ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (637)
  • Geophysics  (452)
  • Instrumentation and Photography  (185)
  • 1995-1999  (637)
  • 1935-1939
  • 1999  (637)
  • 1
    Publication Date: 2004-12-03
    Description: The Hydrodynamic Focusing Bioreactor (HDFB) technology is designed to provide a flow field with nearly uniform shear force throughout the vessel, which can provide the desired low shear force spatial environment to suspend three-dimensional cell aggregates while providing optimum mass transfer. The reactor vessel consists of a dome-shaped cell culture vessel, a viscous spinner, an access port, and a rotating base. The domed vessel face has a radius of R(o). and rotates at 0mega(o) rpm, while the internal viscous spinner has a radius of R(i) and rotates at 0mega(i) rpm. The culture vessel is completely filled with cell culture medium into which three-dimensional cellular structures are introduced. The HDFB domed vessel and spinner were driven by two independent step motors,
    Keywords: Instrumentation and Photography
    Type: KC-135 and Other Microgravity Simulations; 62-64; NASA/CR-1999-208922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.
    Keywords: Geophysics
    Type: Models and Measurements Intercomparison 2; 190-306; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Coherent Doppler lidar is a promising technique for the global measurements of winds using a space-based platform. Doppler lidar produces estimates of the radial component of the velocity vector averaged over the resolution volume of the measurement. Profiles of the horizontal vector winds are produced by scanning the lidar beam or stepping the lidar beam through a sequence of different angles (step-stare). The first design for space-based measurements proposed a conical scan which requires a high power laser to produce acceptable signal levels for every laser pulse. Performance is improved by fixing the laser beam and accumulating the signal from many lidar pulses for each range-gate. This also improves the spatial averaging of the wind estimates and reduces the threshold signal energy required for a good estimate. Coherent Doppler lidar performance for space-based operation is determined using computer simulations and including the wind variability over the measurement volume as well as the variations of the atmospheric aerosol backscatter.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 298-301; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: A useful measure of sensor performance is the transceiver system efficiency n (sub sys). Which consists of the antenna efficiency n (sub a) and optical and electronic losses. Typically, the lidar equation and the antenna efficiency are defined in terms of the telescope aperture area. However, during the assembly of a coherent transceiver, it is important to measure the system efficiency before the installation of the beamexpanding telescope (i.e., the untruncated-beam system efficiency). Therefore, to accommodate both truncated and untruncated beam efficiency measurements, we define the lidar equation and the antenna efficiency in terms of the beam area rather than the commonly used aperture area referenced definition. With a well-designed Gaussian-beam lidar, aperture area referenced system efficiencies of 15 to 20 % (23-31% relative to the beam area) are readily achievable. In this paper we compare the differences between these efficiency definitions. We then describe techniques by which high efficiency can be achieved, followed by a discussion several novel auto alignment techniques developed to maintain high efficiency.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 247-250; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: Space-based and airborne coherent Doppler lidars designed for measuring global tropospheric wind profiles in cloud-free air rely on backscatter, beta from aerosols acting as passive wind tracers. Aerosol beta distribution in the vertical can vary over as much as 5-6 orders of magnitude. Thus, the design of a wave length-specific, space-borne or airborne lidar must account for the magnitude of 8 in the region or features of interest. The SPAce Readiness Coherent Lidar Experiment under development by the National Aeronautics and Space Administration (NASA) and scheduled for launch on the Space Shuttle in 2001, will demonstrate wind measurements from space using a solid-state 2 micrometer coherent Doppler lidar. Consequently, there is a critical need to understand variability of aerosol beta at 2.1 micrometers, to evaluate signal detection under varying aerosol loading conditions. Although few direct measurements of beta at 2.1 micrometers exist, extensive datasets, including climatologies in widely-separated locations, do exist for other wavelengths based on CO2 and Nd:YAG lidars. Datasets also exist for the associated microphysical and chemical properties. An example of a multi-parametric dataset is that of the NASA GLObal Backscatter Experiment (GLOBE) in 1990 in which aerosol chemistry and size distributions were measured concurrently with multi-wavelength lidar backscatter observations. More recently, continuous-wave (CW) lidar backscatter measurements at mid-infrared wavelengths have been made during the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment in 1995. Using Lorenz-Mie theory, these datasets have been used to develop a method to convert lidar backscatter to the 2.1 micrometer wavelength. This paper presents comparison of modeled backscatter at wavelengths for which backscatter measurements exist including converted beta (sub 2.1).
    Keywords: Geophysics
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 147-150; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the difficulties encountered in these approaches, we have developed a new type of high-efficiency grating which we call a Stratified Volume Diffractive Optical Element (SVDOE). The features of the gratings in this approach can be easily fabricated using standard photolithography and etching techniques and the materials used in the grating can be chosen specifically for a given application, In this paper we will briefly discuss the SVDOE technique and will present an example design of a lidar scanner using this approach. We will also discuss performance predictions for the example design.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 119-122; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: NASA's New Millennium Program (NMP) has been chartered to identify and validate in space emerging, revolutionary technologies that will enable less costly, more capable future science missions. The program utilizes a unique blend of science guidance and industry partnering to ferret out technology solutions to enable science capabilities in space which are presently technically infeasible, or unaffordable. Those technologies which present an unacceptably high risk to future science missions (whether small PI-led or operational) are bundled into technology validation missions. These missions seek to validate the technologies in a manner consistent with their future uses, thus reducing the associated risk to the first user, and obtaining meaningful science data as well. The Space Readiness Coherent Lidar Experiment (SPARCLE) was approved as the second NMP Earth Observing mission (EO2) in October 1997, and assigned to Marshall Space Flight Center for implementation. Leading up to mission confirmation, NMP sponsored a community workshop in March 1996 to draft Level-1 requirements for a doppler wind lidar mission, as well as other space-based lidar missions (such as DIAL). Subsequently, a study group was formed and met twice to make recommendations on how to perform a comparison of coherent and direct detection wind lidars in space. These recommendations have guided the science validation plan for the SPARCLE mission, and will ensure that future users will be able to confidently assess the risk profile of future doppler wind missions utilizing EO2 technologies. The primary risks to be retired are: (1) Maintenance of optical alignments through launch and operations on orbit, and (2) Successful velocity estimation compensation for the Doppler shift due to the platform motion, and due to the earth's rotation. This includes the need to account for all sources of error associated with pointing control and knowledge. The validation objectives are: (1) Demonstrate measurement of tropospheric winds from space using a scanning coherent Doppler lidar technique that scales to meet future research (e.g. ESSP) and operational (e.g. NPOESS) mission requirements. Specifically, produce and validate LOS wind data with single shot accuracy of 1-2 m/s in regions of high signal-to-noise ratio (SNR), and low atmospheric wind turbulence and wind shear, (2) Collect the atmospheric and instrument performance data in various scanning modes necessary to validate and improve instrument performance models that will enable the definition of future missions with greater confidence. Such data include aerosol backscatter data over much of the globe, and high SNR data such as that from surface returns, and (3) Produce a set of raw instrument data with which advanced signal processing techniques can be developed. This objective will permit future missions to better understand how to extract wind information from low backscatter regions of the atmosphere.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 38-39; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.
    Keywords: Geophysics
    Type: 11th International Conference on Atmospheric Electricity; 583-586; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: This paper describes a method to determine the uncertainties of measured forces and moments from multi-component force balances used in wind tunnel tests. A multivariate regression technique is first employed to estimate the uncertainties of the six balance sensitivities and 156 interaction coefficients derived from established balance calibration procedures. These uncertainties are then employed to calculate the uncertainties of force-moment values computed from observed balance output readings obtained during tests. Confidence and prediction intervals are obtained for each computed force and moment as functions of the actual measurands. Techniques are discussed for separate estimation of balance bias and precision uncertainties.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 1; 279-306; NASA/CP-1999-209101/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: Direct measurements of forces and moments are some of the most important data acquired during aerodynamic testing. This paper deals with the force and strain measurement capabilities at the Langley Research Center (LaRC). It begins with a progressive history of LaRC force measurement developments beginning in the 1940's and ends with the center's current capabilities. Various types of force and moment transducers used at LaRC are discussed including six-component sting mounted balances, semi-span balances, hinge moment balances, flow-through balances, rotor balances, and many other unique transducers. Also discussed are some unique strain-gage applications, such as those used in extreme environments. The final topics deal with the LaRC's ability to perform custom calibrations and our current levels of effort in the area of force and strain measurement.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 1; 105-114; NASA/CP-1999-209101/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Major advances must occur to protect astronauts from prolonged periods in near-zero gravity and high radiation associated with extended space travel. The dangers of living in space must be thoroughly understood and methods developed to reverse those effects that cannot be avoided. Six of the seven research teams established by the National Space Biomedical Research Institute (NSBRI) are studying biomedical factors for prolonged space travel to deliver effective countermeasures. To develop effective countermeasures, each of these teams require identification of and quantitation of complex pharmacological, hormonal, and growth factor compounds (biomarkers) in humans and in experimental animals to develop an in-depth knowledge of the physiological changes associated with space travel. At present, identification of each biomarker requires a separate protocol. Many of these procedures are complicated and the identification of each biomarker requires a separate protocol and associated laboratory equipment. To carry all of this equipment and chemicals on a spacecraft would require a complex clinical laboratory; and it would occupy much of the astronauts time. What is needed is a small, efficient, broadband medical diagnostic instrument to rapidly identify important biomarkers for human space exploration. The Miniature Time-Of- Flight Mass Spectrometer Project in the Technology Development Team is developing a small, high resolution, time-of-flight mass spectrometer (TOFMS) to quantitatively measure biomarkers for human space exploration. Virtues of the JHU/APL TOFMS technologies reside in the promise for a small (less than one cubic ft), lightweight (less than 5 kg), low-power (less than 50 watts), rugged device that can be used continuously with advanced signal processing diagnostics. To date, the JHU/APL program has demonstrated mass capability from under 100 to beyond 10,000 atomic mass units (amu) in a very small, low power prototype for biological analysis. Further, the electronic nature of the TOFMS output makes it ideal for rapid telemetry to earth for in-depth analysis by ground support teams.
    Keywords: Instrumentation and Photography
    Type: National Space Biomedical Research Institute; B-111 - B-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing. attitude information from lidar and non-lidar sensors, and pointing knowledge algorithms will meet this second requirement. The topic of this paper is the pre-launch demonstration of the first requirement, adequate sensitivity of the SPARCLE lidar.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 156-159; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency determined with the standard calibrating hard target.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 128-131; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: Surface mounted strain gages and strain gage application techniques are as varied as they are versatile. There is an abundance of technical literature, available throughout the strain gage community, offering techniques for installing strain gages and methods of obtaining useful information from them. This paper, while providing more of the same, will focus its discussions on recent Langley developments for using strain gages reliably and accurately in very harsh environments. With Langley's extensive use of wind tunnel balances, its ongoing effort in materials development, and its currently focused activities in structural testing, the use of strain gages in unusual and demanding environments has led to several innovative improvements in the "how to gage it" department. Several of these innovations will be addressed that hopefully will provide some practical information for the strain gage user who is finding the test environment and (or) the materials to be tested too demanding for previously utilized strain gage application technology. Specifically, this paper will include discussions in the following three areas: (1) technical considerations when gaging cryogenic wind tunnel balances, including areas for improving accuracy and reliability; (2) addressing technical difficulties associated with gaging composite test articles and certain alloys for testing at temperatures approaching -450F, or elevated temperatures up to 350F, or both temperatures inclusive during the same test scenario; (3) gaging innovations for testing metal/matrix and carbon/carbon composites at temperatures above 700F.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 1; 413-429; NASA/CP-1999-209101/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: This section contains a number of special diagnostics that are designed to examine certain mechanisms. Section 1 reports on the method used to test the photochemical partitioning in the models. Sections 2 and 3 represent efforts to examine the model calculated production and removal rates for ozone and how the values are combined with transport rates in the models to produce the simulated ozone distributions. Sections 4 and 5 concentrate on polar processes including the dynamics aspect of vortex confinement and the chemical aspects of chlorine activation.
    Keywords: Geophysics
    Type: Models and Measurements Intercomparison 2; 363-448; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: MM II defined a series of experiments to better understand and characterize model transport and to assess the realism of this transport by comparison to observations. Measurements from aircraft, balloon, and satellite, not yet available at the time of MM I [Prather and Remsberg, 1993], provide new and stringent constraints on model transport, and address the limits of our transport modeling abilities. Simulations of the idealized tracers the age spectrum, and propagating boundary conditions, and conserved HSCT-like emissions probe the relative roles of different model transport mechanisms, while simulations of SF6 and C02 make the connection to observations. Some of the tracers are related, and transport diagnostics such as the mean age can be derived from more than one of the experiments for comparison to observations. The goals of the transport experiments are: (1) To isolate the effects of transport in models from other processes; (2) To assess model transport for realistic tracers (such as SF6 and C02) for comparison to observations; (3) To use certain idealized tracers to isolate model mechanisms and relationships to atmospheric chemical perturbations; (4) To identify strengths and weaknesses of the treatment of transport processes in the models; (5) To relate evaluated shortcomings to aspects of model formulation. The following section are included:Executive Summary, Introduction, Age Spectrum, Observation, Tropical Transport in Models, Global Mean Age in Models, Source-Transport Covariance, HSCT "ANOY" Tracer Distributions, and Summary and Conclusions.
    Keywords: Geophysics
    Type: Models and Measurements Intercomparison 2; 110-189; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.
    Keywords: Instrumentation and Photography
    Type: National Space Biomedical Research Institute; B-110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The purpose of the Dual Energy X-ray Absorptiometry (DEXA) project is to design, build, and test an advanced X-ray absorptiometry scanner capable of being used to monitor the deleterious effects of weightlessness on the human musculoskeletal system during prolonged spaceflight. The instrument is based on the principles of dual energy x-ray absorptiometry and is designed not only to measure bone, muscle, and fat masses but also to generate structural information about these tissues so that the effects on mechanical integrity may be assessed using biomechanical principles. A skeletal strength assessment could be particularly important for an astronaut embarking on a remote planet where the consequences of a fragility fracture may be catastrophic. The scanner will employ multiple projection images about the long axis of the scanned subject to provide geometric properties in three dimensions, suitable for a three-dimensional structural analysis of the scanned region. The instrument will employ advanced fabrication techniques to minimize volume and mass (100 kg current target with a long-term goal of 60 kg) of the scanner as appropriate for the space environment, while maintaining the required mechanical stability for high precision measurement. The unit will have the precision required to detect changes in bone mass and geometry as small as 1% and changes in muscle mass as small as 5%. As the system evolves, advanced electronic fabrication technologies such as chip-on-board and multichip modules will be combined with commercial (off-the-shelf) parts to produce a reliable, integrated system which not only minimizes size and weight, but, because of its simplicity, is also cost effective to build and maintain. Additionally, the system is being designed to minimize power consumption. Methods of heat dissipation and mechanical stowage (for the unit when not in use) are being optimized for the space environment.
    Keywords: Instrumentation and Photography
    Type: National Space Biomedical Research Institute; B-108 - B-109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.
    Keywords: Instrumentation and Photography
    Type: KC-135 and Other Microgravity Simulations; 142-146; NASA/CR-1999-208922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: Sensors 2000! (S2K!) is a specialized, integrated projects team organized to provide focused, directed, advanced biosensor and bioinstrumentation systems technology support to NASA's spaceflight and ground-based research and development programs. Specific technology thrusts include telemetry-based sensor systems, chemical/ biological sensors, medical and physiological sensors, miniaturized instrumentation architectures, and data and signal processing systems. A concurrent objective is to promote the mutual use, application, and transition of developed technology by collaborating in academic-commercial-govemment leveraging, joint research, technology utilization and commercialization, and strategic partnering alliances. Sensors 2000! is organized around three primary program elements: Technology and Product Development, Technology infusion and Applications, and Collaborative Activities. Technology and Product Development involves development and demonstration of biosensor and biotelemetry systems for application to NASA Space Life Sciences Programs; production of fully certified spaceflight hardware and payload elements; and sensor/measurement systems development for NASA research and development activities. Technology Infusion and Applications provides technology and program agent support to identify available and applicable technologies from multiple sources for insertion into NASA's strategic enterprises and initiatives. Collaborative Activities involve leveraging of NASA technologies with those of other government agencies, academia, and industry to concurrently provide technology solutions and products of mutual benefit to participating members.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.
    Keywords: Geophysics
    Type: 11th International Conference on Atmospheric Electricity; 634-637; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-12-03
    Description: The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered samples are obtained need to be developed. Particulate speciation was also assigned a high priority for quantifying the fractions of carbon soot, PAH, refractory materials, metals, sulfates, and nitrates. High priority was also placed on performing a comparison of particle sizing instruments. Concern was expressed by the workshop attendees who routinely make particulate measurements about the variation in number density measured during in-flight tests by different instruments. In some cases, measurements performed by different groups of researchers during the same flight tests showed an order of magnitude variation. Second priority was assigned to measuring concentrations of odd hydrogen and oxidizing species. Since OH, HO2, H2O2, and O are extremely reactive, non-extractive measurements are recommended. A combination of absorption and fluorescence is anticipated to be effective for OH measurements in the combustor and at the engine exit. Extractive measurements of HO2 have been made in the stratosphere, where the ambient level of OH is relatively low. Use of techniques that convert HO2 to OH for combustor and engine exit measurements needs to be evaluated, since the ratio of HO2/OH may be 1% or less at both the combustor and engine exit. CI-MS might be a viable option for H2O2, subject to sampling line conversion issues. However, H2O2 is a low priority oxidizing species in the combustor and at the engine exit. Two candidates for atomic oxygen measurements are Resonance Enhanced Multi-Photon Ionization (REMPI) and Laser-Induced Fluorescence (LIF). Particulate measurement by simultaneous extractive and non-extractive techniques was given equal priority to the oxidizer measurements. Concern was expressed over the ability of typical ground test sampling lines to deliver an unaltered sample to a remotely located instrument. It was suggested that the sampling probe and line losses be checked out by attempting measurements using an optical or non-extractive technique immediately upstream of the sampling probe. This is a possible application for Laser Induced Incandescence (LII) as a check on the volume fraction of soot. Optical measurements of size distribution are not well developed for ultrafine particles less than about 20 nm in diameter, so a non-extractive technique for particulate size distribution cannot be recommended without further development. Carbon dioxide measurements need to be made to complement other extractive measurement techniques. CO2 measurements enable conversion of other species concentrations to emission indices. Carbon monoxide, which acts as a sink for oxidizing species, should be measured using non-extractive techniques. CO can be rapidly converted to CO2 in extractive probes, and a comparison between extractive and non-extractive measurements should be performed. Development of non-extractive techniques would help to assess the degree of CO conversion, and might be needed to improve the concentration measurement accuracy. Measurements of NO(x) will continue to be critical due to the role of NO and NO2 in atmospheric chemistry, and their influence on atmospheric ozone. Time-resolved measurements of temperature, velocity, and species concentrations were included on the list of desired measurement. Thermocouples are typically adequate for engine exit measurements. PIV and LDV are well established for obtaining velocity profiles. The techniques are listed in the accompanying table; are divided into extractive and non-extractive techniques. Efforts were made to include a measurement uncertainty for each technique. An assessment of the technology readiness was included.
    Keywords: Instrumentation and Photography
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 179-186; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: Abstract In this paper, an approach to increase the degree of autonomy of flight software is proposed. We describe an enhancement of the Attitude Determination and Control System by augmenting it with self-calibration capability. Conventional attitude estimation and control algorithms are combined with higher level decision making and machine learning algorithms in order to deal with the uncertainty and complexity of the problem.
    Keywords: Instrumentation and Photography
    Type: 1999 Flight Mechanics Symposium; 17-24; NASA/CP-1999-209235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: The NASA Langley Research Center (LARC) participated in a national cooperative evaluation of the Israel Aircraft Industries (IAI) automatic balance calibration machine at Microcraft, San Diego in September 1995. A LaRC-designed six-component strain gauge balance was selected for test and calibration during LaRC's scheduled evaluation period. Eight calibrations were conducted using three selected experimental designs. Raw data were exported to LaRC facilities for reduction and statistical analysis using the techniques outlined in Tripp and Tcheng (1994). This report presents preliminary assessments of the results, and compares IAI calibration results with manual calibration results obtained at the Modern Machine and Tool Co., Inc. (MM & T). Newport News, VA. A more comprehensive report is forthcoming.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 1; 353-371; NASA/CP-1999-209101/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: The SPAce Readiness Coherent Lidar Experiment (SPARCLE) is the first demonstration of a coherent Doppler wind lidar in space. SPARCLE will be flown aboard a space shuttle In the middle part of 2001 as a stepping stone towards the development and deployment of a long-life-time operational instrument in the later part of next decade. SPARCLE is an ambitious project that is intended to evaluate the suitability of coherent lidar for wind measurements, demonstrate the maturity of the technology for space application, and provide a useable data set for model development and validation. This paper describes the SPARCLE's optical system design, fabrication methods, assembly and alignment techniques, and its anticipated operational characteristics. Coherent detection is highly sensitive to aberrations in the signal phase front, and to relative alignment between the signal and the local oscillator beams. Consequently, the performance of coherent lidars is usually limited by the optical quality of the transmitter/receiver optical system. For SPARCLE having a relatively large aperture (25 cm) and a very long operating range (400 km), compared to the previously developed 2-micron coherent lidars, the optical performance requirements are even more stringent. In addition with stringent performance requirements, the physical and environment constraints associated with this instrument further challenge the limit of optical fabrication technologies.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 284-287; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 153-155; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-12-03
    Description: The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general/regional circulation models; obtain similar datasets to improve understanding and predictive capabilities for similarly-scaled processes and features; and simulate and validate the performance of prospective satellite Doppler lidars for global tropospheric wind measurement.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 29-32; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-12-03
    Description: An orbiting coherent Doppler lidar for measuring winds is required to provide two basic pieces of data to the user community. The first is the line of sight wind velocity and the second is knowledge of the position at which the measurement was made. In order to provide this information in regions of interest the instrument is also required to have a certain backscatter sensitivity level. This paper outlines some of the considerations necessary in designing a coherent Doppler lidar for this purpose.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 302-305; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-23
    Description: The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
    Keywords: Instrumentation and Photography
    Type: Applied Optics (ISSN 0003-6935); Volume 38; No. 30; 6374-6381
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-23
    Description: Estimates of the effect of pulse stretching on satellite laser altimetry in particular the Geoscience Laser Altimeter System (GLAS), by cloud multiple scattering were made from an analytical method and from Monte Carlo calculations. The path delay of the return pulse was found to be largest for low-level clouds with particle radii (3-20 microns). The magnitude of the path delay was affected by several factors including cloud height, cloud optical depth, cloud particle size, particle shape, and receiver field of view. Polar aerosol and Rayleigh scattering usually added less than 1 cm to the overall path delay. Path delay estimates for all cloud conditions would be less if a simple Gaussian fit of the return pulse peak were used to measure the pulse's centroid. However, care must be taken in determining the centroid as factors such as pulse width, surface slope and the fitting method used will affect the estimate. A planned application for laser altimetry is high precision monitoring of the height change of polar ice sheets. In the absence of a correction algorithm, the required GLAS altimetry accuracies will not be achieved unless atmospheric channel information is used to remove profiles that are likely to be heavily contaminated by multiple scattering.
    Keywords: Geophysics
    Type: IEEE Transactions on Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-23
    Description: Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.
    Keywords: Instrumentation and Photography
    Type: JANNAF 28th Propellant Development and Characterization Subcommittee and 17th Safety and Environmental Protection Subcommitte Joint Meeting; Volume 1; 127-136; CPIA-Publ-687-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: The zonal mean eddy heat flux is directly proportional to the wave activity that propagates from the troposphere into the stratosphere. This quantity is a simple eddy diagnostic which is easily calculated from conventional meteorological analyses. Because this "wave driving" of the stratosphere has a strong impact on the stratospheric temperature, it is necessary to compare the impact of the flux with respect to stratospheric radiative changes caused by greenhouse gas changes. Hence, we must understand the precision and accuracy of the heat flux derived from our global meteorological analyses. Herein, we quantify the stratospheric heat flux using five different meteorological analyses, and show that there are 30% differences between these analyses during the disturbed conditions of the northern hemisphere winter. Such large differences result from the planetary differences in the stationary temperature and meridional wind fields. In contrast, planetary transient waves show excellent agreement amongst these five analyses, and this transient heat flux appears to have a long term downward trend.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-23
    Description: We examine concurrent upper tropospheric measurements of CN (diameter greater than 4 nm). NO, and NO(Y) during the SONEX Experiment over the North Atlantic (Oct.-Nov., 1997). Elevated CN and NO(Y) concentrations observed in the upper troposphere are attributed largely to enhancements in convective outflows. We estimate that less than 7% of observed high-CN plumes (greater than 10000 /cc) may be attributed to aircraft emissions. Dilution of high-CN convective and aircraft plumes appears to be much more rapid than losses of NO(X) and CN by oxidation and coagulation, respectively, and accounts for much of observed CN concentrations. When taking into account of different time scales against dilution for observable aircraft and convective high-CN plumes (estimated to be 1:4), the contribution by aircraft emissions to CN concentrations is significant, about 20% of the convective source. We find no evidence that particle formation in convective plumes is limited by OH oxidation of SO2.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-23
    Description: XRS is the microcalorimeter X-ray detector aboard the US-Japanese ASTRO-E observatory, which is scheduled to be launched in early 2000. XRS is a high resolution spectrometer- with less than 9 eV resolution at 3 keV and better than 14 eV resolution over its bandpass ranging from about 0.3 keV to 15 keV. Here we present the results of our first calibration of the XRS instrument. We describe the methods used to extract detailed information about the detection efficiency and spectral redistribution of the instrument. We also present comparisons of simulations and real data to test our detector models.
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-23
    Description: We describe the signal processing system of the Astro-E XRS Instrument. The Calorimeter Analog Processor (CAP) provides bias and power for the detectors and amplifies the detector signals by a factor of 20,000. The Calorimeter Digital Processor (CDP) performs the digital processing of the calorimeter signals, detecting X-ray pulses and analyzing them by optimal filtering. We describe the operation of pulse detection, pulse height analysis, and risetime determination. We also discuss performance, including the three event grades (hi-res, mid-res, and low-res), anticoincidence detection, counting rate dependence, and noise rejection.
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-23
    Description: This study examines a unique data set returned by IMP8 and Geotail on January 29, 1995 during a substorm which resulted in the ejection of a plasmoid. The two spacecraft (s/c) were situated in the north lobe of the tail and both observed a traveling compression region (TCR). From single s/c observations only the length of the plasmoid in X and an estimate of its height in Z can be determined. However, we show that dual s/c measurements of TCRs can be used to model all three dimensions of the underlying plasmoid and to estimate of its rate of expansion or contraction. For this event plasmoid dimensions of Delta(X) approximates 18, Delta(Y) approximates 30, and Delta(Z) approximates 10 R(sub e) are inferred from the IMP8 and Geotail lobe magnetic field measurements. The earthward end of the plasmoid was inferred to be near the mean location of the near-earth neutral line, X approximates -26 R(sub e). Its center was underneath IMP 8 at X approximates -34 R(sub e) and its tailward end appeared to be near X approximates -44 R(sub e). Furthermore, a factor of approximately 2 increase in the amplitude of the TCR occurred in the 1.5 min it took to move from IMP 8 to Geotail. Modeled using conservation of the magnetic flux, this increase in lobe compression implies that the underlying plasmoid was expanding at a rate of approximately 140 km/s. Such an expansion is comparable to recently reported V(sub y) speeds in "young" plasmoids in this region of the tail. Finally, the Geotail measurements indicate that a reconfiguration of the lobe magnetic field closely followed the ejection of the plasmoid which moved magnetic flux tubes into the wake behind the plasmoid where they would convect into the near-earth neutral line and reconnect.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-23
    Description: Prior to 1991, major warmings (defined by increasing zonal mean temperatures and zonal mean easterly winds from 60degN to the pole at 10 hPa) typically occurred approximately once every two Arctic winters; a major warming in mid-Dec. 1998 was the first since Feb. 1991. The Dec. 1998 warming was also the second earliest on record. The earliest, and the only other major warming on record before the end of Dec. was in early Dec 1987; prior to that, the earliest was in late Dec./early Jan. 1984-85. The 1984-85 and 1987 warmings resulted in the warmest and weakest lower stratospheric polar vortices in the 20 years before 1998-99. Fig. 1 compares temperatures and vortex strength in 1998-99 with those in the previous 20 years, using the US National Center for Environmental Prediction (NCEP) record; 1987-88 and 1984-85 are also highlighted. The Dec. 1998 warming had a more pronounced effect on mid-stratospheric temperatures than the Dec. 1987 warming (Fig. 1a), although smaller than that of warmings later in winter (e.g., 1984-85). 10-hPa temperatures fell well below average again in late Jan. 1999 and remained unusually low until an early final warming began in late Feb. 840 K PV gradients (Fig. 1c) set a record minimum in Jan. 1999, but were near average in Feb before the final warming. The effect of the Dec. 1998 warming on lower stratospheric temperatures was comparable to that of other major warmings; there was a brief period of record-high minimum 46-hPa temperatures in early Jan 1999 (Fig. 1b), and temperatures then fell to near average for a short period in mid-Feb. Lower stratospheric PV gradients were the weakest on record during the 1998-99 winter (Fig. 1d). The evolution of the vortex and minimum temperatures during 1998-99 was remarkably similar to that during 1987-88, the only previous year when a major warming was observed before the end of Dec.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-08-31
    Description: Twenty years of progress in 200 GHz receivers for spaceborne remote sensing has yielded a 180-220 GHz technology with maturing characteristics, as evident by increasing availability of relevant hardware, paralleled by further refinement in receiver performance requirements at this spectrum band. The 177-207 GHz superheterodyne receiver, for the Earth observing system (EOS) microwave limb sounder (MLS), effectively illustrates such technology developments. This MLS receiver simultaneously detects six different signals, located at sidebands below and above its 191.95 GHZ local-oscillator (LO). The paper describes the MLS 177-207 GHz receiver front-end (RFE), and provides measured data for its lower and upper sidebands. Sideband ratio data is provided as a function of IF frequency, at different LO power drive, and for variation in the ambient temperature.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-08-31
    Description: The Terrestrial Planet Finder (TPF) is a space-based infrared interferometer that will combine high sensitivity and spatial resolution to detect and characterize planetary systems within 15 pc of our sun. TPF is a key element in NASA's Origins Program and is currently under study in its Pre-Project Phase. We review some of the interferometer designs that have been considered for starlight nulling, with particular attention to the architecture and subsystems of the central beam-combiner.
    Keywords: Instrumentation and Photography
    Type: Optical and IR Interferometry from Ground and Space; 207-212
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-31
    Description: We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.
    Keywords: Instrumentation and Photography
    Type: 1999 Shuttle Small Payloads Symposium; 25-26; NASA/CP-1999-209476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-06-07
    Description: The first International Symposium on Strain Gauge Balances was sponsored under the auspices of the NASA Langley Research Center (LaRC), Hampton, Virginia during October 22-25, 1996. Held at the LaRC Reid Conference Center, the Symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. The program included a panel discussion, technical paper sessions, tours of local facilities, and vendor exhibits. Over 130 delegates were in attendance from 15 countries. A steering committee was formed to plan a second international balance symposium tentatively scheduled to be hosted in the United Kingdom in 1998 or 1999. The Balance Symposium was followed by the half-day Workshop on Angle of Attack and Model Deformation on the afternoon of October 25. The thrust of the Workshop was to assess the state of the art in angle of attack (AoA) and model deformation measurement techniques and to discuss future developments.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 2; 727-738; NASA/CP-1999-209101/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-06-07
    Description: This paper will cover the standard force balance calibration and data reduction techniques used at Langley Research Center. It will cover balance axes definition, balance type, calibration instrumentation, traceability of standards to NIST, calibration loading procedures, balance calibration mathematical model, calibration data reduction techniques, balance accuracy reporting, and calibration frequency.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 2; 565-572; NASA/CP-1999-209101/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The NASA Langley Research Center (LaRC) has been designing strain-gage balances for more than fifty years. These balances have been utilized in Langley's wind tunnels, which span over a wide variety of aerodynamic test regimes, as well as other ground based test facilities and in space flight applications. As a result, the designs encompass a large array of sizes, loads, and environmental effects. Currently Langley has more than 300 balances available for its researchers. This paper will focus on the design concepts for internal sting mounted strain-gage balances. However, these techniques can be applied to all force measurement design applications. Strain-gage balance concepts that have been developed over the years including material selection, sting, model interfaces, measuring, sections, fabrication, strain-gaging and calibration will be discussed.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 2; 525-541; NASA/CP-1999-209101/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-29
    Description: Two different methods for retrieving Upper Tropospheric Humidities (UTH) from the TOVS (TIROS Operational Vertical Sounder) instruments aboard NOAA polar orbiting satellites are presented and compared. The first one, from the Environmental Technology Laboratory, computed by J. Bates and D. Jackson (hereafter BJ method), estimates UTH from a simplified radiative transfer analysis of the upper tropospheric infrared water vapor channel at wavelength measured by HIRS (6.3 micrometer). The second one results from a neural network analysis of the TOVS (HIRS and MSU) data developed at, the Laboratoire de Meteorologie Dynamique (hereafter the 3I (Improved Initialization Inversion) method). Although the two methods give very similar retrievals in temperate regions (30-60 N and S), an absolute bias up to 16% appears in the convective zone of the tropics. The two datasets have also been compared with UTH retrievals from infrared radiance measurements in the 6.3 micrometer channel from the geostationary satellite METEOSAT (hereafter MET method). The METEOSAT retrievals are systematically drier than the TOVS-based results by an absolute bias between 5 and 25%. Despite the biases, the spatial and temporal correlations are very good. The purpose of this study is to explain the deviations observed between the three datasets. The sensitivity of UTH to air temperature and humidity profiles is analysed as are the clouds effects. Overall, the comparison of the three retrievals gives an assessment of the current uncertainties in water vapor amounts in the upper troposphere as determined from NOAA and METEOSAT satellites.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-29
    Description: Carbonados are porous polycrystalline (with crystal sizes up to 100 micrometer) diamonds. Carbonado is found only in alluvial deposits in Bahia, Brazil and in the Central African Republic (CAR). Alluvial deposit host is 1.5 Ga while the carbonados are between 2.6 - 3.8 Ga. The process of fusing the carbonado microcrystals together is not fully understood, partly due to fact that the origin of these carbonado, is not known. Several modes of origins are proposed for carbonado. First, a crustal origin. Carbonados have a light carbon and helium isotopic signature. They contain an enrichment of the rare-earth elements (REE). Carbonados have tightly trapped atmospheric noble gases and contain an evidence of high He content despite the carbonado expected depletion of He at mantle temperatures. Carbonados have high porosity incompatible with high pressure mantle conditions. Second, a mantle origin is proposed based on similar REE pattern to kimberlites. The presence of nitrogen platelet (by IR spectra) indicates high temperature origin and syngenetic inclusions of rutile, ilmenite, and magnetite indicates high pressure and high temperature conditions consistent with mantle origin as well. Third, it is proposed that carbonado diamonds are a result of early impacts into crustal rocks. This is indicated by the rare and controversial occurrence of high pressure diamond polymorph, londsdaleite, frequently found in diamonds from meteorite impact sites, and by observation of planar deformation features, possibly indicating shock events. Finally, it is suggested that carbonados have an extraterrestrial origin, as indicated by a long term annealing based on observation of a zero-phonon line, attributed to paired nitrogen atoms in association with a vacancy.
    Keywords: Geophysics
    Type: Lunar and Planetary Science Conference; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-29
    Description: Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-29
    Description: We have examined the sea level height tide records at seven tide gauge sites in the region of southcentral Alaska that were affected by the 1964 Prince William Sound earthquake to determine the history of crustal uplift subsequent to the earthquake. There is considerable variation in the behavior depending on the location of the site relative to the 1964 rupture. At Seward, on the eastern side of the Kenai Peninsula we find a slow uplift that is consistent with elastic strain accumulation while at Seldovia and Nikiski on the western side of the Kenai we find a persistent rapid uplift of about 1 cm/yr that most likely represents a long term transient response to the earthquake, but which cannot be sustained over the expected recurrence interval for a great earthquake of several hundred years. Further to the southwest, at Kodiak, we find evidence that the rate of uplift, which is still several mm/yr, has slowed significantly over the past three and a half decades. To the east of the Kenai Peninsula we find subsidence at Cordova and an uncertain behavior at Valdez. At both of these sites there is a mathematically significant time-dependence to the uplift behavior, but the data confirming this time dependence are not as convincing as at Kodiak. At Anchorage, to the north there is little evidence of vertical motion since the earthquake. We compare these long term tide gauge records to recent GPS observations. In general there is reasonable consistency except at Anchorage and Cordova where the GPS measurement indicate somewhat more rapid uplift and subsidence, respectively.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-29
    Description: The geographic limits of the South Atlantic Anomaly, as defined by radiation damage, are compared to contours of geomagnetic total field intensity, as defined by the 1995 IGRF, for the present and recent past. The most likely secular variation of the geomagnetic field is estimated and used to extrapolate the geomagnetic field to the year 2100. This indicates that radiation damage to spacecraft and humans in space will likely increase and to cover a much larger geographic area.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-08-29
    Description: We have adopted the transport scenarios used in Part 1 to examine the sensitivity of stratospheric aircraft perturbations to transport changes in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric residence time and reduced the magnitude of the negative perturbation response in total ozone. Increasing the stratospheric K(sub yy) increased the residence time and enhanced the global scale negative total ozone response. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and results in a significantly weaker perturbation response, relative to the base case, throughout the stratosphere. We found a relatively minor model perturbation response sensitivity to the magnitude of K(sub yy) in the tropical stratosphere, and only a very small sensitivity to the magnitude of the horizontal mixing across the tropopause and to the strength of the mesospheric gravity wave drag and diffusion. These transport simulations also revealed a generally strong correlation between passive NO(sub y) accumulation and age of air throughout the stratosphere, such that faster transport rates resulted in a younger mean age and a smaller NO(y) mass accumulation. However, specific variations in K(sub yy) and mesospheric gravity wave strength exhibited very little NO(sub y)-age correlation in the lower stratosphere, similar to 3-D model simulations performed in the recent NASA "Models and Measurements" II analysis. The base model transport, which gives the most favorable overall comparison with inert tracer observations, simulated a global/annual mean total ozone response of -0.59%, with only a slightly larger response in the northern compared to the southern hemisphere. For transport scenarios which gave tracer simulations within some agreement with measurements, the annual/globally averaged total ozone response ranged from -0.45% to -0.70%. Our previous 1995 model exhibited overly fast transport rates, resulting in a global/annually averaged perturbation total ozone response of -0.25%, which is significantly weaker compared to the 1999 model. This illustrates how transport deficiencies can bias model simulations of stratospheric aircraft.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-29
    Description: According to the slip partitioning concept, the trench parallel component of relative plate motion in regions of oblique convergence is accommodated by strike-slip faulting in the overriding continental lithosphere. The pattern of postseismic surface deformation due to viscoelastic flow in the lower crust and asthenosphere following a major earthquake on such a fault is modified from that predicted from the conventual elastic layer over viscoelastic halfspace model by the presence of the subducting slab. The predicted effects, such as a partial suppression of the postseismic velocities by 1 cm/yr or more immediately following a moderate to great earthquake, are potentially detectable using contemporary geodetic techniques.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-29
    Description: The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither conformal nor equal-area, the Robinson Projection provides a reasonable compromise and retains useful detail at high latitudes.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-29
    Description: There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-29
    Description: The behavior of mesospheric odd nitrogen species during and following relativistic and diffuse auroral precipitation events is simulated, Below 75 km nitric oxide is enhanced in proportion to the ion pair production function associated with the electron precipitation and the length of the event. Nitrogen dioxide and nitric acid are also enhanced. At 65 km the percentage of odd nitrogen for N is 0.1%, HNO3 is 1.6%, NO2 is 15%, and NO is 83.3%. Between 75 and 85 km NO is depleted during particle events due to the faster destruction of NO by N relative to the production of NO by N reacting with O2. Recovery of NO depends on transport from the lower thermosphere, where NO is produced in abundant amounts during particle events.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-29
    Description: Long-lived tropospheric source gases, such as nitrous oxide, enter the stratosphere through the tropical tropopause, are transported throughout the stratosphere by the Brewer-Dobson circulation, and are photochemically destroyed in the upper stratosphere. These chemical constituents, or "tracers" can be used to track mixing and transport by the stratospheric winds. Much of our understanding about the stratospheric circulation is based on large scale gradients and other spatial features in tracer fields constructed from satellite measurements. The point of view presented in this paper is different, but complementary, in that transport is described in terms of tracer probability distribution functions (PDFs). The PDF is computed from the measurements, and is proportional to the area occupied by tracer values in a given range. The flavor of this paper is tutorial, and the ideas are illustrated with several examples of transport-related phenomena, annotated with remarks that summarize the main point or suggest new directions. One example shows how the multimodal shape of the PDF gives information about the different branches of the circulation. Another example shows how the statistics of fluctuations from the most probable tracer value give insight into mixing between different regions of the atmosphere. Also included is an analysis of the time-dependence of the PDF during the onset and decline of the winter circulation, and a study of how "bursts" in the circulation are reflected in transient periods of rapid evolution of the PDF. The dependence of the statistics on location and time are also shown to be important for practical problems related to statistical robustness and satellite sampling. The examples illustrate how physically-based statistical analysis can shed some light on aspects of stratospheric transport that may not be obvious or quantifiable with other types of analyses. An important motivation for the work presented here is the need for synthesis of the large and growing database of observations of the atmosphere and the vast quantities of output generated by atmospheric models.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-29
    Description: Magnetic remanence of crustal rocks can reside in three common rock-forming magnetic minerals: magnetite, pyrrhotite, and hematite. Thermoremanent magnetization (TRM) of magnetite and pyrrhotite is carried mostly by single domain (SD) grains. The TRM of hematite grains, however, is carried mostly by multidomain (NM) grains. This characteristic is illustrated by TRM acquisition curves for hematite of variable grainsizes. The transition between truly NM behavior and tendency towards SD behavior his been established between hematite grainsizes of 0. 1 and 0.05 mm. Coarse grainsize of lower crustal rocks and the large sensitivity of MD hematite grains to acquire TRM indicates that hematite could be a significant contributor to long-wavelength magnetic anomalies.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-29
    Description: We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are relatively small for the zonal winds.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-29
    Description: This paper reviews observations of stratospheric temperatures that have been made over a period of several decades. Those observed temperatures have been used to assess variations and trends in stratospheric temperatures. A wide range of observation datasets have been used, comprising measurements by radiosonde (1940s to the present), satellite (1979 - present), lidar (1979 - present) and rocketsonde (periods varying with location, but most terminating by about the mid-1990s). In addition, trends have also been assessed from meteorological analyses, based on radiosonde and/or satellite data, and products based on assimilating observations into a general circulation model. Radiosonde and satellite data indicate a cooling trend of the annual-mean lower stratosphere since about 1980. Over the period 1979-1994, the trend is 0.6K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend. In the northern hemisphere, the cooling trend is about 0.75K/decade in the lower stratosphere, with a reduction in the cooling in mid-stratosphere (near 35 km), and increased cooling in the upper stratosphere (approximately 2 K per decade at 50 km). Model simulations indicate that the depletion of lower stratospheric ozone is the dominant factor in the observed lower stratospheric cooling. In the middle and upper stratosphere both the well-mixed greenhouse gases (such as CO) and ozone changes contribute in an important manner to the cooling.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-29
    Description: This paper presents a detailed characterization of seasonal and interannual variability in tropical tropospheric column ozone (TCO). TCO time series are derived from 20 years (1979-1998) of total ozone mapping spectrometer (TOMS) data using the convective cloud differential (CCD) method. Our study identifies three regions in the tropics with distinctly different zonal characteristics related to seasonal and interannual variability. These three regions are the eastern Pacific, Atlantic, and western Pacific. Results show that in both the eastern and western Pacific seasonal-cycle variability of northern hemisphere (NH) TCO exhibits maximum amount during NH spring whereas largest amount in southern hemisphere (SH) TCO occurs during SH spring. In the Atlantic, maximum TCO in both hemispheres occurs in SH spring. These seasonal cycles are shown to be comparable to seasonal cycles present in ground-based ozonesonde measurements. Interannual variability in the Atlantic region indicates a quasi-biennial oscillation (QBO) signal that is out of phase with the QBO present in stratospheric column ozone (SCO). This is consistent with high pollution and high concentrations of mid-to-upper tropospheric O3-producing precursors in this region. The out of phase relation suggests a UV modulation of tropospheric photochemistry caused by the QBO in stratospheric O3. During El Nino events there is anomalously low TCO in the eastern Pacific and high values in the western Pacific, indicating the effects of convectively-driven transport of low-value boundary layer O3 (reducing TCO) and O3 precursors including H2O and OH. A simplified technique is proposed to derive high-resolution maps of TCO in the tropics even in the absence of tropopause-level clouds. This promising approach requires only total ozone gridded measurements and utilizes the small variability observed in TCO near the dateline. This technique has an advantage compared to the CCD method because the latter requires high-resolution footprint measurements of both reflectivity and total ozone in the presence of tropopause-level cloud tops.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-29
    Description: Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems has assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar systems: the double-edge and the multi-channel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only about 10-20% compared to nighttime performance, provided a proper solar filter is included in the instrument design.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-29
    Description: Tropospheric column ozone (TCO) and stratospheric column ozone (SCO) gridded data in the tropics for 1979-present are now available from NASA Goddard Space Flight Center via either direct ftp, world-NN,ide-NN,eb, or electronic mail. This note provides a brief overview of the method used to derive the data set including validation and adjustments.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-29
    Description: In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes that were within the observational estimates of Volk et al. [1997]. However, only scenarios with rather fast transport rates were comparable with the Volk et al. estimates of CFCl3 lifetimes. This is inconsistent with model-measurement comparisons of mean age in which the base model or slightly slower transport rates compared the most favorably with balloon SF6 data. For all comparisons shown, large transport changes away from the base case resulted in simulations that were outside the range of measurements, and in many cases, far outside this range.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-04-10
    Description: An intensive field campaign involving measurement of various aerosol physical, chemical, and radiative properties was conducted at Sde Boker in the Negev Desert of Israel, from 18 February to 15 March 1997. Nephelometer measurements gave average background scattering coefficient values of about 25 M/m at 550 nm wavelength, but strong dust events caused the value of this parameter to rise up to about 800 M/m Backscattering fractions did not depend on aerosol loading, and generally fell in the range of 0.1 to 0.25, comparable to values reported for marine and Arctic environments. Chemical analysis of the aerosol revealed that, in the coarse size range (2 - 10 micrometer equivalent aerodynamic diameter (EAD)), calcium (Ca) was by far the most abundant element followed by silicon (Si), both of which are indicators for mineral dust. In the fine size fraction (〈 2 micrometers EAD), sulfur (S) generally was the dominant element, except during high dust episodes when Ca and Si were again the most abundant. Furthermore, fine black carbon (BC) correlates with S, suggesting that they may have originated from the same sources or source regions. An indication of the short-term effect of aerosol loading on radiative forcing was provided by measurements of global and diffuse solar radiation, which showed that during high turbidity periods (strong dust events) almost all of the solar radiation reaching the area is scattered or absorbed.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-31
    Description: This presentation provides a brief overview of the scientific activities of the International GPS Service (IGS). This was an approved activity of the International Association of Geodesy (IAG) with official start of service on 1 Jan 1994. The mission of the IGS is "To provide a service to support geodetic and geophysical research activities, through GPS data and data products." The presentation explains the concept of the IGS working group, and pilot projects, and reviews the current working groups and pilot projects.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-23
    Description: Leaks in the hydrazine supply system of the Shuttle APU can result in hydrazine ignition and fire in the aft compartment of the Shuttle. Indication of the location of a leak could provide valuable information required for operational decisions. WSTF has developed a small, single use sensor for detection of hydrazine leaks. The sensor is composed of a thermistor bead coated with copper(II) oxide (CuO) dispersed in a clay or alumina binder. The CuO-coated thermistor is one of a pair of closely located thermistors, the other being a reference. On exposure to hydrazine the CuO reacts exothermically with the hydrazine and increases the temperature of the coated-thermistor by several degrees. The temperature rise is sensed by a resistive bridge circuit and an alarm registered by data acquisition software. Responses of this sensor to humidity changes, hydrazine concentration, binder characteristics, distance from a liquid leak, and ambient pressure levels as well as application of this sensor concept to other fluids are presented.
    Keywords: Instrumentation and Photography
    Type: JANNAF 28th Propellant Development and Characterization Subcommittee and 17th Safety and Environmental Protection Subcommitte Joint Meeting; Volume 1; 137-144; CPIA-Publ-687-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-08-23
    Description: We report results from a systematic study of breakdown limits for novel high-rate gaseous detectors: MICROMEGAS, CAT and GEM, together with more conventional devices such as thin-gap parallel-mesh chambers and high-rate wire chambers. It was found that for all these detectors, the maximum achievable pin, before breakdown appears, drops dramatically with incident flux, and is sometimes inversely proportional to it. Further, in the presence of alpha particles, typical of the breakgrounds in high-energy experiments, additional gain drops of 1-2 orders of magnitude were observed for many detectors. It was found that breakdowns at high rates occur through what we have termed an "accumulative" mechanism, which does not seem to have been previously reported in the literature. Results of these studies may help in choosing the optimum detector for given experimental conditions.
    Keywords: Instrumentation and Photography
    Type: Nuclear Instruments and Methods in Physics Research A (ISSN 0168-9002); Volume 422; 300-304
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-08-23
    Description: With a focused continuous-wave CO2 Doppler lidar at 9.1-microns wavelength, the superposition of backscatter from two approximately 14.12-micron-diameter silicone oil droplets in the lidar beam produced interference that resulted in a single backscatter pulse from the two droplets with a distinct periodic structure. This interference is caused by the phase difference in backscatter from the two droplets while they are traversing the lidar beam at different speeds, and thus the droplet separation is not constant. The complete cycle of interference, with periodicity 2(pi), gives excellent agreement between measurements and lidar theory.
    Keywords: Instrumentation and Photography
    Type: Applied Optics (ISSN 0003-6935); Volume 38; No. 15; 3387-3393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-07
    Description: This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 2; 595-606; NASA/CP-1999-209101/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: With over two dozen missions since the first in 1986, the Hitchhiker project has a reputation for providing quick-reaction, low-cost flight services for Shuttle Small Payloads Project (SSPP) customers. Despite the successes, several potential improvements in customer payload integration and test (I&T) deserve consideration. This paper presents suggestions to Hitchhiker customers on how to help make the I&T process run smoother. Included are: customer requirements and interface definition, pre-integration test and evaluation, configuration management, I&T overview and planning, problem mitigation, and organizational communication. In this era of limited flight opportunities and new ISO-based requirements, issues such as these have become more important than ever.
    Keywords: Instrumentation and Photography
    Type: 1999 Shuttle Small Payloads Symposium; 331-336; NASA/CP-1999-209476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Technical Applications Unlimited, through a contract with Kennedy Space Center, developed the an activity sensor, called the TAU- N100A, which includes a microprocessor-controlled module that detects a particular on a sensor surface and converts this information into digital data. Its original purpose for development was to detect the accumulation of potentially damaging dust and fibers on sensitive payload components.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1999; 78; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1999; 55; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: American Geophysical Union Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-08
    Description: Ground-based solar absorption spectra were measured from Fairbanks, Alaska (65 degrees North, 148 degrees West) and from Ny Alesund, Spitsbergen, (79 degrees North, 12 degrees East) from March to September 1997 by Fourier Transform Infra-Red (FTIR) spectrometers.
    Keywords: Geophysics
    Type: Journal of Geophysical Research (Atmospheres)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-08
    Description: We present an interferometer that provides a null at the star and a direct measurement of both visibility amplitude and phase of the planets.
    Keywords: Instrumentation and Photography
    Type: Working on the Fringe Conference; Dana Point, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-08
    Description: Remote sensing of chlorine monoxide (CIO) by the Microwave Limb Sounder (MLS) experiment aboard the Upper Atmosphere Research Satellite (UARS) has provided global measurements of variations in stratospheric free chlorine (for 1991 to 1997).
    Keywords: Geophysics
    Type: Journal of Geophysical Research
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: International Union of Geology and Geophysics (IOGG); Birmingham; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-08
    Description: There has been a question on whether it is possible to measure the surface wind speeds of tropical cyclones with a spaceborne Ku-band scatterometer.
    Keywords: Geophysics
    Type: Journal of Geophysical Research-Ocean
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: American Geophysical Union; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: IEEE, Frequency Control Symposium; Besancon; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: American Physical Society; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-08
    Description: We examine energetic particle transport at or near Corotating Interaction Regions (CIRs).
    Keywords: Geophysics
    Type: Journal of Geophysical Research
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Through a licensing agreement with NASA, Face International Corporation has successfully commercialized ferroelectric actuator/sensor technology developed at Langley Research Center. Face International manufactures both ferroelectric actuators and sensors under the trademark "Thunder" (Thin Layer Composite Unimorph Ferroelectric Driver and Sensor). As actuators the Thunder technology provides a high level of movement not seen before in piezoelectric devices. Crystal structures generate electricity when stressed and move when voltage is applied. As sensors, the technology can be used in such applications as microphones, non-destructive testing, and vibration sensing. Thunder technology is being researched as a noise reduction device for aircraft engines. The technology is durable enough to be used in harsh environments, making it applicable to many commercial applications.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1999; 83; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Optical Engineering for Sensing and Nanotechnology; Yokohama; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: International Union of Geodesy and Geophysics (IUGG) '99; Birmingham; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: International Symposium on GPS: Application To Earth Sciences and Interaction with Other Space Geodetic Techniques, 1999; Tsukubu, Ibaraki; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-08
    Description: Nulling interferometry, a proposed technique for dimming a star relative to its surroundings, has the potential to enable direct imaging of planets orbiting nearby stars.
    Keywords: Instrumentation and Photography
    Type: Science
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: American Geophysical Union; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-08
    Description: A method of systematically controlling the rotational state of a sample levitated in a high vacuum using the photon pressure is described. A zirconium sphere was levitated in the high-temperature electrostatic levitator and it was rotated by irradiating it with a narrow beam of a high power laser on a spot off the center of mass.
    Keywords: Instrumentation and Photography
    Type: Review of Scientific Instruments
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-08
    Description: In global geodetic solutions vertical rates of site motion are usually estimated relative to the geocenter (center of figure) of the solid earth. The velocity of the geocenter is estimated assuming that the plates are rigid, that the velocities of the plates equal those in NUVEL-1A (DeMets et al. 1990, 1994) and that the uplift, subsidence, and intraplate deformation due to glacial isostatic adjustment is negligible.
    Keywords: Geophysics
    Type: Journal of Geophysical Research
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: International Union of Geodesy and Geophysics (IUGG) 1999 Meeting; Birmingham; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-08
    Description: With aircraft-mounted in-situ and remote sensing instruments for dynamical, thermal, and chemical measurements, we studied two cases of tropopause folding.
    Keywords: Geophysics
    Type: Geophysical Research Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-08
    Description: A multi-channel heterodyne laser interferometer is proposed for the JPL Thermo-Opto-Mechanical Testbed, which requires the measurement of optical surface deformations at the sub-nanometer level.
    Keywords: Instrumentation and Photography
    Type: Optical Engineering for Sensing and Nanotechnology; Yokohama; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-08
    Description: The interferometer will operate in both a single spacecraft mode and a formation flying mode using two spacecraft. The primary goal is to validate interferometer and formation flying technology for future missions.
    Keywords: Instrumentation and Photography
    Type: Working on the Fringe Conference; Dana Point, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-08
    Description: If the dust content of nearby solar system is comparable to, or larger than, that of our own zodiacal disk, the thermal emission from exozodiacal disks will significantly outshine planetary companions to nearby stars.
    Keywords: Instrumentation and Photography
    Type: Thermal Emission Spectroscopy And Analysis of Dust, Disks and Regoliths; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: American Geophysical Union Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-08
    Description: Current passive-microwave rain-retrieval methods are largely based on databases built off-line using cloud models.
    Keywords: Geophysics
    Type: Journal of Geophysics Research - Atmospheres
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-08
    Description: Geodetic measurements using the Global Positioning System and other techniques show north-south shortening near Los Angeles to be fastest across the northern part of the metropolitan area, where an ESE-striking, 5- to 40-km-wide belt lying to the south of San Gabriel Mountains and to the north of downtown and West Los Angeles is shortening at 5 mm/yr.
    Keywords: Geophysics
    Type: Geology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-08
    Description: Data from terrestrial GPS receivers are being used in growing numbers of applications requiring precise tropospheric sensing. One emerging application is the calibration of water vapor measurements from spaceborne microwave radiometers.
    Keywords: Geophysics
    Type: International Union of Geodesy and Geophysics General Assembly; Birmingham; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-08
    Description: Trace gases measured by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Mar/Apr 1992(AT-1), Apr 1993(AT-2), and Nov 1994(AT-3) space-shuttle missions have been mapped into equivalent latitude/potential temperature (EqL/0) coordinates.
    Keywords: Geophysics
    Type: Journal of Geophysical Research
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-08
    Keywords: Geophysics
    Type: International Union of Geodesy & Geophysics; Birmingham; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...