ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (303)
  • Engineering  (303)
  • Life and Medical Sciences
  • 2020-2020
  • 2015-2019
  • 1990-1994  (303)
  • 1993  (157)
  • 1990  (146)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (303)
Collection
  • Articles  (303)
Publisher
Years
  • 2020-2020
  • 2015-2019
  • 1990-1994  (303)
Year
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 391-401 
    ISSN: 0271-2091
    Keywords: Laminar ; Turbulent ; Transitional flows ; Separation ; Reattachment ; Transition location ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An interactive boundary layer method, together with the en approach to the calculation of transition, has been used to investigate the flow over an indented surface for which previous calculations had led to numerical instabilities. The results show two possible reasons for these numerical difficulties. First, it is shown that the gradients of wall shear become very steep at larger Reynolds numbers, particularly in the vicinity of reattachment. Extremely fine numerical grids are required to resolve these gradients. Secondly, and perhaps of greater importance, transition is shown to occur within the region of recirculation for all Reynolds numbers except for the lowest ones. Thus, the calculated flows downstream of the transition locations are fictitious and may be expected to deviate from the corresponding real flows by increasing amounts as the Reynolds number becomes larger. Calculations involving laminar, transitional and turbulent flow have been performed and confirm this conjecture.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 1027-1028 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 1007-1025 
    ISSN: 0271-2091
    Keywords: Multilayer model ; K-ε model of turblence ; Free surface ; Recirculating flow ; Curvilinear co-ordinates ; Non-staggered grid ; Depth correction scheme ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Based on the steady hydrodynamic equations, a multilayer (ML) model has been formulated for simulating turbulent flow in open channels. The model is imposed on a general curvilinear co-ordinate system with non-staggered finite volume discretization. The turbulent quantities in the model are described by the layer-averaged K-ε turbulence model with standard coefficients. Assuming a vertical hydrostatic pressure distribution, a depth correction scheme, originating in the Rhie and Chow approach for confined flows, is incorporated into the SIMPLE procedure to compute the water surface.Using the multilayer model, flows in a 180° channel bend, near a groin, and in straight open channels are computed. The results are compared with experimental data and with calculations of a depth-averaged model (DAV) having three-dimensional effect corrections. The comparisons show that the predictions of the ML model on mean flow values are in good agreement with the available data and are better than those of the DAV model. The vertical distribution of the turbulent energy dissipation rate is also shown to agree well with the open-channel measurements.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 1099-1100 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 1029-1050 
    ISSN: 0271-2091
    Keywords: Finite volume ; Compressible flow ; Subsonic flow ; Transonic flow ; Supersonic flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An existing two-dimensional method for the prediction of steady-state incompressible flows in complex geometry is extended to treat also compressible flows at all speeds. The primary variables are the Cartesian velocity components, pressure and temperature. Density is linked to pressure via an equation of state. The influence of pressure on density in the case of compressible flows is implicitly incorporated into the extended SIMPLE algorithm, which in the limit of incompressible flow reduces to its well-known form. Special attention is paid to the numerical treatment of boundary conditions. The method is verified on a number of test cases (inviscid and viscous flows), and both the results and convergence properties compare favourably with other numerical results available in the literature.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 1079-1098 
    ISSN: 0271-2091
    Keywords: Unstructured triangular mesh ; Upwind finite-volume method ; Euler ; Approximate LU factorization ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A scheme for the numerical solution of the two-dimensional (2D) Euler equations on unstructured triangular meshes has been developed. The basic first-order scheme is a cell-centred upwind finite-volume scheme utilizing Roe's approximate Riemann solver. To obtain second-order accuracy, a new gradient based on the weighted average of Barth and Jespersen's three-point support gradient model is used to reconstruct the cell interface values. Characteristic variables in the direction of local pressure gradient are used in the limiter to minimize the numerical oscillation around solution discontinuities. An Approximate LU (ALU) factorization scheme originally developed for structured grid methods is adopted for implicit time integration and shows good convergence characterisitics in the test. To eliminate the data dependency which prohibits vectorization in the inversion process, a black-gray-white colouring and numbering technique on unstructured triangular meshes is developed for the ALU factorization scheme. This results in a high degree of vectorization of the final code. Numerical experiments on transonic Ringleb flow, transonic channel flow with circular bump, supersonic shock reflection flow and subsonic flow over multielement aerofoils are calculated to validate the methodology.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. iii 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 115-144 
    ISSN: 0271-2091
    Keywords: Flux vector splitting ; Euler equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new flux vector splitting scheme has been suggested in this paper. This scheme uses the velocity component normal to the volume interface as the characteristic speed and yields the vanishing individual mass flux at the stagnation. The numerical dissipation for the mass and momentum equations also vanishes with the Mach number approaching zero. One of the diffusive terms of the energy equation does not vanish. But the low numerical diffusion for viscous flows may be ensured by using higher-order differencing. The scheme is very simple and easy to be implemented. The scheme has been applied to solve the one dimensional (1D) and multidimensional Euler equations. The solutions are monotone and the normal shock wave profiles are crisp. For a 1D shock tube problem with the shock and the contact discontinuities, the present scheme and Roe scheme give very similar results, which are the best compared with those from Van Leer scheme and Liou-Steffen's advection upstream splitting method (AUSM) scheme. For the multidimensional transonic flows, the sharp monotone normal shock wave profiles with mostly one transition zone are obtained. The results are compared with those from Van Leer scheme, AUSM and also with the experiment.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 163-176 
    ISSN: 0271-2091
    Keywords: Surface grid ; Grid generation ; Geometric generation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper describes a new method to generate surface grids over complex configurations defined by a geometric generation system. The scheme is designed for direct utilization of the surface definition provided by a geometric modeller based on a boundary representation (the so-called B-rep modeller). Thus, the conversion of the geometric representation for the surface grid generator is not required. Consequently, this technique eliminates not only laborious tedium in the conversion of data, but also errors in the representation of the surface induced in the process of the conversion.The proposed method is accomplished over several stages. First, the triangulation is performed on the surface of the geometry, on which the area to be grided is laid. Then linear partial differential equations are mapped and solved on these triangular elements. Finally, the surface grid is constructed by searching for the contours inside the solution domain. After the co-ordinate values of the grid points are obtained by a linear interpolation within each triangular element, these values are mapped onto the surface of the geometry through surface parametric functions provided by the B-rep modeller.An example of generating surface grid over a car configuration is given to illustrate the capability of the method.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 1-27 
    ISSN: 0271-2091
    Keywords: Finite volume ; Navier-Stokes equations ; Collocative methods ; Prolate spheroid ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The computation of incompressible three-dimensional viscous flow is investigated. An iterative fully decoupled technique based on the fully elliptic mode is applied to the Reynolds-averaged-Navier-Stokes equations (RANSE) written down in a non-orthogonal curvilinear body-fitted co-ordinate system. Results of the computations are compared with experimental data past a prolate spheroid at 30° incidence.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 83-85 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 29-42 
    ISSN: 0271-2091
    Keywords: 3D extrusion ; Moving boundaries ; Die design ; Remeshing ; Finite elements ; Free surfaces ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Let us call a direct extrusion problem (DEP) the problem of finding the shape of the extrudate coming out of a die of prescribed shape. An implicit finite element formulation of the DEP which is geometrically general and for which a Newton-Raphson technique can be implemented has recently been proposed by Legat and Marchal. However, the problem posed to the die designer is frequently the inverse extrusion problem (IEP), i.e. finding the die shape which produces an extrudate of prescribed shape. This paper presents an extension of our original method for solving the IEP which avoids the ‘trial-and-error’ iteration on the die geometry itself.The advantage of the formulation lies in its capability to handle complex geometrics and in its low cost, because the CPU time and memory required to solve the IEP are almost identical to those of the DEP. We present benchmark results for squares and rectangles and new results obtained for geometries involving multiple corners. For an octagonal shape we also consider the case of a power-law fluid.For all results presented in this paper, surface tension has not been included.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 329-345 
    ISSN: 0271-2091
    Keywords: Characteristics method ; Cubic interpolation ; Unsteady flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The specified-time-interval (STI) scheme has been used commonly in applying the method of characteristics (MOC) to unsteady open-channel flow problems. However, with the use of STI scheme, the numerical error for the simulation results can always be induced due to the interpolation used to approximate the characteristics trajectory. Hence, in order to remedy the numerical errors caused by the interpolation, one needs to seek some kind of interpolation technique with higher-order accuracy. Instead of the linear interpolation technique, which has been used very commonly and can induce serious numerical diffusion, the Holly--Preissmann two-point, method, which is a cubic interpolation technique with fourth-order of accuracy, is proposed here to integrate with the method of characteristics for the computation of one-dimensional unsteady flow in open channel. The concept of reachback and reachout in space and time directions for the characteristics is also introduced to assure the model stability. The computed results from this new model are compared with those computed by using the Preissmann four-point scheme and the multimode method of characteristics with linear interpolation.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 351-351 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 353-364 
    ISSN: 0271-2091
    Keywords: Ice keels ; Drag ; Stratified flow ; Marker and cell ; SOLA-VOF ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical investigation of the flow of two immiscible stratified fluids under an isolated keel has been undertaken. The investigation utilized the two-dimensional Euler equations for incompressible flow, and the solution of these equations has been obtained by using the well-known finite volume marker and cell approach. Experimental drag-force measurements are also presented for a family of two-dimensional topographic models of fixed height with increasing surface slopes in a two-layer density system. The range of flow speeds explored covers the Froude number range from subcritical to fully supercritical. The drag force measurements are augmented by detailed observations of the interface distortion. The results clearly show large drag increases arising from the internal wave systems generated in the stratified flow. Very good agreement has been found between the experimental and numerical results for both the interface shape between the two fluids and the drag force on a variety of keels.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 403-419 
    ISSN: 0271-2091
    Keywords: Outflow boundary conditions ; Laminar recirculating flows ; Non-staggered grid systems ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Several open boundary conditions (OBCs) are compared and evaluated in the framework of the SIMPLE algorithm using staggered and non-staggered grid systems. The benchmark laminar flow test cases used for the OBC evaluation are Poiseuille-Benard flow in a channel and stratified backward-facing step flow. The investigated OBCs are linear explicit step space extrapolation, Orlanski's monochromatic wave, and pressure extrapolation. Orlanski's and pressure extrapolation open boundary treatment for unsteady and steady flows, respectively, yield little reflection and has proved to be adequate for engineering calculations.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 365-390 
    ISSN: 0271-2091
    Keywords: TVD schemes ; Full Navier-Stokes equation ; Two-equation model ; Transonic turbulent flow ; Projectile aerodynamics ; Recirculation flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The development of a computer program to solve the axisymmetric full Navier--Stokes equations with k-ε two-equation model of turbulence using various total variation diminishing (TVD) schemes is the primary interest of this study. The computations are performed for the turbulent, transonic, viscous flow over a projectile with/without supporting sting at zero angle of attack. The predicted results, as well as the convergence characteristics, by various TVD schemes are compared with each other. The results show that the TVD schemes of higher-order accuracy do have influence on the regions of high gradients such as shock, base corner and base flow. However, the schemes of third-order accuracy do not necessarily improve the agreement with measured data (which is not available on the base) than that of second-order accuracy, but surely generate apparent different result of base flow. The supporting sting on the projectile base will complicate the base flow and the existence of the sting will slightly shift the shock location and slightly change the flow field after the shock. More iteration steps are needed to get the converged results in the computation for the projectile with sting.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 739-753 
    ISSN: 0271-2091
    Keywords: Numerical computation ; Shock-turbulent problem ; Spectral analysis ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The unsteady, compressible, Reynolds-averaged Navier-Stokes equations are solved numerically for an oblique shock-wave-induced turbulent boundary layer sepration. For the freestream Mach number 6 and the freestream Reynolds number 66·1 × 106 m-1, a time-dependent computation is performed, using MacCormack's explicit-implicit finite difference method with 82 × 42 grid points. A two-layer eddy viscosity turbulence model is employed in conjunction with a relaxation modification. Comparisons of the mean wall pressure and the mean heat transfer coefficient with the available experimental results are made and the evaluation of unsteady data for surface pressure and heat flux fluctuations is presented. It is found that the fluctuations in heat flux have qualitatively the same features as those of wall pressure but are different quantitatively.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 755-757 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 697-723 
    ISSN: 0271-2091
    Keywords: Methods of lines ; Combustion ; Reaction-diffusion equations ; Hermitian-operator methods ; Adaptive methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Adaptive and non-adaptive finite difference methods are used to study one-dimensional reaction-diffusion equations whose solutions are characterized by the presence of steep, fast-moving flame fronts. Three non-adaptive techniques based on the methods of lines are described. The first technique uses a finite volume method and yields a system of non-linear, first-order, ordinary differential equations in time. The second technique uses time linearization, discretizes the time derivatives and yields a linear, second-order, ordinary differential equation in space, which is solved by means of three-point, fourth-order accurate, compact differences. The third technique takes advantage of the disparity in the time scales of the reaction and diffusion processes, splits the reaction--diffusion operator into a sequence of reaction and diffusion operators and solves the diffusion operator by means of either a finite volume method or a three-point, fourth-order accurate compact difference expression. The non-adaptive methods of lines presented in this paper may use equaliy or non-equally spaced fixed grids and require a large number of grid points to solve accurately one-dimensional problems characterized by the presence of steep, fast-moving fronts. Three adaptive methods for the solution of reaction-diffusion equations are considered. The first adaptive technique is static and uses a subequidistribution principle to determine the grid points, avoid mesh tangling and node overtaking and obtain smooth grids. The second adaptive technique is dynamic, uses an equidistribution principle with spatial and temporal smoothing and yields a system of first-order, non-linear, ordinary differential equations for the grid point motion. The third adaptive technique is hybrid, combines some features of static and dynamic methods, and uses a predictor-corrector strategy to predict the grid and solve for the dependent variables, respectively. The three adaptive techniques presented in this paper use physical co-ordinates and may employ finite volume or three-point, compact methods. The adaptive and non-adaptive finite difference methods presented in the paper are used to study a decomposition chemical reaction characterized by a scalar, one-dimensional reaction-diffusion equation, the propagation of a one-dimensional, confined, laminar flame in Cartesian co-ordinates and the Dwyer-Sanders model of one-dimensional flame propagation. It is shown that the adaptive moving method presented in this paper requires a smaller number of grid points than adaptive static, adaptive hybrid and non-adaptive methods. The adaptive hybrid method requires a smaller time step than adaptive static techniques, due to the lag between the grid prediction and the solution of the dependent variables. Non-adaptive methods of lines may yield temperature oscillations in front of and behind the flame front if Crank-Nicolson techniques are used to evaluate the time derivatives. Fourth-order accurate methods of lines in space yield larger temperature oscillations than second-order accurate methods of lines, and the magnitude of these oscillations decreases as the time step is decreased. It is also shown that three-point, fourth-order accurate discretizations of the spatial derivatives require the same number of grid points as second-order accurate, finite volume methods, in order to resolve accurately the structure of steep, fast-moving flame fronts.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 777-791 
    ISSN: 0271-2091
    Keywords: Vortex sheet ; Propeller slipstream ; Propeller-airframe integration ; Finite volume ; Full potential ; Transonic flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper summarizes a combined analytical-computational technique which models vortex sheets in transonic potential-flow methods. In this approach, the inviscid nature of discontinuities across vortex sheets is preserved by employing the step function to remove singularities at these surfaces. The location and strength of the vortex sheets are determined by satisfying the flow-tangency boundary condition and the vorticity transport equation. The theory is formulated for the general three-dimensional case, but its application is confined to the problem of computing slipstreams behind propellers with free-vortex blading in axisymmetric flows.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 759-775 
    ISSN: 0271-2091
    Keywords: Euler/NAVIER-STOKES equations ; Hypersonic flows ; Real gas ; Upwind scheme ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A study of viscous and inviscid hypersonic flows using generalized upwind methods is presented. A new family of hybrid flux-splitting methods is examined for hypersonic flows. The hybrid method is constructed by the superposition of the flux-vector-splitting (FVS) method and second-order artificial dissipation in the regions of strong shock waves. The conservative variables on the cell faces are calculated by an upwind extrapolation scheme to third-order accuracy. A second-order-accurate scheme is used for the discretization of the viscous terms. The solution of the system of equations is achieved by an implicit unfactored method. In order to reduce the computational time, a local adaptive mesh solution (LAMS) method is proposed. The LAMS method combines the mesh-sequencing technique and local solution of the equations. The local solution of either the Euler or the NAVIER-STOKES equations is applied for the region of the flow field where numerical disturbances die out slowly. Validation of the Euler and NAVIER-STOKES codes is obtained for hypersonic flows around blunt bodies. Real gas effects are introduced via a generalized equation of state.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 793-811 
    ISSN: 0271-2091
    Keywords: Three-step method ; Convection-dominated flows ; Unsteady incompressible flows ; Density flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper describes a three-step finite element method and its applications to unsteady incompressible fluid flows. Stability analysis of the one-dimensional pure convection equation shows that this method has third-order accuracy and an extended numerical stability domain in comparison with the Lax--Wendroff finite element method. The method is cost-effective for incompressible flows because it permits less frequent updates of the pressure field with good accuracy. In contrast with the Taylor-Galerkin method, the present method does not contain any new higher-order derivatives, which makes it suitable for solving non-linear multidimensional problems and flows with complicated boundary conditions. The three-step finite element method has been used to simulate unsteady incompressible flows. The numerical results obtained are in good agreement with those in the literature.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 813-825 
    ISSN: 0271-2091
    Keywords: Bubble formation ; Bubble growth ; Bubbling regimes ; Free boundaries ; Interface advection ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The formation of large gas bubbles at submerged orifices is investigated numerically with a two-dimensional, transient, finite difference model using a volume fraction specification to track the movement of the gas-liquid interface. Experimentally observed features of large-bubble formation such as the initial toroidal shape of the bubbles and the penetration of liquid down the pipe centreline are well predicted by the model. The expected oscillatory nature of growth is also observed. The bubble departure volume corresponds to experiments and to the model of Davidson and Schuler. At present the simulations do not extend far enough to investigate multiple-bubble ejection and important bubble-to-bubble interactions during growth and after departure.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 153-170 
    ISSN: 0271-2091
    Keywords: Hydrodynamic stability ; Leading edge boundary layer ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical study is performed in order to gain insight to the stability of the infinite swept attachment line boundary layer. The basic flow is taken to be of the Hiemenz class with an added cross-flow giving rise to a constant thickness boundary layer along the attachment line. The full Navier-Stokes equations are solved using an initial value problem approach after two-dimensional perturbations of varying amplitude are introduced into the basic flow.A second-order-accurate finite difference scheme is used in the normal-to-the-wall direction, while a pseudospectral approach is employed in the other directions; temporally, an implicit Crank-Nicolson scheme is used. Extensive use of the efficient fast Fourier transform (FFT) algorithm has been made, resulting in substantial savings in computing cost.Results for the two-dimensional linear regime of perturbations are in very good agreement with past numerical and theoretical investigations, without the need for specific assumptions used by the latter, thus establishing the generality of our method.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 0271-2091
    Keywords: Boundary-layer equations ; Spectral collocation methods ; Compressible flow ; Wall-normal velocity ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We consider a problem which arises in the numerical solution of the compressible two-dimensional or axisymmetric boundary-layer equations. Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x, y) plane to a computational (ξ, η) plane in which the evolution of the flow is ‘slow’ in the time-like ξ direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently non-linear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which satisfies the continuity equation nearly to machine precision. As demonstration of the utility of the method, the boundary layers of three prototypical high-speed flows are investigated and compared: the flat plate, the hollow cylinder, and the cone. An important implication for classical linear stability theory is also briefly discussed.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 173-186 
    ISSN: 0271-2091
    Keywords: Supersonic flow ; Linearized Riemann solver ; Space marching ; Godunov-type methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A very simple linearization of the solution to the Riemann problem for the steady supersonic Euler equations is presented. When used locally in conjunction with the Godunov method, computing savings by a factor of about four relative to the use of exact Riemann solvers can be achieved. For severe flow regimes, however, the linearization loses accuracy and robustness. We then propose the use of a Riemann solver adaptation procedure. This retains the accuracy and robustness of the exact Riemann solver and the computational efficiency of the cheap linearized Riemann solver. Numerical results for two- and three-dimensional test problems are presented.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 187-198 
    ISSN: 0271-2091
    Keywords: Three-dimensional ; Finite element ; Free surface flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An efficient semi-implicit finite element model is proposed for the simulation of three-dimensional flows in stratified seas. The body of water is divided into a number of layers and the two horizontal momentum equations for each layer of water are first integrated vertically. Nine-node Lagrangian quadratic isoparametric elements are employed for spatial discretization in the horizontal domain. The time derivatives are approximated using a second-order-accurate semi-implicit time-stepping scheme. The distinguishing feature of the proposed numerical scheme is that only nodal values on the same vertical line are coupled. Two test cases for which analytic solutions are available are employed to test the proposed scheme. The test results show that the scheme is efficient and stable. A numerical experiment is also included to compare the proposed scheme with a finite difference scheme.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 199-215 
    ISSN: 0271-2091
    Keywords: Defect correction ; Conservation laws ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper investigates the use of defect correction procedures for the solution of finite volume approximations to systems of conservation laws. Particular emphasis is laid on the order of accuracy obtained after a fixed finite number of iterations. It is shown that a high order of accuracy may be achieved after only one defect correction iteration, involving two inversions of a stable lower-order-accurate operator. However, this result is found to be critically dependent on the consistency of the lower-order operator, a property which does not always hold for conservative finite volume discretizations. Through numerical experiments, the lack of consistency of these schemes is found to inhibit severely the finite termination property of the defect correction process. Results are presented for linear advection, Poisson's equation, and the Euler equations.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 217-230 
    ISSN: 0271-2091
    Keywords: Finite elements ; Moist atmosphere ; Convection ; Computation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A computer simulation is made of cellular convection in a moist atmosphere in an endeavour to obtain a computer model which more closely approximates the observed modes of convection. A finite element Galerkin technique, with Taylor approximation and Crank-Nicolson, is employed and comparisons are made with the author's earlier finite element models of convection in an absolutely unstable atmosphere and with finite difference models. It is found that the inclusion of the moisture effects alters the structure of a cell to that of a narrow ascending region and a wider descending region with the former of larger velocities than the latter, and also alters the preferred mode of convection by increasing the aspect ratio. This more closely resembles that which is observed in the atmosphere.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 231-237 
    ISSN: 0271-2091
    Keywords: Compressible flows ; Boundary integral equation method ; Fundamental-solution method ; Non-linear potential equation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A complete boundary integral formulation for steady compressible inviscid flows governed by non-linear equations is established by using the specific mass flux as a dependent variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain. It is shown that the boundary integral formulation developed in this paper is equivalent of the results of distributions of the fundamental solutions of the Laplacian operator equation with a different order along the boundaries of the domain. Hence, we have succeeded in establishing the fundamental-solution method for compressible inviscid flows governed by non-linear equations.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 255-257 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 239-248 
    ISSN: 0271-2091
    Keywords: Asymmetric wake ; Turbulent flow ; k-ε model of turbulence ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The development of asymmetric wake behind an aerofoil in turbulent incompressible flow has been computed using finite volume scheme for solving two-dimensional Navier-Stokes equations along with the k-ε model of turbulence. The results are compared with available experimental data. It is observed that the computed shift of the point of minimum velocity with distance is sensitive to the prescribed value of the normal component of velocity at the trailing edge of the aerofoil. Making the model constant Cu as a function of streamline curvature and changing the production term in the equation for ε, has only marginal influence on the results.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 249-253 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Projection method ; Time discretization ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We show that the continuous (in time) form of the projection-3 scheme proposed in Reference 2 is not a proper approximation of the unsteady Navier-Stokes equations. Hence, the projection-3 scheme and its variants are not appropriate for the numerical computation of the Navier-Stokes equations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 259-285 
    ISSN: 0271-2091
    Keywords: Turbocharger radial turbine ; Gas--particle flow ; Erosion ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An analysis of the erosion behaviour of a turbocharger radial turbine is presented. The solution domain includes both sides of the radial turbine scroll with double intake and the rotor channel. In the analysis a dilute gas-particle flow assumption is employed. The gas turbulence is defined by the k-ε model. In solving the gas phase equation, the computer code Harwell-FLOW3D is employed, which is based on a finite volume formulation using non-orthogonal body-fitted structured gridding and a pressure correction method. The particle phase is described by a Lagrangian approach, while particle paths are computed deterministically, neglecting the turbulent dispersion. For the computation of particle trajectories the code PTRACK is employed, which has been developed at ABB. Computations are carried out for several particle size classes. The results show that particles are thrown back into the scroll by the rotor at high rates. This seems to be the main source of erosion effects in the scroll. It has been observed that particles are unequally distributed between the scroll sides on their re-entry, resulting in greater erosion on one of the scroll sides. The maximum erosion along the scroll is found to be likely to occur near the scroll end.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 303-327 
    ISSN: 0271-2091
    Keywords: Parallel computing ; Finite volume method ; Implicit method ; Multigrid method ; Domain decomposition ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite volume numerical method for the prediction of fluid flow and heat transfer in simple geometries was parallelized using a domain decomposition approach. The method is implicit, uses a colocated arrangement of variables and is based on the SIMPLE algorithm for pressure-velocity coupling. Discretization is based on second-order central difference approximations. The algebraic equation systems are solved by the ILU method of Stone.1 To accelerate the convergence, a multigrid technique was used. The efficiency was examined on three different parallel computers for laminar flow in a pipe with an orifice and natural convection in a closed cavity. It is shown that the total efficiency is made up of three major factors: numerical efficiency, parallel efficiency and load-balancing efficiency. The first two factors were thoroughly investigated, and a model for predicting the parallel efficiency on various computers is presented. Test calculations indicate reasonable total efficiency and favourable dependence on grid size and the number of processors.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 445-446 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 421-443 
    ISSN: 0271-2091
    Keywords: Turbulence ; Swirling recirculating flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A hybrid k-ε turbulence model, based on the concept that the modification of anisotropic effects should not be made in the flow regions inherent to small streamline curvatures, has been developed and examined with the swirling recirculating flows, with the swirl levels ranging from 0·6 to 1·23 in abrupt pipe expansion. A fairly satisfactory agreement of model predictions with the experimental data shows that this hybrid k-ε model can perform better simulation of swirling recirculating flows as compared to the standard k-ε model and the modified k-ε model proposed by Abujelala and Lilley.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 447-459 
    ISSN: 0271-2091
    Keywords: Shallow water ; Boussinesq equations ; Finite element method ; Solitary wave ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A two-dimensional (in-plane) numerical model for surface waves propagation based on the non-linear dispersive wave approach described by Boussinesq-type equations, which provide an attractive theory for predicting the depth-averaged velocity field resulting from that wave-type propagation in shallow water, is presented. The numerical solution of the corresponding partial differential equations by finite-difference methods has been the subject of several scientific works. In the present work we propose a new approach to the problem: the spatial discretization of the system composed by the Boussinesq equations is made by a finite element method, making use of the weighted residual technique for the solution approach within each element. The model is validated by comparing numerical results with theoretical solutions and with results obtained experimentally.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 461-487 
    ISSN: 0271-2091
    Keywords: Transient 2D and 3D simulation ; Two-phase flow ; Stratified and intermittent flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Stratified and intermittent stratified-bubble (slug) flows are complex phenomena, often requiring transient 2D and 3D descriptions. This paper presents the physical basis of a new type of multidimensional two-fluid model, particularly suited for transient flow problems. Important constitutive relations for wall shear stress and interfacial momentum transfer with necessary assumptions and simplifications are discussed. The numerical method is based on an implicit finite difference scheme, solved directly in two steps applying a separate equation for the pressure. The model has been verified through extensive comparisons with available experimental data as well as through comparisons with other models.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 507-523 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Incompressible boundary-fitted co-ordinates ; Non-symmetric linear systems ; Iterative solver ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We describe some experiences using interative solution methods of GMRES type to solve the discretized Navier-Stokes equations. The discretization combined with a pressure correction scheme leads to two different systems of equations: the momentum equations and the pressure equation. It appears that a fast solution method for the pressure equation is obtained by applying the recently proposed GMRESR method, or GMRES combined with a MILU preconditioner. The diagonally scaled momentum equations are solved by GMRES(m), a restarted version of GMRES.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 489-505 
    ISSN: 0271-2091
    Keywords: Free-surface flow ; Two-dimensional modelling ; Finite volumes ; MUSCL approach ; Upwind differencing ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A high-order Godunov-type scheme based on MUSCL variable extrapolation and slope limiters is presented for the resolution of 2D free-surface flow equations. In order to apply a finite volume technique of integration over body-fitted grids, the construction of an approximate Jacobian (Roe type) of the normal flux function is proposed. This procedure allows conservative upwind discretization of the equations for arbitrary cell shapes. The main advantage of the model stems from the adaptability of the grid to the geometry of the problem and the subsequent ability to produce correct results near the boundaries. Verification of the technique is made by comparison with analytical solutions and very good agreement is found. Three cases of rapidly varying two-dimensional flows are presented to show the efficiency and stability of this method, which contains no terms depending on adjustable parameters. It can be considered well suited for computation of rather complex free-surface two-dimensional problems.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 545-547 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 525-544 
    ISSN: 0271-2091
    Keywords: Turbulence modelling ; Second-moment closure ; Complex geometries ; Finite-volume method ; Collocated variables ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper addresses the implementation of second-moment closure into a collocated variable arrangement body-fitted-finite-volume scheme in which Cartesian velocity components are used. The methods for avoiding instability in the solution procedure are described. A new method for the treatment of the near-wall regions for the momentum equations, as well as the prescription of the stresses at the wall, is described in detail. The performance of the methodology is assessed by applying it to two flow situations, where experimental data are available: the flow over a backward step, and the flow through a sinusoidal pipe constriction. The results are very promising.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 549-579 
    ISSN: 0271-2091
    Keywords: Boundary integral equation ; Boundary element method ; SIMPLE algorithm ; Two-dimensional laminar flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new boundary element method is described for calculation of the steady incompressible laminar flows. The method is based on the well-known SIMPLE algorithm. The new boundary element method allows one to find the fields of the pressure and velocity corrections without inner iterations, thus reducing the computational time drastically. This makes it different from the method developed by Patankar and Spalding.32 However, the new method demands a much larger computer strorage. The boundary integral equations are discretized with the help of constant boundary elements and constant cells. The values of the integrals along the boundary elements and the cells for the two-dimensional domain are found analytically. To preserve the stability in the iteration process, under-relaxation for the convection terms is used. This paper gives the results of calculations of the flows between two plane parallel plates at Re = 20 and Re = 200, the flows in a square cavity with a moving upper lid at Re = 1 and Re = 100 and the flow in a plane channel with sudden symmetric expansion at Re =46·6.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Finite element method ; Distensible tubes ; Wave propagation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The fluid flow in distensible tubes is analysed by a finite element method based on an uncoupled solution of the equations of wall motion and fluid flow. Special attention is paid to the choice of proper boundary conditions. Computations were made for sinusoidal flow in a distensible uniform tube with the Womersley parameter α = 5, and a ratio between tube radius and wavelenth from 0·0001 to 0·5. The agreement between the numerical results and Womersley's analytic solution depends on the speed ratio between fluid and wave velocity, and is fair for speed ratios up to 0·05. The analysis of the flow field in a distensible tube with a local inhomogeneity revealed a marked influence of wave phenomena and wall motion on the velocity profiles.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 581-596 
    ISSN: 0271-2091
    Keywords: Unsteady ; Incompressible ; Viscous ; Transonic ; Supersonic ; Euler equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Standard preconditioners such as incomplete LU decomposition perform well when used with conjugate gradient-like iterative solvers such as GMRES for the solution of elliptic problems. However, efficient computation of convection-dominated problems requires, in general, the use of preconditioners tuned to the particular class of fluid-flow problems at hand. This paper presents three such preconditioners. The first is applied to the finite element computation of inviscid (Euler equations) transonic and supersonic flows with shocks and uses incomplete LU decomposition applied to a matrix with extra artificial dissipation. The second preconditioner is applied to the finite difference computation of unsteady incompressible viscous flow; it uses incomplete LU decomposition applied to a matrix to which a pseudo-compressible term has been added. The third method and application are similar to the second, only the LU decomposition is replaced by Beam-warming approximate factorization. In all cases, the results are in very good agreement with other published results and the new algorithms are found to be competitive with others; it is anticipated that the efficiency and robustness of conjugate-gradient-like methods will render them the method of choice as the difficulty of the problems that they are applied to is increased.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 613-627 
    ISSN: 0271-2091
    Keywords: Finite elements ; Aeroacoustics ; Propellers ; Sheared flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The recent interest in propeller noise generation, stimulated by development of new propeller types for commerical propjets, has generated a need for the ability of measure the noise characteristics of propellers. However, wind tunnel noise measurements are affected by reflections from the wind tunnel walls. Computer codes predicting the free-field noise of a propeller and its noise field in a circular wind tunnel allow validating the use of wind tunnel measurements to predict free-field noise characteristics. A wind tunnel contains flow which is uniform in the duct axial direction, but can vary in the radial direction. It can be shown that a third-order differential equation governs the acoustic pressure field for such a duct containing radially sheared subsonic flow. This third-order problem is then posed as a coupled pair of equations which are second-order in terms of acoustic density and first-order in terms of an artificial variable which represents the effects of the flow being sheared. It is shown that this form of the problem allows a natural extension of the existing numerical solution techniques for non-sheared flow. The sheared flow problem is presented, and a finite element method is developed to yield a solution for propeller-type acoustic forces. The finite element code and method are refined with numerical experiments, and results are presented for a specific propeller and duct geometry. Good agreement is shown between this method and an alternate approach to the sheared flow problem using a piecewise constant representation of the velocity in the boundary layer. This validates both the numerical methods.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 655-657 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 629-654 
    ISSN: 0271-2091
    Keywords: Shallow-water equations ; Subcritical and supercritical flows ; Open channels ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow-water equations in open channels, together with an extension to two-dimensional flows. A linearized problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearized problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a one-dimensional dam-break problem, and to a problem of flow in a river whose geometry induces a region of supercritical flow. The scheme is also applied to a two-dimensional dam-break problem. The numerical results are compared with the exact solution, or other numerical results, where available.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 683-696 
    ISSN: 0271-2091
    Keywords: Collocation ; Incompressible flow ; Shear layer ; Unbounded region ; Vortex ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical solution for the Navier-Stokes equations in the unbounded region is considered for the interaction of an isolated vortex and shear flow. A Chebyshey collocation method in space and finite-difference method for temporal discretization are used. The results of the numerical experiments for the interaction are discussed. It is shown that shear flow can both increase and decrease the vortex dissipation rate.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 725-738 
    ISSN: 0271-2091
    Keywords: Serre equations ; MacCormack's method ; Solitary waves ; Sudden releases ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper describes a two-dimensional numerical model to solve the generalized Serre equations. In order to solve the system equations, written in the conservative form, we use an explicit finite-difference method based on the MacCormack time-splitting scheme. The numerical method and the computational model are validated by comparing one- and two-dimensional numerical solutions with theoretical and experimental results. Finally, the two-dimensional model (in a horizontal plane) is tested in a domain with complicated boundary conditions.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 659-682 
    ISSN: 0271-2091
    Keywords: NAVIER-STOKES equations ; 3-Point exponential upwind ; Pressure perturbation ; Stability ; Curved channel ; Laminar flow ; Square-driven cavity ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A first-order non-conforming numerical methodology, Separation method, for fluid flow problems with a 3-point exponential interpolation scheme has been developed. The flow problem is decoupled into multiple one-dimensional subproblems and assembled to form the solutions. A fully staggered grid and a conservational domain centred at the node of interest make the decoupling scheme first-order-accurate. The discretization of each one-dimensional subproblem is based on a 3-point interpolation function and a conservational domain centred at the node of interest. The proposed scheme gives a guaranteed first-order accuracy. It is shown that the traditional upwind (or exponentially weighted upstream) scheme is less than first-order-accurate. The pressure is decoupled from the velocity field using the pressure correction method of SIMPLE. Thomas algorithm (tri-diagonal solver) is used to solve the algebraic equations iteratively. The numerical advantage of the proposed scheme is tested for laminar fluid flows in a torus and in a square-driven cavity. The convergence rates are compared with the traditional schemes for the square-driven cavity problem. Good behaviour of the proposed scheme is ascertained.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 845-854 
    ISSN: 0271-2091
    Keywords: Boundary element method ; Cavity flow ; Riabouchinsky flow ; Free surface flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper presents a formulation of the boundary element method (BEM) for solution of axisymmetric cavity flow problems. The governing equation is written in terms of Stokes' stream function, requiring a new fundamental solution to be found. The iterative procedure for adjusting the free-surface position is similar to that used for planar cavity flows. Numerical results are compared with finite difference and finite element solutions, showing the robustness of the BEM model.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 967-988 
    ISSN: 0271-2091
    Keywords: Transient 2-3D simulation ; Two-phase flows ; Intermittent flows ; Taylor bubbles ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper a new type of transient multidimensional two-fluid model has been applied to simulate intermittent or slug flow problems. Three different approaches to modelling interfacial friction, including an interfacial tracking scheme, have been investigated. The numerial method is based on an implicit finite difference scheme, solved directly in two steps applying a separate equation for the pressure. 2D predictions of Taylor bubble propagation in horizontal and inclined channels have been compared with experimental data and analytical solutions. The 2D model has also been applied to investigate a number of special phenomena in slug flow, including slug initiation, bubble turning in downflow and the bubble centring process at large liquid flow rates.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 145-162 
    ISSN: 0271-2091
    Keywords: Similarity problems ; Numerical solution methods ; Finite difference method ; Iterative procedure ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A simple and efficient approximate numerical technique is presented to obtain solutions to a wide class of two-point boundary value similarity problems in fluid mechanics. This technique is based on the common finite difference method with central differencing, a tridiagonal matrix manipulation and an iterative procedure. The technique described in this paper has been successfully applied to three different representative similarity problems of fluid mechanics. Each one of these problems is described by a coupled, non-linear system of three ordinary differential equations and has already been solved elsewhere using a different numerical method. So, the obtained numerical results, by our efficient numerical technique, permit a comparative study and show the accuracy and the effectiveness of this technique.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 177-193 
    ISSN: 0271-2091
    Keywords: Viscous flow ; Kinetic theory ; Finite volume method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The kinetic-theory-based solution methods for the Euler equations proposed by Pullin and Reitz are here extended to provide new finite volume numerical methods for the solution of the unsteady Navier-Stokes equations. Two approaches have been taken. In the first, the equilibrium interface method (EIM), the forward- and backward-flowing molecular fluxes between two cells are assumed to come into kinetic equilibrium at the interface between the cells. Once the resulting equilibrium states at all cell interfaces are known, the evaluation of the Navier-Stokes fluxes is straightforward. In the second method, standard kinetic theory is used to evaluate the artificial dissipation terms which appear in Pullin's Euler solver. These terms are subtracted from the fluxes and the Navier-Stokes dissipative fluxes are added in. The new methods have been tested in a 1D steady flow to yield a solution for the interior structure of a shock wave and in a 2D unsteady boundary layer flow. The 1D solutions are shown to be remarkably accurate for cell sizes large compared to the length scale of the gradients in the flow and to converge to the exact solutions as the cell size is decreased. The steady-state solutions obtained with EIM agree with those of other methods, yet require a considerably reduced computational effort.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 195-220 
    ISSN: 0271-2091
    Keywords: Mesh embedding ; Control volume upwinding ; Three-dimensionality ; Turbulent flow ; Turbine cascade ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical model for the compressible Navier-Stokes equations using local mesh embedding is presented. The model solves for three-dimensional turbulent flow using an algebraic mixing length model of turbulence. The technique of control volume upwinding is used to produce a novel treatment, whereby the hanging nodes on the mesh interfaces are left with null control volumes. This yields an efficient discretization scheme which ensures second-order accuracy, flux conservation and stability at the mesh interfaces, whilst retaining a simple interpolative treatment for the hanging nodes. The discrete flow equations are solved using the semi-implicit pressure correction method. The accuracy of the embedded mesh solver is demonstrated by modelling the three-dimensional flow through a cascade of turbine vanes at design and off-design conditions. Mesh embedding gives a saving of 48% in the number of nodes. The embedded mesh solutions compare well with fine structured mesh solutions and experimental measurements. The capability of the embedded mesh solver to perform solution adaptive calculations is demonstrated using a two-dimensional mid-height section of the cascade at the off-design flow conditions.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 221-239 
    ISSN: 0271-2091
    Keywords: Turbulent reacting flows ; Modelling ; Solution sensitivity ; Numerical methods ; Multi-grid method ; Numerical accuracy ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An evaluation of some numerical methods for turbulent reacting flows in furnace-like geometries is carried out. The Reynolds averaged Navier-Stokes equations and the two-equation k-∊ model together with either finite-rate or infinite-rate reaction models are solved numerically. Either single- or multiple-step reactions together with the ‘eddy dissipation concept’ (EDC) are used to model reacting flows with finite reaction rates. The numerical scheme is finite difference based, together with a multi-grid method and a local grid refinement technique. These methods have been used to calculate the combustion of propane in a single- and multiple-burner configurations. In the former case, the sensitivity of the solution to variations in some model parameters (determining the reaction rate) and numerical parameters (mesh spacing) has been studied. It is noted that different dependent variables exhibit different levels of sensitivity to the variation in model parameters. Thus, calibration and validation of models for reacting flows require that one compares the most sensitive variables. For engineering purposes, on the other hand, one may calibrate and validate models with respect to the most relevant variables. Our conclusion is that since sensitivity of the temperature distribution is relatively mild, one can still use EDC-like methods in engineering applications where details of the temperature field are of minor importance.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 241-255 
    ISSN: 0271-2091
    Keywords: Unstructured grids ; Delaunay triangulation ; Advancing front ; Internal node generation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The past decade has known an increasing interest in the solution of the Euler equations on unstructured grids due to the simplicity with which an unstructured grid can be tailored around very complex geometries and be adapted to the solution. It is desirable that the mesh can be generated with minimum input from the user, ideally, just specifying the boundary geometry and, perhaps, a function to prescribe some desired mesh size. The internal nodes should then be found automatically by the grid generation code. The approach we propose here combines the Delaunay triangulation with ideas from the advancing front method of Peraire et al. and Löhner et al. Both methods are briefly reviewed in Section 1. Our method uses a background grid to interpolate local mesh size parameters that is taken from the triangulation of the given boundary nodes. Geometric criteria are used to find a set of nodes in a frontal manner. This set is subsequently introduced into the existing mesh, thus providing an update Delaunay triangulation. The procedure is repeated until no more improvement of the grid can be achieved by inserting new nodes.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 257-270 
    ISSN: 0271-2091
    Keywords: Two-phase flow ; Phase separation ; Two-fluid model ; Numerical simulation ; T-junction ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The main objective of this paper is to investigate the ability of a two-dimensional two-fluid computer code to predict the phase separation in a T-junction. A new semi-implicit numerical scheme is developed for solving the two-fluid model equations. Special attention is directed to the modelling of the constitutive for the interfacial friction term. Detailed distribution of void fraction, pressure and velocities are obtained for an air-water mixture in a vertical tee. Good agreement was obtained between the computer code results and the experimental data for the phase separation in the T-junction.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 271-289 
    ISSN: 0271-2091
    Keywords: Least-squares finite element method ; Time-dependent ; Incompressible flows ; Bqussinesq approximation ; Navier-Stokes equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The time-dependent Navier-Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity-pressure-vorticity-temperature-heat-flux (u-P-ω-T-q) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 291-300 
    ISSN: 0271-2091
    Keywords: Vortex breakdown ; Linear stability ; Swirling flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The linear stability of numerical solutions to the quasi-cylindrical equations of motion for swirling flows is investigated. Initial conditions are derived from Batchelor's similarity solution for a trailing line vortex. The stability calculations are performed using a second-order-accurate finite-difference scheme on a staggered grid, with the accuracy of the computed eigenvalues enhanced through Richardson extrapolation. The streamwise development of both viscous and inviscid instability modes is presented. The possible relationship to vortex breakdown is discussed.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 543-566 
    ISSN: 0271-2091
    Keywords: Multigrid method ; Navier-Stokes equations ; Incomressible flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods were used as smoothers in a common tailored multigrid procedure. The resulting solvers were applied to three two-dimensional flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L2 norm of the velocity changes is reduced to 10-6 in a few 10's of fine-grid sweeps. The results of the study are used to draw conciusions on the strengths and weaknesses of the individual relaxation methods as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 567-587 
    ISSN: 0271-2091
    Keywords: Unsteady supersonic flow ; Flux vector splitting ; TVD scheme with limiters ; Pressure and Mach cells ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The unsteady flow over an oscillatory NACA0012 aerofoil has been simulated by the calculation with Euler equations. The equations are discretized by an implicit Euler in time, and a second-order space-accurate TVD scheme based on flux vector splitting with van Leer's limiter. Modified eigenvalues are proposed to overcome the slope discontinuities of split eigenvalues at Mach = 0·0 and ± 1·0, and to generate a bow shock in front of the aerofoil. A moving grid system around the aerofoil is generated by Sorenson's boundary fitted co-ordinates for each time step. The calculations have been done for two angles of attack θ = 5·0° sin (ωt) and θ = 3·0° + 3·0° sin (ωt) for the free-stream Mach numbers 2·0 and 3·0. The results show that pressure and Mach cells flow along characteristic lines. To examine unsteady effects, the responses of wall pressure and normal force coefficients are analysed by a Fourier series expansion.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 589-603 
    ISSN: 0271-2091
    Keywords: Vector ; Poisson ; Navier-Stokes ; Supercomputer ; Thomas ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The advent of vector and massively parallel computers offers researchers the possibility of enormous gains in execution time for scientific and engineering programs. From the numerical point of view, such programs are frequently based on the inversion of sparse, diagonally banded matrices. Conventional scalar solvers often perform poorly on vector machines due to short effective vector lengths, and thus appropriate methods must be chosen for use with vector machines. In this paper a number of commonly used solvers are tested for the Navier-Stokes equations, in both scalar and vector form, on two vector architecture machines. A new method is presented which performs well in both vector and scalar form on a range of vector architectures.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 635-635 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 605-633 
    ISSN: 0271-2091
    Keywords: Viscoelastic fluids ; Finite differences ; Shooting method ; Flow through a channel ; Porous slider ; Flow through a vertical wall ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The flow of viscoelastic fluids through a porous channel with one impermeable wall is computed. The flow is characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. Three solutions are developed: (i) an exact numerical solution, (ii) a perturbation solution for small R, the cross-flow Reynold's number and (iii) an asymptotic solution for large R. The results from exact numerical integration reveal that the solutions for a non-Newtonian fluid are possible only up to a critical value of the viscoelastic fluid parameter, which decreases with an increase in R. It is further demonstrated that the perturbation solution gives acceptable results only if the viscoelastic fluid parameter is also small.Two more related problems are considered: fluid dynamics of a long porous slider, and injection of fluid through one side of a long vertical porous channel. For both the problems, exact numerical and other solutions are derived and appropriate conclusions drawn.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 637-665 
    ISSN: 0271-2091
    Keywords: Tidal models ; Maximum likelihood ; Modelling uncertain boundaries ; Parameter estimation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this paper we consider a parameter estimation procedure for shallow sea models. The method is formulated as a minimization problem. An adjoint model is used to calculate the gradient of the criterion which is to be minimized. In order to obtain a robust estimation method, the uncertainty of the open boundary conditions can be taken into acoount by allowing random noise inputs to act on the open boundaries. This method avoids the possibility that boundary errors are interpreted by the estimation procedure as parameter fluctuations. We apply the parameter estimation method to identify a shallow sea model of the entire European continental shelf. First, a space-varying bottom friction coefficient is estimated simultaneously with the depth. The second application is the estimation of the parameterization of the wind stress coefficient as a function of the wind velocity. Finally, an uncertain open boundary condition is included. It is shown that in this case the parameter estimation procedure does become more robust and produces more realistic estimates. Furthermore, an estimate of the open boundary conditions is also obtained.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 667-685 
    ISSN: 0271-2091
    Keywords: 3D Stokes flow ; Finite element method ; Uzawa algorithm ; Preconditioned conjugale gradient method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Preconditioned conjugate gradient algorithms for solving 3D Stokes problems by stable piecewise discontinuous pressure finite elements are presented. The emphasis is on the preconditioning schemes and their numerical implementation for use with Hermitian based discontinuous pressure elements. For the piecewise constant discontinuous pressure elements, a variant implementation of the preconditioner proposed by Cahouet and Chabard for the continuous pressure elements is employed. For the piecewise linear discontinuous pressure elements, a new preconditioner is presented. Numerical examples are presented for the cubic lid-driven cavity problem with two representative elements, i.e. the Q2-PO and the Q2-P1 brick elements. Numerical results show that the preconditioning schemes are very effective in reducing the number of pressure iterations at very reasonable costs. It is also shown that they are insensitive to the mesh Reynolds number except for nearly steady flows (Rem → 0) and are almost independent of mesh sizes. It is demonstrated that the schemes perform reasonably well on non-uniform meshes.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 687-710 
    ISSN: 0271-2091
    Keywords: Finite-volume method ; Multigrid method ; Incompressible Navier-Stokes equation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An algorithm for the solutions of the two-dimensional incompressible Navier-Stokes equations is presented. The algorithm can be used to compute both steady-state and time-dependent flow problems. It is based on an artificial compressibility method and uses higher-order upwind finite-volume techniques for the convective terms and a second-order finite-volume technique for the viscous terms. Three upwind schemes for discretizing convective terms are proposed here. An interesting result is that the solutions computed by one of them is not sensitive to the value of the artificial compressibility parameter. A second-order, two-step Runge-Kutta integration coupling with an implicit residual smoothing and with a multigrid method is used for achieving fast convergence for both steady- and unsteady-state problems. The numerical results agree well with experimental and other numerical data. A comparison with an analytically exact solution is performed to verify the space and time accuracy of the algorithm.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 711-729 
    ISSN: 0271-2091
    Keywords: Primitive variables ; Newton iteration ; Boundary-fitted co-ordinates ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical code has been implemented for the numerical solution of the steady, incompressible Navier-Stokes equations using primitive variables in a bifurcating channel. A boundary-fitted, numerically generated grid is placed onto the domain of the channel which is transformed into either a rectilinear C- or T-shaped region. The differenced equations are solved using Newton's iteration which makes upwinding at high Reynolds number unnecessary. Practical implications of inverting the huge Jacobian matrix of Newton's method are discussed. The results have relative error of 2-3 × 10-3 at Reynolds number 100, with T-geometry being marginally but significantly more accurate than C-geometry. Results have been obtained for Reynolds numbers up to 1000 for three bifurcations one of which models the carotid arterial bifurcation in the human head. For this latter bifurcation the wall shear stress is calculated in connection with the onset of atherosclerosis. Finally, the results of flows having different daughter tube end pressures are presented.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 731-754 
    ISSN: 0271-2091
    Keywords: Instability ; Non-parallel flow ; Fourier-rational Chebyshev mode ; Vortex street ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The local instability of a full non-parallel flow is investigated. The basic flow is a horizontal uniform flow about a vertical array of periodic bound eddies. This flow was found by Kovasznay as an exact solution to the Navier-Stokes equations. The problem is formulated as an initial value problem with two sets of complete orthogonal functions. A new approach to the problem with semi-infinite domain is given computationally with a new modified rational Chebyshev function. The linear stability analysis of the Kovasznay flow is performed with respect to the odd-rational Chebyshev mode and the even-rational Chebyshev mode for the evolution of disturbances. While symmetrical vortex sheets appeared through the process of big eddies breaking into small eddies in the odd-rational Chebyshev mode, the von Kármán vortex street phenomena is found in the even-rational Chebyshev mode. The mode corresponding to antisymmetric velocity perturbation is found to be far more unstable than symmetric disturbance. An organized structure is developed after the onset of instability. Several general characteristics of non-parallel flow stability are discussed.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 755-786 
    ISSN: 0271-2091
    Keywords: Stability ; Soret ; Buoyancy ; Bifurcation ; Non-linear ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The buoyancy-driven instability of a monocomponent or binary fluid that is completely contained in a vertical circular cylinder is investigated, including the influence of the Soret effect for the binary mixture. The Boussinesq approximation is used, and weakly-non-linear solutions are generated via Galerkin's technique using an expansion in the eigensolutions of the associated linear stability problem. Various types of fluid mixtures and cylindrical domains are considered. Flow structure and associated heat transfer are computed and experimental observations are cited when possible.
    Additional Material: 32 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 787-801 
    ISSN: 0271-2091
    Keywords: Integral ; Transforms ; Natural Convection ; Porous Media ; Numerical Methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A hybrid numerical-analytical solution for steady-state natural convection in a porous cavity is proposed, based on application of the ideas in the generalized integral transform technique. The integral transformation process reduces the original coupled partial differential equations, for temperature and stream function, into an infinite system of non-linear ordinary differential equations for the transformed potentials, which is adaptively truncated and numerically solved through well-established algorithms. The approach is applied to a vertical rectangular enclosure subjected to uniform internal heat generation. The convergence characteristics of the explicit inversion formulae are illustrated and critical comparisons with previously reported purely numerical solutions are performed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 803-823 
    ISSN: 0271-2091
    Keywords: Numerical diffusion ; Skew upwind ; Convective transport ; Stability ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new computational method is presented for reducing numerical diffusion in environmental fluid problems. This method, which is referred to as the Semi-Implicit Skew Upwind Method (SISUM), is a robust solution procedure for the conditional convergence of the discretized transport equations. The method retains the advantage of the low numerical diffusion of the conventional skew upwind schemes but does not suffer from over- or under-shooting often found in these methods due to the improved interpolation schemes. The effectiveness of SISUM is demonstrated in several examples. The comparison of the results of a hybrid scheme and SISUM with field observations of convection-dominated pollutant transport in strongly curvilinear river flow shows that SISUM successfully eliminates the high numerical diffusion produced by the hybrid scheme. The robustness of the method was tested by solving the hydrodynamics of a circular clarifier model with a large density gravity source term in the vertical-momentum equation.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 825-837 
    ISSN: 0271-2091
    Keywords: Multigrid ; Supersonic ; Hypersonic ; Viscous ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A multigrid acceleration technique developed for solving the three-dimensional Navier-Stokes equations for subsonic/transonic flows has been extended to supersonic/hypersonic flows. An explicit multistage Runge-Kutta type of time-stepping scheme is used as the basic algorithm in conjunction with the multigrid scheme. Solutions have been obtained for a blunt conical frustum at Mach 6 to demonstrate the applicability of the multigrid scheme to high-speed flows. Computations have also been performed for a generic High-Speed Civil Transport configuration designed to cruise at Mach 3. These solutions demonstrate both the efficiency and accuracy of the present scheme for computing high-speed viscous flows over configurations of practical interest.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 861-885 
    ISSN: 0271-2091
    Keywords: Euler equations ; Conservative variables ; Primitive variables ; High-resolution ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In extending high-resolution methods from the scalar case to systems of equations there are a number of options available. These options include working with either conservative or primitive variables, characteristic decomposition, two-step methods, or component-wise extension. In this paper, several of these options are presented and compared in terms of economy and solution accuracy. The characteristic extension with either conservative or primitive variables produces excellent results with all the problems solved. Using primitive variables, the two-step formulation produces high-quality results in a more economical manner. This method can also be extended to multiple dimensions without resorting to dimensional splitting. Proper selection of limiters is also important in non-characteristic extension to systems.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 839-859 
    ISSN: 0271-2091
    Keywords: Conservation laws ; Essentially-non oscillatory methods ; Total variation diminishing methods ; Flux-corrected transport methods ; Random choice method ; Euler-Lagrange method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Eight numerical schemes (first-order upstream finite difference, MacCormack, explicit Taylor-Galerkin, random choice, flux-corrected transport, ENO, TVD, and Euler-Lagrange methods) are compared on the basis of their computational efficiency for one-dimensional non-linear convection-diffusion problems. For the ideal chromatographic equation for which an exact solution exists, errors plotted against computational times show that the best methods are the random choice, Euler-Lagrange and flux-corrected MacCormack methods. Even when significant diffusion is added to the model, steep gradients are possible because of non-linearities. In such an instance, the random choice and flux-corrected transport methods give the best performance. One can now tackle more complicated problems and refer to this comparative study in order to choose an adequate numerical method which will provide sufficiently accurate results at a reasonable cost.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 887-904 
    ISSN: 0271-2091
    Keywords: Finite-volume ; Non-orthogonal co-ordinates ; Multigrid ; Collocated grids ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The development of a multigrid solution algorithm for the computation of three-dimensional laminar fully-elliptic incompressible flows is presented. The procedure utilizes a non-orthogonal collocated arrangement of the primitive variables in generalized curvilinear co-ordinates. The momentum and continuity equations are solved in a decoupled manner and a pressure-correction equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. The convergence of the numerical solution is accelerated by the use of a Full Approximation Storage (FAS) multigrid technique. Numerical computations of the laminar flow in a 90° strongly curved pipe are performed for several finite-volume grids and Reynolds numbers to demonstrate the efficiency of the present numerical scheme. The rates of convergence, computational times, and multigrid performance indicators are reported for each case. Despite the additional computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence of the present algorithm is shown to result in significantly reduced overall CPU times.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 923-925 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 921-922 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993) 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 905-920 
    ISSN: 0271-2091
    Keywords: Solitary waves ; Korteweg-de Vries equation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Two-dimensional solitary waves generated by disturbances moving near the critical speed in shallow water are computed by a time-stepping procedure combined with a desingularized boundary integral method for irrotational flow. The fully non-linear kinematic and dynamic free-surface boundary conditions and the exact rigid body surface condition are employed. Three types of moving disturbances are considered: a pressure on the free surface, a change in bottom topography and a submerged cylinder. The results for the free surface pressure are compared to the results computed using a lower-dimensional model, i.e. the forced Korteweg-de Vries (fKdV) equation. The fully non-linear model predicts the upstream runaway solitons for all three types of disturbances moving near the critical speed. The predictions agree with those by the fKdV equation for a weak pressure disturbance. For a strong disturbance, the fully non-linear model predicts larger solitons than the fKdV equation. The fully non-linear calculations show that a free surface pressure generates significantly larger waves than that for a bottom bump with an identical non-dimensional forcing function in the fKdV equation. These waves can be very steep and break either upstream or downstream of the disturbance.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 927-941 
    ISSN: 0271-2091
    Keywords: Shear-thinning ; Shear-thickening ; Apparent viscosity ; Normal stress difference ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The problem of the steady flow of three classes of non-linear fluids of the differential type past a porous plate with uniform suction or injection is studied. The flow which is studied is the counterpart of the classical ‘asymptotic suction’ problem, within the context of the non-Newtonian fluid models. The non-linear differential equations resulting from the balance of momentum and mass, coupled with suitable boundary conditions, are solved numerically either by a finite difference method or by a collocation method with a B-spline function basis. The manner in which the various material parameters affect the structure of the boundary layer is delineated. The issue of paucity of boundary conditions for general non-linear fluids of the differential type, and a method for augmenting the boundary conditions for a certain class of flow problems, is illustrated. A comparison is made of the numerical solutions with the solutions from a regular perturbation approach, as well as a singular perturbation.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 955-974 
    ISSN: 0271-2091
    Keywords: Advection-dispersion equation ; Finite elements ; Iterative methods ; Non-symmetric linear systems ; Conjugate gradients ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Seven leading iterative methods for non-symmetric linear systems (GMRES, BCG, QMR, CGS, Bi-CGSTAB, TFQMR and CGNR) are compared in the specific context of solving the advection-dispersion equation by a classic approach: The space derivatives are approximated by linear finite elements while an implicit scheme is used to integrate the time derivatives. Convergence formulas that predict the behaviour of the iterative methods as a function of the discretization parameters are developed and validated by experiments. It is shown that all methods converge nicely when the coefficent matrix of the linear system is close to normal and the finite element approximation of the advection-dispersion equation yields accurate results.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...