ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology
  • 2010-2014
  • 1995-1999  (124)
  • 1985-1989
  • 1900-1904
  • 1996  (124)
  • 1
    Publication Date: 2011-08-24
    Description: The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.
    Keywords: Meteorology and Climatology
    Type: Science (ISSN 0036-8075); Volume 272; 5263; 846-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.
    Keywords: Meteorology and Climatology
    Type: Nature (ISSN 0028-0836); Volume 382; 6587; 127-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Progress, future plans and publications regarding the following objectives are presented: (1) Determine the vertical and horizontal spatial distribution of hydrometeors in precipitating clouds; (2) Measure the spatial distribution of liquid water and ice in the clouds; and (3) Measure and determine the limits of measurement of the polarization characteristics related to the shapes and orientations of hydrometeors in precipitating clouds.
    Keywords: Meteorology and Climatology
    Type: Science Results from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR): Progress Report; 78-83; NASA/CR-97-206707
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: Clouds and the Earth's Radiant Energy System (CERES) is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system. The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers. The CERES instruments will fly on several National Aeronautics and Space Administration Earth Observing System (EOS) satellites starting in 1998 and extending over at least 15 years. The CERES science investigations will provide data to extend the ERBE climate record of top-of-atmosphere shortwave (SW) and longwave (LW) radiative fluxes CERES will also combine simultaneous cloud property data derived using EOS narrowband imagers to provide a consistent set of cloud/radiation data, including SW and LW radiative fluxes at the surface and at several selected levels within the atmosphere. CERES data are expected to provide top-of-atmosphere radiative fluxes with a factor of 2 to 3 less error than the ERBE data Estimates of radiative fluxes at the surface and especially within the atmosphere will be a much greater challenge but should also show significant improvements over current capabilities.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society; Volume 77; No. 5; 853-868
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-23
    Description: The significant ambiguities inherent in the determination of a particular vertical rain intensity profile from a given time profile of radar echo powers measured by a downward-looking (spaceborne or airborne) radar at a single attenuating frequency are well documented. Indeed, one already knows that by appropriately varying the parameters of the reflectivity-rain rate (Z-R) and/or attenuation-rain rate (k- R) relationships one can produce several substantially different rain-rate profiles that would produce the same radar power profile. Imposing the additional constraint that the path-averaged rain rate be a given fixed number does reduce the ambiguities but falls far short of eliminating them. While formulas to generate all mutually ambiguous rain-rate profiles from a given profile of received radar reflectivities have already been derived, there remains to be produced a quantitative measure to assess how likely each of these profiles is, what the appropriate "average" profile should be, and what the "variance" of these multiple solutions is. To do this, one needs to spell out the stochastic constraints that can allow us to make sense of the words "average" and "variance" in a mathematically rigorous way. Such a quantitative approach would be particularly well suited for such systems as the planned precipitation radar of the Tropical Rainfall Measuring Mission (TRMM). Indeed, one would then be able to use the radar reflectivities measured by the TRMM radar to estimate the rain-rate profile that would most likely have produced the measurements, as well as the uncertainty in the estimated rain rates as a function of range. Such an optimal approach is described in this paper.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 2; 213-228
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-23
    Description: The quasi-2-day wave is known as a strong and transient perturbation in the middle and upper atmosphere that often occurs shortly after solstice. The excitation mechanisms of this transient wave have been discussed for years, but no clear answer has yet been attained. In this paper, propagating characteristics of the 2-day wave are studied based on 8-mon temperature measurements from the Microwave Limb Sounder onboard the Upper Atmosphere Research Satellite. The studies are focused on the wave events that happened in January 1993 and in July-August 1993. The observations suggest that winter planetary waves could be responsible for triggering the summer 2-day wave through long penetration into the summer stratosphere. A connection is evident in the evolution of the wave amplitude between the summer 2-day wave generation and winter wave penetration. The data also suggest that the enhancement of the wave amplitude is a manifestation of both a local unstable wave and a global normal-mode Rossby wave.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; Volume 53; No. 5; 728-738
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-07
    Description: Several atmospheric electricity studies were begun utilizing VHF lightning data obtained with the lightning detection and ranging system (LDAR) at the Kennedy Space Center (KSC). The LDAR system uses differences in the time of arrival of electromagnetic noise generated by the lightning process to seven antennas to calculate very accurate three dimensional locations of lightning. New software was developed to obtain the source location of multiple, simultaneous, and spatially separate lightning signatures. Three studies utilizing these data were begun this summer: (1) VHF observations of simultaneous lightning, (2) ground based VHF observations of transionospheric pulse pairs (TIPPs), and (3) properties of intra-cloud recoil streamers. The principal result of each of these studies are: (1) lightning commonly occurs in well separated (2-50 km) regions simultaneously, (2) large amplitude pairs of VHF pulses are commonly observed on the ground but had not been previously identified due to the large number of signals usually observed in the VHF noise of close lightning, and (3) the VHF Q-noise and pulse signatures associated with K-changes within intra-cloud lightning propagate at velocities of more than 10(exp 8) m/s. The interim results of these three studies are reviewed in this brief report.
    Keywords: Meteorology and Climatology
    Type: NASA/ASEE Summer Faculty Fellowship Program; 183-192; NASA-CR-202756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Cirrus cloud optical and structural properties were measured above southern Wisconsin in two time segments between 18:07 and 21:20 GMT on December 1, 1989 by the volume imaging lidar (VIL) and the High Spectral Resolution Lidar (HSRL) and the visible infrared spin scan radiometer (VISSR) atmospheric sounder (VAS) on GOES. A new technique was used to calculate the cirrus cloud visible aerosol backscatter cross sections for a single channel elastic backscatter lidar. Cirrus clouds were viewed simultaneously by the VIL and the HSRL. This allowed the HSRL aerosol backscatter cross sections to be directly compared to the VIL single channel backscattered signal. This first attempt resulted in an adequate calibration. The calibration was extended to all the cirrus clouds in the mesoscale volume imaged by the VIL.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Simultaneous imagery from the University of Wisconsin Volume Imaging Lidar (VIL) and meteorological satellites were used to quantify the spatial structure of cirrus clouds with 60 m resolution. This data was used to determine the spatial distributions of cloud base altitude, cloud top altitude, and mid-cloud altitude. Two dimensional auto-correlation functions describing the mean shape of cirrus clouds were computed. Because cirrus clouds seldom have distinct edges, these correlation functions are derived as a function of a threshold value which defines the cloud edge.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-08-31
    Description: One reason for investigating Lightning Detection And Ranging (LDAR) is to validate data from the Optical Transient Detector (OTD). A Time-Of-Arrival (TOA) procedure may be used with radio wave portions of lighting signatures. An antenna is in place at KSC.
    Keywords: Meteorology and Climatology
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-31
    Description: A new network of VLF receiving systems is currently being developed in the USA to support NASA's Tropical Rain Measuring Mission (TRMM). The new network will be deployed in the east coast of the US, including Puerto Rico, and will be operational in late 1995. The system should give affordable, near real-time, accurate lightning locating capabilities at long ranges and with extended coverage. It is based on the Arrival Time Difference (ATD) method of Lee (1986; 1990). The ATD technique is based on the estimation of the time of arrival of sferics detected over an 18 kHz bandwith. The ground system results will be compared and complemented with satellite optical measurements gathered with the already operational Optical Transient Detector (OTD) instrument and in due course with its successor the Lightning Imaging Sensor (LIS). Lightning observations are important to understand atmospheric electrification phenomena, discharge processes, associated phenomena on earth (e.g. whistlers, explosive Spread-F) and other planets. In addition, lightning is a conspicuous indicator of atmospheric activity whose potential is just beginning to be recognized and utilized. On more prosaic grounds, lightning observations are important for protection of life, property and services.
    Keywords: Meteorology and Climatology
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-23
    Description: This paper addresses the problem of finding a parametric form for the raindrop size distribution (DSD) that(1) is an appropriate model for tropical rainfall, and (2) involves statistically independent parameters. Such a parameterization is derived in this paper. One of the resulting three "canonical" parameters turns out to vary relatively little, thus making the parameterization particularly useful for remote sensing applications. In fact, a new set of r drop-size-distribution-based Z-R and k-R relations is obtained. Only slightly more complex than power laws, they are very good approximations to the exact radar relations one would obtain using Mie scattering. The coefficients of the new relations are directly related to the shape parameters of the particular DSD that one starts with. Perhaps most important, since the coefficients are independent of the rain rate itself, the relations are ideally suited for rain retrieval algorithms.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 1; 3-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-23
    Description: This paper describes a computationally efficient nearly optimal Bayesian algorithm to estimate rain (and drop size distribution) profiles, given a radar reflectivity profile at a single attenuating wavelength. In addition to estimating the averages of all the mutually ambiguous combinations of rain parameters that can produce the data observed, the approach also calculates the n-ns uncertainty in its estimates (this uncertainty thus quantifies "the amount of ambiguity" in the "solution"). The paper also describes a more general approach that can make estimates based on a radar reflectivity profile together with an approximate measurement of the path-integrated attenuation, or a radar reflectivity profile and a set of passive microwave brightness temperatures. This more general "combined" algorithm is currently being adapted for the Tropical Rainfall Measuring Mission.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 35; No. 2; 229-242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: NASA needed a way to make high-resolution measurements of the wind profile before launching Saturn vehicles. The standard smooth-surface weather balloons zigzagged or spiraled as they ascended due to air vortices that shed off the surface at various positions, which made accurate radar-tracking measurement impossible. A Marshall Space Flight Center engineer modified the surface of the balloons with conical dixie cups, which stabilized them. Now produced by Orbital Sciences Corporation, the Jimsphere is the standard device at all U.S. missile/launch vehicle ranges.
    Keywords: Meteorology and Climatology
    Type: Spinoff 1996; 80; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: Heterodyne interferometers have been commercially available for many years. In addition, many versions have been built at JPL for various projects. This activity is aimed at improving the accuracy of such interferometers from the 1-30 nanometer level to the picometer level for use in the proposes Stellar Interferometry Mission (SIM) as metrology gauges.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-08
    Description: The solar wind interacts with the Earth's magnetosphere, eventually dissipating energy into the ionosphere and atmosphere. As a terminator, the ionosphere responds to magnetic storms, which is very important in understanding the energy coupling process between the Sun and the Earth and in forecasting space weather changes.The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility. Based on these measurements, global ionospheric TEC maps are generated with time resolution of from 5 minutes to hours. Using these maps, we can analyze the global evolution of ionospheric storms on temporal and spatial scales, which have been dificult to study before. We find that for certain types of storms (such as TID-driven), it is possible to identify them near onset and issue warning signals during the early stages. Main attention has been paid on northern hemispheric winter storms. Their common features and physical mechanisms are being investigated.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-08
    Description: Model results indicate that understanding summer heat balance and freshwater balance in the polar oceans requires knowledge of how much goes into vertical and lateral sea ice melt. In addition to thickness, two of the key ice parameters that affect melt rate are ice concentration and floe size. Smaller ice floes and more open water enables more heat to go into lateral melt preferentially to vertical melt, thereby enhancing warming up the upper ocean and increasing stratification. Using ERS-1 SAR imagery along two areas, one in the Beaufort Sea and another in the Chukchi Sea, floe size distributions were obtained during the summer period in 1992. Comparisons will be made of floe distributions, together with meteorological and buoy measurements, to examine the differences between an ice sink region (Chukchi) and a multiyear ice region (Beaufort) in the summer melt process.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-06-28
    Description: This technical note provides the user's manual for the NIDAS-C system developed for the naval oceanographic office. NIDAS-C operates using numerous oceanographic data categories stored in an installed version of the Naval Environmental Operational Nowcast System (NEONS), a relational database management system (rdbms) which employs the ORACLE proprietary rdbms engine. Data management, configuration, and control functions for the supporting rdbms are performed externally. NIDAS-C stores and retrieves data to/from the rdbms but exercises no direct internal control over the rdbms or its configuration. Data is also ingested into the rdbms, for use by NIDAS-C, by external data acquisition processes. The data categories employed by NIDAS-C are as follows: Bathymetry - ocean depth at
    Keywords: Meteorology and Climatology
    Type: AD-A323051 , NASA-CR-205063 , NAS 1.26:205063 , CAST-TN-01-97
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-28
    Description: Determining moisture variability for all weather scenes is critical to understanding the earth's hydrologic cycle and global climate changes. Remote sensing from geostationary satellites provides the necessary temporal and spatial resolutions necessary for global change studies. Due to antenna size constraints imposed with the use of microwave radiometers, geostationary satellites have carried instruments passively measuring radiation at infrared wavelengths or shorter. The shortfall of using infrared instruments in moisture studies lies in its inability to sense terrestrial radiation through clouds. Microwave emissions, on the other hand, are mostly unaffected by cloudy atmospheres. Land surface emissivity at microwave frequencies exhibit both high temporal and spatial variability thus confining moisture retrievals at microwave frequencies to over marine atmospheres (a near uniform cold background). This study intercompares the total column integrated water content Precipitable Water, (PW) as derived from both the Special Sensor Microwave Imager (SSM/I) and the Geostationary Operational Environmental Satellite (GOES) VISSR Atmospheric Sounder (VAS) pathfinder data sets. PW is a bulk parameter often used to quantify moisture variability and is important to understanding the earth's hydrologic cycle and climate system. This research has been spawned in an effort to combine two different algorithms which together can lead to a more comprehensive quantification of global water vapor. The approach taken here is to intercompare two independent PW retrieval algorithms and to validate the resultant retrievals against an existing data set, namely the European Center for Medium range Weather Forecasts (ECMWF) model analysis data.
    Keywords: Meteorology and Climatology
    Type: NASA-TM-112508 , NAS 1.15:112508 , Eighth Conference on Satellite Meteorology and Oceanography; 68-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-06-28
    Description: The Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS) constitute the advanced microwave sounding system to be flown on the EOS-PM platform. Similar instruments (the AMSU-A corresponding to the AMSU and the AMSU-B corresponding to the MHS) are scheduled to become operational on the NOAA polar orbiting satellites beginning with NOAA-K. The unique characteristics of the AMSU-MHS instruments, as compared to the capabilities of their infrared and microwave predecessors, introduce new opportunities, and challenges, for operational retrievals of atmospheric structure. Not only will these new data improve present capabilities for the retrieval of atmospheric profiles of temperature and moisture, but they will provide the only opportunity for successfully retrieving atmospheric temperature and humidity profiles in the presence of modest amounts of cloud and precipitation. A complementary opportunity is presented by the potential of the AMSU-MHS to obtain information about the structure of clouds and precipitation. The data sets obtained will contribute to the current knowledge of global water and energy budgets, and provide critical information on the horizontal and vertical distribution of tropospheric water vapor, the spatial and temporal distribution of rain, and the relationship of cloud formation and dissipation to atmospheric dynamics and thermodynamics.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203714 , NAS 1.26:203714
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-06-28
    Description: In presenting an overview of the cirrus clouds comprehensively studied by ground based and airborne sensors from Coffeyville, Kansas, during the 5-6 December 1992 First ISCCP Regional Experiment (FIRE) intensive field observation (IFO) case study period, evidence is provided that volcanic aerosols from the June 1991 Pinatubo eruptions may have significantly influenced the formation and maintenance of the cirrus. Following the local appearance of a spur of stratospheric volcanic debris from the subtropics, a series of jet streaks subsequently conditioned the troposphere through tropopause foldings with sulfur based particles that became effective cloud forming nuclei in cirrus clouds. Aerosol and ozone measurements suggest a complicated history of stratospheric-tropospheric exchanges embedded with the upper level flow, and cirrus cloud formation was noted to occur locally at the boundaries of stratospheric aerosol enriched layers that became humidified through diffusion, precipitation, or advective processes. Apparent cirrus cloud alterations include abnormally high ice crystal concentrations (up to approximately 600 L(exp. 1)), complex radial ice crystal types, and relatively large haze particles in cirrus uncinus cell heads at temperatures between -40 and -50 degrees C. Implications for volcanic-cirrus cloud climate effects and unusual (nonvolcanic) aerosol jet stream cirrus cloud formation are discussed.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.
    Keywords: Meteorology and Climatology
    Type: Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: The scientific research conducted under this grant have been reported in a series of journal articles, dissertations, and conference proceedings. This report consists of a compilation of these publications in the following areas: development and operation of a High Spectral Resolution Lidar, cloud physics and cloud formation, mesoscale observations of cloud phenomena, ground-based and satellite cloud cover observations, impact of volcanic aerosols on cloud formation, visible and infrared radiative relationships as measured by satellites and lidar, and scattering cross sections.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-201403 , NAS 1.26:201403 , UW-144-AH14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: We study a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and will be required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and a bias correction of forecast anomalies. In brief, the distortion is determined by minimizing the objective function by varying the displacement and bias correction fields. In the present project we use a global or hemispheric domain, and spherical harmonics to represent these fields. In this project we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically we study the forecast errors of the 500 hPa geopotential height field for forecasts of the short and medium range. The forecasts are those of the Goddard Earth Observing System data assimilation system. Results presented show that the methodology works, that a large part of the total error may be explained by a distortion limited to triangular truncation at wavenumber 10, and that the remaining residual error contains mostly small spatial scales.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-202058 , NAS 1.26:202058
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: This study focused on the seasonal relationships and interactions of climate parameters such as the surface temperatures, net radiation, long wave flux, short wave flux, and clouds on a global basis. Five years of observations (December 1984 to November 1989) from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Program (ISCCP) were used to study both seasonal variations and interannual variations by use of a basic radiation budget equation. In addition, the study was extended to include an analysis of the cloud forcing due El-Nino's impact on the ERBE parameters.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-202157 , NAS 1.26:202157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: The purpose of the present study was to identify the specific cause of the turbulence that affected flights JAL 042 and JAL 046. This has been accomplished by expanding on the NTSB analysis to include a detailed examination of digital Flight Data Recorder (DFDR) information available from both JAL 042 and JAL 046 and the ANC rawinsonde.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203831 , NAS 1.26:203831
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: The global three-dimensional measurement of long- and short-lived species from Upper Atmospheric Research Satellite (UARS) provides a unique opportunity to validate chemistry and dynamics mechanisms in the middle atmosphere. During the past three months, we focused on expanding our study of data-model comparisons to whole time periods when Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument were operating.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203626 , NAS 1.26:203626
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-28
    Description: Global wind fields are produced by successive corrections that use measurements by the European Remote Sensing Satellite (ERS-1) scatterometer. The methodology is described. The wind fields at 10-meter height provided by the European Center for Medium-Range Weather Forecasting (ECMWF) are used to initialize the interpolation process. The interpolated wind field product ERSI is evaluated in terms of its improvement over the initial guess field (ECMWF) and the bin-averaged ERS-1 wind field (ERSB). Spatial and temporal differences between ERSI, ECMWF and ERSB are presented and discussed.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203425 , NAS 1.26:203425 , JPL-Publ-96-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The definition of equivalent neutral wind and the rationale for using it as the geophysical product of a spaceborne scatterometer are reviewed. The differences between equivalent neutral wind and actual wind, which are caused by atmospheric density stratification, are demonstrated with measurements at selected locations. A method of computing this parameter from ship and buoy measurements is described and some common fallacies in accounting for the effects of atmospheric stratification on wind shear are discussed. The computer code for the model to derive equivalent neutral wind is provided.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203424 , NAS 1.26:203424 , JPL-96-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Innovative designs of a space-based laser remote sensing 'wind machine' are presented. These designs seek compatibility with the traditionally conflicting constraints of high scientific value and low total mission cost. Mission cost is reduced by moving to smaller, lighter, more off-the-shelf instrument designs which can be accommodated on smaller launch vehicles.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-202582 , NAS 1.26:202582 , Faster, Cheaper, Smaller Space Science Instruments; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: The emergency response dose assessment system (ERDAS) is a protype software and hardware system configured to produce routine mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis for the Kennedy Space Center (KSC)/Cape Canaveral Air Station (CCAS) region. ERDAS provides emergency response guidance to operations at KSC/CCAS in the case of an accidental hazardous material release or an aborted vehicle launch. This report describes the evaluation of ERDAS including: evaluation of sea breeze predictions, comparison of launch plume location and concentration predictions, case study of a toxic release, evaluation of model sensitivity to varying input parameters, evaluation of the user interface, assessment of ERDA's operational capabilities, and a comparison of ERDAS models to the ocean breeze dry gultch diffusion model.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-201353 , NAS 1.26:201353 , ARS-96-039
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-06-28
    Description: A topic of current practical interest is the accurate characterization of the synoptic-scale atmospheric state from wind profiler and radiosonde network observations. We have examined several related and commonly applied objective analysis techniques for performing this characterization and considered their associated level of uncertainty both from a theoretical and a practical standpoint. A case study is presented where two wind profiler triangles with nearly identical centroids and no common vertices produced strikingly different results during a 43-h period. We conclude that the uncertainty in objectively analyzed quantities can easily be as large as the expected synoptic-scale signal. In order to quantify the statistical precision of the algorithms, we conducted a realistic observing system simulation experiment using output from a mesoscale model. A simple parameterization for estimating the uncertainty in horizontal gradient quantities in terms of known errors in the objectively analyzed wind components and temperature is developed from these results.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-200891 , NAS 1.26:200891
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-06-28
    Description: Continuous observations from December 1, 1993 through November 30, 1995 were made at the ACTS Propagation Terminal on the roof of the Sarkeys Energy Center at the University of Oklahoma in Norman, Oklahoma. Beacon and radiometer observations were combined to calibrate the beacon system for the estimation of total attenuation (attenuation relative to free space) and attenuation relative to clear sky (gaseous absorption component removed). Empirical cumulative distributions (edf's) were compiled for each month of observation and for each year. The annual edf's are displayed in the figures, the monthly and annual edf's are listed in the tables. The tables are organized by blocks and pages within a block. The blocks correspond to the headings in the edf files generated by the ACTS Preprocessing (actspp) software and contained in the fourth disk in the set of ACTS Propagation Experiment CD-ROMs generated by the University of Texas.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-97-113012 , NAS 1.26:113012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-06-28
    Description: This report details the research, development, utility, verification and transition on wet microburst forecasting and detection the Applied Meteorology Unit (AMU) did in support of ground and launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The unforecasted wind event on 16 August 1994 of 33.5 ms-1 (65 knots) at the Shuttle Landing Facility raised the issue of wet microburst detection and forecasting. The AMU researched and analyzed the downburst wind event and determined it was a wet microburst event. A program was developed for operational use on the Meteorological Interactive Data Display System (MIDDS) weather system to analyze, compute and display Theta(epsilon) profiles, the microburst day potential index (MDPI), and wind index (WINDEX) maximum wind gust value. Key microburst nowcasting signatures using the WSR-88D data were highlighted. Verification of the data sets indicated that the MDPI has good potential in alerting the duty forecaster to the potential of wet microburst and the WINDEX values computed from the hourly surface data do have potential in showing a trend for the maximum gust potential. WINDEX should help in filling in the temporal hole between the MDPI on the last Cape Canaveral rawinsonde and the nowcasting radar data tools.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-201354 , NAS 1.26:201354
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-28
    Description: As a Guest Computational Investigator under the NASA administered component of the High Performance Computing and Communication Program, we implemented a massively parallel genetic algorithm on the MasPar SIMD computer. Experiments were conducted using Earth Science data in the domains of meteorology and oceanography. Results obtained in these domains are competitive with, and in most cases better than, similar problems solved using other methods. In the meteorological domain, we chose to identify clouds using AVHRR spectral data. Four cloud speciations were used although most researchers settle for three. Results were remarkedly consistent across all tests (91% accuracy). Refinements of this method may lead to more timely and complete information for Global Circulation Models (GCMS) that are prevalent in weather forecasting and global environment studies. In the oceanographic domain, we chose to identify ocean currents from a spectrometer having similar characteristics to AVHRR. Here the results were mixed (60% to 80% accuracy). Given that one is willing to run the experiment several times (say 10), then it is acceptable to claim the higher accuracy rating. This problem has never been successfully automated. Therefore, these results are encouraging even though less impressive than the cloud experiment. Successful conclusion of an automated ocean current detection system would impact coastal fishing, naval tactics, and the study of micro-climates. Finally we contributed to the basic knowledge of GA (genetic algorithm) behavior in parallel environments. We developed better knowledge of the use of subpopulations in the context of shared breeding pools and the migration of individuals. Rigorous experiments were conducted based on quantifiable performance criteria. While much of the work confirmed current wisdom, for the first time we were able to submit conclusive evidence. The software developed under this grant was placed in the public domain. An extensive user's manual was written and distributed nationwide to scientists whose work might benefit from its availability. Several papers, including two journal articles, were produced.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-201071 , NAS 1.26:201071
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: A Subsonic Assessment (SASS) element of the overall Atmospheric Effects of Aviation Project (AEAP) was initiated by NASA to assess the atmospheric impact of subsonic aircraft. SRI was awarded a project to develop and test a scanning backscatter lidar for installation on the NASA DC-8 (year 1), participate in the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program (year 2), and conduct a comprehensive analysis of field data (year 3). A scanning mirror pod attached to the DC-8 aircraft provides for scanning lidar observations ahead of the DC-8 and fixed-angle upward or downward observations. The lidar system installed within the DC-8 transmits 275 MJ at 1.06 gm wavelength or about 130 mJ at 1.06 and 0.53 gm simultaneously. Range-resolved aerosol backscatter is displayed in real time in terms of cloud/contrail spatial distributions. The objectives of the project are to map contrail/cloud vertical distributions ahead of DC-8; provide DC-8 guidance into enhanced scattering layers; document DC-8 flight path intersection of contrail and cloud geometries (in-situ measurement positions relative to cloud/contrail shape and an extension of in-situ measurements into the vertical -- integrated contrail/cloud properties); analyze contrail/cloud radiative properties with LIRAD (combined lidar and radiometry) technique; evaluate mean particle sizes of aircraft emissions from two-wavelength observations; study contrail/cloud interactions, diffusion, and mass decay/growth; and make observations in the near-field of aircraft engine emissions. The scanning mirror pod may also provide a scanning capability for other remote sensing instruments.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-201902 , NAS 1.26:201902 , SRI Project 6555
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: Rocket-based instrumentation investigations of middle atmospheric electrodynamics during thunderstorms were conducted in coordination with balloon-measurements at Wallops Island, Virginia. Middle atmosphere electrodynamics and energy coupling are of particular importance to associated electrical processes at lower and higher altitudes. Objectives of this research effort included: (1) investigation of thunderstorm effects on middle atmosphere electrical structure, including spatial and temporal dependence; (2) characterization of electric field transients and the associated energy deposited at various altitudes; (3) evaluation of the vertical Maxwell current density over a thunderstorm to study the coupling of energy to higher altitudes; and (4) investigation of the coupling of energy to the ionosphere and the current supplied to the 'global circuit.'
    Keywords: Meteorology and Climatology
    Type: NASA-CR-200660 , NAS 1.26:200660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-02
    Description: A theoretical study has been conducted on the effects of cloud horizontal inhomogeneity on cloud albedo bias. A two-dimensional (2D) version of the Spherical Harmonic Discrete Ordinate Method (SHDOM) is used to estimate the albedo bias of the plane parallel (PP-IPA) and independent pixel (IPA-2D) approximations for a wide range of 2D cloud fields obtained from LANDSAT. They include single layer trade cumulus, open and closed cell broken stratocumulus, and solid stratocumulus boundary layer cloud fields over ocean. Findings are presented on a variety of averaging scales and are summarized as a function of cloud fraction, mean cloud optical depth, cloud aspect ratio, standard deviation of optical depth, and the gamma function parameter Y (a measure of the width of the optical depth distribution). Biases are found to be small for small cloud fraction or mean optical depth, where the cloud fields under study behave linearly. They are large (up to 0.20 for PP-IPA bias, -0.12 for IPA-2D bias) for large v. On a scene average basis PP-IPA bias can reach 0.30, while IPA-2D bias reaches its largest magnitude at -0.07. Biases due to horizontal transport (IPA-2D) are much smaller than PP-IPA biases but account for 20% RMS of the bias overall. Limitations of this work include the particular cloud field set used, assumptions of conservative scattering, constant cloud droplet size, no gas absorption or surface reflectance, and restriction to 2D radiative transport. The LANDSAT data used may also be affected by radiative smoothing.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-08
    Description: Comparisons between solar flux measurements and predictions obtained from theoretical radiative transfer models indicate that most of these models underestimate the globally averaged solar energy absorbed by cloudy atmospheres by up to 25Wm&sup-2;.The origin of this anomalous absorption has not yet been established, but it has been attributed to a variety of sources including oversimplified or missing physical processes in the existing models, uncertainties in the input data, and even measurement errors. We used a sophisticated atmospheric radiative transfer model to provide improved constraints on the physical processes that contribute to the absorption of solar radiation by Earth's atmosphere. The results are described herein.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-18
    Description: During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the radiative properties of the atmosphere. Additional flights will be made over the Rocky Mountains, to investigate wave clouds. Flights will also be made over the Gulf of Mexico to utilize an oceanic background for remote sensing measurements. The results of this mission will be presented in this talk.
    Keywords: Meteorology and Climatology
    Type: Impact of Aircraft Emission Upon the Atmospheres International Colloquium; Oct 15, 1996 - Oct 18, 1996; Clamart; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: Six years ago, we compared the climate sensitivity of 19 atmospheric general circulation models and found a roughly threefold variation among the models; most of this variation was attributed to differences in the models' depictions of cloud feedback. In an update of this comparison, current models showed considerably smaller differences in net cloud feedback, with most producing modest values. There are, however, substantial differences in the feedback components, indicating that the models still have physical disagreements.
    Keywords: Meteorology and Climatology
    Type: Paper-96JD00822 , Journal of Geophysical Research (ISSN 0148-0227); 101; D8; 12,791-12,794
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The distribution of many chemical constituents of the atmosphere (e.g., ozone) is at least partially determined by the, distribution of net radiative heating in the atmosphere. In this paper, we demonstrate the significant effect of high cirrus clouds on the net radiative heating of the tropical lower stratosphere. A model of tropical lower stratospheric ozone is then used to demonstrate the sensitivity of calculated ozone to the varying cloud cover used in the model. We conclude that calculated ozone is sensitive to the inclusion of clouds in models and that models of the atmosphere should include a realistic description of tropical cirrus clouds in order to accurately simulate the chemical composition of the atmosphere.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric Chemistry; 23; 209-220
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: It has long been shown both in theory and in observation that emission from rain drops in a raining cloud results in upwelling brightness temperature above that caused by the sea surface alone. High brightness temperatures at microwave frequencies (e.g. 37 and 19 GHz) have usually been quantitatively associated with rainfall using physical or statistical models. By comparing concurrent special sensor microwave/imager and radar data, however, we noticed many cases where there is no appreciable rainfall in a field of view (FOV) which exhibits high brightness temperature (T(sub B)) at 37 and 19 GHz. On the basis of calculations and past literature it is shown that such high brightness temperatures can be caused by nonprecipitating clouds and by wind. The effect of the wind is to create wave and high-emissivity foam on the sea surface. A model is developed to relate T(sub B) to the fractional coverage of rain, f, within a FOV. The parameters of the model are calibrated by fitting the model to the observed brightness temperature and fractional rain coverage data. The critical parameter of the model, T(sub B min.), which is the threshold brightness temperature for the presence of rain, depends on the strength of the storm. The strength of the storm is characterized by the fraction of the FOVs within a large area that have T(sub B) higher than 240 K, which is readily obtainable from satellite data alone. The instantaneous FOV rain rate R can then be obtained through the f approximately R relationship which is empirically derived using radar data. An algorithm has been proposed based on the T(sub B) approximately f and f approximately R relationship. Application of the algorithm to TOGA-COARE and Darwin storms results in reasonable instantaneous FOV rain estimate. When averaged over the entire radar scan, a more accurate and unbiased areal rain estimate can be achieved.
    Keywords: Meteorology and Climatology
    Type: Paper-96JD01388 , Journal of Geophysical Research (ISSN 0148-0227); 101; D21; 26,503-26,515
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: This paper presents a composite diagnosis of synoptic-scale forcing mechanisms associated with extratropical cyclone evolution. Drawn from 12 cyclone cases that occurred over the continental United States during the cool season months, the diagnosis provides a 'climatology' of development mechanisms for difference categories of cyclone evolution ranging from cyclone weakening through three stages of cyclone intensification. Computational results were obtained using an 'extended' form of the Zwack-Okossi equation applied to routine upper-air and surface data analyzed on a 230 km x 230 km grid. Results show that cyclonic vorticity advection, which maximizes in the upper troposphere, was the primary contributor to cyclone development regardless of the stage of development. A second consistent contributor to development was latent heat release. Horizontal temperature advection, often acknowledged as a development mechanism, was found to contribute to development only during more intense stages. During weakening and weaker development stages, temperature advection opposed development, as the warm-air advection invariably found at upper levels was dominated by cold air advection in the lower half of the troposphere. In the more intense stages, development was moderated by dry-adiabatic cooling associated with the ascending vertical motions.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-205251 , NAS 1.26:205251 , Monthly Weather Review; 124; 1084-1099
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Fabry-Perot interferometer observations of the thermospheric O I (6300 A) emission have been conducted from an airglow observatory at a dark field site in the southeastern Yukon Territory, Canada, for the period November 1991 to April 1993. The experiment operated in unattended, remote fashion, has resulted in a substantial data set from which mean neutral winds have been determined. Dependent upon geomagnetic activity, the nocturnal location of the site is either equatorward of the auroral oval or within oval boundaries. The data set is rich enough to permit hourly binning of neutral winds based upon the K(sub p) geomagnetic disturbance index as well as the season. For cases of low geomagnetic activity the averaged vector horizontal neutral wind exhibits the characteristics of a midlatitude site displaying antisunward pressure-gradient-driven winds. As the geomagnetic activity rises in the late afternoon and evening winds slowly rotate sunward in an anticlockwise direction, initially remaining near 100 m/s in speed but eventually increasing to 300 m/s for K(sub p) greater than 5. For the higher levels of activity the observed neutral wind flow pattern resembles a higher-latitude polar cap pattern characterized by ion drag forcing of thermospheric neutral gases. In addition, rotational Coriolis forcing on the dusk side enhances the ion drag forcing, resulting in dusk winds which trace out the clockwise dusk cell plasma flow. On the dawn side the neutral winds also rotate in an anticlockwise direction as the strength of geomagnetic disturbances increase. Since the site is located at a transition latitude between the midlatitude and the polar cap the data set provides a sensitive test for general circulation models which attempt to parameterize the contribution of magnetospheric processes. A comparison with the Vector Spherical Harmonic (VSH) model indicates several regions of poor correspondence for December solstice conditions but reasonable agreement for the vernal equinox.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-205304 , NAS 1.26:205304 , Paper-95JA02683 , Journal of Geophysical Research (ISSN 0148-0227); 101; A1; 241-259
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204622 , NAS 1.26:204622 , Journal of Geophysical Research (ISSN 0148-0227); 101; D12; 17,037-17,040
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: Research efforts focused on numerical simulations of two convective systems with the Penn State/NCAR mesoscale model. The first of these systems was tropical cyclone Irma, which occurred in 1987 in Australia's Gulf of Carpentaria during the AMEX field program. Comparison simulations of this system were done with two different convective parameterization schemes (CPS's), the Kain-Fritsch (KF) and the Betts-Miller (BM) schemes. The second system was the June 10-11, 1985 squall line simulation, which occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. Simulations of this system using the KF scheme were examined in detail.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-200750 , NAS 1.26:200750
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-20
    Description: This is the final report for a cooperative research project which was initiated over 12 years ago in collaboration with Ralph Bach and the late Rodney Wingrove of NASA-Ames. This successful endeavor has resulted in many journal and conference publications describing research into the causes and characteristics of aviation turbulence. This Cooperative agreement also gave students access to a leading research facility and the chance to work with internationally, recognized researchers while supporting senior and master's thesis research work. The data set used in the study were unique quantitative measurements of microscale turbulence derived from commercial aircraft. A significant result of the study was the development of a standard turbulence metric based on those available on-board measurements.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203832 , NAS 1.26:203832
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-18
    Description: Analyses of lidar data taken during the 1989 AASE I program show that polar stratospheric clouds most often contain frozen particles, but sometimes contain spherical, presumably liquid, particles. In this paper the mechanisms that lead to the freezing of particles, and to the formation of liquid particles will be discussed based largely upon analyses of existing data. For example, trajectory studies help shed light on the conditions that lead to particle freezing. During April of 1996 an experiment using the NASA DC-8 and ER-2 aircraft will be conducted over the central U.S. Some of the goals of the project are to better understand the mechanisms of cirrus cloud formation, and to investigate the properties of freezing nuclei in the upper troposphere. Results from this field program will be presented as they apply to the topic of ice crystal nucleation. Comparisons will be drawn between the mechanisms that lead to new particle formation in the polar stratosphere, and the mechanisms that lead to new particles formation in the upper troposphere.
    Keywords: Meteorology and Climatology
    Type: 14th International Conference on Nucleation and Atmospheric Aerosols; Aug 26, 1996 - Aug 30, 1996; Helsinki; Finland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-18
    Description: Surface based near-infrared cloud spectral transmission measurements from a recent precipitation/cloud physics field study are used to determine cloud physical properties and relate them to other remote sensing and in situ measurements. Asymptotic formulae provide an effective means of closely approximating the qualitative and quantitative behavior of transmission computed by more laborious detailed methods. Relationships derived from asymptotic formulae are applied to measured transmission spectra to test objectively the internal consistency of data sets acquired during the field program and they confirmed the quality of the measurements. These relationships appear to be very useful in themselves, not merely as a quality control measure, but also a potentially valuable remote-sensing technique in its own right. Additional benefits from this analysis have been the separation of condensed water (cloud) transmission and water vapor transmission and the development of a method to derive cloud liquid water content.
    Keywords: Meteorology and Climatology
    Type: International Radiation Symposium; Aug 17, 1996 - Aug 25, 1996; Fairbanks, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-18
    Description: During April 1996 NASA, in conjunction with the DOE, will sponsor a multi-aircraft field campaign to better understand the microphysical and radiative properties of cirrus clouds, the origins of ice nuclei and cloud condensation nuclei in the upper troposphere, and the possible role that the commercial subsonic aircraft fleet might play in altering cloud or aerosol properties. The NASA ER-2 aircraft will be used as a remote sensing platform, while the NASA DC-8 aircraft will be used as an in situ measurement platform. In situ observations will include a full set of size distribution measurements from nano-meter to millimeter sizes, ice water content measurements, gas phase and condensed phase chemical measurements, ice crystal optical phase function measurements, lidar observations of cloud top and cloud base, and atmospheric state measurement. The ER-2 will have lidar, microwave ice water path measurements, as well as visible and infrared spectral measurement. In this presentation the highlights of the mission will be presented. The goal will be to address fundamental questions such as the mode of nucleation of cirrus clouds, the composition of the nuclei on which cirrus form, the degree to which aircraft impact cirrus cloud properties.
    Keywords: Meteorology and Climatology
    Type: 12th International Conference on Cloud and Precipitation; Aug 19, 1996 - Aug 23, 1996; Zurich; Switzerland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-18
    Description: Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm tropical oceans is injected to different levels in the atmosphere to subsequently influence not only tropical but mid-latitude climate.
    Keywords: Meteorology and Climatology
    Type: 14th International Conference on Nucleation and Atmospheric Aerosols; Aug 26, 1996 - Aug 30, 1996; Helsinki; Finland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-27
    Description: The Emergency Response Dose Assessment System (ERDAS) is a system which combines the mesoscale meteorological prediction model RAMS with the diffusion models REEDM and HYPACT. Operators use a graphical user interface to run the models for emergency response and toxic hazard planning at CCAS/KCS. The Applied Meteorology Unit has been evaluating the ERDAS meteorological and diffusion models and obtained the following results: (1) RAMS adequately predicts the occurrence of the daily sea breeze during non-cloudy conditions for several cases. (2) RAMS shows a tendency to predict the sea breeze to occur slightly earlier and to move it further inland than observed. The sea breeze predictions could most likely be improved by better parameterizing the soil moisture and/or sea surface temperatures. (3) The HYPACT/REEDM/RAMS models accurately predict launch plume locations when RAMS winds are accurate and when the correct plume layer is modeled. (4) HYPACT does not adequately handle plume buoyancy for heated plumes since all plumes are presently treated as passive tracers. Enhancements should be incorporated into the ERDAS as it moves toward being a fully operational system and as computer workstations continue to increase in power and decrease in cost. These enhancements include the following: activate RAMS moisture physics; use finer RAMS grid resolution; add RAMS input parameters (e.g. soil moisture, radar, and/or satellite data); automate data quality control; implement four-dimensional data assimilation; modify HYPACT plume rise and deposition physics; and add cumulative dosage calculations in HYPACT.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-202459 , NAS 1.26:202459
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-17
    Description: This research focuses on a new neural network scene classification technique. The task is to identify scene elements in Advanced Very High Resolution Radiometry (AVHRR) data from three scene types: polar, desert and smoke from biomass burning in South America (smoke). The ultimate goal of this research is to design and implement a computer system which will identify the clouds present on a whole-Earth satellite view as a means of tracking global climate changes. Previous research has reported results for rule-based systems (Tovinkere et at 1992, 1993) for standard back propagation (Watters et at. 1993) and for a hierarchical approach (Corwin et al 1994) for polar data. This research uses a hierarchical neural network with don't care conditions and applies this technique to complex scenes. A hierarchical neural network consists of a switching network and a collection of leaf networks. The idea of the hierarchical neural network is that it is a simpler task to classify a certain pattern from a subset of patterns than it is to classify a pattern from the entire set. Therefore, the first task is to cluster the classes into groups. The switching, or decision network, performs an initial classification by selecting a leaf network. The leaf networks contain a reduced set of similar classes, and it is in the various leaf networks that the actual classification takes place. The grouping of classes in the various leaf networks is determined by applying an iterative clustering algorithm. Several clustering algorithms were investigated, but due to the size of the data sets, the exhaustive search algorithms were eliminated. A heuristic approach using a confusion matrix from a lightly trained neural network provided the basis for the clustering algorithm. Once the clusters have been identified, the hierarchical network can be trained. The approach of using don't care nodes results from the difficulty in generating extremely complex surfaces in order to separate one class from all of the others. This approach finds pairwise separating surfaces and forms the more complex separating surface from combinations of simpler surfaces. This technique both reduces training time and improves accuracy over the previously reported results. Accuracies of 97.47%, 95.70%, and 99.05% were achieved for the polar, desert and smoke data sets.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204861 , NAS 1.26:204861 , Proceedings of the 8th Conference on Satellite Meteorology and Oceanography; 303-307|Satellite Meteorology and Oceanography; Jan 28, 1996 - Feb 02, 1996; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-16
    Description: The results of this study demonstrate that the surface wind velocity and pressure fields derived from spaceborne scatterometers are useful in monitoring the location and intensity of tropical cyclones. Satellite-borne microwave scatterometers can penetrate the cloudy core regions of tropical cyclones to resolve the circulation in detail over data sparse regions. The location of the cyclone observed by the ERS-1 (First European Remote Sensing Satellite) scatterometer is very close to that revealed in Geostationary Meteorological Satellite images. The surface winds provided by the ERS-1 scatterometer are used here with a modified two-layer planetary boundary layer model which includes effects of curvature, stability, and secondary flow to derive surface pressures near tropical cyclone Oliver. The curvature effect is found to be more significant than stability and secondary flow, which are crucial in deriving accurate surface pressure fields in midlatitudes.
    Keywords: Meteorology and Climatology
    Type: Paper-96JD01229 , Journal of Geophysical Research (ISSN 0148-0227); 101; D12; 17,021-17,027
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-16
    Description: Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.
    Keywords: Meteorology and Climatology
    Type: J-16391 , Bulletin of the American Meteorological Society; 77; 1; 89-99
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-10
    Description: The Atmospheric Infrared Sounder (AIRS) is a key facility instrument in the NASA Earth Observing System (EOS) program, being implemented to obtain comprehensive long-term measurements of earth processes affecting global change. The instrument performs passive IR remote sensing using a high resolution grating spectrometer with a wide spectral coverage (3.7 - 15.4 m) directing radiation onto a hybrid HgCdTe IRFPA operating at 58K in a vacuum package cooled to 155K. The hybrid HgCdTe FPA consists of twelve modules, 10 with multiplexed photovoltaic detectors and two with individually leaded out photoconductive detectors. The complex FPA has a large optical footprint, 53 mm x 66 mm, and receives energy dispersed from the grating through a precision filter assembly containing 17 narrow band filters. The backside illuminated PV detector arrays are fabricated from P-on-n double layer LPE grown heterojunction detectors in a bilinear format of 50 m x 100 m detectors, with from 232 to 420 detectors per module. For the MWIR bands four PV modules cover the 3.7 m to 8.22 m region. Low detector capacitance and low noise preamplifiers in the ROIC are key to achieving high sensitivities in these bands. Uniform quantum efficiencies and detectivities exceeding 3E13 cm-rtHz/W have been achieved. The LWIR region is covered by six PV modules spanning 8.8 m to 13.75 m. High detector resistance and very low ROIC preamplifier input noise are key to achieving high sensitivity. A detectivity exceeding 2E11 cm-rtHz/W has been achieved at the longest wavelength. Two additional PC modules cover the longest spectral bands out to 15.4 m. This high performance multispectral focal plane has been built and integrated with the dewar assembly, and is currently being integrated with the complete AIRS sensor.
    Keywords: Meteorology and Climatology
    Type: AD-A400043
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-16
    Description: To investigate the absorption of shortwave radiation by clouds, we have collocated satellite and surface measurements of shortwave radiation at several locations. Considerable effort has been directed toward understanding and minimizing sampling errors caused by the satellite measurements being instantaneous and over a grid that is much larger than the field of view of an upward facing surface pyranometer. The collocated data indicate that clouds absorb considerably more shortwave radiation than is predicted by theoretical models. This is consistent with the finding from both satellite and aircraft measurements that observed clouds are darker than model clouds. In the limit of thick clouds, observed top-of-the-atmosphere albedos do not exceed a value of 0.7, whereas in models the maximum albedo can be 0.8.
    Keywords: Meteorology and Climatology
    Type: Paper-96JD02156 , Journal of Geophysical Research (ISSN 0148-0227); 101; D18; 23,299-23,309
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-16
    Description: Red Sprites and Blue Jets are two different types of recently discovered optical flashes ob- served above large thunderstorm systems. Sprites are luminous glows occurring at altitudes typically ranging from approximately 50 to 90 km. In video they exhibit a red color at their top which gradually changes to blue at lower altitudes. Sprites may occur singly or in clusters of two or more. The lateral extent of "unit" sprites is typically 5-10 km and they endure for several milliseconds. Jets are upward moving (approximately 100 km/s) highly collimated beams of luminosity, emanating from the tops of thunderclouds, extending up to approximately 50 km altitude and exhibiting a primarily blue color. We propose that sprites result from large electric field transients capable of causing electron heating, breakdown ionization and excitation of optical emissions at mesospheric altitudes following the removal of thundercloud charge by a cloud-to-ground discharge. Depending on the history of charge accumulation and removal, and the distribution of ambient atmospheric conductivity, the breakdown region may have the shape of vertically oriented ionization column(s). Results of a two-dimensional and self consistent quasi-electrostatic (QE) model indicate that most of the observed features of sprites can be explained in terms of the formation and self-driven propagation of streamer type channels of breakdown ionization. Comparison of the optical emission intensities of the 1st and 2nd positive bands of N2, Meinel and 1st negative bands of N2(+) and the 1st negative band of O2(+) demonstrates that the 1st positive band of N2 is the dominant optical emission in the altitude range approximately 50-90 km, which accounts for the observed red color of sprites. Optical emissions of the 1st and 2nd positive bands of N2 occur in carrot-like vertical structures with typical transverse dimension approximately 5-10 km which can span an altitude range from approximately 80 km to well below approximately 50 km. The appearance of optical emissions associated with sprites can be delayed in time (approximately 1-20 ms) with respect to the causative cloud to ground discharge. Theoretical model results are found to be in good agreement with recent video, photometric and spectral measurements of sprites.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-96-206668 , NAS 1.26:206668
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-16
    Description: The theoretical computations used to compute spectral absorption of solar radiation are discussed. Radiative properties relevant to the cloud absorption problem are presented and placed in the context of radiative forcing. Implications for future measuring programs and the effect of horizontal inhomogeneities are discussed.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204604 , NAS 1.26:204604 , 7th Symposium on Global Change Studies; 127-134|Global Change Studies; Jan 28, 1996 - Feb 02, 1996; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-27
    Description: A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-15
    Description: Pre-discharge Quasi-Electrostatic (QE) fields immediately above the thundercloud lead to the formation and upward propagation of streamer type ionization channels with features in good agreement with recent video observations of Blue Jets.
    Keywords: Meteorology and Climatology
    Type: Paper 96GL00149 , Geophysical Research Letters (ISSN 0094-8534); 23; 3; 301-304
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-15
    Description: Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.
    Keywords: Meteorology and Climatology
    Type: The Benefits of Modern Techniques for Weather Forecasting and Climate for Socio-Economical Activities; 2; 1247-1250
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-15
    Description: Cirrus is the most frequently occurring and widely distributed cloud type. The average annual frequency of occurrence for cirrus is 34% and its global coverage is about 20-30% (Warren et al. 1985). It strongly influences weather and climate processes through its effects on the radiation budget of the earth and the atmosphere (Liou 1986). Microphysics of cirrus is a critical component in understanding cloud-climate radiative interactions. For example, ice water content feedback is positive from a 1-D model study. But the feedback is substantially reduced upon the inclusion of small ice crystals (Sinha and Shine 1994). Due to the complexity caused by the non-spherical shape of ice crystals in cirrus, retrievals of cirrus properties are difficult. In recent years, advances have been made both in models and in case studies (e.g., Takano and Liou 1989, Young et al. 1994), but no global scale survey has been conducted. Similar to our previous near-global survey of droplet sizes of liquid water clouds (Han et al. 1994), a survey of cirrus ice crystal sizes is conducted over both continental and oceanic areas. We describe a method for retrieving cirrus particle size information on a near-global scale 50 deg S to 50 deg N using currently available satellite data from ISCCP. To retrieve cirrus particle size, we use a radiative transfer model that includes all major absorbing gases and cloud scattering/absorption to compute synthetic radiances as a function of satellite viewing geometry. Ice crystal shapes are assumed to be hexagonal columns and plates. The model results have been validated against clear sky observations and are consistent with the observed radiance range under cloudy conditions.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204918 , NAS 1.26:204918 , Proceedings of the Eighth Conference on Satellite Meteorology and Oceanography; 369-372|Satellite Meteorology and Oceanography; Jan 28, 1996 - Feb 02, 1996; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-15
    Description: A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-202661 , NAS 1.26:202661
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-15
    Description: Grant activities accomplished during this reporting period are summarized. The contributions of the principle investigator are reported under four categories: (1) AHVRR (Advanced Very High Resolution Radiometer) data; (2) GOES (Geostationary Operational Environ Satellite) data; (3) system software design; and (4) ATSR (Along Track Scanning Radiometer) data. The contributions of the associate investigator are reported for:(1) longwave irradiance at the surface; (2) methods to derive surface short-wave irradiance; and (3) estimating PAR (photo-synthetically active radiation) surface. Several papers have resulted. Abstracts for each paper are provided.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-202125 , NAS 1.26:202125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-15
    Description: Clouds are extremely important with regard to the transfer of solar radiation at the earth's surface. This study investigates Cumulus Solar Irradiance Reflection (CSIR) using ground-based pyranometers. CSIR events are short-term increases in solar radiation observed at the surface as a result of reflection off the sides of convective clouds. When sun-cloud observer geometry is favorable, these occurrences produce characteristic spikes in the pyranometer traces and solar irradiance values may exceed expected clear-sky values. Ultraviolet CSIR events were investigated during the summer of 1995 using Yankee Environmental Systems UVA-1 and UVB-1 pyranometers. Observed data were compared to clear-sky curves which were generated using a third degree polynomial best-fit line technique. Periods during which the observed data exceeded this clear-sky curve were identified as CSIR events. The magnitude of a CSIR event was determined by two different quantitative calculations. The MAC (magnitude above clear-sky) is an absolute measure of the difference between the observed and clear-sky irradiances. Maximum MAC values of 3.4 Wm(exp -2) and 0.069 Wm(exp -2) were observed at the UV-A and UV-B wavelengths, respectively. The second calculation determined the percentage above clear-sky (PAC) which indicated the relative magnitude of a CSIR event. Maximum UV-A and UV-B PAC magnitudes of 10.1% and 7.8%, respectively, were observed during the study. Also of interest was the duration of the CSIR events which is a function of sun-cloud-sensor geometry and the speed of cloud propagation over the measuring site. In both the UV-A and UV-B wavelengths, significant CSIR durations of up to 30 minutes were observed.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-202062 , NAS 1.26:202062
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: The results of this study demonstrate that the surface wind velocity and pressure fields derived from spaceborne scatterometers are useful in monitoring the location and intensity of tropical cyclones. Satellite-borne microwave scatterometers can penetrate the cloudy core regions of tropical cyclones to resolve the circulation in detail over data sparse regions. The location of the cyclone observed by the ERS-1 scatterometer is very close to that revealed in Geostationary Meteorological Satellite images. The surface winds provided by the ERS-1 scatterometer are used here with a modified two-layer planetary boundary layer model which includes effects of curvature, stability, and secondary flow to derive surface pressures near tropical cyclone Oliver. The curvature effect is found to be more significant than stability and secondary flow, which are crucial in deriving accurate surface pressure fields in midlatitudes.
    Keywords: Meteorology and Climatology
    Type: Paper-96JD01229 , Journal of Geophysical Research (ISSN 0148-0227); 101; D12; 17,021-17,027
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: In this study, satellite observations, in situ measurements, and model simulations are combined to assess the oceanic response to surface wind forcing in the equatorial Pacific. The surface wind fields derived from observations by the spaceborne special sensor microwave imager (SSM/I) and from the operational products of the European Centre for Medium-Range Weather Forecasts (ECMWF) are compared. When SSM/I winds are used to force a primitive-equation ocean general circulation model (OGCM), they produce 3 C more surface cooling than ECMWF winds for the eastern equatorial Pacific during the cool phase of an El Nino-Southern Oscillation event. The stronger cooling by SSM/I winds is in good agreement with measurements at the moored buoys and observations by the advanced very high resolution radiometer, indicating that SSM/I winds are superior to ECMWF winds in forcing the tropical ocean. In comparison with measurements from buoys, tide gauges, and the Geosat altimeter, the OGCM simulates the temporal variations of temperature, steric, and sea level changes with reasonable realism when forced with the satellite winds. There are discrepancies between model simulations and observations that are common to both wind forcing fields, one of which is the simulation of zonal currents; they could be attributed to model deficiencies. By examining model simulations under two winds, vertical heat advection and uplifting of the thermocline are found to be the dominant factors in the anomalous cooling of the ocean mixed layer.
    Keywords: Meteorology and Climatology
    Type: Paper-96JC01347 , Journal of Geophysical Research (ISSN 0148-0227); 101; C7; 16,345-16,359
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Rainfall data collected by radar in the vicinity of Darwin, Australia, have been analyzed in terms of their mean, variance, autocorrelation of area-averaged rain rate, and diurnal variation. It is found that, when compared with the well-studied GATE (Global Atmospheric Research Program Atlantic Tropical Experiment) data, Darwin rainfall has larger coefficient of variation (CV), faster reduction of CV with increasing area size, weaker temporal correlation, and a strong diurnal cycle and intermittence. The coefficient of variation for Darwin rainfall has larger magnitude and exhibits larger spatial variability over the sea portion than over the land portion within the area of radar coverage. Stationary, and nonstationary models have been used to study the sampling errors associated with space-based rainfall measurement. The nonstationary model shows that the sampling error is sensitive to the starting sampling time for some sampling frequencies, due to the diurnal cycle of rain, but not for others. Sampling experiments using data also show such sensitivity. When the errors are averaged over starting time, the results of the experiments and the stationary and nonstationary models match each other very closely. In the small areas for which data are available for I〉oth Darwin and GATE, the sampling error is expected to be larger for Darwin due to its larger CV.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; 35; 3; 371-385
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: An unresolved problem in remote sensing concerns the analysis of satellite imagery containing both single and multiple cloud layers. While cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget, most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. Coakley (1983) used a spatial coherence method to determine whether a region contained more than one cloud layer. Baum et al. (1995) developed a scheme for detection and analysis of daytime multiple cloud layers using merged AVHRR (Advanced Very High Resolution Radiometer) and HIRS (High-resolution Infrared Radiometer Sounder) data collected during the First ISCCP Regional Experiment (FIRE) Cirrus 2 field campaign. Baum et al. (1995) explored the use of a cloud classification technique based on AVHRR data. This study examines the feasibility of applying the cloud classifier to global satellite imagery.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204860 , NAS 1.26:204860 , Satellite Meteorology and Oceanography; Jan 28, 1996 - Feb 02, 1996; Atlanta, GA; United States|The 8th Conference on Satellite Meteorology and Oceanography; 347-350
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204862 , NAS 1.26:204862 , Satellite Meteorology and Oceanography; Jan 28, 1996 - Feb 02, 1996; Atlanta, GA; United States|The 8th Conference on Satellite Meteorology and Oceanography; 470-473
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and anti-sunside of the cloud-shadow pair are apparent. The technique requires some intepretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about +/- 250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semi-automated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204919 , NAS 1.26:204919 , Journal of Applied Meteorology; 35; 3; 483-502
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor modifications. The improvement in winds through use of these new quality and control parameters is measured without the use of rawinsonde or modeled wind field data and compared with other approaches.
    Keywords: Meteorology and Climatology
    Type: NASA-TM-112796 , NAS 1.15:112796 , Eighth Conference on Satellite Meteorology and Oceanography; 5-9|Satellite Meteorology and Oceanography; Jan 28, 1996 - Feb 02, 1996; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: During the ATLAS-3 mission (3-12 Nov 1994), United Kingdom Meteorological Office fields show that the SH vortex was still strong below about 700 K (approximately 16 hPa), with coherent vortex fragments apparent up to about 1300 K (approximately 3 hPa). The SH vortex was shifted off the pole toward 270 deg E throughout ATLAS-3, although its shape varied from day to day. SH temperatures were increasing during ATLAS-3; temperatures below 188 K were last seen 35-45 days before the mission, but were below 195 K as late as 2 Nov 1994. The NH polar vortex had developed at levels above about 550 K (approximately 35 hPa). Simulated high-resolution potential vorticity (PV) fields clearly show low latitude air being drawn up around the polar vortices in both hemispheres. These fields indicate that meteorological analyses underestimate the amount of atmospheric variability, including the strength of local PV gradients, and small-scale structure. Structure such as that in the simulated fields can result in apparent discrepancies between tracer measurements and PV fields.
    Keywords: Meteorology and Climatology
    Type: Paper-96GL00774 , ATLAS Series of Shuttle Missions (ISSN 0094-8534); 23; 17; 2409-2412; NASA-TM-112752
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204818 , NAS 1.26:204818 , Bulletin of the American Meteorological Society (ISSN 0003-0007); 77; 4; 653-672
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Precipitation estimates from radar systems are a crucial component of many hydrometeorological applications, from flash flood forecasting to regional water budget studies. For analyses on large spatial scales and long timescales, it is frequently necessary to use composite reflectivities from a network of radar systems. Such composite products are useful for regional or national studies, but introduce a set of difficulties not encountered when using single radars. For instance, each contributing radar has its own calibration and scanning characteristics, but radar identification may not be retained in the compositing procedure. As a result, range effects on signal return cannot be taken into account. This paper assesses the accuracy with which composite radar imagery can be used to estimate precipitation in the convective environment of Florida during the summer of 1991. Results using Z = 30OR(sup 1.4) (WSR-88D default Z-R relationship) are compared with those obtained using the probability matching method (PMM). Rainfall derived from the power law Z-R was found to he highly biased (+90%-l10%) compared to rain gauge measurements for various temporal and spatial integrations. Application of a 36.5-dBZ reflectivity threshold (determined via the PMM) was found to improve the performance of the power law Z-R, reducing the biases substantially to 20%-33%. Correlations between precipitation estimates obtained with either Z-R relationship and mean gauge values are much higher for areal averages than for point locations. Precipitation estimates from the PMM are an improvement over those obtained using the power law in that biases and root-mean-square errors are much lower. The minimum timescale for application of the PMM with the composite radar dataset was found to be several days for area-average precipitation. The minimum spatial scale is harder to quantify, although it is concluded that it is less than 350 sq km. Implications relevant to the WSR-88D system are discussed.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204623 , NAS 1.26:204623 , Journal of Applied Meteorology; 35; 1203-1219
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 3 - 49 deg N and 65 - 72 deg S, including observations both inside and outside the Antarctic polar vortex. The instrument configuration, data retrieval methodology, and mission background are described to place in context analyses of ATMOS data presented in this issue.
    Keywords: Meteorology and Climatology
    Type: Paper-96GL01569 , Geophysical Research Letters (ISSN 0094-8534); 23; 17; 2333-2336
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Microwave Limb Sounder (MLS) measurements of lower stratospheric ClO and HNO3 during the 1995-96 Arctic winter are presented. The 1995-96 Arctic winter was both colder and more persistently cold than usual, leading to an enhancement in lower stratospheric ClO of greater magnitude, vertical extent, and duration than previously observed in the Arctic. Vortex concentrations of HNO3 in mid-December were large due to diabatic descent. Trajectory calculations indicate that localized severe depletions of gas-phase HNO3 in mid-February and early March did not arise from entrainment of midlatitude air into the vortex and were therefore probably related to polar stratospheric cloud (PSC) formation. A strong correlation between temperature and gas-phase HNO3 was evident, consistent with recurring PSC condensation and evaporation cycles.
    Keywords: Meteorology and Climatology
    Type: Paper-96GL02454 , Geophysical Research Letters (ISSN 0094-8534); 23; 22; 3207-3210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Under this grant, we continued development and evaluation of the updraft downdraft model for cumulus parameterization. The model includes the mass, rainwater and vertical momentum budget equations for both updrafts and downdrafts. The rainwater generated in an updraft falls partly inside and partly outside the updraft. Two types of stationary solutions are identified for the coupled rainwater budget and vertical momentum equations: (1) solutions for small tilting angles, which are unstable; (2) solutions for large tilting angles, which are stable. In practical applications, we select the smallest stable tilting angle as an optimum value. The model has been incorporated into the Arakawa-Schubert (A-S) cumulus parameterization. The results of semi-prognostic and single-column prognostic tests of the revised A-S parameterization show drastic improvement in predicting the humidity field. Cheng and Arakawa presents the rationale and basic design of the updraft-downdraft model, together with these test results. Cheng and Arakawa, on the other hand gives technical details of the model as implemented in current version of the UCLA GCM.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-1996-205074 , NAS 1.26:205074
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially important over vegetated surfaces. All the data used in this study were acquired during the 1991 Multisensor Airborne Campaign (MAC-Europe), as part of the European Field Experiment on a Desertification-threatened Area (EFEDA), carried out in Spain in June-July 1991.
    Keywords: Meteorology and Climatology
    Type: Summaries of the Sixth Annual JPL Airborne Earth Science Workshop; 1; 175-184; NASA/CR/96-113073
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Meteorological data from the United Kingdom Meteorological Office (UKMO), produced using a data assimilation system, and the U.S. National Meteorological Center (NMC), produced using an objective analysis procedure, are compared for dynamically active periods during the Arctic and Antarctic winters of 1992. The differences seen during these periods are generally similar to those seen during other winter periods. Both UKMO and NMC analyses capture the large-scale evolution of the stratospheric circulation during northern hemisphere (NH) and southern hemisphere (SH) winters. Stronger vertical and horizontal temperature gradients develop in the UKMO than in the NMC data during stratospheric warmings; comparison with satellite measurements with better vertical resolution suggests that the stronger vertical temperature gradients are more realistic. The NH polar vortex is slightly stronger in the UKMO analyses than in the NMC in the middle and upper stratosphere, and midstratospheric temperatures are slightly lower. The SH polar vortex as represented in the UKMO analyses is stronger and colder in the midstratosphere than its representation in the NMC analyses. The UKMO analyses on occasion exhibit some difficulties in representing cross-polar flow or changes in curvature of the wind field at very high latitudes. In addition to the above study of two wintertime periods, a more detailed comparison of lower-stratospheric temperatures is done for all Arctic and Antarctic winter periods since the launch of the Upper Atmosphere Research Satellite. In the NH lower stratosphere during winter, NMC temperatures are consistently lower than UKMO temperatures and closer to radiosonde temperatures than are UKMO temperatures. Conversely, in the SH lower stratosphere during winter, UKMO temperatures are typically lower than NMC and are closer to radiosonde temperature observations.
    Keywords: Meteorology and Climatology
    Type: Paper-95JD03350 , Journal of Geophysical Research (ISSN 0148-0227); 101; D6; 10,311-10,334
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: Connections between the large-scale interannual variations of clouds, deep convection, atmospheric winds. vertical thermodynamic structure, and SSTs over global tropical oceans are examined over the period July 1983 - December 1990. The SST warming associated with El Nino had a significant impact on the global tropical cloud field, although the warming itself was confined to the equatorial central and eastern Pacific. Extensive variations of the total cloud field occurred in the northeastern Indian, western and central Pacific, and western Atlantic Oceans. The changes of high and middle clouds dominated the total cloud variation in these regions. Total cloud variation was relatively weak in the eastern Pacific and the Atlantic because of the cancellation between the changes of high and low clouds. The variation of low clouds dominated the total cloud change in those areas. The destabilization of the lapse rate between 900 and 750 mb was more important for enhancing convective instability than was the change of local SSTs in the equatorial central Pacific during the 1997 El Nino. This destabilization is associated with anomalous rising motion in that region. As a result. convection and high and middle clouds increased in the equatorial central Pacific, In the subtropical Pacific, both the change of lapse rate between 900 and 750 mb associated A,ith anomalous subsidence and the decrease of boundary-layer buoyancy due to a decrease of temperature and moisture played an important role in enhancing convective stability. Consequently, convection, as well its high and middle clouds, decreased in these areas. The change ot'low clouds in the equatorial and southeastern Atlantic was correlated to both local SSTs and the SST changes in the equatorial eastern Pacific. In this area. the increase of low clouds was consistent with the sharper inversion during the 1987 El Nino, The strengthening of the inversion was not caused by a local SST change. although the local SST change appeared to he correlated to the change of low clouds. The coherence between clouds and SST tendency shows that SST tendency leads cloud variation in the equatorial Pacific. Thus, the change of clouds does not dominate the sign of SST tendency even though the cloud change was maximum during the 1987 El Nino. In some ideas of the Indian, subtropical Pacific, and North Atlantic Oceans, cloud change leads SST tendency. Cloud change might affect SST tendency in these regions.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate; 9; 3; 615-634
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?
    Keywords: Meteorology and Climatology
    Type: Paper-96RG01927 , Reviews of Geophysics (ISSN 8755-1209); 34; 3; 367-378
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Stratospheric measurements of H2O and CH4 by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer on the ATLAS-3 shuttle flight in November 1994 have been examined to investigate the altitude and geographic variability of H2O and the quantity H = (H2O + 2CH4) in the tropics and at mid-latitudes (8 to 49 deg N) in the northern hemisphere. The measurements indicate an average value of 7.24 +/- 0.44 ppmv for H between altitudes of about 18 to 35 km, corresponding to an annual average water vapor mixing ratio of 3.85 +/- 0.29 ppmv entering the stratosphere. The H2O vertical distribution in the tropics exhibits a wave-like structure in the 16- to 25-km altitude range, suggestive of seasonal variations in the water vapor transported from the troposphere to the stratosphere. The hygropause appears to be nearly coincident with the tropopause at the time of observations. This is consistent with the phase of the seasonal cycle of H2O in the lower stratosphere, since the ATMOS observations were made in November when the H2O content of air injected into the stratosphere from the troposphere is decreasing from its seasonal peak in July-August.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204620 , NAS 1.26:204620 , Paper 96GL-01321 , Geophysical Research Letters (ISSN 0094-8534); 23; 17; 2401-2404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: The principal goal of this project is to establish relationships that would allow application of area-time integral (ATI) calculations based upon satellite data to estimate rainfall volumes. The research is being carried out as a collaborative effort between the two participating organizations, with the satellite data analysis to determine values for the ATIs being done primarily by the STC-METSAT scientists and the associated radar data analysis to determine the 'ground-truth' rainfall estimates being done primarily at the South Dakota School of Mines and Technology (SDSM&T). Synthesis of the two separate kinds of data and investigation of the resulting rainfall-versus-ATI relationships is then carried out jointly. The research has been pursued using two different approaches, which for convenience can be designated as the 'fixed-threshold approach' and the 'adaptive-threshold approach'. In the former, an attempt is made to determine a single temperature threshold in the satellite infrared data that would yield ATI values for identifiable cloud clusters which are closely related to the corresponding rainfall amounts as determined by radar. Work on the second, or 'adaptive-threshold', approach for determining the satellite ATI values has explored two avenues: (1) attempt involved choosing IR thresholds to match the satellite ATI values with ones separately calculated from the radar data on a case basis; and (2) an attempt involved a striaghtforward screening analysis to determine the (fixed) offset that would lead to the strongest correlation and lowest standard error of estimate in the relationship between the satellite ATI values and the corresponding rainfall volumes.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-200579 , NAS 1.26:200579
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: This grant supported observations of thunderstorms at Kennedy Space Center during the summer of 1995. In particular, we obtained detailed observations of lightning-producing storms over KSC with the CP2 radar of the National Center for Atmospheric Research (NCAR), for the purpose of comparing these with observations from KSC's Lightning Detection and Ranging (LDAR) system. The NCAR radar was a special purpose dual-polarization system for studying the development of precipitation in storms and was at KSC for another project, the Small Cumulus Microphysics Study - SCMS. We used the radar on a non-interference basis to obtain the desired observations. In addition we recorded the electrostatic field change of the lightning discharges at two locations. Subsequent to the field observational period we compared the LDAR lightning observations with the storm structure as indicated by the radar. The results obtained to date are summarized briefly as follows: (1) The initial lightning sequence in a small developing storm was observed to occur in a region of the storm where supercooled raindrops had frozen within the previous few minutes. This is consistent with the idea that the storm electrification is produced by interactions between ice particles. (2) The lightning discharges tended to avoid regions of supercooled liquid raindrops, possibly indicating that corona from the drops reduces any electrification in the vicinity of the drops. (3) 'Bilevel' lightning discharges within storms have been confirmed to be between the level of negative charge at mid-levels in the storm and the upper storm level. This is consistent with and expands upon our understanding that storms have a basic dipolar charge structure. (4) The upward channels of the intracloud lightning discharges are often aligned with shafts of strong precipitation, and often begin just above the upper extent of 40 dBZ reflectivity in the precipitation shaft. This is consistent with a precipitation-based mechanism of electrification.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-201947 , NAS 1.26:201947 , International Confrerence on Atmospheric Electricity; Jun 01, 1996; Osaka; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: The impact of cirrus clouds on the heat balance of the Earth is dependent on their reflectivity of solar radiation and their absorptivity of terrestrial radiation. Any prediction of cloud cover changes that accompany climate change will have to know whether the visible/IR radiative characteristics of the clouds will also change. Few measurements of cirrus clouds have been made where both visible and IR data were collected simultaneously. To obtain the visible optical depths of cirrus clouds, the High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were used. The VIL produced visible backscatter images of the clouds by scanning across the wind. Time advection was used to construct a horizontal image of visible backscatter from the VIL data. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society; Jan 23, 1994 - Jan 28, 1994; Nashville, TN; United States|Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.
    Keywords: Meteorology and Climatology
    Type: International Laser Radar Conference; Jan 01, 1994; Sendai; Japan|Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.
    Keywords: Meteorology and Climatology
    Type: International Laser Radar Conference; Jul 20, 1992 - Jul 24, 1992; Cambridge, MA; United States|Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds; NASA-CR-201403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-10
    Description: The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-17
    Description: Recent observations by two different nadir-pointing airborne radars with some polarization capabilities have detected surprisingly large linear depolarization ratios at times in convective tropical rain. This depolarization can be explained if the rain is considered to be a mixture of a group of apparent spheres and another group of drops that are distorted in the horizontal plane perpendicular to the direction of propagation of the incident wave. If confirmed in future observations, this suggests that at times the larger raindrops are oscillating, in part, because of collisions with smaller drops. Since many of the interpretations of radar polarization measurements in rain by ground-based radars presume that the raindrop shapes correspond to those of the well-known "equilibrium" drops, the present observations may require adjustments to some radar polarization algorithms for estimating rainfall rate, for example, if the shape perturbations observed at nadir also apply to measurements along other axes as well.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; 35; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: We describe observations of tropical stratospheric water vapor q that show clear evidence of large-scale upward advection of the signal from annual fluctuations in the effective 'entry mixing ratio' q(sub E) of air entering the tropical stratosphere. In other words, air is 'marked,' on emergence above the highest cloud tops, like a signal recorded on an upward moving magnetic tape. We define q(sub E) as the mean water vapor mixing ratio, at the tropical tropopause, of air that will subsequently rise and enter the stratospheric 'overworld' at about 400 K. The observations show a systematic phase lag, increasing with altitude, between the annual cycle in q(sub E) and the annual cycle in q at higher altitudes. The observed phase lag agrees with the phase lag calculated assuming advection by the transformed Eulerian-mean vertical velocity of a q(sub E) crudely estimated from 100-hPa temperatures, which we use as a convenient proxy for tropopause temperatures. The phase agreement confirms the overall robustness of the calculation and strongly supports the tape recorder hypothesis. Establishing a quantitative link between q(sub E) and observed tropopause temperatures, however, proves difficult because the process of marking the tape depends subtly on both small- and large-scale processes. The tape speed, or large-scale upward advection speed, has a substantial annual variation and a smaller variation due to the quasi-biennial oscillation, which delays or accelerates the arrival of the signal by a month or two in the middle stratosphere. As the tape moves upward, the signal is attenuated with an e-folding time of about 7 to 9 months between 100 and 50 hPa and about 15 to 18 months between 50 and 20 hPa, constraining possible orders of magnitude both of vertical diffusion K(sub z) and of rates of mixing in from the extratropics. For instance, if there were no mixing in, then K(sub z) would be in the range 0.03-0.09 m(exp 2)/s; this is an upper bound on K(sub z).
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204863 , Paper-95JD03422 , NAS 1.26:204863 , Journal of Geophysical Research (ISSN 0148-0227); 101; D2; 3989-4006
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203825 , NAS 1.26:203825 , 1996 International Radiation; Jan 01, 1996; Fairbanks, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: A low pressure laboratory experiment to generate sporadic electrical discharges in either a particulate dielectric or air, representing a competing path of preferred electrical breakdown, was investigated. At high pressures, discharges occurred inside the dielectric particulate; at low pressures, discharges occurred outside the dielectric particulate; at a transition pressure regime, which depends on conductivity of the dielectric particulate, discharges were simultaneously generated in both particulate dielectric and air. Unique use of a particulate dielectric was critical for sporadic discharges at lower pressures which were not identical in character to discharges without the particulate dielectric. Application of these experimental results to the field of atmospheric electricity and simulation of the above-cloud type discharges that have recently been documented, called jets and sprites, are discussed.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204699 , NAS 1.26:204699 , Journal of Atmospheric and Solar-Terrestrial Physics (ISSN 1364-6826); 59; 3; 271-279
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...