ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (506)
  • Animals  (506)
  • 1990-1994  (506)
  • 1994  (506)
  • Physics  (506)
Collection
  • Articles  (506)
Years
  • 1990-1994  (506)
Year
  • 1
    Publication Date: 1994-02-25
    Description: Activation of the serine-threonine kinase p34cdc2 at an inappropriate time during the cell cycle leads to cell death that resembles apoptosis. Premature activation of p34cdc2 was shown to be required for apoptosis induced by a lymphocyte granule protease. The kinase was rapidly activated and tyrosine dephosphorylated at the initiation of apoptosis. DNA fragmentation and nuclear collapse could be prevented by blocking p34cdc2 activity with excess peptide substrate, or by inactivating p34cdc2 in a temperature-sensitive mutant. Premature p34cdc2 activation may be a general mechanism by which cells induced to undergo apoptosis initiate the disruption of the nucleus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, L -- Nishioka, W K -- Th'ng, J -- Bradbury, E M -- Litchfield, D W -- Greenberg, A H -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1143-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8108732" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; CDC2 Protein Kinase/*metabolism ; DNA Damage ; Deoxyribonucleases/pharmacology ; Enzyme Activation ; Enzyme Induction ; Membrane Glycoproteins/pharmacology ; Mice ; Mitosis ; Molecular Sequence Data ; Perforin ; Phosphorylation ; Pore Forming Cytotoxic Proteins ; Serine Endopeptidases/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-01-07
    Description: Coexpression of the human Met receptor and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), in NIH 3T3 fibroblasts causes the cells to become tumorigenic in nude mice. The resultant tumors display lumen-like morphology, contain carcinoma-like focal areas with intercellular junctions resembling desmosomes, and coexpress epithelial (cytokeratin) and mesenchymal (vimentin) cytoskeletal markers. The tumor cells also display enhanced expression of desmosomal and tight-junction proteins. The apparent mesenchymal to epithelial conversion of the tumor cells mimics the conversion that occurs during embryonic kidney development, suggesting that Met-HGF/SF signaling plays a role in this process as well as in tumors that express both epithelial and mesenchymal markers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsarfaty, I -- Rong, S -- Resau, J H -- Rulong, S -- da Silva, P P -- Vande Woude, G F -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 7;263(5143):98-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ABL-Basic Research Program, National Cancer Institute (NCI)-Frederick Cancer Research and Development Center, MD 21702-1201.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7505952" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; *Cell Transformation, Neoplastic ; Desmosomes/ultrastructure ; Epithelial Cells ; Hepatocyte Growth Factor/metabolism/pharmacology ; Keratins/biosynthesis ; Kidney/embryology/metabolism ; Mesoderm/cytology ; Mice ; Mice, Nude ; Neoplasms, Experimental/metabolism/*pathology ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-met ; *Proto-Oncogenes ; Receptor Protein-Tyrosine Kinases/genetics/*metabolism ; Signal Transduction ; Transfection ; Vimentin/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-05-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patience, C -- McKnight, A -- Clapham, P R -- Boyd, M T -- Weiss, R A -- Schulz, T F -- G117/547/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 1994 May 20;264(5162):1159-60; author reply 1162-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7909960" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/*physiology ; Antigens, Differentiation, T-Lymphocyte/*physiology ; Base Sequence ; Cats ; Cell Line ; Dipeptidyl Peptidase 4 ; HIV-1/*physiology ; Humans ; Mink ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: An activity that severs stable microtubules is thought to be involved in microtubule reorganization during the cell cycle. Here, a 48-kilodalton microtubule-severing protein was purified from Xenopus eggs and identified as translational elongation factor 1 alpha (EF-1 alpha). Bacterially expressed human EF-1 alpha also displayed microtubule-severing activity in vitro and, when microinjected into fibroblasts, induced rapid and transient fragmentation of cytoplasmic microtubule arrays. Thus, EF-1 alpha, an essential component of the eukaryotic translational apparatus, appears to have a second role as a regulator of cytoskeletal rearrangements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shiina, N -- Gotoh, Y -- Kubomura, N -- Iwamatsu, A -- Nishida, E -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):282-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Molecular Biology, Kyoto University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939665" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Guanosine Triphosphate/analogs & derivatives/metabolism ; Humans ; Microtubules/drug effects/*metabolism ; Molecular Sequence Data ; Molecular Weight ; Oocytes ; Peptide Elongation Factor 1 ; Peptide Elongation Factors/chemistry/isolation & purification/*physiology ; Rats ; Recombinant Proteins/pharmacology ; Ribonucleoproteins/chemistry/isolation & purification/*physiology ; Sepharose/analogs & derivatives/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-26
    Description: The interaction of B7-related molecules on antigen-presenting cells with CD28 or CTLA-4 antigens on T cells provides a second signal for T cell activation. Selection inhibition of the B7-CD28 or B7-CTLA-4 interactions produces antigen-specific T cell unresponsiveness in vitro and suppresses immune function in vivo. To determine whether selective inhibition of the B7-CD28 or B7-CTLA-4 interactions could suppress spontaneous autoimmune disease, a B7-binding protein was generated by genetic fusion of the extracellular domain of murine CTLA-4 to the Fc portion of a mouse immunoglobulin G2a monoclonal antibody (muCTLA4Ig). In lupus-prone NZB/NZW filial generation (F1) mice, treatment with muCTLA4Ig blocked autoantibody production and prolonged life, even when treatment was delayed until the most advanced stage of clinical illness. These findings suggest a possible role for human CTLA4Ig in the treatment of autoimmune diseases in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finck, B K -- Linsley, P S -- Wofsy, D -- New York, N.Y. -- Science. 1994 Aug 26;265(5176):1225-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7520604" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Animals ; Antibodies, Antinuclear/biosynthesis ; Antibodies, Monoclonal ; Antigens, CD ; Antigens, CD80/metabolism ; Antigens, Differentiation/immunology/metabolism/*therapeutic use ; B-Lymphocytes/immunology ; CTLA-4 Antigen ; Female ; Humans ; *Immunoconjugates ; Immunotherapy ; Lupus Erythematosus, Systemic/immunology/*therapy ; Mice ; Mice, Inbred NZB ; Mice, Inbred Strains ; Recombinant Fusion Proteins/therapeutic use ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-12-23
    Description: GAL4-VP16-mediated nucleosome reconfiguration and transcriptional activation were observed with preassembled chromatin templates that contained regular and physiological nucleosome spacing. Both processes were dependent on adenosine triphosphate (ATP), although binding of GAL4-VP16 to the chromatin was ATP-independent. Factor-mediated nucleosome reconfiguration was not, however, sufficient for transcriptional activation. These experiments recreate in vitro the active participation of nucleosomal cores in the regulation of transcription that occurs in vivo, and they suggest a multistep pathway for transcriptional activation in which factor- and ATP-dependent nucleosome reconfiguration is followed by facilitation by the DNA-bound activator of transcription from the repressed chromatin template.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pazin, M J -- Kamakaka, R T -- Kadonaga, J T -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2007-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, San Diego, La Jolla 92093-0347.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801129" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Animals ; Chromatin/chemistry/*metabolism ; DNA/metabolism ; DNA-Binding Proteins ; Drosophila ; Fungal Proteins/metabolism ; Models, Genetic ; Nucleosomes/chemistry/*metabolism ; *Saccharomyces cerevisiae Proteins ; Templates, Genetic ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-05-13
    Description: In Drosophila, the misexpression or altered activity of genes from the bithorax complex results in homeotic transformations. One of these genes, abd-A, normally specifies the identity of the second through fourth abdominal segments (A2 to A4). In the dominant Hyperabdominal mutations (Hab), portions of the third thoracic segment (T3) are transformed toward A2 as the result of ectopic abd-A expression. Sequence analysis and deoxyribonuclease I footprinting demonstrate that the misexpression of abd-A in two independent Hab mutations results from the same single base change in a binding site for the gap gene Kruppel protein. These results establish that the spatial limits of the homeotic genes are directly regulated by gap gene products.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimell, M J -- Simon, J -- Bender, W -- O'Connor, M B -- New York, N.Y. -- Science. 1994 May 13;264(5161):968-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine 92717.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7909957" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; DNA-Binding Proteins/genetics/metabolism ; *Drosophila Proteins ; Drosophila melanogaster/embryology/*genetics ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation ; *Genes, Homeobox ; Genes, Insect ; Kruppel-Like Transcription Factors ; Molecular Sequence Data ; *Nuclear Proteins ; *Point Mutation ; Proteins/*genetics ; Regulatory Sequences, Nucleic Acid ; *Repressor Proteins ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-12-02
    Description: The nucleoli of vertebrate cells contain a number of small RNAs that are generated by the processing of intron fragments of protein-coding gene transcripts. The host gene (UHG) for intro-encoded human U22 is unusual in that it specifies a polyadenylated but apparently noncoding RNA. Depletion of U22 from Xenopus oocytes by oligonucleotide-directed ribonuclease H targeting prevented the processing of 18S ribosomal RNA (rRNA) at both ends. The appearance of 18S rRNA was restored by injection of in vitro-synthesized U22 RNA. These results identify a cellular function for an intron-encoded small RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tycowski, K T -- Shu, M D -- Steitz, J A -- GM26154/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 2;266(5190):1558-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7985025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Blotting, Northern ; Cell Nucleolus/*chemistry ; Humans ; *Introns ; Molecular Sequence Data ; Oligonucleotide Probes ; Oocytes/metabolism ; RNA Precursors/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Nuclear/chemistry/*genetics/*physiology ; RNA, Ribosomal, 18S/*metabolism ; RNA, Small Nuclear/chemistry/*genetics/*physiology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-09-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischman, J -- New York, N.Y. -- Science. 1994 Sep 30;265(5181):2011-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8091222" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Ethiopia ; *Fossils ; History, Ancient ; Hominidae/*classification ; Humans ; Paleodontology ; Pan troglodytes/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-08-19
    Description: The Xlsirts are a family of transcribed repeat sequence genes that do not code for protein. Xlsirt RNAs become localized to the vegetal cortex of Xenopus oocytes early in oogenesis, before the localization of the messenger RNA Vg1, which encodes a transforming growth factor-beta-like molecule involved in mesoderm formation, and coincident with the localization of Xcat2 transcripts, which encode a nanos-like molecule. Destruction of the localized Xlsirts by injection of antisense oligodeoxynucleotides into stage 4 oocytes resulted in the release of Vg1 transcripts but not Xcat2 transcripts from the vegetal cortex. Xlsirt RNAs, which may be a structural component of the vegetal cortex, are a crucial part of a genetic pathway necessary for the proper localization of Vg1 that leads to subsequent normal pattern formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kloc, M -- Etkin, L D -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1101-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7520603" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cells, Cultured ; Glycoproteins/*genetics ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; Oogenesis ; RNA/*genetics ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/genetics ; Repetitive Sequences, Nucleic Acid ; Transforming Growth Factor beta/genetics ; Xenopus ; *Xenopus Proteins ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...