    Description: The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.
    Keywords: Spacecraft Propulsion and Power
    Type: Journal on Propulsion and Power; Volume 17; No. 3; 517-526
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-23
    Description: We find that variability of the iron K alpha line is common in Seyfert 1 galaxies. Using data from the ASCA archive for objects that have been observed more than once during the mission, we study the time-averaged spectra from individual observations, thereby probing variability on timescales that range from days to years. Since the statistics of the data do not warrant searches for line variability in terms of a complex physical model, we use a simple Gaussian to model the gross shape of the line and then use the centroid energy, intensity, and equivalent width as robust indicators of changes in the line profile. We find that approximately 70% of Seyfert 1 galaxies (10 out of 15) show variability in at least one of these parameters: the centroid energy, intensity, and equivalent width vary in six, four, and eight sources, respectively. Because of the low signal-to-noise ratio, limited sampling, and time averaging, we consider these results to represent lower limits to the rate of incidence of variability. In most cases changes in the line do not appear to track changes in the continuum. In particular, we find no evidence for variability of the line intensity in NGC 4151, suggesting an origin in a region larger than the putative accretion disk, where most of the iron line has been thought to originate. Mrk 279 is investigated on short timescales. The time-averaged effective line energy (as measured by the Gaussian center energy, which is weighted by emission in the entire line profile) is 6.5 keV in the galaxy rest frame. As the continuum flux increases by 20% in a few hours, the Fe K line responds within approximately 10,000 seconds with the effective line energy increasing by 0.22 keV (approximately 10,500 kilometers per second). We also examine the ROSAT PSPC spectrum of Mrk 279 but find inconsistencies with ASCA. Problems with the ASCA and ROSAT calibration that affect simultaneous spectral fits at low energies are discussed in an appendix.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 550; 261-279
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-23
    Description: We present observations of two homologous flares in NOAA Active Region 8210 occurring on 1998 May 1 and 2, using EUV data from the EUV Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory, high-resolution and high-time cadence images from the soft X-ray telescope on Yohkoh, images or fluxes from the hard X-ray telescope on Yohkoh and the BATSE experiment on board the Compton Gamma Ray Observatory, and Ca(XIX) soft X-ray spectra from the Bragg crystal spectrometer (BCS) on Yohkoh. Magnetograms indicate that the flares occurred in a complex magnetic topology, consisting of an emerging flux region (EFR) sandwiched between a sunspot to the west and a coronal hole to the east. In an earlier study we found that in EIT images, both flaring episodes showed the formation of a crinkle-like pattern of emission (EIT crinkles) occurring in the coronal hole vicinity, well away from a central 'core field' area near the EFR-sunspot boundary. With our expanded data set, here we find that most of the energetic activity occurs in the core region in both events, with some portions of the core brightening shortly after the onset of the EIT crinkles, and other regions of the core brightening several minutes later, coincident with a burst of hard X-rays; there are no obvious core brightenings prior to the onset of the EIT crinkles. These timings are consistent with the 'breakout model' of solar eruptions, whereby the emerging flux is initially constrained by a system of overlying magnetic field lines, and is able to erupt only after an opening develops in the overlying fields as a consequence of magnetic reconnection at a magnetic null point. In our case, the EIT crinkles would be a signature of this pre-impulsive phase magnetic reconnection, and brightening of the core only occurs after the core fields begin to escape through the newly created opening in the overlying fields. Morphology in soft X-ray images and properties in hard X-rays differ between the two events, with complexities that preclude a simple determination of the dynamics in the core at the times of eruption. From the BCS spectra, we find that the core region expends energy at a rate of approximately 10(exp 26) ergs/s during the time of the growth of the EIT crinkles; this rate is an upper limit to energy expended in the reconnections opening the overlying fields. Energy losses occur at an order of magnitude higher rate near the time of the peak of the events. There is little evidence of asymmetry in the spectra, consistent with the majority of the mass flows occurring normal to the line of sight. Both events have similar electron temperature dependencies on time.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 560; 1045-1057
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-06-07
    Description: This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
    Keywords: Spacecraft Propulsion and Power
    Type: The Tenth Thermal and Fluids Analysis Workshop; NASA/CP-2001-211141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-08
    Description: Development of MEMS (Microelectromechanical Systems) micropropulsion at the Jet Propulsion Laboratory (JPL) is reviewed. This includes a vaporizing liquid micro-thruster for microspacecraft attitude control, a micro-ion emgine for microspacecraft primary propulsion or large spacecraft fine attitude control, as well as several valve studies, including a solenoid valve studied in collaboration with Moog Space Products Division, and a piezoelectric micro-valve.
    Keywords: Spacecraft Propulsion and Power
    Type: IAAA Symposium for Small Satellite for Earth Observation; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-08
    Description: We discuss the design, current status, and ongoing development of a cryogenic delay line for long-baseline direct-detection interferometry in the far-infrared.
    Keywords: Astrophysics
    Type: Proceedings of the 36th Liege International Astrophysical Colloquium Millimetric Interferometry: Scientific and Techonological Challenges|36th Liege International Astrophysical Colloquium Millimetric Interferometry: Scientific and Techonological Challenges; Liege; Belgium
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: SWIRE is a wide-area, high latitude, imaging survey to be undertaken with SIRTF to trace the evolution of dusty, star-forming galaxies, evolved stellar populations, and AGN, as a function of environment from z~2.5 to the current epoch. Building on ISO's heritage, SWIRE complements smaller, deeper SIRTF GTO (Guaranteed Time Obeserver) surveys, and paves the way for the Herschel (FIRST) observatory to be launched in 2007.
    Keywords: Astrophysics
    Type: Where's the Matter?: Tracing Dark and Bright Matter with the New Generation of Large-Scale Surveys, Laboratoire d'Astrophysique de Marseille Third International Conference; Marseille; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-08
    Description: We present infrared space observatory spectroscopy of sites in the supernova remnants W28, W44, and 3C 391,where blast waves are impacting molecular clouds.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 554; no. 2; 843-958
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-08
    Description: We present near-infrared J (1.25 mum), H (1.65 mum), and K-s (2.17 mum) imaging of the entire supernova remnant IC 443 from the Two Micron All Sky Survey (2MASS), and Infrared Space Observatory (ISO) LWS observations of [O I] for 11 positions in the northeast.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 547; no. 2; 885-898
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-08
    Description: This paper focuses on Nuclear Electric Propulsion (NEP) as a means to transport large payloads to targets in the solar system which are energetically difficult to reach.
    Keywords: Spacecraft Propulsion and Power
    Type: Space Technology and Applications International Forum 2001 18th Symposium on nuclear power and propulsion; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-27
    Description: Radar observations of two near-Earth asteroids were performed using a bi-static radar technique with Kashima 34-m antenna and Usuda 64-m antenna as receiving stations and Goldstone 70-m antenna as a transmitting station. The asteroid 6489 Golevka was observed on June 15, 1995 when its distance from the Earth became 0.048 AU and the radar echo from the asteroid was detected from the data observed with Kashima 34-m antenna. The success of the trans-continental bistatic radar observations became the first detection of a radar echo from a solar system object beyond Moon in Japan. The asteroid 4197 (1982 TA) was observed on October 24, 1996 when its distance to the Earth became 0.086 AU. The radar echo signal from the asteroid was detected from both of the data observed at Kashima and at Usuda. The received signal was coherently sampled and recorded at both stations. By using these data, interferometric data analysis was examined.
    Keywords: Astrophysics
    Type: Journal of the Communications Research Laboratory. Special Issue: Large Aperture Radio Telescopes at Kashima Space Research Center (ISSN 0914-9260); Volume 48; No. 1; 143-150
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-08
    Description: We present the results of far-infrared ISOPHOT observations of the pre-protostellar cores L1498, B133 and B68.
    Keywords: Astrophysics
    Type: Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: 2nd International Workshop on Liquid Rocket Propulsion; Heilbronn; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: Pulse Detonation Engine Technology is currently being investigated at Glenn for both airbreathing and rocket propulsion applications. The potential for both mechanical simplicity and high efficiency due to the inherent near-constant-volume combustion process, may make Pulse Detonation Engines (PDE's) well suited for a number of mission profiles. Assessment of PDE cycles requires a simulation capability that is both fast and accurate. It should capture the essential physics of the system, yet run at speeds that allow parametric analysis. A quasi-one-dimensional, computational-fluid-dynamics-based simulation has been developed that may meet these requirements. The Euler equations of mass, momentum, and energy have been used along with a single reactive species transport equation, and submodels to account for dominant loss mechanisms (e.g., viscous losses, heat transfer, and valving) to successfully simulate PDE cycles. A high-resolution numerical integration scheme was chosen to capture the discontinuities associated with detonation, and robust boundary condition procedures were incorporated to accommodate flow reversals that may arise during a given cycle. The accompanying graphs compare experimentally measured and computed performance over a range of operating conditions for a particular PDE. Experimental data were supplied by Fred Schauer and Jeff Stutrud from the Air Force Research Laboratory at Wright-Patterson AFB and by Royce Bradley from Innovative Scientific Solutions, Inc. The left graph shows thrust and specific impulse, Isp, as functions of equivalence ratio for a PDE cycle in which the tube is completely filled with a detonable hydrogen/air mixture. The right graph shows thrust and specific impulse as functions of the fraction of the tube that is filled with a stoichiometric mixture of hydrogen and air. For both figures, the operating frequency was 16 Hz. The agreement between measured and computed values is quite good, both in terms of trend and magnitude. The error is under 10 percent everywhere except for the thrust value at an equivalence ratio of 0.8 in the left figure, where it is 14 percent. The simulation results shown were made using 200 numerical cells. Each cycle of the engine, approximately 0.06 sec, required 2.0 min of CPU time on a Sun Ultra2. The simulation is currently being used to analyze existing experiments, design new experiments, and predict performance in propulsion concepts where the PDE is a component (e.g., hybrid engines and combined cycles).
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center ion-propulsion program addresses the need for high specific-impulse systems and technology across a broad range of mission applications and power levels. One activity is the development of the next-generation ion-propulsion system as a follow-on to the successful Deep Space 1 system. The system is envisioned to incorporate a lightweight ion engine that can operate over 1 to 10 kW, with a 550-kg propellant throughput capacity. The engine concept under development has a 40-cm beam diameter, twice the effective area of the Deep Space 1 engine. It incorporates mechanical features and operating conditions to maximize the design heritage established by the Deep Space 1 engine, while incorporating new technology where warranted to extend the power and throughput capability. Prototype versions of the engine have been fabricated and are under test at NASA, with an engineering model version in manufacturing. Preliminary performance data for the prototype engine have been documented over 1.1- to 7.3-kW input power. At 7.3 kW, the engine efficiency is 0.68, at 3615-sec specific impulse. Critical component temperatures, including those of the discharge cathode assembly and magnets, have been documented and are within established limits, with significant margins relative to the Deep Space 1 engine. The 1- to 10-kW ion thruster approach described here was found to provide the needed power and performance improvement to enable important NASA missions. The Integrated In-Space Transportation Planning (IISTP) studies compared many potential technologies for various NASA, Government, and commercial missions. These studies indicated that a high-power ion propulsion system is the most important technology for development because of its outstanding performance versus perceived development and recurring costs for interplanetary solar electric propulsion missions. One of the best applications of a highpower electric propulsion system was as an integral part of a solar electric propulsion (SEP) stage to send a payload to outer planet targets. The IISTP studies showed that either trip time or launch vehicle class could be significantly reduced when compared with state-of-the-art systems.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-05
    Description: High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several bold new interplanetary and deep-space missions. As the lead center for electric propulsion, the NASA Glenn Research Center designs, develops, and tests high-power electromagnetic technologies to meet these demanding mission requirements. Two high-power thruster concepts currently under investigation by Glenn are the magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT).
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-05
    Description: Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-02
    Description: A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-02
    Description: A xenon ion engine and power processor system, which was developed by the NASA Glenn Research Center in partnership with the Jet Propulsion Laboratory and Boeing Electron Dynamic Devices, completed nearly 3 years of operation aboard the Deep Space 1 spacecraft. The 2.3-kW ion engine, which provided primary propulsion and two-axis attitude control, thrusted for more than 16,000 hr and consumed more than 70 kg of xenon propellant. The Deep Space 1 spacecraft was launched on October 24, 1998, to validate 12 futuristic technologies, including the ion-propulsion system. After the technology validation process was successfully completed, the Deep Space 1 spacecraft flew by the small asteroid Braille on July 29, 1999. The final objective of this mission was to encounter the active comet Borrelly, which is about 6 miles long. The ion engine was on a thrusting schedule to navigate the Deep Space 1 spacecraft to within 1400 miles of the comet. Since the hydrazine used for spacecraft attitude control was in short supply, the ion engine also provided two-axis attitude control to conserve the hydrazine supply for the Borrelly encounter. The comet encounter took place on September 22, 2001. Dr. Marc Rayman, project manager of Deep Space 1 at the Jet Propulsion Laboratory said, "Deep Space 1 plunged into the heart of the comet Borrelly and has lived to tell every detail of its spinetingling adventure! The images are even better than the impressive images of comet Halley taken by Europe's Giotto spacecraft in 1986." The Deep Space 1 mission, which successfully tested the 12 high-risk, advanced technologies and captured the best images ever taken of a comet, was voluntarily terminated on December 18, 2001. The successful demonstration of the 2-kW-class ion propulsion system technology is now providing mission planners with off-the-shelf flight hardware. Higher power, next generation ion propulsion systems are being developed for large flagship missions, such as outer planet explorers and sample-return missions.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-02
    Description: High-power electromagnetic thrusters have been proposed as primary in-space propulsion options for several of the bold new interplanetary and deep space missions envisioned by the Human Exploration and Development of Space (HEDS) Strategic Enterprise. As the lead center for electric propulsion, the NASA Glenn Research Center is actively involved in the design, development, and testing of high-power electromagnetic technologies to meet these demanding mission requirements. One concept of particular interest is the magnetoplasmadynamic (MPD) thruster, shown schematically in the preceding figure. In its basic form, the MPD thruster consists of a central cathode surrounded by a concentric cylindrical anode. A high-current arc is struck between the anode and cathode, which ionizes and accelerates a gas (plasma) propellant. In the self-field version of the thruster, an azimuthal magnetic field generated by the current returning through the cathode interacts with the radial discharge current flowing through the plasma to produce an axial electromagnetic body force, providing thrust. In applied field-versions of the thruster, a magnetic field coil surrounding the anode is used to provide additional radial and axial magnetic fields that can help stabilize and accelerate the plasma propellant. The following figure shows an experimental megawatt-class MPD thruster developed at Glenn. The MPD thruster is fitted inside a magnetic field coil, which in turn is mounted on a thrust stand supported by thin metal flexures. A calibrated position transducer is used to determine the force provided by the thruster as a function of thrust stand displacement. Power to the thruster is supplied by a 250-kJ capacitor bank, which provides up to 30- MW to the thruster for a period of 2 msec. This short period of time is sufficient to establish thruster performance similar to steady-state operation, and it allows a number of thruster designs to be quickly and economically evaluated. In concert with this experimental research, Glenn is also developing and using advanced numerical simulations to predict the performance of self-field and applied-field MPD thrusters.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-02
    Description: Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle thermal fatigue behavior has been investigated on a flat Haynes 188 alloy specimen, under the test condition of 30-Hz cycle frequency (33-msec pulse period and 10-msec pulse width including a 0.2-msec pulse spike; ref. 4). Temperature distributions were calculated with one-dimensional finite difference models. The calculations show that that the 0.2-msec pulse spike can cause an additional 40 C temperature fluctuation with an interaction depth of 0.08 mm near the specimen surface region. This temperature swing will be superimposed onto the temperature swing of 80 C that is induced by the 10-msec laser pulse near the 0.53-mm-deep surface interaction region.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-06
    Description: The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WAMP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (theta less than 5 deg), the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l greater than 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta greater than 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 is less than z(sub r) is less than 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit ACDM model, with best fit value t = 0.17 +/- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-08
    Description: Using the 2MASS second incremental data release and the zodiacal subtracted mission average maps of COBE/DIRBE, the authors estimate the cosmic background in the J (1.25 mu m) and K (2.2 mu m) bands using selected areas representing ~550 deg/sup 2/ of sky.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 555; no. 2; 563-571
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-08
    Description: Uses three field L and T dwarfs that were discovered to be wide companions to known stars by the Two Micron All-Sky Survey to derive a preliminary brown dwarf companion frequency.
    Keywords: Astrophysics
    Type: Astrophysical Journal letters; Volume 551; no. 2; L163-L
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-08
    Description: The two spectrometers on board the Infrared Space Observatory were used to observe the Herbig-Haro objects HH 80, 81, and 80N, as well as their candidate exciting source IRAS 18162-2048.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 547; no. 1; 292-301
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-08
    Description: This paper provides an overview of the system performance from the first 14,200 hours of ion propulsion system operation in interplanetary space.
    Keywords: Spacecraft Propulsion and Power
    Type: International Electric Propulsion Conference; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-08
    Description: This paper describes the development and testing of a microthrust stand in the Advanced Propulsion Technology Laboratory at NASA/JPL.
    Keywords: Spacecraft Propulsion and Power
    Type: International Elective Propulsion Conference; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-08
    Description: An experimentally verified performance scaling model for gas-fed pulsed plasma thrusters (GFPPTs) is used as part of a mission study for refuelable satellites.
    Keywords: Spacecraft Propulsion and Power
    Type: 2001 International Electric Propulsion Conference; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-08
    Description: The focus of this Integrated In-space Transportation Planning (IISTP) study was to perform an evaluation of the performance and cost benefit of several advanced propulsion technologies applied to deep space missions.
    Keywords: Spacecraft Propulsion and Power
    Type: 27th International Electric Propulsion Conference (IEPC) 2001; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: Derivatives of the NSTAR ion engine are being evaluated to assess their capability to meet future needs.
    Keywords: Spacecraft Propulsion and Power
    Type: 9th International Conference on Ion Sources
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-08
    Description: We discuss the spacecraft propulsion applications for field emission cathodes.
    Keywords: Spacecraft Propulsion and Power
    Type: International Vacuum Microelectronics Conference; Davis, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: Experimental Cosmology at Millimeter Wavelengths; Breuil Cervinia; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Space Technology and Applications International Forum 2002; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: This paper provides a brief summary of some of the important long-term temporal and spectral results obtained over the last thirty years, and discusses the current status and issues that need to be addressed by upcoming missions.
    Keywords: Astrophysics
    Type: Conference Proceedings on Gamma-Ray 2001 High Energy Astrophysics Symposium|Gamma-Ray 2001 High Energy Astrophysics Symposium; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: MEMS for Aerospace Applications; Ottawa, Ontario; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-08
    Keywords: Astrophysics
    Type: AGN (Active Galactic Nucleus) Variablility Across the Electromagnetic Spectrum-- Elizabeth and Frederick White Workshop; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-08
    Description: We present new emission line spectra and an analysis of the mass outflow for the massive binary, HD 149404.
    Keywords: Astrophysics
    Type: The astrophysical journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: 3rd IAA Symposium on Small Satellites for Earth Observation; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-05
    Description: The Transition From Ignition to Flame Growth Under External Radiation in 3D (TIGER- 3D) experiment, which is slated to fly aboard the International Space Station, conducted a series of highly successful tests in collaboration with the University of Hokkaido using Japan's 10-sec JAMIC drop tower. The tests were conducted to test engineering versions of advanced flight diagnostics such as an infrared camera for detailed surface temperature measurements and an infrared spectroscopic array for gas-phase species concentrations and temperatures based on detailed spectral emissions in the near infrared. Shown in the top figure is a visible light image and in the bottom figure is an infrared image at 3.8 mm obtained during the microgravity tests. The images show flames burning across cellulose samples against a slow wind of a few centimeters per second (wind is from right to left). These flow velocities are typical of spacecraft ventilation systems that provide fresh air for the astronauts. The samples are ignited across the center with a hot wire, and the flame is allowed to spread upwind and/or downwind. As these images show, the flames prefer to spread upwind, into the fresh air, which is the exact opposite of flames on Earth, which spread much faster downwind, or with the airflow, as in forest fires.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-05
    Description: Solid hydrogen particles have been selected as a means of storing atomic propellants in future launch vehicles (refs. 1 to 2). In preparation for this, hydrogen particle formation in liquid helium was tested experimentally. These experiments were conducted to visually characterize the particles and to observe their formation and molecular transformations (aging) while in liquid helium. The particle sizes, molecular transformations, and agglomeration times were estimated from video image analyses. The experiments were conducted at the NASA Glenn Research Center in the Supplemental Multilayer Insulation Research Facility (SMIRF, ref. 3). The facility has a vacuum tank, into which the experimental setup was placed. The vacuum tank prevented heat leaks and subsequent boiloff of the liquid helium, and the supporting systems maintained the temperature and pressure of the liquid helium bath where the solid particles were created. As the operation of the apparatus was developed, the hydrogen particles were easily visualized. The figures (ref. 1) show images from the experimental runs. The first image shows the initial particle freezing, and the second image shows the particles after the small particles have agglomerated. The particles finally all clump, but stick together loosely. The solid particles tended to agglomerate within a maximum of 11 min, and the agglomerate was very weak. Because the hydrogen particles are buoyant in the helium, the agglomerate tends to compact itself into a flat pancake on the surface of the helium. This pancake agglomerate is easily broken apart by reducing the pressure above the liquid. The weak agglomerate implies that the particles can be used as a gelling agent for the liquid helium, as well as a storage medium for atomic boron, carbon, or hydrogen. The smallest particle sizes that resulted from the initial freezing experiments were about 1.8 mm. About 50 percent of the particles formed were between 1.8 to 4.6 mm in diameter. These very small particle sizes are encouraging for future formation experiments, where simpler operations will reduce the costs of production.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center is supporting the development of a Stirling converter with the Department of Energy (DOE, Germantown, Maryland) for an advanced Stirling Radioisotope Power System (SRPS) to provide spacecraft onboard electric power for NASA space science missions. A key technology assessment completed by Glenn and DOE has led to the SRPS being identified as a high-efficiency power source for such deep space missions as the Europa Orbiter and the Solar Probe. In addition, the Stirling system is now being considered for unmanned Mars rovers, especially where mission profiles may exclude the use of photovoltaic power systems, such as exploration at high Martian latitudes or for missions of long duration. The SRPS efficiency of over 20 percent will reduce the required amount of radioisotope by more than a factor of 3 in comparison to current radioisotope thermoelectric generators. This significantly reduces radioisotope cost, radiological inventory, and system cost, and it provides efficient use of scarce radioisotope resources. In support of this technology assessment, Glenn conducted a series of independent evaluations and tests to determine the technology readiness of a 55-We Stirling converter developed by Stirling Technology Company (Kennewick, Washington) and DOE. Key areas evaluated by Glenn included: 1) Radiation tolerance of materials; 2) Random vibration testing of the Stirling converter in Glenn's Structural Dynamics Lab to simulate operation in the launch environment; 3) Electromagnetic interference and compatibility (EMI/EMC) of the converter operating in Glenn's EMI lab; Independent failure modes, effects, and criticality analysis, and life and reliability 4. Independent failure modes, effects, and criticality analysis, and life and reliability assessment; and 5) SRPS cost estimate. The data from these evaluations were presented to NASA Headquarters and the Jet Propulsion Laboratory mission office by a joint industry/Government team consisting of DOE, Glenn, and Lockheed Martin Astronautics. This team concluded that there are no technical reasons that would rule out using the Stirling converter for deep space missions. As a direct result of the successful testing at Glenn, the DOE/Stirling Technology Company 55-We Stirling converter has been baselined for the SRPS. Glenn is now continuing an in-house project to assist in developing the Stirling converter for readiness for space qualification and mission implementation. As part of this effort, the Stirling converter will be further characterized under launch environment random vibration testing, methods to reduce converter EMI will be developed, and an independent performance verification will be completed. Converter life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high-radiation environment have been identified and have now been incorporated in Stirling converters built by Stirling Technology Company for Glenn. Electromagnetic and thermal finite element analyses for the alternator are also being conducted.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210608
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-05
    Description: Our objective was to create a high-fidelity Navier-Stokes computer simulation of the flow through the turbines of a modern high-bypass-ratio turbofan engine. The simulation would have to capture the aerodynamic interactions between closely coupled high- and low-pressure turbines. A computer simulation of the flow in the GE90 turbofan engine's high-pressure (HP) and low-pressure (LP) turbines was created at GE Aircraft Engines under contract with the NASA Glenn Research Center. The three-dimensional steady-state computer simulation was performed using Glenn's average-passage approach named APNASA. The areas upstream and downstream of each blade row mutually interact with each other during engine operation. The embedded blade row operating conditions are modeled since the average passage equations in APNASA actively include the effects of the adjacent blade rows. The turbine airfoils, platforms, and casing are actively cooled by compressor bleed air. Hot gas leaks around the tips of rotors through labyrinth seals. The flow exiting the high work HP turbines is partially transonic and, therefore, has a strong shock system in the transition region. The simulation was done using 121 processors of a Silicon Graphics Origin 2000 (NAS 02K) cluster at the NASA Ames Research Center, with a parallel efficiency of 87 percent in 15 hr. The typical average-passage analysis mesh size per blade row was 280 by 45 by 55, or approx.700,000 grid points. The total number of blade rows was 18 for a combined HP and LP turbine system including the struts in the transition duct and exit guide vane, which contain 12.6 million grid points. Design cycle turnaround time requirements ran typically from 24 to 48 hr of wall clock time. The number of iterations for convergence was 10,000 at 8.03x10(exp -5) sec/iteration/grid point (NAS O2K). Parallel processing by up to 40 processors is required to meet the design cycle time constraints. This is the first-ever flow simulation of an HP and LP turbine. In addition, it includes the struts in the transition duct and exit guide vanes.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: We investigate dust dynamics and evolution during the formation of a protostellar accretion disk around intermediate-mass stars via two-dimensional numerical simulations.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 551; no. 1; 461-477
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: We report on the preliminary determination of the visual orbit of the double-lined spectroscopic binary system BY Draconis with data obtained by the Palomar Testbed Interferometer in 1999.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 547; no. 2; 1071-1076
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: 39th AIAA Aerospace Sciences Meeting & Exhibit; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-27
    Description: This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2001-210564 , E-12529 , NAS 1.15:210564 , Novel Aero Propulsion Systems International Symposium; 3-4 Sept. 2000; London; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Space power systems include the power source, storage, and management subsystems. In current crewed spacecraft, solar cells are the power source, batteries provide storage, and the crew performs any required load scheduling. For future crewed planetary surface systems using Advanced Life Support, we assume that plants will be grown to produce much of the crew's food and that nuclear power will be employed. Battery storage is much more costly than nuclear power capacity and so is not likely to be used. We investigate the scheduling of power demands by the crew or automatic control, to reduce the peak power load and the required generating capacity. The peak to average power ratio is a good measure of power use efficiency. We can easily schedule power demands to reduce the peak power from its maximum, but simple scheduling approaches may not find the lowest possible peak to average power ratio. An initial power scheduling example was simple enough for a human to solve, but a more complex example with many intermittent load demands required automatic scheduling. Excess power is a free resource and can be used even for minor benefits.
    Keywords: Spacecraft Propulsion and Power
    Type: 32nd International Conference on Environmental Systems; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-18
    Description: Silicate dust grains in the interstellar medium are known to be mostly amorphous, yet crystalline silicate grains have been observed in many long-period comets and in protoplanetary disks. Annealing of amorphous silicate grains into crystalline grains requires temperatures greater than or approximately equal to 1000 K, but exposure of dust grains in comets to such high temperatures is apparently incompatible with the generally low temperatures experienced by comets. This has led to the proposal of models in which dust grains were thermally processed near the protoSun, then underwent considerable radial transport until they reached the gas giant planet region where the long-period comets originated. We hypothesize instead that silicate dust grains were annealed in situ, by shock waves triggered by gravitational instabilities. We assume a shock speed of 5 km/s, a plausible value for shocks driven by gravitational instabilities. We calculate the peak temperatures of pyroxene grains under conditions typical in protoplanetary disks at 5-10 AU. We show that in situ annealing of micron-sized dust grains can occur, obviating the need for large-scale radial transport.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-18
    Description: We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV radiation field, and the effect of this field on the star-forming interstellar medium (ISM). There are substantial fluctuations of the UV radiation field in space (scales of 100's of parsecs) and time (time-scales of order 100 million years) at the solar circle. The Far Ultraviolet (FUV) (6 eV〈 hv 〈 13.6 eV) field and the pressure determines whether the thermal balance of the neutral gas results in cold clouds or warm (T - 10(exp 4) neutral medium. We show how to calculate the average fractions of the gas in the cold and warm phases when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties and on the FUV sources is a basic step in building a model of the large scale behavior of the ISM and the mutual relation between the ISM and the star formation rate. Application is made to observations of spiral galaxies which correlate the star formation rate per unit area with the surface density of the gas. We acknowledge support from the NASA Astrophysical Theory program.
    Keywords: Astrophysics
    Type: American Astronomical Society Conference; Jan 01, 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the inner disk (r 〈 or approx. equals 10 AU), while photoevaporation is the principal process of disk dispersal outside of r 〉 or approx. equals 10 AU for low mass stars. Disk dispersal timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1)C.
    Keywords: Astrophysics
    Type: Sep 24, 2001; CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-18
    Description: Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler/Energy equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the nebula to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived using the simulation data and compared with analytical dispersion relations from the linearized Euler/Energy equations.
    Keywords: Astrophysics
    Type: DPS; Nov 27, 2001 - Dec 01, 2001; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-18
    Description: This NASA grant supported an analysis of the variability of the wind of the supergiant primary star (K4 Ib) in the eclipsing binary Zeta Aurigae (Zeta Aur). In the ultraviolet, the main-sequence companion star (B5 V) dominates the observed flux, and therefore serves as a convenient probe of the cool supergiant's wind. This study utilized the extensive set of (100+) ultraviolet spectroscopic observations obtained with the International Ultraviolet Explorer (IUE) satellite over its operational lifetime of 1978-1995. Although the resolution of IUE is limited (about 25 km/s), it is adequate to resolve variability in the wind features in Zeta Aur's ultraviolet spectrum, which are blueshifted 70 km/s from line center. Our analysis used the tau-v technique of Cardelli and Savage, which makes full use of the available line profile information. We find that the wind column densities vary by up to an order of magnitude over time. These results are being written up for submission to the Astrophysical Journal as the third paper of a series on the chromosphere and wind of Zeta Aurigae. The first two papers report on the construction of mean chromosphere and wind models respectively, based on HST/GHRS observations and funded by STScI. The third paper - this research - reports on variability of the Zeta Aur wind as determined from our analysis of the long IUE time series. This paper will be completed within the next three months; the delay in publication was to allow the completion of Papers 1 and 2, which logically precede the present work. Therefore, an additional no-cost extension was requested in order to ensure budgeted funds remain available for publication of this work. Unfortunately, this request was denied, and so I am forced to write this final report before publication of Paper 3. Regardless, this paper will be submitted for publication within the next three months.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-18
    Description: Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The main thrust of the program was to obtain UV spectroscopy of a number of massive and hot luminous (OB type) stars in the nearby galaxy called the Small Magellanic Cloud (SMC). The objective was to analyze their atmospheres and winds so as to determine the effect of the lower abundance of the SIVIC on these parameters. Furthermore, the differences in evolution could be investigated. Additionally, the UV spectra themselves would be suitably weighted and systematically combined to provide a template for comparison to very distant galaxies formed in the early history of the Universe which also have a low abundance of elements. The spectra have been obtained and the analysis is proceeding, primarily by the groups in Munich and at STScl who are the leads for this project. Given the important role of the nearby SMC galaxy as a template of low metal abundance, I have begun to investigate the YOUNGEST phases of massive star birth, before the most massive and hottest stars become optically visible. Typically these stars form in clusters, in some cases having tens to hundreds of OB type stars. In this phase, each star is still buried in its natal cloud and visible only in the infrared (IR) from its self-heated dust and/or from radio free-free emission of the surrounding hydrogen (HII) region. Efforts to find and identify these buried clusters were conducted using a large radio telescope. A number of these were found and further analysis of the data is underway. These clusters are not visible optically, but ought to be seen in the IR, and are a likely topic for HST photometry on NICMOS. A proposal to do this will be made next semester. These objects are the precursors of the optically visible clusters that contain massive and hot luminous stars.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-17
    Description: The laboratory studies of interstellar carbon materials analogs (PAHs, Fullerenes, chains) will be discussed with their advantages and limitations from the point of view of the application to astrophysical processes. The discussion will focus on the newest generation of laboratory experiments that has been developed in order to provide a closer simulation of space environments and a better support to space missions. The astrophysical implications and future perspectives will be stressed.
    Keywords: Astrophysics
    Type: International Space Science Institute Workshop on Laboratory Astrophysics; May 07, 2001 - May 11, 2001; Bern; Switzerland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-17
    Description: Although half the luminosity of the universe appears in the band from 20-450 $\mu$m, almost nothing is known about the sources of this radiation. Moreover, many molecules, atoms, and ions of astrophysical interest have some of their strongest lines in this wavelength range. Now Infrared Astronomy Satellite (IRAS) and ISO have flown, Space Infrared Telescope Facility (SIRTF) is nearly ready, SOFIA is under construction, and NGST, ALMA, Herschel, Planck, and a dozen 8 m and a 25 m ground-based visible/near IR telescopes could all be operational by the end of decade. Nevertheless, the mid and far IR region will still not have telescopes that are comparable to neighboring bands in energy sensitivity or angular resolution, despite these many advances. What scientific questions will still be open, and what instrumentation will be required? We anticipate that cold filled-aperture telescopes operating out to 100 $\mu$m and cold imaging interferometers, operating out to about 450 $\mu$m in space could be very powerful, using direct detection rather than heterodyne systems. I will give a brief overview of the scientific questions that may still be open, the main factors governing the choice of equipment, and the technological developments that would be required to actually build and use these new facilities.
    Keywords: Astrophysics
    Type: 198th American Astronomical Society Conference; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-17
    Description: In 1990 an unexpectedly high concentration of Be-7 was discovered on the LDEF satellite surface, facing in the RAM direction. The search for an explanation of this high concentration of Be-7 which is in thermal equilibrium in the upper atmosphere, led the researchers to the hypothesis of Be-7 transport by vertical turbulent fluxes from deeper layers in the Earth's atmosphere, where Be-7 is produced as a result of nuclear reactions between solar energetic protons (which penetrated there after a solar flare) and terrestrial atmosphere elements. The experiments carried out during 1995-1999 on 'Resource F1' and 'Cosmos' satellites not only confirmed the existence of high Be-7 concentrations at altitudes of about 200 km, but also permitted to establish correlation between the concentration of Be-7 in the upper atmosphere and flare activity on the Sun. More detailed analysis of the whole set of experimental data on Be-7 measurements at satellite altitudes showed, that the appearance of high Be-7 concentrations in the upper atmosphere of the Earth is a more complicated phenomenon. Two more mechanisms , explaining the observed effect can be indicated. Firstly, the observed concentrations could be associated with direct penetration of energetic Be-7 nuclei, originating in flares, into the terrestrial atmosphere. Calculations show, that in solar cosmic rays the flux of Be-7 nuclei should be maximum in comparison to the fluxes of other Beryllium isotopes. Secondly, the high concentration of Be-7 in the upper atmosphere of the Earth could be explained by solar wind penetration through the polar zones. Theoretical analysis of active processes including flares, occurring in the solar atmosphere, leads to the conclusion, that radioactive Beryllium is constantly present in the solar atmosphere, and, possibly, is the main isotope of solar Beryllium.
    Keywords: Astrophysics
    Type: International Nuclear Physics Conference; Jul 30, 2001 - Aug 03, 2001; Berkeley, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-17
    Description: Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be described.
    Keywords: Astrophysics
    Type: 46th Annual SPIE Meeting; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-17
    Description: We present a measurement of the Sunyaev-Zeldovich effect (SZE) at 30 GHz for the galaxy cluster Abell 2163. Combining this data point with previous measurements at 140, 220, and 270 GHz from the SuZIE and Daibolo experiments, we construct them most complete SZE spectrum to date. The spectrum is fitted to determine the compton y parameter and the peculiar velocity for this cluster; our results are y_0=3.6 x 10(circumflex)4 and v_p=360 km s(circumflex)-1. These results include corrections for contamination by Galactic dust emission; we find the contamination level to be much less than previously reported. The dust emission, while strong, is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the proper SZE observing strategy is taken into account.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-17
    Description: The basic observed properties of GRBs in the hard x-ray and gamma-ray region will be reviewed, primarily using analyses from BATSE data. Summaries of new BATSE observations that are presented in this symposium and other work in progress are given. Finally, a framework will be described-for the planning of a Next Generation Burst Observatory. This Observatory, using Swift as a pathfinder mission, would study early star formation and early galaxy formation at very high redshifts through observations of thousands of GRBs, their afterglows and environments. It is suggested that the international GRB community should begin some initial studies for such an observatory.
    Keywords: Astrophysics
    Type: Jan van Paradijs Memorial Symposium; Jun 06, 2001 - Jun 08, 2001; Amsterdam; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-17
    Description: We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat 〈 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-17
    Description: The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.
    Keywords: Spacecraft Propulsion and Power
    Type: Outer Planet Exploration; Feb 21, 2001 - Feb 23, 2001; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-17
    Description: A large database of sunlit Io [O I] 6300A emission, acquired over the period 1990-1999, with extensive coverage of Io orbital phase angle phi and System III longitude lambda(sub III), exhibits significant long-term and short-term variations in [O I] 6300A emission intensities. The long-term average intensity shows a clear dependence on lambda(sub III), which establishes conclusively that the emission is produced by the interaction between Io's atmosphere and the plasma torus. Two prominent average intensity maxima, 70 deg to 90 deg wide, are centered at lambda(sub III) about 130deg. and about 295 deg. A comparison of data from October 1998 with a three-dimensional plasma torus model, based upon electron impact excitation of atomic oxygen, suggests a basis for study of the torus interaction with Io's atmosphere. The observed short-term, erratic [O I] 6300A intensity variations fluctuate approximately 20% to 50% on time scale of tens of minutes with less frequent fluctuations of a factor of about 2. The most likely candidate to produce these fluctuations is a time-variable energy flux of field-aligned nonthermal electrons identified recently in Galileo PLS data. If true, the short-term [O I] intensity fluctuations may be related to variable field-aligned currents driven by inward and outward torus plasma transport and/or transient high-latitude, field-aligned potential drops. A correlation between the intensity and emission line width indicates molecular dissociation may contribute significantly to the [O I] 6300A emission. The nonthermal electron energy flux may produce O(1-D) by electron impact dissociation of SO2 and SO, with the excess energy going into excitation of O and its kinetic energy. The [O I] 6300A emission database establishes Io as a valuable probe of the torus, responding to local conditions at Io's position.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-17
    Description: The atomic deuterium-to-hydrogen abundance ratio has been evaluated for the sight line toward the hot O subdwarf BD+28(sup circ) 4211. High signal-to-noise ratio (S/N is approx. 100) observations covering the wavelength range 905 to 1187 angstroms at a wavelength resolving power of lambda/Delta/lambda at approx. 20,000 were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. BD+28(sup circ) 4211 is approx. 00 pc away with a total H I column density of approx. 10(exp 19)/sq cm, much higher than is typically found in the local interstellar medium (ISM). The deuterium column density was measured by analyzing several D I Lyman series transitions (Lyman delta, C, epsilon, eta, theta, iota with curve of growth and profile fitting techniques, after determining which lines were free of interference from other interstellar species and narrow stellar features. The neutral hydrogen column density was measured by an analysis of the Lyman-alpha profile using HST/Space Telescope Imaging Spectrograph (STIS) and Goddard High Resolution Spectrograph (GHRS) spectra. The stellar spectrum of BD+28(sup circ) 4211 was modelled to assist in determining the sensitivity of H I (Ly-alpha) and D I to the continuum placement and to identify stellar transitions. The D I and H I column densities, their uncertainties, and potential sources of systematic error will be presented. This work is based on data obtained for the FUSE Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support to U. S. participants has been provided in part by NASA contract NAS5-32985.
    Keywords: Astrophysics
    Type: Jan 01, 2001; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-17
    Description: The X-ray emitting component in the Cyg XR-1/HDE226868 system is a leading candidate for identification as a stellar-mass sized black hole. The positive identification of a black hole as predicted by general relativity requires the detection of an event horizon surrounding the point singularity. One signature of such an event horizon would be the existence of dying pulse trains emitted by material spiraling into the event horizon from the last stable orbit around the black hole. We observed the Cyg XR-1 system at three different epochs in a 1400 - 3000 A bandpass with 0.1 ms time resolution using the Hubble Space Telescope's High Speed Photometer. Repeated excursions of the detected flux by more than three standard deviations above the mean are present in the UV flux with FWHM 1 - 10 ms. If any of these excursions are pulses of radiation produced in the system (and not just stochastic variability associated with the Poisson distribution of detected photon arrival times), then this short a timescale requires that the pulses originate in the accretion disk around Cyg XR-1. Two series of pulses with characteristics similar to those expected from dying pulse trains were detected in three hours of observation.
    Keywords: Astrophysics
    Type: Jan 01, 2001; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-17
    Description: Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket Program. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. The fifteen types of sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Launch activities are conducted not only from established missile ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets which also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GPS receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating requirement for tracking radar. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem, and a single board computer with custom software is described along with the technical challenges and the plan for their resolution. These include antenna development, high Doppler rates, reliability, environmental ruggedness, hand over between satellites and data security. An aggressive test plan is included which in addition to environmental testing measures bit error rate, latency and antenna patterns. Actual flight tests are planned for the near future on aircraft, long duration balloons and sounding rockets and these results as well as the current status of the project are reported.
    Keywords: Spacecraft Propulsion and Power
    Type: Guidance and Control; Jan 31, 2001 - Feb 04, 2001; Breckenridge, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-18
    Description: Regardless of the power source, deep space missions will require both high specific impulse (greater than 500 s) and high thrust power (greater than 100kW). These high Isp thrusters will need to have high electrical efficiency (approx. 90%) and low specific mass (alpha approximately less than 10 kg/kW) as well. Additionally they should have high thrust to allow greater mission flexibility. All these requirements can potentially be achieved with the pulsed formation and acceleration of magnetically self-confined plasmoids commonly referred to as compact toroids (CTs). An electromagnetic plasma thruster based on CT acceleration makes an ideal candidate for a high power, high Isp thruster, since the CT is magnetically isolated from the accelerator so that there is no contact between the propellant and the accelerator. The transfer of momentum to the CT occurs through an electromagnetic interaction with the magnetic field. By maintaining an axial magnetic field gradient across it, the directed velocity of the CT can be increased indefinitely. In previous experiments carried out at the University of Washington, CT's of near milligram mass were accelerated to velocities of 250 km/s in a single pulse. The ejection of the plasmoid by an external axial field also avoids the serious problem of detachment, which would occur in thrusters that employ a magnetic mirror or magnetic nozzle. To employ the CT for propulsion, one must design, construct and test a plasma source that is capable of generating a self-confined plasma inductively, and to do it repeatedly at a sufficiently high rep rate. A repetitively pulsed 100 kW level FRC thruster was built and was operated for short bursts at a 10 kHz rep rate and will be described. Another regime for the FRC thruster however is to produce an FRC in a more conventional manner at high voltage and magnetic field. With the large energy transfer with each pulse, the rep rate for this approach is much lower (approximately 100 Hz). This is the approach that is being evaluated at MSFC in the FAST experiment. The purpose of this experiment is to build an FRC thruster, measure its performance characteristics e.g. specific impulse, thrust, and efficiency. This experiment will also be described as well as various mission scenarios that that are well matched for this type of propulsion.
    Keywords: Spacecraft Propulsion and Power
    Type: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 07, 2002 - Jul 10, 2002; Indianapolis, IN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-18
    Description: During the investigation period, we have analyzed the achieve (X-ray Multi Mirror) XMM data. Based on our analysis, we have submitted the following proposals for the Cycle-2 XMM observation period: 1) Two Possible Supernova Remnants in the Carina Dwarf Spheroidal Galaxy; and 2) The Nature of the Ultraluminous X-ray Source in the Nearby Galaxy Dwingeloo 1.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-18
    Description: The data and analysis for the ICRF were completed in 1995 to define a frame to which the Hipparcos optical catalog could be fixed. Additional observations on most of the 608 sources in the overall ICRF catalog have been acquired using a small portion of geodetic observing time as well as astrometric sessions concentrating on the southern hemisphere. Positions of new sources have been determined, including approx.1200 from a VLBA phase calibrator survey. A future ICRF realization will require improved geophysical modeling, sophisticated treatment of position variations and/or source structure, optimized data selection and weighting, and reidentification of defining sources. The motivation for the next realization could be significant improvement in accuracy and density or preparation for optical extragalactic catalogs with microarcsecond precision.
    Keywords: Astrophysics
    Type: Second IVS General Meeting; Feb 04, 2002 - Feb 07, 2002; Tsukuba; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-18
    Description: In a simplified, idealized way the TRF can be considered a set of positions at epoch and corresponding linear rates of change while the CRF is a set of fixed directions in space. VLBI analysis can be optimized for CRF and TRF separately while handling some of the complexity of geodetic and astrometric reality. For EOP time series both CRF and TRF should be accurate at the epoch of interest and well defined over time. The optimal integral EOP, TRF and CRF in a single VLBI solution configuration requires a detailed consideration of the data set and the possibly conflicting nature of reference frames.
    Keywords: Astrophysics
    Type: Second IVS General Meeting; Feb 04, 2002 - Feb 07, 2002; Tsukuba; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: We are engaged in testing gravitational theory, primarily using observations of objects in the solar system and primarily on that scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to place tighter bounds on such departures. For this project, we have analyzed a combination of observational data with our model of the solar system, including mostly planetary radar ranging, lunar laser ranging, and spacecraft tracking, but also including both pulsar timing and pulsar very long base interferometry (VLBI) measurements. This year, we have extended our model of Earth nutation with adjustable correction terms at the principal frequencies. We also refined our model of tidal drag on the Moon's orbit. We believe these changes will make no substantial changes in the results, but we are now repeating the analysis of the whole set of data to verify that belief. Additional information is contained in the original extended abstract.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: This project consists of several related investigations directed to the study of mass transfer processes in X-ray binaries. Models developed over several years incorporating highly detailed physics will be tested on a balanced mix of existing data and planned observations with both ground and space-based observatories. The extended time coverage of the observations and the existence of simultaneous X-ray, ultraviolet, and optical observations will be particularly beneficial for studying the accretion flows. These investigations, which take as detailed a look at the accretion process in X-ray binaries as is now possible, test current models to their limits, and force us to extend them. We now have the ability to do simultaneous ultraviolet/X-ray/optical spectroscopy with HST, Chandra, XMM, and ground-based observatories. The rich spectroscopy that these observations give us must be interpreted principally by reference to detailed models, the development of which is already well underway; tests of these essential interpretive tools are an important product of the proposed investigations.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-18
    Description: Current chemical models of translucent clouds imply that sulfur is depleted with respect to its average abundance in diffuse clouds as determined by Morton (1975 ApJ,197, 85) by factors exceeding 10. Existing gigahertz emission observations yield sizable uncertainties in the column densities to background stars, and attempts to measure column densities of CS in the lines-of-sight to various stars through the absorption in the A-X (0,0) electronic transition near 257.6 nm have been unsuccessful. CS dissociates primarily through discrete absorptions into predissociating states. In analogy with CO the strongest of these is the C-X band found near 140.0 nm. We report the tentative identification of the C-X band of CS in the interstellar spectra of HD 24398 (zeta Per), HD 148184 (chi Oph), and HD 154368. The estimated column densities will be compared to the predictions of prevailing chemical models.
    Keywords: Astrophysics
    Type: 199th American Astronomical Society Meeting; Jan 06, 2002 - Jan 10, 2002; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-17
    Description: Recent progress in the laboratory study of cosmic carbon analogs will be discussed. After a brief review of the history of laboratory studies of interstellar carbon molecules and ions, new gas-phase results will be discussed and contrasted to previous studies that used the techniques of matrix isolation spectroscopy. Finally, the impact of these new laboratory studies on the field of astrophysics will be discussed.
    Keywords: Astrophysics
    Type: Jun 18, 2001 - Jun 28, 2001; Jena; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...