ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03.02. Hydrology  (3)
  • Acoustics  (2)
  • Elsevier  (4)
  • Frontiers Media  (1)
  • 2015-2019  (4)
  • 2000-2004  (1)
  • 1945-1949
  • 2017  (4)
  • 2000  (1)
Collection
Publisher
  • Elsevier  (4)
  • Frontiers Media  (1)
  • Springer  (2)
Years
  • 2015-2019  (4)
  • 2000-2004  (1)
  • 1945-1949
Year
  • 1
    Publication Date: 2017-12-13
    Description: This study focuses on the interaction among deep volcanic/hydrothermal gases, groundwater and soil gases at Vulcano Island (Aeolian Archipelago, Italy). The chemical-physical parameters of the groundwater, the total dissolved inorganic carbon (TDIC) and the isotopic composition of the CO2 dissolved in groundwater are reported and discussed. Furthermore, a comparison between soil gases and groundwater indicates that groundwater and soil gases show the same qualitative information, giving a good overall picture of the main degassing zones of a volcanic system, whereas the soil gas discharge provides an evaluation of the mass released by the deep feeding system. This approach can be a useful tool both to characterize mixing and/or interaction processes among different sources and for a monitoring of degassing activity of a volcanic system.
    Description: Published
    Description: 116-119
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Soil CO2 flux ; Dissolved gases ; Isotope composition of CO2 ; Groundwaters ; Vulcano Island ; 03.02. Hydrology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-08
    Description: Graciosa Island is located in the Azores Archipelago, along the so-called Terceira Rift, NE boundary of the Azores Plateau. From the hydrochemical point of view, two types of Na-Cl groundwater systems were identified: a cold aquifer system emerging at springs and exploited through boreholes for public water supply with different degrees of mineralization, and a hydrothermal system with issuing temperatures around 45 ºC. Geothermometers applied to the thermal waters point to deep temperature around 167 ºC and to immature waters, not reaching complete equilibrium with the reservoir rock. The isotopic composition and geochemistry of the thermal waters indicate mixture groundwater - seawater in different percentages and ion-exchange mechanisms that will be able to: i) increase groundwater salinity, ii) strongly change the isotopic composition to more enriched values, with different degrees of mixing.
    Description: Published
    Description: 630-633
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: N/A or not JCR
    Keywords: Thermal waters ; Volcanic island ; seawater-groundwater mixture ; Azores (Portugal) ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 4 (2017): 332, doi:10.3389/fmars.2017.00332.
    Description: While sound scattering layers (SSLs) have been described previously from ice-covered waters in the Arctic, the existence of a viable mesopelagic community that also includes mesopelagic fishes in the Arctic has been questioned. In addition, it has been hypothesized that vertical migration would hardly exist in these areas. We wanted to check if deep scattering layers (DSLs) was found to the west and north of Svalbard (79°30′N−82°10′N) during autumn 2015, and if present; whether organisms in such DSLs undertook vertical migrations. Our null hypothesis was that there would be no evidence of diel vertical migration. Multi-frequency acoustic observations by hull mounted echo sounder (18, 38, and 120 kHz) revealed a DSL at depths ~210–510 m in areas with bottom depths exceeding ~600 m. Investigating eight geographical locations that differed with respect to time periods, light cycle and sea ice conditions, we show that the deeper layer of DSL displayed a clear ascending movement during night time and a descending movement during daytime. The high-light weighted mean depth (WMD) (343–514 m) with respect to backscattered energy was statistically deeper than the low-light WMD (179–437 m) for the locations studied. This behavior of the DSL was found to be consistent both when the sun was continuously above the horizon and after it started to set on 1 September, and both in open water and sea ice covered waters. The WMD showed an increasing trend, while the nautical area backscattering strength from the DSL showed a decreasing trend from south to north among the studied locations. Hydrographic observations revealed that the diel migration was found in the lower part of the north-flowing Atlantic Water, and was disconnected from the surface water masses above the Atlantic Water during day and night. The organisms conducting vertical migrations were studied by vertical and oblique hauls with zooplankton nets and pelagic trawls. These data suggest that these organisms were mainly various mesopelagic fishes, some few larger fishes, large zooplankton like krill and amphipods, and various gelatinous forms.
    Description: The Research Council of Norway is thanked for the financial support through the projects “The Arctic Ocean Ecosystem” — (SI_ARCTIC, RCN 228896), the “Effects of climate change on the Calanus complex”—(ECCO, RCN 200508), “Harvesting marine cold water plankton species—abundance estimation and stock assessment”—(Harvest II, RCN 203871).
    Keywords: Arctic Ocean ; Deep scattering layer ; Diel vertical migration ; Mesopelagic organisms ; Acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-09
    Description: The carbon isotopic composition of dissolved C-bearing species is a powerful tool to discriminate the origin of carbon in thermal waters from volcanic and hydrothermal systems. However, the δ13C values of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) are often different with respect to the isotopic signature that characterizes the potential carbon primary sources, i.e. deep hydrothermal reservoirs, magmatic gases and organic activity. The most commonly invoked explanation for such isotopic values is related to mixing processes between deep and shallow end-members. Nevertheless, experimental and empirical investigations demonstrated that isotopic fractionation due to secondary processes acting on the uprising fluids from the hydrothermal reservoirs is able to reproduce the measured isotopic values. In this paper,we investigated the chemistry of thermalwaters, collected at Campi Flegrei and Vulcano Island (southern Italy),whose origin is related to interaction processesamongmagmatic gases, meteoric water, seawater and hosting rocks. A special focus was dedicated to the δ13C values of dissolved CO2 (δ13CCO2(aq)) and total dissolved inorganic carbon (δ13CTDIC). The δ13CCO2(aq) and δ13CTDIC values in the water samples fromboth these systems ranged from(i) those measured in fumarolic gases, likely directly related to the deep hydrothermal-magmatic reservoir, and (ii) those typically characterizing biogenic CO2, i.e. produced by microbially-driven degradation of organic matter. A simple mixingmodel of the two end-members, apparently explaining these intermediate carbon isotopic values, contrastswith the chemical composition of the dissolved gases. On the contrary, isotopic fractionation due to secondary processes, such as calcite precipitation, affecting hydrothermal fluids during their underground circulation, seems to exhaustively justify both the chemical and isotopic data. If not recognized, these processes, which frequently occur in volcanic and hydrothermal systems, may lead to an erroneous interpretation of the carbon source, causing an underestimation of the contribution of the hydrothermal/magmatic fluids to the dissolved carbon species. These results pose extreme caution in the interpretation of intermediate δ13CCO2(aq) and δ13CTDIC values for the assessment of the carbon budget of hydrothermal- volcanic systems.
    Description: Published
    Description: 46–57
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: Thermal waters ; Carbon isotopes ; Dissolved CO2 ; TDIC ; Volcanic-hydrothermal systems ; Secondary fractionation processes ; 04.08. Volcanology ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Amsterdam, 528 pp., Elsevier, vol. 32, no. XVI:, pp. 227-235, (ISBN 0231-12739-1 hb, 0231127383 pb)
    Publication Date: 2000
    Keywords: Seismics (controlled source seismology) ; Applied geophysics ; Wave propagation ; Waves ; Acoustics ; Fluids ; Textbook of geophysics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...