ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • In Vitro Techniques  (39)
  • American Association for the Advancement of Science (AAAS)  (39)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • American Physical Society (APS)
  • Oxford University Press
  • Wiley
  • 1985-1989  (39)
  • 1935-1939
  • 1988  (39)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (39)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • American Physical Society (APS)
  • Oxford University Press
  • +
Years
  • 1985-1989  (39)
  • 1935-1939
Year
  • 1
    Publication Date: 1988-12-02
    Description: Chronic granulomatous diseases of childhood (CGD) are a group of disorders of phagocytic cell superoxide (O2.-) production (respiratory burst). Anion exchange chromatography separated from normal neutrophil cytosol a 47-kilodalton neutrophil cytosol factor, NCF-1, that restored activity to defective neutrophil cytosol from most patients with autosomally inherited CGD in a cell-free O2.--generating system. A 65-kilodalton factor, NCF-2, restored activity to defective neutrophil cytosol from one patient with autosomal CGD. NCF-1, NCF-2, and a third cytosol fraction, NCF-3, were inactive alone or in pairs, but together replaced unfractionated cytosol in cell-free O2.- generation. Neutrophils deficient in NCF-1, but not NCF-2, did not phosphorylate the 47-kilodalton protein. It is proposed that NCF-1, NCF-2, and NCF-3 are essential for generation of O2.- by phagocytic cells and that genetic abnormalities of these cytosol components can result in the CGD phenotype.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nunoi, H -- Rotrosen, D -- Gallin, J I -- Malech, H L -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bacterial Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2848319" target="_blank"〉PubMed〈/a〉
    Keywords: Blotting, Western ; Cell Membrane/metabolism ; Cytosol/metabolism ; Granulomatous Disease, Chronic/*metabolism ; Humans ; In Vitro Techniques ; Molecular Weight ; Neutrophils/*metabolism ; Phosphoproteins/metabolism ; Superoxides/*biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-04-22
    Description: BC3H1 myocytes release membrane-bound alkaline phosphatase to the incubation medium upon stimulation with insulin, following a time course that is consistent with the generation of dimyristoylglycerol and the appearance of a putative insulin mediator in the extracellular medium. The use of specific blocking agents shows, however, that alkaline phosphatase release and dimyristoylglycerol production are independent processes and that the blockade of either event inhibits the production of insulin mediator. These experiments suggest a new model of insulin action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Romero, G -- Luttrell, L -- Rogol, A -- Zeller, K -- Hewlett, E -- Larner, J -- AI 18000/AI/NIAID NIH HHS/ -- AM 14334/AM/NIADDK NIH HHS/ -- AM 22125/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 22;240(4851):509-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3282305" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/metabolism/secretion ; Animals ; Diglycerides/metabolism ; Enzyme Activation/drug effects ; Extracellular Space/enzymology ; Glycolipids/*physiology ; In Vitro Techniques ; Insulin/*pharmacology ; Kinetics ; Membrane Glycoproteins/*physiology ; Phosphatidylinositols/*physiology ; Pyruvate Dehydrogenase Complex/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-01-08
    Description: The beta-adrenergic agonist isoproterenol and analogs of adenosine 3',5'-monophosphate (cAMP) induced a potassium current, M current, in freshly dissociated gastric smooth muscle cells. Muscarinic agonists suppress this current, apparently by acting at a locus downstream from regulation of cAMP levels by adenylate cyclase and phosphodiesterase. Thus, M current can be induced by an agent and regulated in antagonistic fashion by beta-adrenergic and muscarinic systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sims, S M -- Singer, J J -- Walsh, J V Jr -- DK 31620/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1988 Jan 8;239(4836):190-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Massachusetts Medical School Worcester 01655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2827305" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/pharmacology ; Animals ; Bufo marinus ; Cyclic AMP/physiology ; Electric Conductivity ; In Vitro Techniques ; Isoproterenol/pharmacology ; Membrane Potentials/drug effects ; Muscarine/pharmacology ; Muscle, Smooth/*physiology ; Potassium/*physiology ; Receptors, Adrenergic, beta/*physiology ; Receptors, Muscarinic/*physiology ; Stomach/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-07-08
    Description: Run-on transcription experiments were used to demonstrate that transcription of T cell receptor beta chain V genes is activated by DNA rearrangement, in a manner similar to immunoglobulin genes. A transcriptional enhancer likely to be involved in this activation has been identified. A 25-kilobase region from J beta 1 to V beta 14 was tested for enhancer activity by transient transfections, and an enhancer was found 7.5 kilobases 3' of C beta 2. The beta enhancer has low activity relative to the simian virus 40 viral enhancer, does not display a preference for V beta promoters, has a T cell-specific activity, and binds two purified immunoglobulin heavy chain enhancer factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDougall, S -- Peterson, C L -- Calame, K -- GM29361/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):205-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, UCLA School of Medicine 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2968651" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; *Enhancer Elements, Genetic ; Gene Expression Regulation ; Genes, Immunoglobulin ; Immunoglobulin Heavy Chains/genetics ; In Vitro Techniques ; Mice ; Nuclear Proteins/physiology ; Receptors, Antigen, T-Cell/*genetics ; Receptors, Antigen, T-Cell, alpha-beta ; *Regulatory Sequences, Nucleic Acid ; Transcription Factors/physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-07-08
    Description: Molecules involved in the antigen receptor-dependent regulation of early T cell activation genes were investigated with the use of functional sequences of the T cell activation-specific enhancer of interleukin-2 (IL-2). One of these sequences forms a protein complex, NFAT-1, specifically with nuclear extracts of activated T cells. This complex appeared 10 to 25 minutes before the activation of the IL-2 gene. Studies with inhibitors of protein synthesis indicated that the time of synthesis of the activator of the IL-2 gene in Jurkat T cells corresponds to the time of appearance of NFAT-1. NFAT-1, or a very similar protein, bound functional sequences of the long terminal repeat (LTR) of the human immunodeficiency virus type 1; the LTR of this virus is known to be stimulated during early T cell activation. The binding site for this complex activated a linked promoter after transfection into antigen receptor-activated T cells but not other cell types. These characteristics suggest that NFAT-1 transmits signals initiated at the T cell antigen receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, J P -- Utz, P J -- Durand, D B -- Toole, J J -- Emmel, E A -- Crabtree, G R -- CA 01048/CA/NCI NIH HHS/ -- CA 39612/CA/NCI NIH HHS/ -- HL 33942/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 8;241(4862):202-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3260404" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA-Binding Proteins/*physiology ; *Enhancer Elements, Genetic ; HIV/genetics ; Humans ; In Vitro Techniques ; Interleukin-2/genetics ; *Lymphocyte Activation ; Nuclear Proteins/*physiology ; Receptors, Antigen, T-Cell/*physiology ; *Regulatory Sequences, Nucleic Acid ; T-Lymphocytes/*physiology ; Transcription Factors/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-12-09
    Description: Potassium channels in neurons are linked by guanine nucleotide binding (G) proteins to numerous neurotransmitter receptors. The ability of Go, the predominant G protein in the brain, to stimulate potassium channels was tested in cell-free membrane patches of hippocampal pyramidal neurons. Four distinct types of potassium channels, which were otherwise quiescent, were activated by both isolated brain G0 and recombinant Go alpha. Hence brain Go can couple diverse brain potassium channels to neurotransmitter receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉VanDongen, A M -- Codina, J -- Olate, J -- Mattera, R -- Joho, R -- Birnbaumer, L -- Brown, A M -- DK-19318/DK/NIDDK NIH HHS/ -- HL-31154/HL/NHLBI NIH HHS/ -- HL-37044/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Dec 9;242(4884):1433-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3144040" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Imidodiphosphate/pharmacology ; Animals ; Cattle ; Electric Conductivity ; GTP-Binding Proteins/*pharmacology ; Hippocampus/*physiology ; In Vitro Techniques ; Kinetics ; Macromolecular Substances ; Membrane Potentials/drug effects ; Potassium Channels/drug effects/*physiology ; Pyramidal Tracts/physiology ; Rats ; Recombinant Proteins/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-09-23
    Description: Antibodies directed against a conserved intracellular segment of the sodium channel alpha subunit slow the inactivation of sodium channels in rat muscle cells. Of four site-directed antibodies tested, only antibodies against the short intracellular segment between homologous transmembrane domains III and IV slowed inactivation, and their effects were blocked by the corresponding peptide antigen. No effects on the voltage dependence of sodium channel activation or of steady-state inactivation were observed, but the rate of onset of the antibody effect and the extent of slowing of inactivation were voltage-dependent. Antibody binding was more rapid at negative potentials, at which sodium channels are not inactivated; antibody-induced slowing of inactivation was greater during depolarizations to more positive membrane potentials. The peptide segment recognized by this antibody appears to participate directly in rapid sodium channel inactivation during large depolarizations and to undergo a conformational change that reduces its accessibility to antibodies as the channel inactivates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vassilev, P M -- Scheuer, T -- Catterall, W A -- NS 15751/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 23;241(4873):1658-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, School of Medicine, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2458625" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies ; Cytoplasm/analysis ; In Vitro Techniques ; Ion Channels/*metabolism ; Membrane Potentials ; Molecular Sequence Data ; Peptides/*metabolism ; Rats ; Sodium/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-10-07
    Description: The enzymes adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (protein kinase A) and protein kinase C regulate the activity of a diverse group of cellular proteins including membrane ion channel proteins. When protein kinase A was stimulated in cardiac ventricular myocytes with the membrane-soluble cAMP analog 8-chlorphenylthio cAMP (8-CPT cAMP), the amplitude of the delayed-rectifier potassium current (IK) doubled when recorded at 32 degrees C but was not affected at 22 degrees C. In contrast, modulation of the calcium current (ICa) by 8-CPT cAMP was independent of temperature with similar increases in ICa occurring at both temperatures. Stimulation of protein kinase C by phorbol 12,13-dibutyrate also enhanced IK in a temperature-dependent manner but failed to increase ICa at either temperature. Thus, cardiac delayed-rectifier potassium but not calcium channels are regulated by two distinct protein kinases in a similar temperature-dependent fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, K B -- Kass, R S -- New York, N.Y. -- Science. 1988 Oct 7;242(4875):67-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Rochester, School of Medicine and Dentistry, NY 14642.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2845575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclic AMP/*analogs & derivatives/pharmacology ; Guinea Pigs ; Heart/*physiology ; Homeostasis ; In Vitro Techniques ; Kinetics ; Membrane Potentials ; Potassium Channels/*physiology ; Protein Kinase C/*metabolism ; Protein Kinases/*metabolism ; Thermodynamics ; Thionucleotides/*pharmacology ; Ventricular Function
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-07-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pool, R -- New York, N.Y. -- Science. 1988 Jul 22;241(4864):407.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3393908" target="_blank"〉PubMed〈/a〉
    Keywords: Basophils/*physiology ; Dose-Response Relationship, Immunologic ; *Homeopathy ; Humans ; In Vitro Techniques ; Publishing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-10-07
    Description: Behavioral studies have suggested that muscarinic cholinergic systems have an important role in learning and memory. A muscarinic cholinergic agonist is now shown to affect synaptic plasticity in the CA3 region of the hippocampal slice. Long-term potentiation (LTP) of the mossy fiber-CA3 synapse was blocked by muscarine. Low concentrations of muscarine (1 micromolar) had little effect on low-frequency (0.2 hertz) synaptic stimulation but did significantly reduce the magnitude and probability of induction of LTP. Experiments under voltage clamp showed that muscarine blocked the increase in excitatory synaptic conductance normally associated with LTP at this synapse. These results suggest a possible role for cholinergic systems in synaptic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, S -- Johnston, D -- HL31164/HL/NHLBI NIH HHS/ -- NS11535/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1988 Oct 7;242(4875):84-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2845578" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electric Conductivity ; Electric Stimulation ; Evoked Potentials/drug effects ; Hippocampus/drug effects/*physiology ; In Vitro Techniques ; Muscarine/*pharmacology ; Neurons/drug effects/*physiology ; Pyramidal Tracts/drug effects/*physiology ; Rats ; Reference Values ; Synapses/physiology ; Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...