ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (40)
  • nitrogen  (22)
  • Microbial biomass  (18)
  • Springer  (40)
  • 2005-2009
  • 1995-1999  (40)
  • 1975-1979
  • 1960-1964
  • 1945-1949
  • 1999  (40)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (40)
Collection
  • Articles  (40)
Keywords
Publisher
  • Springer  (40)
Years
  • 2005-2009
  • 1995-1999  (40)
  • 1975-1979
  • 1960-1964
  • 1945-1949
Year
  • 1
    ISSN: 1432-0789
    Keywords: Key words Grasslands ; Management ; Microbial biomass ; Bacteria ; Fungi ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  There is much interest in the development of agricultural land management strategies aimed at enhancing reliance on ecosystem self-regulation rather than on artificial inputs such as fertilisers and pesticides. This study tested the usefulness of measures of soil microbial biomass and fungal:bacterial biomass ratios as indicators of effective conversion from an intensive grassland system, reliant mainly on fertilisers for crop nutrition, to a low-input system reliant mainly on self-regulation through soil biological pathways of nutrient turnover. Analysis of soils from a wide range of meadow grassland sites in northern England, along a gradient of long-term management intensity, showed that fungal:bacterial biomass ratios (measured by phospholipid fatty acid analysis; PLFA) were consistently and significantly higher in the unfertilised than the fertilised grasslands. There was also some evidence that microbial biomass, measured by chloroform fumigation and total PLFA, was higher in the unfertilised than in the fertilised grasslands. It was also found that levels of inorganic nitrogen (N), in particular nitrate-N, were significantly higher in the fertilised than in the unfertilised grasslands. However, microbial activity, measured as basal respiration, did not differ between the sites. A field manipulation trial was conducted to determine whether the reinstatement of traditional management on an improved mesotrophic grassland, for 6 years, resulted in similar changes in the soil microbial community. It was found that neither the cessation of fertiliser applications nor changes in cutting and grazing management significantly affected soil microbial biomass or the fungal:bacterial biomass ratio. It is suggested that the lack of effects on the soil microbial community may be related to high residual fertility caused by retention of fertiliser N in the soil. On the basis of these results it is recommended that following the reinstatement of low-input management, the measurement of a significant increase in the soil fungal:bacterial biomass ratio, and perhaps total microbial biomass, may be an indicator of successful conversion to a grassland system reliant of self-regulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Key words Crop residues ; Biochemical quality ; Particle size ; Nitrogen cycling ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Mineralization of N from organic materials added to soil depends on the quality of the substrate as a carbon, energy and nutrient source for the saprophytic microflora. Quality reflects a combination of biochemical and physical attributes. We investigated how biochemical composition interacts with particle size to affect the soil microflora and N dynamics following incorporation of crop residues into soil. Four fresh shoot and root crop residues were cut into coarse and fine particle sizes, and incorporated into sandy-loam soil which was incubated under controlled environment conditions for 6 months. In the case of the highest biochemical quality material, potato shoot (C/N ratio of 10 : 1), particle size had no effect on microbial respiration or net N mineralization. For lower biochemical quality Brussels sprout shoot (C/N ratio of 15 : 1), reducing particle size caused microbial respiration to peak earlier and increased net mineralization of N during the early stages of decomposition, but reduced net N mineralization at later stages. However, for the lowest biochemical quality residues, rye grass roots (C/N ratio of 38 : 1) and straw (C/N ratio of 91 : 1) reducing particle size caused microbial respiration to peak later and increased net immobilization of N. For Brussels sprout shoot, reducing particle size decreased the C content and the C/N ratio of residue-derived light fraction organic matter (LFOM) 2 months following incorporation. However C and N content of LFOM derived from the other materials was not affected by particle size. For materials of all qualities, particle size had little effect on biomass N. We conclude that the impact of particle size on soil microbial activities, and the protection of senescent microbial tissues from microbial attack, is dependant on the biochemical quality of the substrate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 430-433 
    ISSN: 1432-0789
    Keywords: Key words Carbon ; Nitrogen ; Microbial biomass ; Mineralization ; Respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of acetate additions to northern hardwood forest soils on microbial biomass carbon (C) and nitrogen (N) content, soil inorganic N levels, respirable C and potential net N mineralization and nitrification were evaluated. The experiment was relevant to a potential watershed-scale calcium (Ca) addition that aims to replace Ca depleted by long-term exposure to acid rain. One option for this addition is to use calcium-magnesium (Mg) acetate, a compound that is inexpensive and much more readily soluble than the Ca carbonate that is generally used for large-scale liming. Field plots were treated with sodium (NA) acetate, Na bicarbonate or water (control) and were sampled (forest floor – Oe and Oa combined) 2, 10 and 58 days following application. It was expected that the addition of C would lead to an increase in biomass C and N and a decrease in inorganic N. Instead, we observed no effect on biomass C, a decline in biomass N and an increase in N availability. One possible explanation for our surprising results is that the C addition stimulated microbial activity but not growth. A second, and more likely, explanation for our results is that the C addition did stimulate microbial growth and activity, but there was no increase in microbial biomass due to predation of the new biomass by soil fauna. The results confirm the emerging realization that the effects of increases in the flow of C to soils, either by deliberate addition or from changes in atmospheric CO2, are more complex than would be expected from a simple C : N ratio analysis. Evaluations of large-scale manipulations of forest soils to ameliorate effects of atmospheric deposition or to dispose of wastes should consider microbial and faunal dynamics in considerable detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Key words Tree species ; Rhizosphere ; Microbial biomass ; Denitrification enzyme activity ; Autotrophic nitrifiers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Flushes of C and N from fumigation-extraction (FE-C and FE-N, respectively), substrate-induced respiration (SIR), denitrification enzyme activity (DEA) and numbers of NH4 + and NO2 – oxidizers were studied in the rhizospheres of Scots pine (Pinus sylvestris L.), Norway spruce [(Picea abies (L.) Karsten] and silver birch (Betula pendula Roth) seedlings growing in soil from a field afforestation site. The rhizosphere was defined as the soil adhering to the roots when they were carefully separated from the rest of the soil in the pots, termed as "planted bulk soil". Soil in unplanted pots was used as control soil. All seedlings had been grown from seed and had been infected by the natural mycorrhizas of soil. Overall, roots of all tree species tended to increase FE-C, FE-N, SIR and DEA compared to the unplanted soil, and the increase was higher in the rhizosphere than in the planted bulk soil. In the rhizospheres tree species did not differ in their effect on FE-C, FE-N and DEA, but SIR was lowest under spruce. In the planted bulk soils FE-C and SIR were lowest under spruce. The planted bulk soils differed probably because the roots of spruce did not extend as far in the pot as those of pine and birch. The numbers of both NH4 + and NO2 –oxidizers, determined by the most probable number method, were either unaffected or decreased by roots, with the exception of the spruce rhizosphere, where numbers of both were increased.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 156-161 
    ISSN: 1432-0789
    Keywords: Key words Soil cultivation ; Carbon loss ; Microbial biomass ; Enzyme activities ; Soil organic matter quality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  In arable soils in Schleswig-Holstein (Northwest Germany) nearly 30% of the total organic C (TOC) stored in former times in the soil has been mineralized in the last 20 years. Microbial biomass, enzyme activities and the soil organic matter (SOM) composition were investigated in order to elucidate if a low TOC level affects microbial parameters, SOM quality and crop yield. Microbial biomass C (Cmic) and enzyme activities decreased in soils with a low TOC level compared to soils with a typical TOC level. The decrease in the Cmic/TOC ratio suggested low-level, steady-state microbial activity. The SOM quality changed with respect to an enrichment of initial litter compounds in the top soil layers with a low TOC level. Recent management of the soils had not maintained a desirable level of humic compounds. However, we found no significant decrease in crop yield. We suggest that microbial biomass and dehydrogenase and alkaline phosphatase activities are not necessarily indicators of soil fertility in soils with a high fertilization level without forage production and manure application.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 253-258 
    ISSN: 1432-0789
    Keywords: Key words Grazing animals ; Enzyme activity ; Microbial biomass ; Pasture ; Soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The size and activity of the soil microbial biomass in grazed pastures was compared on the main grazing area and on stock camp areas where animals congregate. Two sites were on hill country and three on gently sloping border-dyke irrigated land. Due to the transfer of nutrients and organic matter to the camp areas via dung and urine there was an accumulation of soil organic C, organic and inorganic P and S and soluble salts in the camp areas. Soil pH also tended to be higher in camp areas due to transfer of alkalinity by the grazing animals. Water soluble organic C, microbial biomass C and basal respiration were all higher in soils from camp areas but the proportion of organic C present as microbial C and the microbial respiratory quotient were unaffected. Microbial activity as quantified by arginine ammonification rate and fluorescein diacetate (FDA) hydrolysis was higher in camp than non-camp soils but dehydrogenase activity remained unaffected. Activities of protease, histidase, urease, acid phosphatase and aryl-sulphatase were all higher in stock camp soils. The activities of both histidase and aryl-sulphatase were also higher when expressed per unit of microbial biomass C, indicating that the increased activity was the result of increased enzyme production by the microbial community. Prolonged regular applications of dairy shed effluent (diluted dung and urine from cattle) to a field had a similar effect to stock camping in increasing soil organic matter content, nutrient accumulation and soil biological activity. It was concluded that the stock camping activity of grazing animals results in an increase in both the fertility and biological activity in soils from camp areas at the expense of these properties on the main grazing areas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 259-266 
    ISSN: 1432-0789
    Keywords: Key words Aggregate stability ; Microbial biomass ; Microbial activity ; Soil organic matter ; Microbial quotient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (〉60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0789
    Keywords: Key words Soil fauna ; Microbial biomass ; Microbial respiration ; C ; N and P mineralisation ; Mixed species stands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  We examined how soil organisms and C, N and P mineralisation are affected by admixing deciduous tree species, silver birch (Betula pendula) and woollen birch (B. pubescens), in managed Norway spruce (Picea abies) stands. Pure spruce and mixed spruce–birch stands were examined at four sites in southern and central Sweden. Soil macroarthropods and enchytraeids were sampled in litter and soil. In the uppermost 5 cm of soil humus we determined microbial biomass and microbial respiration; we estimated the rate of C, N and P mineralisation under laboratory conditions. The densities of Coleoptera, Diptera and Collembola were larger in mixed stands than in spruce stands. Soil fauna composition differed between mixed and spruce stands (as revealed by redundancy analysis). Staphyliniidae, Elateridae, Cecidiomyidae larvae and Onychiuridae were the families that increased most strongly in mixed stands. There were no differences in microbial biomass and microbial respiration, nor in the C, N and P mineralisation rates, between mixed and spruce stands. However, within mixed stands microbial biomass, microbial activity and C mineralisation were approximately 15% higher under birch trees than under spruce trees. We propose that the presence of birch leaf litter was likely to be the most important factor causing differences in soil fauna composition. Birch may also influence the quality and the decomposition rate of humus in mixed stands. However, when the proportion of birch trees is low, the short-term (decades) effect of this species on decomposition is likely to be small in mixed stands on acid forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 111-129 
    ISSN: 1432-0789
    Keywords: Key words Fatty acid profile ; Phospholipids ; Lipopolysaccharides ; Soil microbial communities ; Microbial biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  This review discusses the analysis of whole-community phospholipid fatty acid (PLFA) profiles and the composition of lipopolysaccharides in order to assess the microbial biomass and the community structure in soils. For the determination of soil microbial biomass a good correlation was obtained between the total amount of PLFAs and the microbial biomass measured with methods commonly used for determinations such as total adenylate content and substrate-induced respiration. Generally, after the application of multivariate statistical analyses, whole-community fatty acid profiles indicate which communities are similar or different. However, in most cases, the organisms accounting for similarity or difference cannot be determined, and therefore artefacts could not be excluded. The fatty acids used to determine the biomass vary from those which determine the community structure. Specific attention has to be paid when choosing extraction methods in order to avoid the liberation of fatty acids from non-living organic material and deposits, and to exclude the non-target selection of lipids from living organisms, as well. By excluding the fatty acids which were presumed to be common and widespread prior to multivariate statistical analysis, estimates were improved considerably. Results from principal component analysis showed that determining the levels of fatty acids present in both low and high concentrations is essential in order to correctly identify microorganisms and accurately classify them into taxonomically defined groups. The PLFA technique has been used to elucidate different strategies employed by microorganisms to adapt to changed environmental conditions under wide ranges of soil types, management practices, climatic origins and different perturbations. It has been proposed that the classification of PLFAs into a number of chemically different subgroups should simplify the evaluating procedure and improve the assessment of soil microbial communities, since then only the subgroups assumed to be involved in key processes would be investigated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 29 (1999), S. 55-61 
    ISSN: 1432-0789
    Keywords: Key words Leaf mulching ; Turfgrass ; Soil quality ; Microbial biomass ; Soil enzyme
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The influence of tree leaf amendment and N fertilization on soil quality in turfgrass environments was evaluated. Our objective was to assess changes in soil quality after additions of leaf materials and N fertilization by monitoring soil chemical and physical parameters, microbial biomass and soil enzymes. Established perennial ryegrass (Lolium perenne) plots were amended annually with maple (Acer spp.) leaves at three different rates (0, 2240, and 4480 kg ha–1 year–1) and treated with three nitrogen rates (0, 63, and 126 kg N ha–1 year–1). Tree leaf mulching did not significantly affect water infiltration or bulk density. However, trends in the data suggest increased infiltration with increasing leaf application rate. Tree leaf mulching increased total soil C and N at 0–1.3 cm depth but not at 1.3–9.0 cm. Extracted microbial phospholipid, an indicator of microbial biomass size, ranged from 28 to 68 nmol phospholipid g–1 soil at the 1.3–9.0 cm depth. The activity of β-glucosidase estimated on samples from 0–1.3 cm and 1.3–9.0 cm depths, and dehydrogenase activity estimated on samples from 1.3–9.0 cm were significantly increased by leaf mulching and N fertilizer application. Changes in microbial community composition, as indicated by phospholipid fatty acid methyl ester analysis, appear to be due to seasonal variations and did not reflect changes due to N or leaf amendment treatments. There were no negative effects of tree leaf mulching into turfgrass and early data suggest this practice will improve soil chemical, physical, and biological structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 30 (1999), S. 239-244 
    ISSN: 1432-0789
    Keywords: Key words Forest soil activity ; Microbial biomass ; Temperature ; Moisture ; Dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Effects of increased soil temperature on soil microbial biomass and dehydrogenase activity were examined on organic (O) horizon material in a low-elevation spruce-fir ecosystem. Soil temperature was maintained at 5  °C above ambient during the growing season in the experimental plots, and soil temperature, moisture, microbial biomass, and dehydrogenase activity were measured during the experiment. An incubation study was also conducted under three temperature regimes, 5, 15, and 25  °C, and under four moisture regimes of 20, 120, 220, and 320% to further evaluate these environmental factors on dehydrogenase activity and microbial biomass. Soil moisture content and microbial biomass controls were significantly lower (30% and 2 μg g–1 soil, respectively) in the heated plots during the treatment period, suggesting that moisture content was important in controlling microbial biomass. In the incubation study, temperature appeared more important than moisture in controlling microbial biomass and dehydrogenase activity. Increasing temperature between 5  °C and 25  °C resulted in significant decreases in microbial biomass and dehydrogenase activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0789
    Keywords: Key words Soil organic matter ; Microbial biomass ; Soil enzymes ; Organic amendments ; Inorganic fertilizers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-0789
    Keywords: Key words Dairy shed effluent ; Enzymes ; Nitrogen fertilizer ; Microbial biomass ; Gross mineralization rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 – concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-0789
    Keywords: Key words Dehydrogenase ; Microbial biomass ; Soil respiration ; Urease ; Humid Subtropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Microbial populations, biomass, soil respiration and enzyme activities were determined in slightly acid organic soils of major mountainous humid subtropical terrestrial ecosystems, along a soil fertility gradient, in order to evaluate the influence of soil properties on microbial populations, activity and biomass and to understand the dynamics of the microbial biomass in degraded ecosystems and mature forest. Although the population of fungi was highest in the undisturbed forest (Sacred Grove), soil respiration was lowest in the 7-year-old regrowth and in natural grassland (approximately 373 μg g–1 h–1). Dehydrogenase and urease activities were high in "jhum" fallow, and among the forest stands they were highest in the 7-year-old regrowth. Microbial biomass C (MBC) depended mainly on the organic C status of the soil. The MBC values were generally higher in mature forest than in natural grassland, 1-year-old jhum fallow and the 4-year-old alder plantation. The MBC values obtained by the chloroform-fumigation-incubation technique (330–1656 μg g–1) did not vary significantly from those obtained by the chloroform-fumigation-extraction technique (408–1684 μg g–1), however, the values correlated positively (P〈0.001). The enzyme activities, soil respiration, bacterial and fungal populations and microbial biomass was greatly influenced by several soil properties, particularly the levels of nutrients. The soil nutrient status, microbial populations, soil respiration and dehydrogenase activity were greater in Sacred Grove, while urease activity was greater in grassland.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-0789
    Keywords: Key words Tussock grassland ; High country ; Microbial biomass ; Organic C and N turnover ; Hieracium invasion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  In New Zealand Hieracium is an opportunistic plant that invades high country sites more or less depleted of indigenous vegetation. To understand the invasive nature of this weed we assessed the changes in soil C, N and P, soil microbial biomass C, N and P contents, microbial C : N and C : P ratios, the metabolic quotient, and turnover of organic matter in soils beneath Hieracium and its adjacent herbfield resulting from the depletion of tussock vegetation. The amounts of soil organic C and total N were higher under Hieracium by 25 and 11%, respectively, compared to soil under herbfield. This change reflects an improvement in both the quantity and quality of organic matter input to mineral soil under Hieracium, with higher percentage organic C and a lower C : N ratio. The microbial biomass C, N and P contents were also higher under Hieracium. The amount of C respired during the 34-week incubation indicated differences in the nature of soil organic matter under Hieracium, the unvegetated "halo" zone surrounding Hieracium patches, and herbfield (depleted tussock grassland). Decomposition of organic matter in these zones showed that the Hieracium soil had the greatest rate of CO2 respired, and the halo soil had the lowest. We relate the enhanced organic C turnover to the invasive nature of Hieracium. Net N mineralization was significantly lower from the Hieracium soil (57 mg N g–1 soil N) than from herbfield and halo soils (74 and 71 mg N g–1 soil N, respectively), confirming that the nature of organic N in Hieracium soil is different from adjoining halo and herbfield soils. It seems plausible that specific compounds such as polyphenols and lignins released by Hieracium are not only responsible for increased organic N, but also control the form and amount of N released during organic matter transformations. We conclude that the key to the success of Hieracium in the N-deficient South Island high country of New Zealand lies in its ability to control and sequester N supply through modifying the soil organic matter cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-0789
    Keywords: Key words Long-term fertilization ; Microbial biomass ; Dehydrogenase activity ; Denitrification potential ; Denitrifying enzyme activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Using soils from field plots in four different arable crop experiments that have received combinations of manure, lime and inorganic N, P and K for up to 20 years, the effects of these fertilizers on soil chemical properties and estimates of soil microbial community size and activity were studied. The soil pH was increased or unaffected by the addition of organic manure plus inorganic fertilizers applied in conjunction with lime, but decreased in the absence of liming. The soil C and N contents were greater for all fertilized treatments compared to the control, yet in all cases the soil samples from fertilized plots had smaller C:N ratios than soil from the unfertilized plots. The soil concentrations of all the other inorganic nutrients measured were greater following fertilizer applications compared with the unfertilized plots, and this effect was most marked for P and K in soils from plots that had received the largest amounts of these nutrients as fertilizers. Both biomass C determined by chloroform fumigation and glucose-induced respiration tended to increase as a result of manure and inorganic fertilizer applications, although soils which received the largest additions of inorganic fertilizers in the absence of lime contained less biomass C than those to which lime had been added. Dehydrogenase activity was lower in soils that had received the largest amounts of fertilizers, and was further decreased in the absence of lime. This suggests that dehydrogenase activity was highly sensitive to the inhibitory effects associated with large fertilizer additions. Potential denitrification and anaerobic respiration determined in one soil were increased by fertilizer application but, as with both the microbial biomass and dehydrogenase activity, there were significant reductions in both N2O and CO2 production in soils which received the largest additions of inorganic fertilizers in the absence of lime. In contrast, the size of the denitrifying component of the soil microbial community, as indicated by denitrifying enzyme activity, was unaffected by the absence of lime at the largest rate of inorganic fertilizer applications. The results indicated differences in the composition or function of microbial communities in the soils in response to long-term organic and inorganic fertilization, especially when the soils were not limited.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-0789
    Keywords: Key words Cropping systems ; Microbial biomass ; Carbon mineralization ; Nitrogen mineralization ; Conceptual humus fractions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  In a cropping systems experiment in southeastern Norway, ecological (ECO), integrated (INT) and conventional (CON) forage (FORAGE) and arable (ARABLE) model farms were compared. After 5 experimental years, topsoil was sampled in spring from spring grain plots and incubated for 449 days at controlled temperature (15  °C) and moisture content (50% water-holding capacity). There were no detectable differences between model farms in terms of total soil C or N. For INT and CON, however, values of microbial biomass C and N, microbial quotient (Cmic/Corg), and C and N mineralization were, or tended to be, higher for FORAGE than for ARABLE. For the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. For INT and CON, the metabolic quotient (qCO2) was lower for FORAGE than for ARABLE. Again, for the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. We estimated the sizes of conceptual soil organic matter pools by fitting a decomposition model to biomass and mineralization data. This resulted in a 48% larger estimate for CON-FORAGE than for CON-ARABLE of physically protected biomass C. For physically protected organic C the difference was 42%. Moreover, the stability of soil aggregates against artificial rainfall was substantially greater for CON-FORAGE than for CON-ARABLE. On this basis, we hypothesized that the lower qCO2 values in the FORAGE soils were mainly caused by a smaller proportion of active biomass due to enclosure of microorganisms within aggregates. Altogether, our results indicated a poorer inherent soil fertility in ARABLE than in FORAGE rotations, but the difference was small or absent in the ECO system, probably owing to the use of animal and green manures and reduced tillage intensity in the ECO-ARABLE rotation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 53 (1999), S. 209-218 
    ISSN: 1573-0867
    Keywords: cattle slurry ; fertilizer splitting ; nitrogen ; recovery ; residual nitrogen ; Zea mays L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The recovery of soil mineral nitrogen (N) by crops, and its subsequent utilisation for dry matter (DM) production may be increased when the application of N is postponed until after crop emergence. The significance of this strategy for silage maize was studied in nine field experiments on Dutch sandy soils from 1983 to 1988. In five experiments the effect of slurry applied before planting at a rate of circa 66 m3 ha-1, was compared to the effect of a similar rate of which half was applied before planting and half at the 4–6 leaf stage. In the 4-6 leaf stage slurry was either injected or banded. In four other experiments the effect of mineral fertilizer-N splitting was studied. In these experiments, 30 m3 ha-1 cattle slurry, applied before planting, was supplemented with mineral fertilizer-N at rates ranging from 40 to 160 kg ha-1, either fully applied before crop emergence or split. When split, 40 kg ha-1 of the mineral fertilizer-N rate was banded at the 4–6 leaf stage. According to balance sheet calculations, substantial losses of slurry N and mineral fertilizer-N occurred during the growing season. Losses were compensated for, however, by apparent mineralization, ranging from 0.34 to 0.77 kg N ha-1 day-1. Split applications of cattle slurry had a significant positive effect on the DM yield in two out of five experiments compared to the conventional non-split application, but only when the post-emergence slurry application was banded which is no longer in accordance with present legislation. Split applications of mineral fertilizer-N had a significant positive effect in one experiment where rainfall was excessive but not in the others. The results provide insufficient evidence to recommend farmers to split applications. Soil mineral N sampling at the 4–6 leaf stage should hence be considered a control on the appropriateness of early N applications after exceptional weather conditions rather than a routine observation on which the post-emergence N dressing is to be based in a deliberate splitting strategy. Our data suggest that the financial return of a 40 kg ha-1 supplementation with mineral fertilizer-N, was questionable when more than 175 kg N ha-1 were found in the upper 0.6 m soil layer at the 4–6 leaf stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 53 (1999), S. 259-267 
    ISSN: 1573-0867
    Keywords: farming systems ; nitrogen ; nitrogen budgets ; sustainability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Three approaches to nitrogen budgeting were developed and their ability to quantitatively describe nitrogen cycling in a fertilizer based and a grass–clover based beef system tested. Budgets ranged in complexity from the Economic Input:Output (EIO) budget, which accounted simply for purchases and sales of nitrogen over the farmgate, through the Biological Input:Output (BIO) budget, which included estimates of biological nitrogen fixation and attempted to partition losses into leaching and gaseous forms, to the Transfer:Recycle:Input:Output (TRIO) budget, which also accounted for key soil processes. Nitrogen unaccounted for in the fertilized system decreased with increasing budget complexity (285, 212 and 188 kg ha-1 yr-1 unaccounted for by the EIO, BIO and TRIO budgets, respectively). In the legume based grass–clover system, the EIO budget did not accurately describe total nitrogen inputs as it did not include 146 kg ha-1 yr-1 from symbiotic nitrogen fixation. In the grass–clover system, nitrogen unaccounted for was again greater using the BIO than the TRIO budget (103 and 79 kg ha-1 yr-1, respectively). In conclusion, the most complex budgeting approach (TRIO) was able to account for the fate of a greater proportion of nitrogen inputs than the simpler approaches. However, the perceived success of the different approaches was strongly dependent on the precise objective.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 55 (1999), S. 1-6 
    ISSN: 1573-0867
    Keywords: chlorophyll meter ; irrigation ; LAI ; nitrogen ; Spring Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A Spring Wheat crop was grown using three irrigation levels and nitrogen rate applications to evaluate chlorophyll meter measurements as a possible nitrogen nutrition index for modelling. These measurements yielded the most reliable indications at Zadoks GS45. The lower limit indicating severe nitrogen deficiency in the leaves was approximately 35 SPAD units while the upper limit of 45 SPAD units, indicated an excess consumption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 55 (1999), S. 89-94 
    ISSN: 1573-0867
    Keywords: algae ; flooded soils ; N cycling ; nitrogen ; 15N ; rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Algal N labelled with 15N added to a flooded soil in laboratory columns without plants was studied to determine the changes over time in the fate of N assimilated by algae and to study how its fate is affected by (a) exclusion of light simulating complete closure of the rice canopy, and (b) addition of fertilizer-NH4 *. In the light but with no added fertilizer-N there was little net mineralization of the added algal N during the first 4 weeks, but after 8 weeks 42% had been mineralized, of which 95% was denitrified. Exclusion of light caused net mineralization to proceed more rapidly in the first 4 weeks due to the death of algal cells and lowered reassimilation. After 8 weeks 51% had been mineralized, of which 54% was denitrified, 16% volatilized and 30% was present as KCl exchangeable NH4 +-N. Application of fertilizer-NH4 + apparently caused mineralization of 25% of the algal N within one week but the results were probably affected by pool substitution in which labelled N mineralized to NH4 +-N was diluted with fertilizer – NH+ 4 and then immobilized leaving more labelled NH4–N in the mineral pool. After 8 weeks, 42% of algal N had been mineralized, of which 69% was estimated to have been denitrified, 19% lost through NH3 volatilization and 12% remained as extracted NH4 ++NO- 3. Uptake of N by a rice crop would reduce the gaseous losses. Algal N was mineralized quickly enough to be available during the growing season of a rice crop and, depending on field conditions, algae may have a role in assimilating N and protecting it from loss as well as being a major driving force for NH3 volatilization through diurnal increases in pH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Potato research 42 (1999), S. 559-568 
    ISSN: 1871-4528
    Keywords: plastic mulch ; transplanting ; nitrogen ; planting depth ; seed tuber weight ; physiological age ; radiation conversion efficiency ; harvest index
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In many seed potato producing areas, micro- and minitubers are too small for direct planting as seed tubers in the field. Such use of these propagules can, however, be feasible if the crop's growth and development can be advanced. Increasing light interception, harvest index and yield of useable progeny tubers has been proved possible with plastic mulch and pre-planting of small tubers in a greenhouse. High amounts of nitrogen (up to 180 kg ha−1) or deep planting (up to 9 cm) were less effective. Using older or pre-sprouted micro- or minitubers may be beneficial, because this might increase the number of sprouts per mother tuber (and thus stems per plant) or advance the growth of sprouts or stems. However, this would require even more careful management, due to the weakness of these sprouts and stems. Micro- and minitubers should be as large as feasible when used for direct planting in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 105 (1999), S. 61-76 
    ISSN: 1573-8469
    Keywords: core sampling ; foliar nutrient concentrations ; minirhizotrons ; nitrogen ; phosphorus ; potassium ; Rhizolab
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Potato-cyst nematodes (Globodera pallida) cause severe yield losses in potato. Plants infected with potato-cyst nematodes generally have reduced concentrations of nitrogen, phosphorus and potassium in the foliage. This study investigated whether reduced growth of nematode-infected potato is caused by nutrient limitation. Experiments in the field and in containers showed that phosphorus concentration correlated best with total crop biomass at early stages of growth. The role of phosphorus in nematode damage was further investigated in the field and in the Wageningen Rhizolab. The experimental field was infested with potato-cyst nematodes and two levels of nematode density were established by fumigation with a nematicide. Prior applications of calcium carbonate resulted in pHKCl levels of 4.8 and 6.1. Two levels of phosphorus fertiliser were applied: either 0 or 225 kg P ha−1. In the Wageningen Rhizolab, soil of both pH levels from the field was used after treatment with 1 MRad gamma irradiation to kill the nematodes. Subsequently, half of the soil was inoculated with cysts to give a nematode density of 30 viable juveniles per gram of soil. In the field, nine weeks after planting, the total crop biomass ranged from 107 g m−2 for the treatment with nematodes at pHKCl 6.1 without phosphorus fertiliser to 289 g m−2 for the fumigated treatment at pHKCl 4.8 with phosphorus fertiliser. The differences in total biomass for the various treatments were explained by differences in foliar phosphorus concentration. Nematodes induced or aggravated P deficiency and reduced total biomass. This was not the only damage mechanism as at high, non-limiting levels of foliar phosphorus concentration, nematodes still reduced total biomass. In the Wageningen Rhizolab, directly after planting, the number of roots visible against minirhizotrons was reduced by nematodes. However, the increase of root number in the nematode treatment continued longer than in the control, until root number was higher than that of the control. The compensary root growth of the nematode treatment was restricted to the top 30 cm and nematodes reduced rooting depth. High soil pH reduced growth, mainly by reducing the availability of phosphate. Both nematodes and high soil pH reduced nutrient uptake per unit root length. Our results lead us to suggest an interaction between nematodes and soil pH, with nematode damage being higher at pHKCl 6.1 than at pHKCl 4.8.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1573-5036
    Keywords: ectomycorrhizae ; Eucalyptus regnans ; forest burns ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study was conducted to compare the effects on the growth of Eucalyptus regnans seedlings of unheated soil and soil heated to different extents (as indicated by soil colour–bright red or black) in burnt logging coupes, and to separate the effects of heating of the soil on direct nutrient availability and on morphotypes and effectiveness of ectomycorrhizae. Burnt soils were collected from three logging coupes burnt 2, 14 and 25 months previously and unbumt soil from adjacent regrowth forests. Compared to unburnt soil, the early seedling growth was stimulated in black burnt soil from all coupes (burnt 2, 14 and 25 months previously). Seedling growth was generally poor in red burnt soil, especially in soil collected 2 months after burning. However, the concentration of extractable P was extremely high in red burnt soil, especially in soil collected 2 months after burning. In black burnt soil, extractable P was increased in soil 2 months after burning, but not in the soils collected 14 or 25 months after burning. However, both total P content and concentration in seedlings were increased in all collections of black burnt soil. Frequency of ectomycorrhizae was high in seedlings grown in all black burnt soils, but the mycorrhizal mantles were poorly developed in seedlings in black burnt soil collected 2 months after burning. Seedlings were also ectomycorrhizal in red burnt soil, except in soil collected 2 months after burning. Fine root inocula from seedlings grown in black burnt soils collected 14 and 25 months after burning significantly stimulated both seedling growth and P uptake compared with the uninoculated control, whereas the fine root inocula from the seedlings grown in all the other soils did not. These results suggest that, in black burnt soil, both direct nutritional changes and changes in the ectomycorrhizae may contribute to seedling growth promotion after regeneration burns. The generally poor seedling growth in red burnt soils is likely to have been due to N deficiency as the seedlings in these soils were yellow-green and the tissue concentrations of N were significantly lower than in other treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1573-5036
    Keywords: crop residues ; isotope dilution ; 15N ; nitrogen ; organic matter ; pool substitution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Experiments were carried out to compare the direct approach for estimating crop N uptake from 15N labelled organic inputs, to two indirect approaches, 15N isotope dilution and A value. In the first experiment soils received 25, 50, 75, or 100 mg N kg soil−1 in the form of Casuarina equisitifolia residues in addition to ammonium sulphate fertiliser, to give a total of 100 mg N kg soil−1 added. This was a cross labelling design, thus two matching sets of treatments, were set up, identical in all but the position of the 15N label. Maize (Zea mays L.) plants were grown in the soils amended with residues for 11 weeks and N derived from residues (Ndfr) estimated using the A-value or the direct approach. The A-value approach appeared to significantly overestimate %Ndfr compared to the direct method. In the second experiment contrasting residues were added to soil, fababean (Vicia faba L. var. minor), alfalfa (Medicago sativa L.), soyabean fixing, (Glycine max (L.) Merrill), soyabean non-fixing, barley (Hordeum vulgare L.) and maize. This was also cross-labelling design, labelled and unlabelled residues were used. Maize plants were grown in these soils for 11 weeks and %Ndfr in the maize plants estimated using 15 N isotope dilution and the direct approach. The 15 N isotope dilution approach also overestimated %Ndfr compared to the direct method in this experiment. Pool substitution appeared to be responsible for the discrepancy between the direct and indirect techniques. It was concluded that 15N isotope dilution and A-value approaches as used in these experiments (i.e where residues and 15N label are added simultaneously) were not appropriate techniques for estimating N derived from organic residues in soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1573-5036
    Keywords: nitrogen ; Prunus ; remobilisation ; storage ; uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two-year old nectarine trees (Prunus persica, Batsch, var. nectarina, cv. Starkredgold on GF305 rootstock) planted in pots each received five applications of 1.0 g 15N labelled urea either from mid May to mid July (early uptake) or from mid August to the beginning of October (late uptake). All trees were supplied with a corresponding amount of unlabelled urea when they did not receive the labelled N. In autumn, all abscised leaves were collected and during winter randomly selected trees were harvested and divided into main organs. The remaining trees were transplanted into similar pots filled with sand; they received no N fertiliser and were harvested in May to evaluate the remobilisation of N. Total N and 15N abundance were determined in each organ. Nectarine trees took up similar amounts of N in the 'early' and in the 'late' period; however, more labelled nitrogen was recovered in the perennial organs during the winter when trees received the labelled N in the 'late' than in the 'early' period. Some 73–80% of the N present in the dormant trees was stored in the roots, which contained almost twice the amount of labelled N taken up 'late' than that absorbed 'early'. Nitrogen for spring growth was remobilised predominantly from the roots and accounted for some 43–49% of the labelled N recovered in the tree during winter. Results suggest that the nitrogen taken up 'late' in the season is preferentially stored in roots and used by peach trees to sustain new growth the following spring.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 212 (1999), S. 207-217 
    ISSN: 1573-5036
    Keywords: legume ; nitrogen ; N2-fixation ; pea ; sulphur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A S-deficient soil was used in pot experiments to investigate the effects of S addition on growth and N2-fixation in pea (Pisum sativum L.). Addition of 100 mg S pot−1 increased seed yield by more than 2-fold. Numbers of pods formed were the most sensitive yield component affected by S deficiency. Sulphur addition also increased the concentration of N in leaves and stems, and the total content of N in the shoots. The amounts of N fixed by pea were determined at four growth stages from stem elongation to maturity, using the 15N dilution technique. Sulphur addition doubled the amount of N fixed at all growth stages. In contrast, leaf chlorophyll content and shoot dry weight were increased significantly by S addition only after the flowering and pod fill stage, respectively. Pea roots were found to have high concentrations of S, reaching approximately 10 mg g−1 dry weight and being 2.6–4.4 times the S concentration in the shoots under S-sufficient conditions. These results suggest that roots/nodules of pea have a high demand for S, and that N2-fixation is very sensitive to S deficiency. The effects of S deficiency on pea growth were likely to be caused by the shortage of N, due to decreased N2-fixation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1573-5036
    Keywords: fire ; nitrogen ; phosphorus ; soil nutrient heterogeneity ; tree effects ; tropical dry forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Individual trees are known to influence soil chemical properties, creating spatial patterns that vary with distance from the stem. The influence of trees on soil chemical properties is commonly viewed as the agronomic basis for low-input agroforestry and shifting cultivation practices, and as an important source of spatial heterogeneity in forest soils. Few studies, however, have examined the persistence of the effects of trees on soil after the pathways responsible for the effects are removed. Here, we present evidence from a Mexican dry forest indicating that stem-related patterns of soil nutrients do persist following slash-and-burn removal of trees and two years of cropping. Pre-disturbance concentrations of resin extractable phosphorus (P), bicarbonate extractable P, NaOH extractable P, total P, total nitrogen (N) and carbon (C), KCl extractable nitrate (NO3 -), and net N mineralization and nitrification rates were higher in stem than dripline soils under two canopy dominant species of large-stemmed trees with contrasting morphologies and phenologies (Caesalpinia eriostachys Benth. and Forchhammeria pallida Liebm.). These stem effects persisted through slash burning and a first growing season for labile inorganic and organic P, NaOH inorganic P, and plant-available P, and through a second growing season for labile organic P, NaOH organic P, and plant-available P. While stem effects for extractable NO3 -, net nitrification rates, total N and C disappeared after felling and slash burning, these stem effects returned after the first growing season. These results support the view that tree-influenced patterns of soil nutrients do persist after tree death, and that trees contribute to the long-term spatial heterogeneity of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 212 (1999), S. 173-181 
    ISSN: 1573-5036
    Keywords: nitrogen ; phosphatase activity ; phosphorus ; protease activity ; soil microbial biomass ; substrate-induced respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Estimating in situ N and P status of the soil microbiota is complicated because microbiological features reflect potentials rather than field conditions. Complementary microbiological assays were, therefore, combined to evaluate the N and P requirement of the microbiota in seven agricultural, grassland and forest topsoils of the Bornhöved Lake district as follows: (i) the sensitivity of the substrate-induced respiration (SIR) to supplemental addition of N and P was monitored during microbial growth and (ii) soil protease and phosphatase activities were analysed and related to soil mass and microbial biomass content. Nitrogen addition increased the maximal SIR rate in all except one soil indicating that the growth of organisms is restricted by this element when easily degradable C source is present. Supplemental N (and in some cases also P) retarded the respiratory response within the first 24 h which suggests microbial sensitivity and/or greater anabolic efficiency. With additional N the maximal SIR rate was most strongly enhanced in topsoils of the beech forest and the dystric alder forest. Thus, the microbial growth in these soils that were below litter horizons seems to be mostly restricted by N. Supplemental P positively affected respiratory response of soils under monoculture, wet grassland and dystric alder forest. In the dystric alder forest soil, high rates of alkaline and unbuffered phosphatase activity were observed when activity was related to either soil mass or microbial biomass content. The data of proteolytic and phospholytic enzymes are discussed with reference to nutrient deficiency and microbial strategy for N and P adsorption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1573-5036
    Keywords: effluent ; leaching ; 15N isotope ; nitrogen ; pasture ; uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The objective of this study was to compare the N leaching loss and pasture N uptake from autumn-applied dairy shed effluent and ammonium fertilizer (NH4Cl) labeled with 15N, using intact soil lysimeters (80 cm diameter, 120 cm depth). The soil used was a sandy loam, and the pasture was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). The DSE and NH4Cl were applied twice annually in autumn (May) and late spring (November), each at 200 kg N ha-1. The N applied in May 1996 was labeled with 15N. The lysimeters were either spray or flood irrigated during the summer. The autumn-applied DSE resulted in lower N leaching losses compared with NH4Cl. However, the N applied in the autumn had a higher potential for leaching than N applied in late spring. Between 4.5–8.1% of the 15N-labeled mineral N in the DSE and 15.1–18.8% of the 15N-labeled NH4Cl applied in the autumn were leached within a year of application. Of the annual N leaching losses in the DSE treatments (16.0–26.9 kg N ha-1), a fifth (20.3–22.9%) was from the mineral N fraction of the DSE applied in the autumn, with the remaining larger proportion from the organic fraction of the DSE, soil N and N applied in spring. In the NH4Cl treatments, more than half (53.8–64.8%) of the annual N leaching loss (55.9–57.6 kg N ha-1) was derived from the autumn-applied NH4Cl. DSE was as effective as NH4Cl in stimulating pasture production. Since only 4.4–4.5% of the annual herbage N uptake in the DSE treatment and 12.3–13.3% in the NH4Cl treatment were derived from the autumn-applied mineral N, large proportions of the annual herbage N uptake must have been derived from the N applied in spring, the organic N fraction in the DSE, soil N and N fixed by clover. The recoveries of 15N in the herbage were similar between the DSE and the NH4Cl treatments, but those in the leachate were over 50% less from the DSE than from the NH4Cl treatment. The lower leaching loss of 15N in the DSE treatment was attributed to the stimulated microbial activities and increased immobilization following the application of DSE.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1573-1618
    Keywords: CERES ; wheat ; soil moisture ; nitrogen ; variability ; precision agriculture ; spatial
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Crop growth modelling techniques were used to investigate the performance of a wheat crop over a range of weather conditions, nitrogen application rates and soil types. The data were used to predict long term benefits of using spatially variable fertilizer application strategies where fertilizer application rate was matched to the soil type, against a strategy of uniform fertilizer application. The model was also run with modified soil properties to determine the importance of soil moisture holding capacity in the variability of crop yield. It was found that the benefits of spatially variable nitrogen management when fertilizer was applied at the beginning of the season were modest on average. The range of results for different weather conditions was much greater than the average benefit. A large proportion of the variability of crop performance between soil types could be explained by differing soil moisture holding capacity. Devising techniques for managing this variability was concluded to be important for precision farming of cereals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1573-0867
    Keywords: acidification ; ANE ; ANR ; calcium ammonium nitrate ; cattle slurry ; dilution ; grassland ; nitric acid ; nitrogen ; residual effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Acidification of cattle slurry with nitric acid to pH 4.5 was studied on experimental dairy farms in the Netherlands as a measure to reduce ammonia losses. This paper presents the results of two field experiments, carried out to assess the utilization of nitrogen (N) from nitric acid treated cattle slurry following surface application to grassland. Three aspects were studied: (i) the utilization of N from nitric acid treated cattle slurry following a single surface application to grassland; (ii) the effects of multiple applications of nitric acid treated cattle slurry on N utilization, residual inorganic N in the soil and sward quality; and (iii) the residual effects of nitric acid treated slurry on DM and N yield. In these experiments undiluted acidified slurry (UAS) and diluted acidified slurry (DAS) were compared with calcium ammonium nitrate (CAN). Apparent N recoveries (ANR) and apparent N efficiencies (ANE) were calculated on the basis of inorganic N in applied fertilizer and slurries. Following single applications of UAS and CAN on the sward on the clay soil, the average ANR values of UAS and CAN were 0.74 and 0.75 kg kg-1, respectively. The average ANE values of UAS and CAN were 30.3 and 29.5 kg DM per kg N, respectively. Single applications of DAS and CAN on the sandy soil resulted in average ANR values of 0.65 and 0.84 kg kg-1 and average ANE values of 24.1 and 29.2 kg DM per kg N for DAS and CAN, respectively. On average, the direct ANR values after four successive applications of CAN, UAS or DAS were 0.82, 0.82 and 0.74 kg kg-1, respectively and the direct ANE values were 28.4, 27.8 and 27.0 kg DM per kg N. On the sandy soil, the amount of residual inorganic N in the soil after the 4th cut increased with increasing rates of inorganic N application, with a slightly higher amount on plots treated with acidified slurry than on plots fertilized with CAN. On the clay soil, the amount of residual inorganic N was not affected by N application rate nor N source. On average, the residual ANR values, in the unfertilized 5th and 6th cuts, of CAN, UAS or DAS were 0.08, 0.10 and 0.09 kg kg-1, respectively and the residual ANE values were 2.7, 3.3 and 3.0 kg DM per kg N. It was concluded that nitric acid treated cattle slurry is an effective N fertilizer on grassland and that the residual effect of nitric acid treated cattle slurry is only marginally higher than that of CAN. Repeated applications of nitric acid treated cattle slurry did not affect sward composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1573-0867
    Keywords: carbon balance ; daily irrigation and fertilisation ; minirhizotrons ; nitrogen ; Phalaris arundinacea ; roots
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Biomass and nitrogen in the roots, rhizomes, stem bases and litter of reed canarygrass (Phalaris arundinacea L.) were repeatedly estimated by soil coring, and root growth dynamics of this potential energy crop was studied for two years using minirhizotrons. Results are discussed in relation to above-ground biomass and nitrogen fertilisation. Five treatments were used: C0, unfertilised control; C1, fertilised with solid N fertiliser in spring; I1, irrigated daily, fertilised as in C1; IF1 , irrigated as I1 and fertilised daily through a drip-tube system; IF2, as in IF1 but with higher N fertiliser rates. Biomass of below-ground plant parts of reed canarygrass increased between the first and second years. Up to 50% of total plant biomass and nitrogen were recovered below-ground. The highest proportions were found in C0. The calculated annual input via root turnover ranged between 80 and 235 g m-2. In absolute terms, up to 1 kg and 10 g m-2 of biomass and nitrogen, respectively, were found in below-ground plant fractions. High inputs of stubble and accumulated below-ground biomass will occur when the ley is ploughed, which will result in a highly positive soil carbon balance for this crop in comparison with that of conventional crops such as cereals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 1573-0867
    Keywords: chickpea ; marginal soils ; nitrogen ; protein content ; Rhizobium ; yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field experiment was carried out for two consecutive seasons 1994/95 and 1995/96 at ElRwakeeb (a sandy clay loam) to study the effect of Rhizobium sp. (Cicer) inoculation and N fertilization on six chickpea cultivars (Baladi, Gabel marra, NEC 25–27, NEC 2010, ILC 1919, and Flip 85–108). Plants were either inoculated with three Rhizobium sp. (Cicer) strains (TAL 480, TAL 620 and TAL 1148) separately, or N fertilized (50 kg N ha-1). The results of the two seasons indicated the absence of infective strains for chickpea in the soil. Rhizobium inoculation or N fertilization significantly increased the total nodule number per plant, 100 seed weight, yield and protein content of seeds. The results indicated that the three Rhizobium strains are infective and effective in nitrogen fixation. Inoculation with Rhizobium strain TAL 1148 resulted in a significant increment in most of the parameters studied, compared to other strains and untreated control. Cultivar ILC 1919 was the best yielding cultivar, whereas, cultivar NEC 2010 contained the highest protein content, however cultivar Gabel marra showed the highest amount of protein due to inoculation or N fertilization, in the two seasons. Inoculation with Rhizobium strain TAL 1148 increased yield by 72 and 70%, whereas, 50 kg N ha-1 increased it by 70 and 69% in the first and second seasons, respectively. The amounts of protein accumulated (kg ha-1) due to N or Rhizobium inoculation were determined for all cultivars. The results obtained from the inoculation were comparable to those of 50 kg N ha-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 45 (1999), S. 215-244 
    ISSN: 1572-9680
    Keywords: biodiversity ; disturbance ; nitrogen ; phosphorus ; resilience ; resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nutrient and hydrologic cycles in harvested native forests in southern Australia are largely balanced. For example, we have little or no evidence of any decline in nutrient capital or availability in harvested forests. Short-term and small-scale reductions in evapotranspiration due to loss of leaf area after harvesting are adequately balanced at the landscape scale by large areas of regenerating or older-age forest. In contrast, agricultural systems on similar soils are a) dependent on large inputs of fertilisers to maintain growth and b) frequently subject to increasing salinity and waterlogging or other forms of degradation. The large-scale replacement of long-lived communities of perennial and often deep- rooting native species with annual crops or other communities of shallow-rooting species might be better managed within the framework of knowledge developed from studies of native plant communities. However, application of such a mimic concept to systems of low natural productivity is limited when agricultural systems require continued high productivity. Nonetheless, the mimic concept may help in developing sustainable management of agriculture on marginal lands, and contribute to the nutritional resilience of agroecosystems. Relevant characteristics for mimic agroecosystems in south western Australia include: high species diversity, diversity of rooting attributes, utilisation of different forms of nutrients (especially of N and P) in space and time, and the promotion of practices which increase soil organic matter content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 10 (1999), S. 43-50 
    ISSN: 1572-9729
    Keywords: biodegradation ; nitrogen ; nutrients ; phenanthrene ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phenanthrene mineralization rates were found to vary widely among four soils; differences in soil nutrient levels was one hypothesis to explain this variation. To test this hypothesis, phenanthrene mineralization rates were measured in these soils with, and without, added nitrogen and phosphorus. Mineralization rates either remained unchanged or were depressed by the addition of nitrogen and phosphorus. Phenanthrene degradation rates remained unchanged in the soil which had the highest indigenous levels of nitrogen and phosphorus and which showed the largest increase in phosphorus levels after nutrients were added. The soils in which degradation rates were depressed had lower initial phosphorus concentrations and showed much smaller or no measurable increase in phosphorus levels after nutrients were added to the soils. To understand the response of phenanthrene degradation rates to added nitrogen and phosphorus, it may be necessary to consider the bioavailability of added nutrients and nutrient induced changes in microbial metabolism and ecology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 45 (1999), S. 159-185 
    ISSN: 1572-9680
    Keywords: decomposition ; environmental monitoring ; fertiliser ; mineralisation ; nitrogen ; pesticides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil organisms play principal roles in several ecosystem functions, i.e. promoting plant productivity, enhancing water relations, regulating nutrient mineralisation, permitting decomposition, and acting as an environmental buffer. Agricultural soils would more closely resemble soils of natural ecosystems if management practices would reduce or eliminate cultivation, heavy machinery, and general biocides; incorporate perennial crops and organic material; and synchronise nutrient release and water availability with plant demand. In order to achieve these goals, research must be completed to develop methods for successful application of organic materials and associated micro-organisms, synchronisation of management practices with crop and soil biota phenology, and improve our knowledge of the mechanisms linking species to ecosystem processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 209 (1999), S. 233-243 
    ISSN: 1573-5036
    Keywords: bioassay ; carbon ; erosion ; forest soil ; nitrogen ; wildfire
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A ponderosa pine/Douglas-fir forest (Pinus ponderosa Dougl., Pseudotsuga menziesii (Mirb.) Franco; PP/DF) and a lodgepole pine/Engelmann spruce forest (Pinus contorta Loud., Picea engelmannii Parry ex Engelm.; LP/ES) located on the eastern slopes of the Cascade Mountains in Washington state, USA, were examined following severe wildfire to compare total soil carbon and nitrogen capitals with unburned (control) forests. One year after fire, the average C content (60 cm depth) of PP/DF and LP/ES soil was 30% (25 Mg ha-1) and 10% (7 Mg ha-1) lower than control soil. Average N content on the burned PP/DF and LP/ES plots was 46% (3.0 Mg ha-1) and 13% (0.4 Mg ha-1) lower than control soil. The reduction in C and N in the PP/DF soil was largely the result of lower nutrient capitals in the burned Bw horizons (12–60 cm depth) relative to control plots. It is unlikely that the 1994 fire substantially affected nutrient capitals in the Bw horizons; however, natural variability or past fire history could be responsible for the varied nutrient capitals observed in the subsurface soils. Surface erosion (sheet plus rill) removed between 15 and 18 Mg ha-1 of soil from the burned plots. Nutrient losses through surface erosion were 280 kg C ha-1 and 14 kg N ha-1 in the PP/DF, whereas LP/ES losses were 640 and 22 kg ha-1 for C and N, respectively. In both forests, surface erosion of C and N was ∼1% to 2% of the A-horizon capital of these elements in unburned soil. A bioassay (with lettuce as an indicator plant) was used to compare soils from low-, moderate- and high-severity burn areas relative to control soil. In both forests, low-severity fire increased lettuce yield by 70–100% of controls. With more severe fire, yield decreased in the LP/ES relative to the low-intensity burn soil; however, only in the high-severity treatment was yield reduced (14%) from the control. Moderate- and high-severity burn areas in the PP/DF were fertilized with ∼56 kg ha-1 of N four months prior to soil sampling. In these soils, yield was 70–80% greater than the control. These results suggest that short-term site productivity can be stimulated by low-severity fire, but unaffected or reduced by more severe fire in the types of forests studied. Post-fire fertilization with N could increase soil productivity where other environmental factors do not limit growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 212 (1999), S. 143-151 
    ISSN: 1573-5036
    Keywords: carrot ; green manure ; nitrogen ; organic production ; rooting depth ; root distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cover crops grown as green manure or for other purposes will affect nitrogen (N) distribution in the soil, and may thereby alter root growth of a succeeding crop. During two years, experiments were performed to study effects of nitrogen supply by green manure on root development of carrots (Daucus carota L). Total root intensity (roots cm−2 on minirhizotrons) was significantly affected by the green manures, and was highest in the control plots where no green manure had been grown. Spread of the root system into the interrow soil was also affected by green manure treatments, as the spread was reduced where spring topsoil Nmin was high. Although N supply and distribution in the soil profile differed strongly among the treatments, no effect was observed on the rooting depth of the carrot crops. Across all treatments the rooting front penetrated at a rate of 0.82 and 0.68 mm day−1 °C−1 beneath the crop rows and in the interrow soil, respectively. The minirhizotrons only allowed measurements down to 1 m, and the roots reached this depth before harvest. Extrapolating the linear relationship between temperature sum and rooting depth until harvest would lead to rooting depths of 1.59 and 1.18 m under the crop rows and in the interrow soil respectively. Soil analysis showed that the carrot crop was able to reduce Nmin to very low levels even in the 0.75 to 1.0 m soil layer, which is in accordance with the root measurements. Still, where well supplied, the carrots left up 90 kg N ha−1 in the soil at harvest. This seemed to be related to a limited N uptake capacity of the carrots rather than to insufficient root growth in the top metre of the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 216 (1999), S. 15-25 
    ISSN: 1573-5036
    Keywords: Soil organic matter ; Decomposition ; Carbon mineralisation ; Root activity ; Rhizosphere ; Microbial biomass ; Modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aim of this experiment was to study the effect of living roots on soil carbon metabolism at different decomposition stages during a long-term incubation. Plant material labelled with 14C and 15N was incubated in two contrasting soils under controlled laboratory conditions, over two years. Half the samples were cropped with wheat (Triticum aestivum) 11 times in succession. At earing time the wheat was harvested, the roots were extracted from the soil and a new crop was started. Thus the soils were continuously occupied by active root systems. The other half of the samples was maintained bare, without plants under the same conditions. Over the 2 years, pairs of cropped and bare soils were analysed at eight sampling occasions (total-, plant debris-, and microbial biomass-C and -14C). A five compartment (labile and recalcitrant plant residues, labile microbial metabolites, microbial biomass and stabilised humified compounds) decomposition model was fitted to the labelled and soil native organic matter data of the bare and cropped soils. Two different phases in the decomposition processes showed a different plant effect. (1) During the initial fast decomposition stage, labile 14C-material stimulated microbial activities and N immobilisation, increasing the 14C-microbial biomass. In the presence of living roots, competition between micro-organisms and plants for inorganic N weakly lowered the measured and predicted total-14C mineralisation and resulted in a lower plant productivity compared to subsequent growths. (2) In contrast, beyond 3–6 months, when the labile material was exhausted, during the slow decomposition stage, the presence of living roots stimulated the mineralisation of the recalcitrant plant residue-14C in the sandy soil and of the humified-14C in the clay soil. In the sandy soil, the presence of roots also substantially stimulated decomposition of old soil native humus compounds. During this slow decomposition stage, the measured and predicted plant induced decrease in total-14C and -C was essentially explained by the predicted decrease in humus-14C and -C. The 14C-microbial biomass (MB) partly decayed or became inactive in the bare soils, whereas in the rooted soils, the labelled MB turnover was accelerated: the MB-14C was replaced by unlabelled-C from C derived from living roots. At the end of experiment, the MB-C in the cropped soils was 2.5–3 times higher than in the bare soils. To sustain this biomass and activity, the model predicted a daily root derived C input (rhizodeposition), amounting to 5.4 and 3.2% of the plant biomass-C or estimated at 46 and 41% of the daily net assimilated C (shoot + root + rhizodeposition C) in the clay and sandy soil, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...