ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C03019, doi:10.1029/2007JC004153.
    Description: Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on the ability of empirical methods to remove the large natural variability of the ocean carbon system. A coupled carbon-climate model is used to evaluate these empirical methods. Both the ΔC* and multiple linear regression (MLR) techniques reproduce the predicted increase in dissolved inorganic carbon for the majority of the ocean and have similar average percent errors for decadal differences (24.1% and 25.5%, respectively). However, this study identifies several regions where these methods may introduce errors. Of particular note are mode and deep water formation regions, where changes in air-sea disequilibrium and structure in the MLR residuals introduce errors. These results have significant implications for decadal repeat hydrography programs, indicating the need for subannual sampling in certain regions of the oceans in order to better constrain the natural variability in the system and to robustly estimate the intrusion of anthropogenic CO2.
    Description: We would like to acknowledge funding from NSF (OCE02-23869), NCAR, the WHOI Ocean Climate Institute, a Linden Earth Systems Graduate Fellowship (MIT), and a National Defense Science and Engineering Graduate Fellowship. NCAR is sponsored by the National Science Foundation. R.W. is supported by the Office of Oceanic and Atmospheric Research at NOAA.
    Keywords: Carbon dioxide ; Ocean carbon sink ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4028, doi:10.1029/2009GB003519.
    Description: Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.
    Description: We also acknowledge the financial support of the National Aeronautics and Space Administration Land Cover and Land Use Change Program (NNX08AK75G).
    Keywords: Nitrogen cycle ; Carbon cycle ; ISAM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09V10, doi:10.1029/2008GC002043.
    Description: Patterns of overwash deposition observed within back-barrier sediment archives can indicate past changes in tropical cyclone activity; however, it is necessary to evaluate the significance of observed trends in the context of the full range of variability under modern climate conditions. Here we present a method for assessing the statistical significance of patterns observed within a sedimentary hurricane-overwash reconstruction. To alleviate restrictions associated with the limited number of historical hurricanes affecting a specific site, we apply a recently published technique for generating a large number of synthetic storms using a coupled ocean-atmosphere hurricane model set to simulate modern climatology. Thousands of overwash records are generated for a site using a random draw of these synthetic hurricanes, a prescribed threshold for overwash, and a specified temporal resolution based on sedimentation rates observed at a particular site. As a test case we apply this Monte Carlo technique to a hurricane-induced overwash reconstruction developed from Laguna Playa Grande (LPG), a coastal lagoon located on the island of Vieques, Puerto Rico in the northeastern Caribbean. Apparent overwash rates in the LPG overwash record are observed to be four times lower between 2500 and 1000 years B.P. when compared to apparent overwash rates during the last 300 years. However, probability distributions based on Monte Carlo simulations indicate that as much as 65% of this drop can be explained by a reduction in the temporal resolution for older sediments due to a decrease in sedimentation rates. Periods of no apparent overwash activity at LPG between 2500 and 3600 years B.P. and 500–1000 years B.P. are exceptionally long and are unlikely to occur (above 99% confidence) under the current climate conditions. In addition, breaks in activity are difficult to produce even when the hurricane model is forced to a constant El Niño state. Results from this study continue to support the interpretation that the western North Atlantic has exhibited significant changes in hurricane climatology over the last 5500 years.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, Risk Prediction Initiative, National Geographic Society, Coastal Ocean Institute at WHOI, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research.
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Climate change ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2026, doi:10.1029/2006GB002900.
    Description: We investigate the interannual variability in the flux of CO2 between the atmosphere and the Southern Ocean on the basis of hindcast simulations with a coupled physical-biogeochemical-ecological model with particular emphasis on the role of the Southern Annular Mode (SAM). The simulations are run under either pre-industrial or historical CO2 concentrations, permitting us to separately investigate natural, anthropogenic, and contemporary CO2 flux variability. We find large interannual variability (±0.19 PgC yr−1) in the contemporary air-sea CO2 flux from the Southern Ocean (〈35°S). Forty-three percent of the contemporary air-sea CO2 flux variance is coherent with SAM, mostly driven by variations in the flux of natural CO2, for which SAM explains 48%. Positive phases of the SAM are associated with anomalous outgassing of natural CO2 at a rate of 0.1 PgC yr−1 per standard deviation of the SAM. In contrast, we find an anomalous uptake of anthropogenic CO2 at a rate of 0.01 PgC yr−1 during positive phases of the SAM. This uptake of anthropogenic CO2 only slightly mitigates the outgassing of natural CO2, so that a positive SAM is associated with anomalous outgassing in contemporaneous times. The primary cause of the natural CO2 outgassing is anomalously high oceanic partial pressures of CO2 caused by elevated dissolved inorganic carbon (DIC) concentrations. These anomalies in DIC are primarily a result of the circulation changes associated with the southward shift and strengthening of the zonal winds during positive phases of the SAM. The secular, positive trend in the SAM has led to a reduction in the rate of increase of the uptake of CO2 by the Southern Ocean over the past 50 years.
    Description: This work was supported by NASA headquarters under the Earth System Science Fellowship Grant NNG05GP78H to N. S. L. and grants NAG5-12528 and NNG04GH53G to N. G. Both S. C. D. and I. D. L. were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G).
    Keywords: Southern Ocean ; Carbon cycle ; Southern Annular Mode
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02026, doi:10.1029/2007JG000470.
    Description: Permafrost is a defining characteristic of the Arctic environment. However, climate warming is thawing permafrost in many areas leading to failures in soil structure called thermokarst. An extensive survey of a 600 km2 area in and around the Toolik Lake Natural Research Area (TLNRA) revealed at least 34 thermokarst features, two thirds of which were new since ∼1980 when a high resolution aerial survey of the area was done. Most of these thermokarst features were associated with headwater streams or lakes. We have measured significantly increased sediment and nutrient loading from thermokarst features to streams in two well-studied locations near the TLNRA. One small thermokarst gully that formed in 2003 on the Toolik River in a 0.9 km2 subcatchment delivered more sediment to the river than is normally delivered in 18 years from 132 km2 in the adjacent upper Kuparuk River basin (a long-term monitoring reference site). Ammonium, nitrate, and phosphate concentrations downstream from a thermokarst feature on Imnavait Creek increased significantly compared to upstream reference concentrations and the increased concentrations persisted over the period of sampling (1999–2005). The downstream concentrations were similar to those we have used in a long-term experimental manipulation of the Kuparuk River and that have significantly altered the structure and function of that river. A subsampling of other thermokarst features from the extensive regional survey showed that concentrations of ammonium, nitrate, and phosphate were always higher downstream of the thermokarst features. Our previous research has shown that even minor increases in nutrient loading stimulate primary and secondary production. However, increased sediment loading could interfere with benthic communities and change the responses to increased nutrient delivery. Although the terrestrial area impacted by thermokarsts is limited, the aquatic habitat altered by these failures can be extensive. If warming in the Arctic foothills accelerates thermokarst formation, there may be substantial and wide-spread impacts on arctic stream ecosystems that are currently poorly understood.
    Description: The results presented in this report are based upon work supported by the U.S. National Science Foundation under grants to the Arctic Hyporheic project (OPP- 0327440) and the Arctic Long-Term Ecological Research Program (DEB- 9810222).
    Keywords: Arctic ; Climate change ; Streams ; Ecosystem dynamics ; Sediment ; Thermokarst ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 108, C12 (2003): 3384, doi:10.1029/2002JC001347.
    Description: The decade of the 1990s was the warmest decade of the last century, while the year 1998 was the warmest year ever observed by modern techniques, with 9 out of 12 months of the year being the warmest months. Satellite ice cover and surface temperature data, European Centre for Medium-Range Weather Forecasts (wind), and ocean hydrographic data are examined to gain insights into this warming phenomenon. Areas of ice-free water in both western and eastern regions of the Arctic are found to have followed a cyclical pattern with approximately decadal period but with a lag of about 3 years between the eastern and western regions. The pattern was interrupted by unusually large anomalies in 1993 and 1998 in the western region and in 1995 in the eastern region. The area of open water in 1998 was the largest ever observed in the western region and occurred concurrently with large surface temperature anomalies in the area and adjacent regions. This also occurred at a time when the atmospheric circulation changed from predominantly cyclonic in 1996 to anticyclonic in 1997 and 1998. Detailed hydrographic measurements over the same general area in April 1996 and April 1997 indicate a warming and significant freshening in the top layer of the ocean, suggesting increases in ice melt and/or river runoff. Continuous ocean temperature and salinity data from ocean buoys at depths of 8, 45, and 75 m confirm these results and show large interannual changes during the 1996–1998 period. Surface temperature data show a general warming in the region that is highly correlated with observed decline in summer sea ice, while hydrographic data suggest that in 1997 and 1998, the upper part of the ocean was unusually fresh and warm compared to available data between 1956 and 1996.
    Description: Deployments of the IOEB were supported by the Japanese Marine Science and Technology Center (JAMSTEC).
    Keywords: Arctic Sea ice ; Climate change ; Surface temperature ; Wind ; Buoy ; Hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): D22S09, doi:10.1029/2007JD008521.
    Description: We investigated the potential effects of elevated ozone (O3) along with climate variability, increasing CO2, and land use change on net primary productivity (NPP) and carbon storage in China's terrestrial ecosystems for the period 1961–2000 with a process-based Dynamic Land Ecosystem Model (DLEM) forced by the gridded data of historical tropospheric O3 and other environmental factors. The simulated results showed that elevated O3 could result in a mean 4.5% reduction in NPP and 0.9% reduction in total carbon storage nationwide from 1961 to 2000. The reduction of carbon storage varied from 0.1 Tg C to 312 Tg C (a decreased rate ranging from 0.2% to 6.9%) among plant functional types. The effects of tropospheric O3 on NPP were strongest in east-central China. Significant reductions in NPP occurred in northeastern and central China where a large proportion of cropland is distributed. The O3 effects on carbon fluxes and storage are dependent upon other environmental factors. Therefore direct and indirect effects of O3, as well as interactive effects with other environmental factors, should be taken into account in order to accurately assess the regional carbon budget in China. The results showed that the adverse influences of increasing O3 concentration across China on NPP could be an important disturbance factor on carbon storage in the near future, and the improvement of air quality in China could enhance the capability of China's terrestrial ecosystems to sequester more atmospheric CO2. Our estimation of O3 impacts on NPP and carbon storage in China, however, must be used with caution because of the limitation of historical tropospheric O3 data and other uncertainties associated with model parameters and field experiments.
    Description: This research is funded by NASA Interdisciplinary Science Program (NNG04GM39C).
    Keywords: Air pollution ; Carbon storage ; China ; Climate change ; Net primary productivity ; Tropospheric ozone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C11015, doi:10.1029/2010JC006152.
    Description: The concentration of inert gases and their isotopes in the deep ocean are useful as tracers of air-sea gas exchange during deepwater formation. ΔKr/Ar, ΔN2/Ar, and δ40Ar were measured in deep profiles of samples collected in the northwest Pacific, subtropical North Pacific and tropical Atlantic oceans. For the ocean below 2000 m, we determined a mean ΔKr/Ar composition of −0.96% ± 0.16%, a mean ΔN2/Ar of 1.29% ± 0.21% relative to equilibrium saturation, and for δ40Ar a value of 1.188‰ ± 0.055‰ relative to air. These data are used to constrain high-latitude ventilation processes in the framework of three-box and seven-box ocean models. For the three-box model tracer data, we constrain the appropriate surface area of the high-latitude region in both models to be 3.6% (+2.5%, −1.7%) of ocean surface area and the bubble air injection rate to be 22.7 (+8.8, −7.3) mol air m−2 yr−1. Results for the seven-box model were similar, with a high-latitude area of 3.3% (+2.2%, −1.3%). Our results provide geochemical support for suggestions that the effective area of high-latitude ventilation is much smaller than the region of elevated preformed nutrients and demonstrate that noble gases strongly constrain the ocean solubility pump. Reducing high-latitude surface area weakens the CO2 solubility pump in the box models and limits communication between the atmosphere and deep ocean. These tracers should be useful constraints on high-latitude ventilation and the strength of the solubility pump in more complex ocean general circulation models.
    Description: Funding was provided by NSF‐OCE‐0647979.
    Keywords: Noble gases ; Ventilation ; Carbon cycle ; Solubility pump ; Gas exchange
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): F03033, doi:10.1029/2009JF001486.
    Description: When modeling the large-scale (〉 km) evolution of coastline morphology, the influence of natural forces is not the only consideration; ongoing direct human manipulations can substantially drive geomorphic change. In this paper, we couple a human component to a numerical model of large-scale coastline evolution, incorporating beach “nourishment” (periodically placing sand on the beach, also called “beach replenishment” or “beach fill”). Beach nourishment is the most prevalent means humans employ to alter the natural shoreline system in our case study, the Carolina coastline. Beach nourishment can cause shorelines adjacent to those that are nourished to shift both seaward and landward. When we further consider how changes to storm behaviors could change wave climates, the magnitude of morphological change induced by beach nourishment can rival that expected from sea level rise and affect the coast as far as tens of kilometers away from the nourishment site. In some instances, nonlocal processes governing large-scale cuspate-cape coastline evolution may transmit the human morphological “signal” over surprisingly large (hundreds of kilometer) distances.
    Description: The National Science Foundation (DEB 0507987) and the Duke University Center on Global Change supported this work.
    Keywords: Coastline evolution ; Beach nourishment ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07032, doi:10.1029/2007JC004598.
    Description: This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCS soft ). We develop a new theory showing that under conditions of perfect equilibrium between atmosphere and ocean, atmospheric pCO2 can be written as a sum of exponential functions of OCS soft . The theory also demonstrates how the sensitivity of atmospheric pCO2 to changes in the soft-tissue pump depends on the preformed nutrient inventory and on surface buffer chemistry. We validate our theory against simulations of nutrient depletion in a suite of realistic general circulation models (GCMs). The decrease in atmospheric pCO2 following surface nutrient depletion depends on the oceanic circulation in the models. Increasing deep ocean ventilation by increasing vertical mixing or Southern Ocean winds increases the atmospheric pCO2 sensitivity to surface nutrient forcing. Conversely, stratifying the Southern Ocean decreases the atmospheric CO2 sensitivity to surface nutrient depletion. Surface CO2 disequilibrium due to the slow gas exchange with the atmosphere acts to make atmospheric pCO2 more sensitive to nutrient depletion in high-ventilation models and less sensitive to nutrient depletion in low-ventilation models. Our findings have potentially important implications for both past and future climates.
    Description: While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research.
    Keywords: Carbon cycle ; Preformed nutrient ; Nutrient depletion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB2002, doi:10.1029/2005GB002530.
    Description: Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
    Description: This research was financially supported by the National Aeronautics and Space Administration under grant NAG5- 12528. N. G. also acknowledges support by the National Science Foundation (OCE-0137274). Climate and Environmental Physics, Bern acknowledges support by the European Union through the Integrated Project CarboOcean and the Swiss National Science Foundation.
    Keywords: Anthropogenic CO2 ; Carbon cycle ; Inverse modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Format: application/x-tex
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3025, doi:10.1029/2007GB003082.
    Description: Interannually varying net carbon exchange fluxes from the TransCom 3 Level 2 Atmospheric Inversion Intercomparison Experiment are presented for the 1980 to 2005 time period. The fluxes represent the model mean, net carbon exchange for 11 land and 11 ocean regions after subtraction of fossil fuel CO2 emissions. Both aggregated regional totals and the individual regional estimates are accompanied by a model uncertainty and model spread. We find that interannual variability is larger on the land than the ocean, with total land exchange correlated to the timing of both El Niño/Southern Oscillation (ENSO) as well as the eruption of Mt. Pinatubo. The post-Pinatubo negative flux anomaly is evident across much of the tropical and northern extratropical land regions. In the oceans, the tropics tend to exhibit the greatest level of interannual variability, while on land, the interannual variability is slightly greater in the tropics and northern extratropics. The interannual variation in carbon flux estimates aggregated by land and ocean across latitudinal bands remains consistent across eight different CO2 observing networks. The interannual variation in carbon flux estimates for individual flux regions remains mostly consistent across the individual observing networks. At all scales, there is considerable consistency in the interannual variations among the 13 participating model groups. Finally, consistent with other studies using different techniques, we find a considerable positive net carbon flux anomaly in the tropical land during the period of the large ENSO in 1997/1998 which is evident in the Tropical Asia, Temperate Asia, Northern African, and Southern Africa land regions. Negative anomalies are estimated for the East Pacific Ocean and South Pacific Ocean regions. Earlier ENSO events of the 1980s are most evident in southern land positive flux anomalies.
    Keywords: Carbon cycle ; Atmospheric inversion ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...