ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Organic Chemistry  (391)
  • Meteorology and Climatology  (311)
  • 2000-2004  (311)
  • 1950-1954  (391)
  • 2002  (311)
  • 1953  (391)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2000-2004  (311)
  • 1950-1954  (391)
Jahr
  • 1
    Publikationsdatum: 2019-08-17
    Beschreibung: A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999/2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for 26 November 1999, whose error bars encompassed the observed variability. High-latitude extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences we inferred descent prior to 26 November: as much as 397 plus or minus 15 K (lsigma) at 30 ppbv N2O and 640 ppbv CH4, and falling to 28 plus or minus 13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from 26 November through 12 March, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between 26 November and 27 January: 0.82 plus or minus 0.20 K/day averaged over 50- 250 ppbv N2O. By late winter (26 February to 12 March), the average rate had decreased to 0.10 plus or minus 0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (26 November to 5 March) descent rate varied from 0.75 plus or minus 0.10 K/day at 50 ppbv to 0.40 plus or minus 0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999/2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Journal of Geophysical Research (ISSN 0148-0227); 107; D20; 22-1 - 22-19
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-17
    Beschreibung: Measurements from the Halogen Occultation Experiment (HALOE) revealed the infrared signature of polar mesospheric clouds (PMCs), for the first time, HALOE PMC observations at eight wavelengths (2.45 - 10 microns) show remarkable agreement with model PMC spectra based on ice particle extinction, and thus provide the first confirmation that water ice is the primary component of PMCs. Because PMCs respond to changes in temperature and water vapor, they are considered an indicator of global climate change. We propose to further the understanding of PMCs using a decade of infrared measurements form HALOE. This effort will characterize PMC spectral properties, extinction profiles, and size distributions. Using this information, HALOE measurements will be used to make simultaneous retrievals of H2O3, and temperature, in the presence of PMCs. The simultaneous retrievals of particle properties, H2O3, and temperature will be used with HALOE NO data to provide a significant step forward in the knowledge of PMC characteristics and formation conditions. We will challenge fundamental theories of PMC formation, and investigate changes in PMC properties and related conditions over the length of the HALOE measurement record. HALOE has been operating without flaw since it was launched on October 11, 1991. Consequently, ten southern and ten northern PMC seasons have been observed thus far, providing a wealth of data for the study of PMC and related parameters.
    Schlagwort(e): Meteorology and Climatology
    Materialart: GATS-090602
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-08-16
    Beschreibung: In dynamic meteorology, singular vectors (SVs) are the structures that maximize a given norm of a forecast perturbation given a tangent linear model and a quadratic constraint on the initial perturbation. That constraint is a prescription of the value of either the same or a different norm applied to the initial perturbations. In the sense that SVs maximize the forecast perturbations according to a specified measure, they may be considered as optimal perturbations. SVs are used to characterize predictability, to identify and correct possible initial errors given forecast errors, to create a set of significant perturbations for ensemble forecasting, or to determine locations for observation targeting. They are a specific application of generally defined singular vectors in mathematics.
    Schlagwort(e): Meteorology and Climatology
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-08-16
    Beschreibung: Land-atmosphere feedback, by which precipitation-induced soil moisture anomalies affect subsequent precipitation, may be an important element of Earth's climate system, but its very existence has never been demonstrated conclusively at regional to continental scales. Evidence for the feedback is sought in a 50-year observational precipitation dataset covering the United States. The precipitation variance and autocorrelation fields are characterized by features that agree (in structure, though not in magnitude) with those produced by an atmospheric general circulation model (AGCM). Because the model-generated features are known to result from land-atmosphere feedback alone, the observed features are highly suggestive of the existence of feedback in nature.
    Schlagwort(e): Meteorology and Climatology
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-16
    Beschreibung: The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-~et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is reduced 17-18% in runs neglecting the ice phase. The SCSMEX results are compared to other GCE-model-simulated weather systems that developed during other field campaigns (i.e., west Pacific warm pool region, eastern Atlantic region and central USA). Large-scale forcing vie temperature and water vapor tendency, is the major energy source for net condensation in the tropical cases. The effects of large-scale cooling exceed that of large-scale moistening in the west pacific warm pool region and eastern Atlantic region. For SCSMEX, however, the effects of large-scale moistening predominate. Net radiation and sensible and latent hc,it fluxes play a much more important role in the central USA.
    Schlagwort(e): Meteorology and Climatology
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-08-15
    Beschreibung: A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.
    Schlagwort(e): Meteorology and Climatology
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-08-14
    Beschreibung: The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China (Lau et al. 2000). Multiple observation platforms (e.g., soundings, Doppler radar, ships, wind seafarers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes, associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets (Johnson and Ciesielski 2002) and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional climate model and a cloud-resolving model are used to perform multi-day integrations to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil - precipitation interaction and feedback associated with a flood event that occurred in and around China's Atlantic River during SCSMEX. Sensitivity tests on various land surface models, cumulus parameterization schemes (CASE), sea surface temperature (SST) variations and midlatitude influences are also performed to understand the processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. Cloud-resolving models (CRMs) use more sophisticated and physically realistic parameterizations of cloud microphysical processes with very fine spatial and temporal resolution. One of the major characteristics of CRMs is an explicit interaction between clouds, radiation and the land/ocean surface. It is for this reason that GEWEX (Global Energy and Water Cycle Experiment) has formed the GCSS (GEWEX Cloud System Study) expressly for the purpose of improving the representation of the moist processes in large-scale models using CRMs. The Goddard Cumulus Ensemble (GCE) model is a CRM and is used to simulate convective systems associated with the onset of the South China Sea monsoon in 1998. The BRUCE model includes the same land surface model, cloud physics, and radiation scheme used in the regional climate model. A comparison between the results from the GCE model and regional climate model is performed.
    Schlagwort(e): Meteorology and Climatology
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-08-14
    Beschreibung: The lack of an adequate ancient analogue for future climates means that we ultimately must use and trust climate models, evaluated against modern observation and our best geologic records of warm and cold climates of the past. Armed with an elevated confidence in the models, we will then be able to make reliable predictions of the Earth's response to our risky experiment with the climate system.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Nature (ISSN 0028-0836); 419; 6903; 188-90
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-19
    Beschreibung: The Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System (EOS) Terra and Aqua missions has shown considerable capability for mapping snowcover. The typical approach that has used, along with other criteria, the Normalized Snow Difference Index (NDSI) that takes the difference between 500 meter observations at 1.64 micrometers (MODIS band 6) and 0.555 micrometers (MODIS band 4) over the sum of these observations to determine whether MODIS pixels are snowcovered or not in mapping the extent of snowcover. For many hydrological and climate studies using remote sensing of snowcover, it is desirable to assess if the MODIS snowcover observations could not be enhanced by providing the fraction of snowcover in each MODIS observation (pixel). Pursuant to this objective studies have been conducted to assess whether there is sufficient "signal%o in the NDSI parameter to provide useful estimates of fractional snowcover in each MODIS 500 meter pixel. To accomplish this objective high spatial resolution (30 meter) Landsat snowcover observations were used and co-registered with MODIS 500 meter pixels. The NDSI approach was used to assess whether a Landsat pixel was or was not snowcovered. Then the number of snowcovered Landsat pixels within a MODIS pixel was used to determine the fraction of snowcover within each MODIS pixel. The e results were then used to develop statistical relationships between the NDSI value for each 500 meter MODIS pixel and the fraction of snowcover in the MODIS pixel. Such studies were conducted for three widely different areas covered by Landsat scenes in Alaska, Russia, and the Quebec Province in Canada. The statistical relationships indicate that a 10 percent accuracy can be attained. The variability in the statistical relationship for the three areas was found to be remarkably similar (-0.02 for mean error and less than 0.01 for mean absolute error and standard deviation). Independent tests of the relationships were accomplished by taking the relationship of fractional snow-cover to NDSI from one area (e.g., Alaska) and testing it on the other two areas (e.g. Russia and Quebec). Again the results showed that fractional snow-cover can be estimated to 10 percent. The results have been shown to have advantages over other published fractional snowcover algorithms applied to MODIS data. Most recently the fractional snow-cover algorithm has been applied using 500-meter observations over the state of Colorado for a period spanning 25 days. The results exhibit good behavior in mapping the spatial and temporal variability in snowcover over that 25-day period. Overall these studies indicate that robust estimates of fractional snow-cover can be attained using the NDSI parameter over areas extending in size from watersheds relatively large compared to MODIS pixels to global land cover. Other refinements to this approach as well as different approaches are being examined for mapping fractional snow-cover using MODIS observations.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Geophysical Union 2002 Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-07-18
    Beschreibung: The 1997/98 is a strong El Nino warm event, while the 1998/99 is a moderate La Nina cold event. We have investigated surface heat budgets and sea surface temperature (SST) tendency for these two events in the tropical western Pacific and eastern Indian Oceans using satellite-retrieved surface radiative and turbulent fluxes. The radiative fluxes are taken from the Goddard Satellite-retrieved Surface Radiation Budget (GSSRB), derived from radiance measurements of the Japanese Geostationary Meteorological Satellite 5. The GSSRB covers the domain 40 deg S - 4 deg N, 90 deg E-17 deg W and a period from October 1997 to December 2000. The spatial resolution is 0.5 deg x 0.5 deg lat-long and the temporal resolution is 1 day. The turbulent fluxes are taken from Version 2 of the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF-2). The GSSTF-2 has a spatial resolution of 1 deg x 1 deg lat-long over global Oceans and a temporal resolution of 1 day covering the period July 1987-December 2000. Daily turbulent fluxes are derived from the S S M (Special Sensor Microwave/Imager) surface wind and surface air humidity, and the SST and 2-m air temperature of the NCEP/NCAR reanalysis, using a stability-dependent bulk flux algorithm. The changes of surface heat budgets, SST and tendency, cloudiness, wind speed, and zonal wind stress of the 1997/98 El Nino relative to the1998/99 La Nina for the northern winter and spring seasons are analyzed. The relative changes of surface heat budgets and SST tendency of the two events are quite different between the tropical eastern Indian and western Pacific Oceans. For the tropical western Pacific, reduced solar heating (more clouds) is generally associated with decreased evaporative cooling (weaker winds), and vise versa. The changes in evaporative cooling over-compensate that of solar heating and dominate the spatial variability of the changes in net surface heating. Both solar heating and evaporative cooling offset each other to reduce interannual variability of net surface heating. In addition, the area of increased SST tendency is larger than that of increased net surface heating, due to less solar radiation penetration through the bottom of deeper ocean mixed layer (stronger winds). For the tropical eastern Indian Ocean, enhanced solar heating (less clouds) is generally associated with reduced evaporative cooling (weaker winds). Both solar heating and evaporative cooling reinforce each other to increase interannual variability of net surface heating. In addition, the area of increased SST tendency is smaller than that of increased net surface heating in the southern domain. The relative changes in wind and zonal wind stress indicate more solar radiation penetration through the ocean mixed layer and more northward heat transport by Ocean current from the south to the north Indian Ocean for the El Nino than for the La Nina.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 12th Conference on Satellite Meteorology and Oceanography, 9-13 February, Long Beach, CA; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2019-07-18
    Beschreibung: Progress in understanding of the role of water in global weather and climate is currently limited by our knowledge of the spatial and temporal variability of primary hydrological fields such as precipitation and evaporation. The Tropical Rainfall Measuring Mission (TRMM) has recently demonstrated that use of microwave-based rainfall observations from space in data assimilation can provide better climate data sets and improve short-range weather forecasting. At NASA, we have been exploring non-traditional approaches to assimilating TRMM Microwave Imager (TMI) and Special Sensor Microwavehager (SSM/I) surface rain rate and latent heating profile information in global systems. In this talk we show that assimilating microwave rain rates using a continuous variational assimilation scheme based on moisture tendency corrections improves quantitative precipitation estimates (QPE) and related clouds, radiation energy fluxes, and large-scale circulations in the Goddard Earth Observing System (GEOS) reanalyses. Short-range forecasts initialized with these improved analyses also yield better QPE scores and storm track predictions for Hurricanes Bonnie and Floyd. We present a status report on current efforts to assimilate convective and stratiform latent heating profile information within the general variational framework of model parameter estimation to seek further improvements. Within the next 5 years, there will be a gradual increase in microwave rain products available from operational and research satellites, culminating to a target constellation of 9 satellites to provide global rain measurements every 3 hours with the proposed Global Precipitation Measurement (GPM) mission in 2007/2008. Based on what has been learned from TRMM, there is a high degree of confidence that these observations can play a'major role in improving weather forecasts and producing better global datasets for understanding the Earth's water and energy cycle. The key to success is to adopt an integrated approach to retrieval, validation, modeling, and data assimilation in a coordinated end-to-end observation-application program.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meteorological Society Annual Meeting; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2019-07-18
    Beschreibung: The main scientific goal of the GPM mission, currently planned for start in the 2007 time frame, is to investigate important scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing Operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, currently involving a partnership between NASA in the US and the National Space Development Agency in Japan. Additionally, the program is actively pursuing agreements with other international partners and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave the way for what ultimately is expected to become an internationally-organized operational global precipitation observing system. Notably, the broad societal applications of GPM are reflected in the United Nation s identification of this mission as a foremost candidate for its Peaceful Uses of Space Program. In this presentation, an overview of the GPM mission design will be presented, followed by an explanation of its scientific agenda as an outgrowth of making improvements in rain retrieval accuracy, microphysics dexterity, sampling frequency, and global coverage. All of these improvements offer new means to observe variability in precipitation and water cycle fluxes and to achieve improved predictability of weather, climate, and hydrometeorology. Specifically, the scientific agenda of GPM has been designed to leverage the measurement improvements to improve prognostic model performance, particularly quantitative precipitation forecasting and its linked phenomena at short, intermediate, and extended time scales. The talk will address how GPM measurements will enable better detection of accelerations and decelerations in regional and global water cycle processes and their relationship to climate variability, better impacts of precipitation data assimilation on numerical weather prediction and global climate reanalysis, and better performance from basin scale hydrometeorological models for short and long term flood-drought forecasting and seasonal fresh water resource assessment. Improved hydrometeorological forecasting will be possible by using continuous global precipitation observations to obtain better closure in water budgets and to generate more realistic forcing of the models themselves to achieve more accurate estimates of interception, infiltration, evaporation/transpiration fluxes, storage, and runoff.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meteorological Society, 83rd Annual Symposium on Observing and Understanding the Variability of Water in Weather and Climate; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: In the talk I shall review the MODIS use of spectral information to derive aerosol size distribution, optical thickness and reflected spectral flux. The accuracy and validation of the MODIS products will be discussed. A few applications will be shown: inversion of combined MODIS+lidar data, aerosol Anthropogenic direct forcing, and dust deposition in the Atlantic Ocean. I shall also discuss the aerosol information that MODIS is measuring: real ref index, single scattering albedo, size of fine and coarse modes, and describe the AEROSAT concept that uses bright desert and glint to derive aerosol absorption.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Aerosol-Cloud-Precip Science Workshop; Aug 05, 2003 - Aug 07, 2003; Ventura Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2019-07-18
    Beschreibung: A recent publication by Shepherd et al. (2002) demonstrated the feasibility of using TRMM precipitation radar (PR) estimates to identify precipitation anomalies caused by urbanization. The approach is particularly useful for investigating this global process because TRMM data span large portions of the globe and comprise an extended temporal dataset. Recent literature suggests that urbanized regions of Houston, Texas may be influencing lightning and precipitation formation over and downwind of the city. Possible mechanisms include: (1) enhanced convergence through interactions between the sea breeze, Galveston bay breeze, and urban heat island circulations, (2) enhanced convergence due to increased surface roughness over the city and/or destabilization of the boundary layer by the UHI, or (3) enhanced cloud condensation nuclei due to urban and industrial aerosol sources. In this study, a downscaling analysis of spatial and temporal trends in rainfall around the Houston Area is being conducted. The downscaling analysis concept involves identifying and quantifying urban rainfall anomalies at progressively smaller spatial and temporal scales using the TRMM satellite, ground-based radar, and a dense network of rain gauges. The goal is to test the hypothesis that the Houston urban district and regions in the climatological downwind region of the city exhibit enhanced rainfall amounts relative to the climatological upwind regions. TRMM was launched in 1997 and currently operates in a low-inclination (35 deg), non-sun-synchronous orbit at an altitude of 402 km (350 km prior to August 2001). The satellite analysis follows the methodologies described in Shepherd et al. (2002). Nearly five years of TRMM PR-derived mean monthly rainfall estimates are utilized to produce annual and warm season isohyetal analyses around Houston. Early results indicate that rainfall rates (mm/h) for the entire period are largest within 100 km northeast and east of Houston (e.g. the "hypothesized downwind region"). The mean rainfall rate over the Houston urban center is 30.5% larger than the upwind control region. The mean rainfall rate in the downwind region is 34.4% larger than the upwind region. An analysis of a parameter called the urban rainfall ratio (URR) illustrates that 65% (88%) of the satellite-derived rainfall rates in the downwind (upwind control) region are greater (less) than the mean background rainfall rate of the entire study region. When the data is stratified by summer months from 1998 to 2001 (June-August), even greater influence over and downwind of the urban area is observed in the statistics. This result is consistent with published reports of urban-generated rainfall being more prevalent in the warm season. The research demonstrates that the evolving TRMM satellite climatology is a credible way to detect mesoscale precipitation signatures that may be linked to urbanization. Early results also corroborate recent findings on Houston-induced convection/drainfall anomalies. Burian and Shepherd will report on other aspects of the downscaling analysis in future forums, but early rain gauge results are consistent with the satellite-based observations.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS Conference on Satellite Meteorology and Oceanography; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2019-07-18
    Beschreibung: Coordinated ground, aircraft, and satellite observations are analyzed from the 1999 TRMM Kwajalein Atoll field experiment (KWAJEX) to better understand the relationships between cloud microphysical processes and microwave radiation intensities in the context of physical evaluation of the Level 2 TRMM radiometer rain profile algorithm and uncertainties with its assumed microphysics-radiation relationships. This talk focuses on the results of a multi-dataset analysis based on measurements from KWAJEX surface, air, and satellite platforms to test the hypothesis that uncertainties in the passive microwave radiometer algorithm (TMI 2a12 in the nomenclature of TRMM) are systematically coupled and correlated with the magnitudes of deviation of the assumed 3-dimensional microphysical properties from observed microphysical properties. Re-stated, this study focuses on identifying the weaknesses in the operational TRMM 2a12 radiometer algorithm based on observed microphysics and radiation data in terms of over-simplifications used in its theoretical microphysical underpinnings. The analysis makes use of a common transform coordinate system derived from the measuring capabilities of the aircraft radiometer used to survey the experimental study area, i.e., the 4-channel AMPR radiometer flown on the NASA DC-8 aircraft. Normalized emission and scattering indices derived from radiometer brightness temperatures at the four measuring frequencies enable a 2-dimensional coordinate system that facilities compositing of Kwajalein S-band ground radar reflectivities, ARMAR Ku-band aircraft radar reflectivities, TMI spacecraft radiometer brightness temperatures, PR Ku-band spacecraft radar reflectivities, bulk microphysical parameters derived from the aircraft-mounted cloud microphysics laser probes (including liquid/ice water contents, effective liquid/ice hydrometeor radii, and effective liquid/ice hydrometeor variances), and rainrates derived from any of the individual ground, aircraft, or satellite algorithms applied to the radar or radiometer measurements, or their combination. The results support the study's underlying hypothesis, particularly in context of ice phase processes, in that the cloud regions where the 2a12 algorithm's microphysical database most misrepresents the microphysical conditions as determined by the laser probes, are where retrieved surface rainrates are most erroneous relative to other reference rainrates as determined by ground and aircraft radar. In reaching these conclusions, TMI and PR brightness temperatures and reflectivities have been synthesized from the aircraft AMPR and ARMAR measurements with the analysis conducted in a composite framework to eliminate measurement noise associated with the case study approach and single element volumes obfuscated by heterogeneous beam filling effects. In diagnosing the performance of the 2a12 algorithm, weaknesses have been found in the cloud-radiation database used to provide microphysical guidance to the algorithm for upper cloud ice microphysics. It is also necessary to adjust a fractional convective rainfall factor within the algorithm somewhat arbitrarily to achieve satisfactory algorithm accuracy.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meteorological Society, 83rd Annual Meeting; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States|12th Conference on Satellite Meteorology and Oceanography; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2019-07-18
    Beschreibung: The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technologies into the short-term forecasting of severe and hazardous weather and the warning decision-making process. The LMA project is a collaboration among NASA scientists, National Weather Service (NWS) weather forecast offices (WFOs), emergency managers, and other partners. The time rate-of-change of storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Data Applications Display (LISDAD II) system, initially developed in T997 through a collaboration among NASA/MSFC, MIT/Lincoln Lab and the Melbourne, FL WFO. LISDAD II is now a distributed decision support system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of the southeastern U.S. Since the inauguration of the LMA there has been an abundance of severe weather. During 23-24 November 2001, a major tornado outbreak was monitored by LMA in its first data acquisition effort (36 tornadoes in Alabama). Since that time the LMA has collected a vast amount of data on hailstorms and damaging wind events, non-tornadic supercells, and ordinary non-severe thunderstorms. In this paper we provide an overview of LMA observations and discuss future prospects for improving the short-term forecasting of convective weather.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International Commission on Atmospheric Electricity; Jun 09, 2003 - Jun 13, 2003; Versailles; France
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019-07-18
    Beschreibung: A general circulation model (GCM) relies on various physical parameterizations and provides a solution to the atmospheric equations of motion. A data assimilation system (DAS) combines information from observations with a GCM forecast and produces analyzed meteorological fields that represent the observed atmospheric state. An off-line chemistry and transport model (CTM) can use winds and temperatures from a either a GCM or a DAS. The latter application is in common usage for interpretation of observations from various platforms under the assumption that the DAS transport represents the actual atmospheric transport. Here we compare the transport produced by a DAS with that produced by the particular GCM that is combined with observations to produce the analyzed fields. We focus on transport in the tropics and middle latitudes by comparing the age-of-air inferred from observations of SF6 and CO2 with the age-of-air calculated using GCM fields and DAS fields. We also compare observations of ozone, total reactive nitrogen, and methane with results from the two simulations. These comparisons show that DAS fields produce rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport produced by the DAS fields may be due to implicit forcing that is required by the assimilation process when there is bias between the GCM forecast and observations that are combined to produce the analyzed fields. For example, the GCM does not produce a quasi-biennial oscillation (QBO). The QBO is present in the analyzed fields because it is present in the observations, and systematic implicit forcing is required by the DAS. Any systematic bias between observations and the GCM forecast used to produce the DAS analysis is likely to corrupt the transport produced by the analyzed fields. Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019-07-18
    Beschreibung: There are two important but observationally uncertain parameters in the grid averaged surface energy budgets of mesoscale models - surface moisture availability and thermal heat capacity. A technique has been successfully developed for assimilating Geostationary Operational Environmental Satellite (GOES) skin temperature tendencies during the mid-morning time frame to improve specification of surface moisture. In a new application of the technique, the use of satellite skin temperature tendencies in early evening is explored to improve specification of the surface thermal heat capacity. Together, these two satellite assimilation constraints have been shown to significantly improve the characterization of the surface energy budget of a mesoscale model on fine spatial scales. The GOES assimilation without the adjusted heat capacity was run operationally during the International H2O Project on a 12-km grid. This paper presents the results obtained when using both the moisture availability and heat capacity retrievals in concert. Preliminary results indicate that retrieved moisture availability alone improved the verification statistics of 2-meter temperature and dew point forecasts. Results from the 1.5 month long study period using the bulk heat capacity will be presented at the meeting.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS Conference on Interactions of the Sea and Atmosphere; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019-07-18
    Beschreibung: The TRMM Precipitation Radar (PR) measures the vertical profile of reflectivity from which the surface rain rate is estimated after attenuation corrections in the 2A21 algorithm. Characteristics of the vertical reflectivity profile is important for various reasons ranging from scientific to instrument algorithms. It is well known that different types of precipitation such as stratiform or convection, have different heating profiles. The vertical profile of reflectivity can provide information on precipitation classification. The vertical reflectivity structure also provides information on precipitation processes such as growth and aggregation. In terms of TRMM algorithms, an independent estimate of the vertical profiles are also extremely important since the PR returns can be attenuated in the rain layer near the surface. Corrections for attenuation are required in the lowest few kilometers, necessitating some assumptions about the rain size distributions and the reflectivity profile below the lowest measurement unaffected by the surface return. Furthermore, some assumptions about the vertical reflectivity profile are required for Ground Validation (GV) radars, since their lowest scan may be 1 or more kilometers above the surface. Statistics on the vertical reflectivity and Doppler structure are presented from the ER-2 Doppler Radar (EDOP) which participated in several TRMM field campaigns (TEFLUN-A, TEFLUN-B, and LBA) and CAMEX-3. The ER-2 aircraft overflew diverse precipitation types during these campaigns. EDOP is an X-band (9.6 GHz) radar for which returns are less attenuated than at the TRMM PR frequency. The EDOP profiles are first corrected for attenuation using the SRT method. The data from all the ER-2 campaigns are then classified by type (convection, stratiform, and other) and then statistics were performed on the vertical reflectivity and Doppler profiles in the form of CFAD's. These CFADs are compared and discussed. The computed CFAD's indicate significant differences as a function of precipitation type and location (hurricane versus non-hurricane, Brazil versus Florida). The implications of these profiles will be discussed.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International TRMM Science Conference; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019-07-18
    Beschreibung: The NASA Global Modeling Initiative (GMI) has completed two 35-year simulations with WMO future baseline boundary conditions that simulate increasing N2O and CH4 emissions and decreasing organic chlorine and bromine emissions. Simulations were done with the GMI offline chemistry and transport model using 1) 1 year of winds from the Finite-Volume General Circulation Model (FV-GCM), repeated for the 35 years, and 2) 1 year of winds from the Finite-Volume Data Assimilation System (FV-DAS), repeated for 35-years. The simulations have full stratospheric chemistry. To understand differences in simulated ozone recoveries, basic transport and circulation differences between these models are evaluated. The distribution of mean age of stratospheric air in the FV-GCM run agrees well with observations in the lower stratosphere but the FV-DAS ages are generally too low. This implies circulation and mixing differences that will affect the distributions of other trace species such as CH4, NO, and the organic halogens, all of which are responding to changing boundary conditions and are involved in ozone loss. Realism of model transport is evaluated, with particular attention given to regions and seasons where ozone recovery is expected. Preliminary results indicate increasing ozone trends in the lowermost stratosphere in summer and in the Antarctic and Arctic lower stratosphere in winter and spring.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS 12th Conference on the Middle Atmosphere; Nov 04, 2002 - Nov 08, 2002; San Antonio, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2019-07-18
    Beschreibung: Direct current measurements are available near the attachment point from both natural cloud-to-ground lightning and rocket-triggered lightning, but little is known about the rise time and peak amplitude of return-stroke currents aloft. We present, as functions of height, current amplitudes, rise times, and effective propagation velocities that have been estimated with a novel remote-sensing technique from data on 24 subsequent return strokes in six different lightning flashes that were triggering at the NASA Kennedy Space Center, FL, during 1987. The unique feature of this data set is the stereo pairs of still photographs, from which three-dimensional channel geometries were determined previously. This has permitted us to calculate the fine structure of the electric-field-change (E) waveforms produced by these strokes, using the current waveforms measured at the channel base together with physically reasonable assumptions about the current distributions aloft. The computed waveforms have been compared with observed E waveforms from the same strokes, and our assumptions have been adjusted to maximize agreement. In spite of the non-uniqueness of solutions derived by this technique, several conclusions seem inescapable: 1) The effective propagation speed of the current up the channel is usually significantly (but not unreasonably) faster than the two-dimensional velocity measured by a streak camera for 14 of these strokes. 2) Given the deduced propagation speed, the peak amplitude of the current waveform often must decrease dramatically with height to prevent the electric field from being over-predicted. 3) The rise time of the current wave front must always increase rapidly with height in order to keep the fine structure of the calculated field consistent with the observations.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AGU Meeting; Dec 07, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2019-07-18
    Beschreibung: Wintertime observations of MCSs (Mesoscale Convective Systems) over the Sea of Japan - 2001 (WMO-01) were collected from January 12 to February 1, 2001. One of the major objectives is to better understand and forecast snow systems and accompanying disturbances and the associated key physical processes involved in the formation and development of these disturbances. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, wind profilers, radiometers, etc.) during WMO-01 provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with winter storms over the Sea of Japan region. WMO-01 also provided estimates of the apparent heat source (Q1) and apparent moisture sink (Q2). The vertical integrals of Q1 and Q2 are equal to the surface precipitation rates. The horizontal and vertical adjective components of Q1 and Q2 can be used as large-scale forcing for the Cloud Resolving Models (CRMs). The Goddard Cumulus Ensemble (GCE) model is a CRM (typically run with a 1-km grid size). The GCE model has sophisticated microphysics and allows explicit interactions between clouds, radiation, and surface processes. It will be used to understand and quantify precipitation processes associated with wintertime convective systems over the Sea of Japan (using data collected during the WMO-01). This is the first cloud-resolving model used to simulate precipitation processes in this particular region. The GCE model-simulated WMO-01 results will also be compared to other GCE model-simulated weather systems that developed during other field campaigns (i.e., South China Sea, west Pacific warm pool region, eastern Atlantic region and central USA).
    Schlagwort(e): Meteorology and Climatology
    Materialart: International Conference on Mesoscale Convective Systems and Heavy Rainfall/Snowfall in East Asia; Oct 29, 2002 - Oct 31, 2002; Tokyo; Japan
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2019-07-18
    Beschreibung: We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the DAS diabatic trajectory calculations there is too much exchange between the tropics and mid-latitudes. The age spectrum is thus too broad and the tropical mean age is too old as a result of mixing older mid latitude air with tropical air. Likewise the mid latitude mean age is too young due to the in mixing of tropical air. The DAS kinematic trajectory calculations show excessive vertical dispersion of parcels in addition to excessive exchange between the tropics and mid latitudes. Because air is moved rapidly to the troposphere from the vertical dispersion, the age spectrum is shifted toward the young side. The excessive vertical and meridional dispersion compensate in the kinematic case giving a reasonable tropical mean age. The CTM calculation of the age spectrum using the DAS winds shows the same vertical and meridional dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the extra tropical mean ages determined in a number of previous DAS driven CTM s are too young compared with observations. Finally, we note trajectory-generated age spectra . show significant age anomalies correlated with the seasonal cycles. These anomalies can be linked to year-to-year variations in the tropical heating rate. The anomalies are suppressed in the CTM spectra suggesting that the CTM transport scheme is too diffusive.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AGU 2002 Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2019-07-18
    Beschreibung: The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR-based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International Precipitation Working Group Workshop; Sep 23, 2002 - Sep 27, 2002; Madrid; Spain
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    Publikationsdatum: 2019-07-18
    Beschreibung: Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM(Tropica1 Rainfall Measuring Mission) tropical data set. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the 20-year data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the 20 year period. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1deg latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based 3-hr analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map. This TRMM standard product will soon be available for the entire TRMM period (January 1998- present). A real-time version of this merged product is being produced and is available at 0.25deg latitude-longitude resolution over the latitude range from 50degN-50degS. Images from this data set can be seen at the U.S. TRMM web site (trmm.gsfc.nasa.gov). Examples will be shown, including its use in monitoring flood conditions and relating weather-scale events to climate variations.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International Precipitation Working Group Workshop; Sep 23, 2002 - Sep 27, 2002; Madrid; Spain
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2019-07-18
    Beschreibung: Analysis will be presented which explores the impact of land conditions on monthly to seasonal climate simulations in a variety of atmospheric general circulation models (AGCMs). In one set of experiments, the Geophysical Fluid Dynamics Laboratory (GDFL) AGCM is used to explore the nature of soil-moisture predictability and associated climate predictability as an initial value problem. For another set of experiments, the Center for Ocean Land Atmosphere (COLA) and the Goddard Earth Observing System 2 (GEOS-2) AGCMs are used to investigate the impact of realistic snow initialization and assimilation in retrospective climate forecasts for the northern hemisphere spring (March-June).
    Schlagwort(e): Meteorology and Climatology
    Materialart: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; 23; 142; NASA/TM-2002-104606/VOL23
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2019-07-18
    Beschreibung: Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable climatological features of the low-level continental flow during the warm-season months, May through August. We have used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine its climatology and mean diurnal cycle and to study its interannual variability. Interannual anomalies of the meridional flow associated with the GPLLJ are much smaller than the mean diurnal fluctuations, than random intraseasonal anomalies, and than the mean wind itself. There are three maxima of low-level meridional flow variance over the Great Plains and the Gulf of Mexico: a 1.2 m2 s-2 peak over the southeast Texas, to the east and south of the mean velocity peak, a 1.0 m2 s-2 peak over the western Gulf of Mexico, and a .8 m2 s-2 peak over the upper Great Plains (UGP), near the Nebraska/South Dakota border. Each of the three variance maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are also three dominant modes of interannual variability corresponding to the three variance maxima, but not in a simple one-to-one relationship. Cross-sectional profiles of mean southerly wind over Texas remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six to seven years of the reanalysis period and only then. This intermittent biennial oscillation (IBO, one of the three modes discussed in the previous paragraph) in the lowlevel flow is restricted to the region surrounding eastern Texas and is also evident in the NCEP/NCAR reanalysis data set from about 1978 to 1985 or 1986 and again from 1995 to 2000. It is evident as well in surface pressure in both the GEOS-1 and NCEP/NCAR sets. The interannual anomalies do not necessarily persist uniformly throughout an entire season, but can fluctuate from one part of the season to the next. To estimate the characteristic sub-seasonal time scales for coherence of these fluctuations, we have taken the weekly anomaly of low-level wind at each point of the domain from the climatological average for that given point and that given week of the season and computed the covariance of its fluctuations over all weeks and over all years with the weekly climatological anomaly of the meridional wind at each of the three reference points discussed above. The typical duration of a coherent interannual anomaly within a given warm season increases with decreasing latitude from 2 to 3 weeks over the UGP, to 6 to 7 weeks over eastern Texas. Coherence over the western Gulf of Mexico is intermediate between the two with a typical duration of 4 to 5 weeks. There appears to be evidence that the interannual anomalies over Texas the Gulf propagate to the UGP after a week and those over the Gulf propagate there after 2 to 3 weeks. There also appears to be some reverse propagation of interannual anomalies over the UGP to Texas and to the Gulf after a period of about one week. The interannual anomalies in southerly flow over eastern Texas seem to correlate well with interannual anomalies of surface temperature and (negative) ground wetness and over western Texas.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; 23; 170-171; NASA/TM-2002-104606/VOL23
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2019-07-18
    Beschreibung: In the past few years, the capabilities of NOAA Geostationary Operational Environmental Satellites (GOES) have increased dramatically. Hourly vertical sounder data is now generally available, but may be unavailable depending upon cloud conditions, satellite operations, and computer system problems at NOAA#s National Environmental Satellite Display and Information Service (NESDIS). Meteorologists at NESDIS have used vertical sounder data to develop experimental products for forecasting the probability of convective downbursts. The two products of interest are the Microburst Day Predictive Index (MDPI), which provides an indication of microburst potential and the WINDEX which is a forecast of maximum winds assuming a microburst does occur. Data analyses were made for the central Florida convective season, that is, the period beginning May 1 and ending September 30. The MDPI showed significant potential as an aid in forecasting convective downbursts. MDPI calculated from GOES soundings were well correlated with those calculated from Cape Canaveral RAOBs.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2000 Final Administrative Report NASA/ASEE Summer Faculty Fellowship Program
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2019-07-18
    Beschreibung: The Severe Thunderstorm Observations, Research, and Monitoring network (STORMnet) became operational in 2001 as a test bed to infuse new science and technologies into the severe and hazardous weather forecasting and warning process. STORMnet is collaboration among NASA scientists, National Weather Service (NWS) forecasters, emergency managers and other partners. STORMnet integrates total lightning observations from a ten-station 3-D VHF regional lightning mapping array, the National Lightning Detection Network (NLDN), real-time regional NEXRAD Doppler radar, satellite visible and infrared imagers, and a mobile atmospheric profiling system to characterize storms and their evolution. The storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Demonstration and Display (LISDAD II), a distributed processing system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of north Alabama and Tennessee, a region of the southeastern U.S. well known for abundant severe weather.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 17th International Lighting Detection Conference (ILDC); Oct 16, 2002 - Oct 18, 2002; Tucson, AZ; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2019-07-18
    Beschreibung: The National Weather Service Office (WFO) in Huntsville, Alabama (HUN) is slated to begin full-time operations in early 2003. With the opening of the Huntsville WFO, a unique opportunity has arisen for close and productive collaboration with scientists at NASA Marshall Space Flight Center (MSFC) and the University of Alabama Huntsville (UAH). As a part of the collaboration effort, NASA has developed the Short-term Prediction Research and Transition (SPoRT) Center. The mission of the SPoRT center is to incorporate NASA earth science technology and research into the NWS operational environment. Emphasis will be on improving mesoscale and short-term forecasting in the first 24 hours of the forecast period. As part of the collaboration effort, the NWS and NASA will develop an implementation and evaluation plan to streamline the integration of the latest technologies and techniques into the operational forecasting environment. The desire of WFO HUN, NASA, and UAH is to provide a model for future collaborative activities between research and operational communities across the country.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2002 NWA Annual Meeting; Oct 21, 2002 - Oct 25, 2002; Fort Worth, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2019-07-18
    Beschreibung: The ThOR mission uses a lightning mapping sensor in geostationary Earth orbit to provide continuous observations of thunderstorm activity over the Americas and nearby oceans. The link between lightning activity and cloud updrafts is the basis for total lightning observations indicating the evolving convective intensification and decay of storms. ThOR offers a national operational demonstration of the utility of real-time total lightning mapping for earlier and more reliable identification of potentially severe and hazardous storms. Regional pilot projects have already demonstrated that the dominance in-cloud lightning and increasing in-cloud lash rates are known to precede severe weather at the surface by tens of minutes. ThOR is currently planned for launch in 2005 on a commercial or research satellite. Real-time data will be provided to selected NWS Weather Forecast Offices and National Centers (EMC/AWC/SPC) for evaluation.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2002 NWA Annual Meeting; Oct 21, 2002 - Oct 25, 2002; Fort Worth, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: This section on Urban Climates provides a basic understanding of what comprises the urban climate and what factors control the overall development of the urban climate. We also discuss in this section, methods for evaluating urban climate characteristics and forcing functions as well as how the urban heat island effect comes into play as a dynamic influence on urban climatology. Additionally, we examine and discuss the major radiation and energy balance of city (i.e., shortwave and longwave radiation, albedo, net all-wave radiation, total energy balance, and sensible latent, and storage heat) and the interactions of these energy balances with the lower atmosphere. The use of remote sensing to measure urban surface temperatures as a driving force in the development of the urban heat island effect is presented. We also discuss how the overall moisture, precipitation, humidity, and air movement in cities (i,e,, wind speeds and wind direction) and wind environment of the city affects urban climatology.
    Schlagwort(e): Meteorology and Climatology
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2019-07-18
    Beschreibung: This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.
    Schlagwort(e): Meteorology and Climatology
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: This study presents a comprehensive examination of the spectrum of storm types and their attributes worldwide (between 35N and 35S latitude), and as a function of season, location, and convective regime using the observed lightning, microwave scattering, and reflectivity signatures from NASA's Tropical Rainfall Measuring Mission (TRMM) low-Earth orbiting observatory. A global, multi-year data set (1998-2000) indicates that the deepest thunderstorms (having reflectivity in excess of 50 dBZ at 9 km altitude) occur in all the sub-tropical continents and occasionally over the open ocean, but are most common over the Americas. The most intense storms have the greatest lightning rates, lowest brightness temperatures and greatest depth of reflectivity- all indicative of strong updrafts and a well-developed volume of precipitation-sized ice particles. Mesoscale convective systems occurring within or in association with forcing from the sub-tropical continents are the most prolific lightning producers. The greatest flash rate to date of 993 flashes per minute was observed by NASA's Lightning Imaging Sensor on May 6, 1999 during an overpass of a pre-frontal squall line extending from Tennessee to Louisiana. The global distribution and frequency of thunderstorms, and the most recent summary of the extreme storms observed from space, in particular, will be discussed in greater detail.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 17th International Lightning Detection Conference (ILDC); Oct 16, 2002 - Oct 18, 2002; Tucson, AZ; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2019-07-18
    Beschreibung: The bi-spectral threshold (BTH) for cloud detection and height assignment is now operational at NASA's Global Hydrology and Climate Center (GHCC). This new approach is similar in principle to the bi-spectral spatial coherence (BSC) method with improvements made to produce a more robust cloud-filtering algorithm for nighttime cloud detection and subsequent 24-hour operational cloud top pressure assignment. The method capitalizes on cloud and surface emissivity differences from the GOES 3.9 and 10.7-micrometer channels to distinguish cloudy from clear pixels. Separate threshold values are determined for day and nighttime detection, and applied to a 20-day minimum composite difference image to better filter background effects and enhance differences in cloud properties. A cloud top pressure is assigned to each cloudy pixel by referencing the 10.7-micrometer channel temperature to a thermodynamic profile from a locally -run regional forecast model. This paper and supplemental poster will present an objective validation of nighttime cloud detection by the BTH approach in comparison with previous methods. The cloud top pressure will be evaluated by comparing to the NESDIS operational CO2 slicing approach.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS Conference 83rd Annual Meeting of the American Meteorological Society; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: The process by which liquid cloud droplets homogeneously crystallize into ice is still not well-understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing, initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at -33 C, the reported volume-based freezing rates of ice in supercooled water vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near -40 C.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meteorological Society Meeting/Conference; Nov 04, 2002 - Nov 07, 2002; San Antonio, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2019-07-18
    Beschreibung: The Advanced Technology Microwave Sounder (ATMS) is the next generation space-borne microwave sounder. It is the latest and most advanced version of a series of satellite-based microwave sounders, currently under development by NASA for the future U.S. operational polar-orbiting weather satellite system, called the NPOESS (National Polar-orbiting Operational Environment Satellite System), slated to begin orbiting around the end of this decade. This paper will present a brief history of the evolution of the space-borne microwave sounders, from its early-day scientific experiments, through the operational sounder aboard today's polar orbiting weather satellites, and ending in the ATMS development. It will also describe the evolution of microwave radiometer technology that enabled the space-borne microwave radiometry, from its early versions with simple, nadir-viewing, fixed-horn antennas to the present-day scanning reflector antennas with broad-band MMIC Low Noise Amplifiers, plus on-board calibrations.
    Schlagwort(e): Meteorology and Climatology
    Materialart: SPIE''s Third International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment and Space Conference; Jan 01, 2002; Unknown
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2019-07-18
    Beschreibung: An interferometer-type passive microwave radiometer based on MMIC receiver technology and a thinned array antenna design is being developed under the Instrument Incubator Program (TIP) on a project entitled the Lightweight Rainfall Radiometer (LRR). The prototype single channel aircraft instrument will be ready for first testing in 2nd quarter 2003, for deployment on the NASA DC-8 aircraft and in a ground configuration manner; this version measures at 10.7 GHz in a crosstrack imaging mode. The design for a two (2) frequency preliminary space flight model at 19 and 35 GHz (also in crosstrack imaging mode) has also been completed, in which the design features would enable it to fly in a bore-sighted configuration with a new dual-frequency space radar (DPR) under development at the Communications Research Laboratory (CRL) in Tokyo, Japan. The DPR will be flown as one of two primary instruments on the Global Precipitation Measurement (GPM) mission's core satellite in the 2007 time frame. The dual frequency space flight design of the ERR matches the APR frequencies and will be proposed as an ancillary instrument on the GPM core satellite to advance space-based precipitation measurement by enabling better microphysical characterization and coincident volume data gathering for exercising combined algorithm techniques which make use of both radar backscatter and radiometer attenuation information to constrain rainrate solutions within a physical algorithm context. This talk will discuss the design features, performance capabilities, applications plans, and conical/polarametric imaging possibilities for the LRR, as well as a brief summary of the project status and schedule.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Earth Science Technology Conference 2002 (ESTC-2002); Jun 11, 2002 - Jun 13, 2002; Pasadena, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2019-07-18
    Beschreibung: Global precipitation analysis covering the last few decades and the impact of the new TRMM (Tropical Rainfall Measuring Mission) observations are reviewed in the context of weather and climate applications. All the data sets discussed are the result of mergers of information from multiple satellites and gauges, where available. The focus of the talk is on TRMM-based 3 hr. analyses that use TRMM to calibrate polar-orbit microwave observations from SSM/I (and other satellites) and geosynchronous IR observations and merges the various calibrated observations into a final, 3 hr. resolution map. This TRMM standard product will be available for the entire TRMM period (January 1998-present) at the end of 2002. A real-time version of this merged product is being produced and is available at 0.25 deg latitude-longitude resolution over the latitude range from 50 deg N-50 deg S. Examples will be shown, including its use in monitoring flood conditions and in relating weather-scale patterns to climate-scale patterns. The 3-hourly analysis is placed in the context of two research products of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP). The first is the 23 year, monthly, globally complete precipitation analysis that is used to explore global and regional variations and trends and is compared to the much shorter TRMM tropical data set. The GPCP data set shows no significant global trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the Goodyear data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the 23 year period. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. Also shown is the GPCP daily, 1 deg latitude-longitude analysis, which is available from January 1997 to the present. Plans to incorporate the TRMM data and 3-hourly analysis into the GPCP products are outlined. The outcome should be an improved global analysis and climatology on monthly scales for the 23 year period and finer time scale analyses for more recent periods, including real-time 3-hourly (or finer) analyses over much of the globe.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 40th Anniversary of Colorado State University Atmospheric Science Department; Jul 08, 2002 - Jul 10, 2002; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2019-07-18
    Beschreibung: A simulation of Hurricane Bonnie (1998) has been performed using multiple grid nesting to 2 km grid spacing. The simulation is initialized with large-scale analysis fields from the European Center for Medium Range Forecasts and with a bogus vortex inserted via four-dimensional variational data assimilation. The simulation, verified against radar observations from TRMM and aircraft observations from the NASA CAMEX-3 field experiment, reproduces well the storm intensity, the wavenumber 1 asymmetry of the precipitation field, the occurrence of deep convective towers within the eyewall, and the presence of broad stratiform precipitation regions. This study will explore the evolution of air parcels in these convective towers, from their beginnings in the boundary layer to their movement in upper level outflow. The role of these towers in storm intensification may also be examined.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS 25th Conference on Hurricanes and Tropical Meteorology; Apr 29, 2002 - May 03, 2002; San Diego, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2019-07-18
    Beschreibung: This study compares path-integrated attenuation (PIA), in precipitation over the ocean, derived from a single-frequency X-band radar, using the surface reference technique (SRT), with that deduced from a radiometer also operating at X band. The data were collected during TRMM field campaigns. The PIA derived from radar using the SRT does not involve any assumptions regarding the precipitation but it assumes that the cross-section of the surface is stable, that is, it is not significantly altered by factors such as surface roughness. The PIA deduced from the radiometer, however, involves assumptions regarding the temperature and emissivity of the surface and absorption and scattering by the intervening precipitation, which in turn depend upon the size, concentration and composition of the precipitation particles. The comparison of the PIA from the two instruments serves not only as a check between the radar and the radiometer but also may yield insights into the structure of the intervening precipitation. Such study can provide valuable information for TRMM in which both radar and radiometers are used for rain measurements. The radiometer PIA was first deduced from the brightness temperature using a simple one-layer radiative transfer model assuming no scattering, an isothermal atmosphere. The initial results show a general agreement between the PIAs deduced from the two instruments. Largo disagreement was found at high values of PIAs that may have been caused saturation of the X-band brightness temperature or by uncertainties in wind roughening of the sea surface that affects the SRT. Further results including the effects of scattering and a non-isothermal atmosphere will be shown at the conference.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 1st TRMM International Conference; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2019-07-18
    Beschreibung: A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \times L$ area exhibits a power law singularity as $L \rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2002 American Geophysical Union Spring Meeting; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2019-07-18
    Beschreibung: Cloud-resolving models (CRMs) are being increasingly used to develop parametric treatments of clouds and related processes for use in global climate models (GCMs). CRMs represent the integrated knowledge of the physical processes acting to determine cloud system lifecycle and are well matched to typical observational data in terms of physical parameters/measurables and scale-resolved physical processes. Thus, they are suitable for direct comparison to field observations for model validation and improvement. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. The objective is to compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. Progress is assessing cloud and other environmental conditions will be described. Results of preliminary simulations using a regional cloud system model (MM5) and a CRM will be discussed. Focal science questions for the model comparison are strongly based on results of the idealized GCSS WG2 cirrus cloud model comparison projects (Idealized Cirrus Cloud Model Comparison Project and Cirrus Parcel Model Comparison Project), which will also be briefly summarized.
    Schlagwort(e): Meteorology and Climatology
    Materialart: ARM Program Science Team Meeting; Apr 08, 2002 - Apr 12, 2002; Saint Petersburg, FL; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2019-07-18
    Beschreibung: A proposed methodology for the in-flight calibration of a Synthetic Thinned Aperture Radiometer (STAR) airborne sensor with the potential application to a space flight version. The application of the spaceflight version of this instrument will address several pressing issues related to the Global Precipitation Measurement Mission (GPM). The X-Band Lightweight Rainfall Radiometer using STAR technology (LRR-X) is an aircraft sensor that is jointly developed by the NASA Goddard Space Flight Center and the University of Michigan. This paper will describe the theory of calibration as well as the hardware design specifications used by the method. The on-board hardware uses individual uncorrelated warm loads on each receiver as well as to a single noise diode providing a correlated noise source to each receiver. A procedure for maintaining onboard calibration with an optimum running average using correlated bursts of thermal noise interleaved with scene data will be exercised during the maiden flight of the LRR-X instrument during the spring of 2003. The final component of calibration of a synthetic aperture radiometer is the image reconstruction algorithm that uses the measured correlations to produce the temperature brightness (TB) images. An overview of system-level testing, both on the ground and in-flight, will be presented to validate the absolute accuracy of the image reconstruction algorithm.
    Schlagwort(e): Meteorology and Climatology
    Materialart: MicroCal 2002; Nov 09, 2002 - Nov 11, 2002; Barcelona; Spain
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2019-07-18
    Beschreibung: NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Jun 01, 2002 - Jun 09, 2002; Taiwan, Province of China
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2019-07-18
    Beschreibung: The 22 year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP), the four year (1997-present) daily GPCP analysis and 3-hr semi-global analyses using Tropical Rainfall Measuring Mission (TRMM) data are used to study global and regional variations and trends during the 22 years and the shorter-time scale events that constitute those variations. The GPCP monthly data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. In terms of regional trends 1979 to 2000 the tropics have a distribution of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere (S.H.) from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere (N.H.) the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe. In the Southern Hemisphere an anomaly feature is shown to spiral into the Antarctica land mass. The extremes of ENSO-related anomalies are also examined and indicate that globally, during both El Nino and La Nina, more extremes of precipitation ( both wet and dry) occur than during the "neutral" regime, with the El Nino regime showing larger magnitudes. The distribution is different for the globe as a whole and when the area is restricted to just land. The data sets are also explored to monitor extremes in precipitation related to localized and regional flooding and the occurrence of droughts.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AAAS Annual Meeting; Feb 14, 2002 - Feb 15, 2002; Boston, MA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2019-07-18
    Beschreibung: South China Sea Monsoon Experiment (SCSMEX, 1998), one of several major TRMM field experiments, has successfully obtained a wealth of information and observational data on the summer monsoon onset and evolution in the South China Sea region. The primary goal of the experiment is to provide a better understanding of the key physical processes for the onset and maintenance of the monsoon over Southeast Asia and southern China leading to improved predictions. In this paper, our objective is to investigate the major physical and microphysical processes involved in the convective systems that developed during the onset and post-onset of the South China Sea monsoon - for both the similarities and differences between these two phases. There are two episodes simulated in this study, one of the onset period (May 18-26, 1998) and one of the post-onset period (June 2-11, 1998). The focus of this paper is to study four major aspects between these two different episodes. First, characteristics of rainfall such as rainfall amount and occurrence in the convective and stratiform regions are investigated, as well as the propagation of convective systems. The numerical precipitation fields are also validated against both the TRMM Microwave Imager (TMI) soundings and Precipitation Radar (PR) observations. Second, the domain-averaged heat and moisture budgets are analyzed to comprehend the essential roles played by physical processes such as the large-scale forcing and latent heat flux. Third, the microphysical processes associated with warm rain or ice are also closely examined during these two episodes. Finally, vertical distributions of Q1 and Q2 budgets are presented to perform a detailed discussion on the energy and moisture cascade in the vertical direction.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International TRMM Science Conference; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: In this talk I will review global modeling activities in the United States that could contribute to and benefit from NAME activities. I will present some preliminary results from several global atmospheric general circulation model simulation experiments for the initial NAME model intercomparison project period of May-Oct 1990. These include an ensemble of medium resolution simulations, and a high resolution (one half degree) simulation. I will also discuss possible high resolution global data assimilation experiments that could be used to help validate the model simulations and assimilate planned NAME observations.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 5th Session of the CLIVAR/VAMOS Meeting; Mar 13, 2002 - Mar 16, 2002; San Jose; Costa Rica
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2019-07-18
    Beschreibung: In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.
    Schlagwort(e): Meteorology and Climatology
    Materialart: EGS XXVII General Assembly; Apr 21, 2002 - Apr 26, 2002; Nice; France
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    Publikationsdatum: 2019-07-18
    Beschreibung: I discuss the need for accurate rainfall observations to improve our knowledge of the atmospheric state and the ability to provide better numerical weather forecasts. I will give an overview of the recent progress in using rainfall data provided by TRMM and other microwave instruments in data assimilation to improve global analyses and shortrange forecasts. In cases of Hurricanes Bonnie and Floyd, results show that assimilation of TRMM and SSM/I rain rates produces initial conditions with better defined tropical storm features that lead to better Hurricane track and quantitative precipitation forecasts. I will outline the current and future research strategies in preparation for the Global Precipitation Mission.
    Schlagwort(e): Meteorology and Climatology
    Materialart: University of Connecticut Environmental Scholars Colloquium; Apr 19, 2002; Storrs, CT; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2019-07-18
    Beschreibung: Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.
    Schlagwort(e): Meteorology and Climatology
    Materialart: European Geophysical Society XXVII General Assembly; Apr 20, 2002 - Apr 28, 2002; Nice; France
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2019-07-18
    Beschreibung: The Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) is a measurement campaign designed to investigate tropical Cirrus cloud physical properties and formation processes. Understanding the production of upper tropospheric cirrus clouds is essential for the successful modeling of 'he Earth's climate. The deployment phase will occur in July, 2002 in southern Florida, USA. Several aircraft will be used, including the ER-2 and Proteus for cloud remote sensing, the WB-57 and Citation for in situ cloud measurements, the P-3 with a Doppler radar for characterization of convective systems, and the Twin otter for sampling of inflow airmasses. In addition, numerous ground-based and satellite remote sensing measurements will be contributing. A central focus of the mission is improvement of our ability to model cirrus clouds with numerical models. Several research groups with a variety of model types (cloud-resolving models, mesoscale models, weather-prediction models, and general circulation models) will be participating. Our hope is to fully characterize several mulonimbus/cirrus anvil systems that can be used as case studies for testing and improvement of the models. The models will be used for investigating cirrus generation and dissipation processes and the sensitivity of tropical cirrus to convective intensity and aerosol properties. Ultimately, we expect this effort to improve our ability to represent tropical cirrus in GCMs. A general description of the CRYSTAL-FACE program will be presented, with an emphasis on the cloud modeling approach.
    Schlagwort(e): Meteorology and Climatology
    Materialart: European Geophysical Society XXVII General Assembly; Apr 20, 2002 - Apr 28, 2002; Nice; France
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2019-07-18
    Beschreibung: Some studies suggest that the proper initialization of soil moisture in a forecasting model may contribute significantly to the accurate prediction of seasonal precipitation, especially over mid-latitude continents. In order for the initialization to have any impact at all, however, two conditions must be satisfied: (1) the initial soil moisture anomaly must be "remembered" into the forecasted season, and (2) the atmosphere must respond in a predictable way to the soil moisture anomaly. In our previous studies, we identified the key land surface and atmospheric properties needed to satisfy each condition. Here, we tie these studies together with an analysis of an ensemble of seasonal forecasts. Initial soil moisture conditions for the forecasts are established by forcing the land surface model with realistic precipitation prior to the start of the forecast period. As expected, the impacts on forecasted precipitation (relative to an ensemble of runs that do not utilize soil moisture information) tend to be localized over the small fraction of the earth with all of the required land and atmosphere properties.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meterological Society Meeting; Jan 13, 2002 - Jan 17, 2002; Orlando, FL; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2019-07-18
    Beschreibung: Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).
    Schlagwort(e): Meteorology and Climatology
    Materialart: 82nd American Meteorological Society Annual Meeting; Jan 13, 2002 - Jan 17, 2002; Orlando, FL; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2019-07-18
    Beschreibung: Extreme lightning flash rates are proving to be an early indicator of intensifying storms capable of producing tornadoes, damaging winds and hail. Most of this lightning is in the cloud, where the naked eye can not see it. Recent global observations of thunderstorms from space indicate that giant electrical storms (supercells and convective complexes) with flash rates on the order of 1 flash per second are most common over the land masses of the America sub-tropics and equatorial Congo Basin. Within the United States, the average tornado warning lead time on a national basis is about 11 min. The real-time observation of extreme flash rates and the rapid increase in the in-cloud flash rate, signalling the intensification of the storm updraft, may provide as much as a 50% increase in severe storm warning lead time.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2002 AAAS Annual Meeting and Science Innovation Exposition; Feb 14, 2002 - Feb 19, 2002; Boston, MA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2019-07-18
    Beschreibung: A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Symposium on Observations, Data Assimilation, and Probabilistic Prediction; Jan 13, 2002 - Jan 17, 2002; Orlando, FL; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2019-07-18
    Beschreibung: To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate TOA flux reference level is used to define satellite TOA fluxes, and horizontal transmission of solar radiation through the planet is not accounted for in the radiation budget equation, systematic errors in net flux of up to 8 W/sq m can result. Since climate models generally use a plane-parallel model approximation to estimate TOA fluxes and the earth radiation budget, they implicitly assume zero horizontal transmission of solar radiation in the radiation budget equation, and do not need to specify a flux reference level. By defining satellite-based TOA flux estimates at a 20-km flux reference level, comparisons with plane-parallel climate model calculations are simplified since there is no need to explicitly correct plane-parallel climate model fluxes for horizontal transmission of solar radiation through a finite earth.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Journal of Climate; 15; 3301-3309
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2019-07-18
    Beschreibung: Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.
    Schlagwort(e): Meteorology and Climatology
    Materialart: J. Climate; 15; 1474-1484
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2019-07-18
    Beschreibung: In recent years, data assimilation has become an indispensable tool for our understanding of the global features of meteorological variables. However, assessments of transport characteristics using trajectory related methods as well as chemical transport models (CTMs) show that results derived from assimilated (or analyzed) winds exhibit significantly larger mixing and entrainment rates compared to results derived from GCM winds, which are closer to results derived from observations (e.g., Douglass et al., 2002; Schoeberl et al., 2002). This discrepancy presents a serious challenge to our ability to understand and model global trace gas transport and distribution. We use the GEOS-DAS to explore this issue by examining how the process of data assimilation alters the dynamics of the underlying GCM and how this leads to the excess of lower stratospheric mixing and transport in the subtropics. In particular, we show that significant model biases in tropical winds necessitate large analysis increments. These increments directly force large subtropical regions of instability with negative PV gradient on the one hand, and generate excessive noise in the tropical wind fields on the other. The result is an excess of transport in the lower stratospheric subtropics.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2019-07-18
    Beschreibung: A merged and highly reduced database of TRMM level 1 (precipitation radar, microwave imager, lightning) and NCEP reanalysis (basic state, radiative and surface flux) data has been assembled for three years of the TRMM mission. This allows direct examination of the dependence of convective spectra (as observed through radar reflectivity, microwave brightness temperature and lightning flash rate) on environmental basic states and anomalies. Such analysis may be more physically justified and instructive than traditional geographic and/or seasonal binning. The dependence of convective spectra on several environmental forcing parameters is presented, including surface Bowen ratio (sensible heat to total turbulent flux), net atmospheric radiative flux convergence and net atmospheric enthalpy flux convergence. The latter are basic drivers of net moisture convergence in simple quasi-equilibrium models of tropical atmospheric convection.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2002 American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2019-07-18
    Beschreibung: A simple and fundamental problem in cloud electrification is whether or not a cloud can be determined to be producing lightning or not producing lightning, based solely on knowledge of its microphysical (and perhaps environmental) state. A merged database of TRMM radar, microwave and lightning observations and NCEP reanalysis environmental parameters is used to answer this question, for the tropics. The formal skill of traditional, univariate rule-based approaches (e.g., 35 dBZ occurrence at 6 km altitude) is quantified (via the probability of detection (POD), false alarm rate (FAR) and critical skill index (CSI)). Under indiscriminate application to the tropics, peak rule-based CSI for categorization of flashing storms is approximately 50%, with peak POD approximately 67% and minimum FAR approximately 33%, with peak CSI found for radar reflectivity-based parameters at 7-7.5 km altitude (near -15C). Separation of land and ocean domains yields approximately 5-10% gains in CSI over land. Conventional multivariate categorization techniques (discriminant analysis) are then applied, and less conventional (neural network) categorization techniques are also discussed.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2002 Fall American Geophysical Union Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2019-07-18
    Beschreibung: We have evaluated two methods of simulating the seasonal cycle of snow over sea ice in and around the Arctic: The NCAR global climate model CCM3, with its standard snow hydrology, and the snow pack model SNTHERM, forced with hourly atmospheric output from CCM3. A new dataset providing dates for the onset of snow melt over Arctic sea ice provides a means for assessing basin-wide how well the models simulate melt onset, but contains no information on how long it then takes for all the snow to melt. Use of data from the SHEBA site provides very detailed information on the behavior of the snow before and during the melt season, but only for a very limited area. Russian drift data provide climatological data on the seasonal cycle of snow water equivalent and snow density, over multi-year sea ice in the central Arctic basin. These datasets are used to compare the two modeling methods, and to see if use of the more physically-realistic SNTHERM provides any significant improvements. Conclusions obtained so far include: 1. Both CCM3 and CCM3/SNTHERM do a good job overall of matching the onset of snow melt dataset; although CCM3/SNTHERM consistently trends to underestimate the date and CCM3 to overestimate it. 2. SHEBA and ice drift data for the Arctic show that CCM3/ SNTHERM does a better job than CCM3 at simulating the total melt period. 3. Ice drift snow density and accumulation data suggest that while providing superior results, CCM3/SNTHERM may still suffer from overly vigorous melting. 4. Both the large-scale atmospheric forcing and snow pack physical processes are important in proper simulation of the snow seasonal cycle. Ongoing work includes further diagnosis of CCM3/SNTHERM, use of more observational datasets, especially from marginal seas in the pan-Arctic, and full coupling of SNTHERM into CCM3 (work to date has all been off-line simulations).
    Schlagwort(e): Meteorology and Climatology
    Materialart: AGU Fall Meeting; Dec 05, 2002 - Dec 11, 2002; San Francisco; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2019-07-18
    Beschreibung: Recent studies at the Global Hydrology and Climate Center (GHCC) have shown that the assimilation of land skin temperature (LST) tendencies into a mesoscale model can significantly improve short-term forecasts of near surface air temperature and moisture. Derived land surface products from the GOES satellites were used in these studies to provide high spatial and temporal resolution information about the spatial and temporal variability of the land surface forcing simulated in the model. In the model assimilation studies, LST was derived using a split window technique using the 11 and 12 pm channels found on the GOES-8 Sounder. These studies used a constant surface emissivity of 0.98 for both channels. However, this emissivity assumption over the land does not take into account emissivity variations due to varying terrain characteristics and differences between channels. These emissivity variations are seen to be significant as indicated by emissivity products from the polar orbiting MODIS instrument channels similar to the GOES-8 Sounder channels mentioned above. MODIS is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. In an attempt to improve the emissivity assumptions used in the GOES Sounder LST retrieval procedure, the incorporation of MODIS high spatial resolution (1 km) emissivity measurements into the LST procedure is being explored. This paper intercompares the LST retrievals from the GOES-8 Sounder using a constant emissivity assumption with those using MODIS retrieved emissivities. The effects of MODIS emissivities on the LST retrievals are discussed. Potential improvements in model forecasts using assimilated LST products incorporating MODIS emissivities are also examined.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 12th AMS Conference on Satellite Meteorology and Oceanography; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS; Nov 04, 2002 - Nov 07, 2002; San Antonio, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2019-07-18
    Beschreibung: The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million square kilometers. In the 8-year period from 1981 to 1989, the area expanded by 18 Million square kilometers. During the last 5 years, the hole has been observed to exceed 25 Million square kilometers over brief periods. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre- 1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS Meeting; Nov 04, 2002 - Nov 07, 2002; San Antonio, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2019-07-18
    Beschreibung: The 3D Goddard Cumulus Ensemble (GCE) model was used to simulate convection that occurred during the TRMM LBA field experiment in Brazil. Convection in this region can be categorized into two different regimes. Low-level easterly flow results in moderate to high CAPE and a drier environment. Convection is more intense like that seen over continents. Low-level westerly flow results in low CAPE and a moist environment. Convection is weaker and more widespread characteristic of oceanic or monsoon-like systems. The GCE model has been used to study both regimes in order to provide cloud data sets that are representative of both environments in support of TRMM rainfall and heating algorithm development. Two different case are presented: Jan 26,1999, an easterly regime case, and Feb 23,1999, a westerly regime case. The Jan 26 case is an organized squall line and is initialized with a standard cold pool. The sensitivity to mid-level sounding moisture and wind shear will also be shown. The Feb 23 case is less-organized with only transient lines and is initialized with either warm bubbles or prescribed surface fluxes. Heating profiles, rainfall statistics and storm characteristics are compared and validated for the two cases against observations collected during the experiment.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International TRMM Science Conference; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2019-07-18
    Beschreibung: An overview of mean convective thermodynamic and wind profiles for the Tropical Rainfall Measuring Mission (TRMM) Large Scale Biosphere-Atmosphere Experiment (LBA) and Kwajalein Experiment (KWAJEX) field campaigns will be presented, highlighting the diverse continental and marine tropical environments in which rain clouds and mesoscale convective systems evolved. An assessment of ongoing sounding quality control procedures will be shown. Additionally, we will present preliminary budgets of sensible heat source (Q1) and apparent moisture sink (Q2), which have been diagnosed from the various sounding networks.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International TRMM Science Conference; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2019-07-18
    Beschreibung: A main purpose of this study is to compare satellite products from TRMM, AMSU-A and QuikSCAT with a unique, extensive aircraft data set in Category 3 Hurricane Erin on September 10,2001, and to draw some preliminary conclusions from the data. For the first time, dropwinsondes were obtained by the NASA ER-2 aircraft. There were 8 soundings in the eye, core and surroundings radially out to the edge of the Central Dense Overcast (CDO). Additionally, 11 dropwinsondes from the DC-8 aircraft at about 12 km documented the storm outskirts and environment. TRMM made a direct overpass of the eye as did both NOAA-15 and NOM-16 with AMSU on board. Among the most interesting results: Contours of the tropopause height (a first). As expected from earlier fragmentary results, the tropopause was approximately 1 km higher in the core than in the environment. The highest tropopause was about 2 km above the tallest towers in the eyewall, south-southeast of the eye center, suggesting that earlier convective towers had been higher than those measured by EDOP and TRMM during the flights. Surprisingly, the heaviest precipitation was on the opposite side of the eyewall from the tallest convective towers. The warm core was elongated in the vertical, and poorly retrieved from the AMSU-A data by the NESDIS profile retrieval algorithm. The eye of Erin was "dirty". A CCN/CN counter flown on the NOAA P3 at 14.3 km showed a concentration of 1500 aerosol particles per cubic centimeter. This is an order of magnitude higher than a sample in the hurricane environment. TRMM data are used to hypothesize an explanation.
    Schlagwort(e): Meteorology and Climatology
    Materialart: TRMM International Science Conference; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2019-07-18
    Beschreibung: An ozone data assimilation system at the NASA/Goddard Data Assimilation Office (DAO) produces three-dimensional global ozone fields. They are obtained by assimilating ozone retrieved from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument and the Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) measurements into an off-line parameterized chemistry and transport model. In this talk we focus on the quality of lower stratospheric assimilated ozone profiles. Ozone in the lower stratosphere plays a key role in the forcing of climate. A biased ozone field in this region will adversely impact calculations of the stratosphere-troposphere exchange and, when used as a first guess in retrievals, the values determined from satellite observations. The SBUV/2 ozone data have a coarse vertical resolution with increased uncertainty below the ozone maximum, and TOMS provides only total ozone columns. Thus, the assimilated ozone profiles in the lower stratosphere are only weakly constrained by the incoming SBUV and TOMS data. Consequently, the assimilated ozone distribution should be sensitive to changes in inputs to the statistical analysis scheme. We investigate the sensitivity of assimilated ozone profiles to changes in a variety of system inputs: TOMS and SBUV/2 data selection, forecast and observations error covariance models, inclusion or omission of a parameterized chemistry model, and different versions of DAO assimilated wind fields used to drive the transport model. Comparisons of assimilated ozone fields with independent observations, primarily ozone sondes, are used to determine the impact of each of these changes.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS 12th Conference on the Middle Atmosphere; Nov 04, 2002 - Nov 07, 2002; San Antonio, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2019-07-18
    Beschreibung: In the 15-year GEOS-1 reanalysis data set, a maximum of interannual variance of low- level meridional flow for the warm season (May through August) occurs over southeast Texas. This variance maximum seems to be dominated by a marked biennial oscillation that occurs only during the first 6 (or possibly 8) years of the reanalysis period (1980-85 or possibly 1980-1987) and then completely disappears by the 9th year. This biennial oscillation seems to be associated with interannual fluctuations in ground wetness, surface temperature and surface pressure gradients over Texas. The periods of drier soil lead to warmer surface temperatures, lower surface pressures, stronger pressure gradients between Texas and the Gulf of Mexico and stronger southerly winds. This intermittent biennial oscillation is also evident in corresponding fields for the the NCEP/NCAR reanalysis data set for the years 1978-1985 (and possibly from 1978- 1987) and 1995-2000, but not during other periods. There are also obvious biennial oscillations evident during these periods in U.S. Climate Division records for the Palmer Drought Severity Index (PDSI) for Texas. Month-by-month correlations of this index with certain el Nino related indices are as high as .45 for the first period and as high as .55 or .6 for the second period for some regions in Texas. The seasonal cycle of the biennial signal in the PDSI and precipitation for the first period suggest that the drought in Texas and Mexico is ended (caused) by a reversal in the sign of anomalies in precipitation rate for the fall/winter season. Analysis of tropical Pacific SST patterns shows a .5 to .75 K biennial oscillation of SSTs along the precipitation-free track to the southwest of the Mexican coast during the fall and winter months of the 1978 to 1985 period that might explain the reversal in precipitation anomalies and hence the entire intermittent biennial oscillation in ground hydrology and low-level flow.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 27th Climate Diagnostics and Prediction Workshop; Oct 21, 2002 - Oct 25, 2002; Fairfax, VA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    Publikationsdatum: 2019-07-18
    Beschreibung: Mid-latitude forest ecosystems have been proposed as a "missing sink" today. The role of soils (including wetlands) in this proposed sink is a very important unknown. In order to make estimates of future climate change effects on carbon storage, we can examine past wetland carbon sequestration. How did past climate change affect net wetland carbon storage? We present long-term data from existing wetland sites used for paleoclimate reconstruction to assess the net carbon storage in wetland over the last 15000 years. During times of colder and wetter climate, many mid-latitude sites show increases in carbon storage, while past warmer, drier climates produced decreases in storage. Comparison among bog, fen, swamp, and tidal marsh are demonstrated for the Hudson Valley region.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AGU Meeting; Dec 05, 2002 - Dec 08, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2019-07-18
    Beschreibung: Data from the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48% - 116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. Future work is extending the investigation to Phoenix, Arizona, an arid U.S. city, and several international cities like Mexico City, Johannesburg, and Brasilia. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International TRMM Science Conference,; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2019-07-18
    Beschreibung: One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and in-coming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a CRM, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. The GCE model has been used to understand the following: 1) water and energy cycles and their roles in the tropical climate system; 2) the vertical redistribution of ozone and trace constituents by individual clouds and well organized convective systems over various spatial scales; 3) the relationship between the vertical distribution of latent heating (phase change of water) and the large-scale (pre-storm) environment; 4) the validity of assumptions used in the representation of cloud processes in climate and global circulation models; and 5) the representation of cloud microphysical processes and their interaction with radiative forcing over tropical and midlatitude regions. Four-dimensional cloud and latent heating fields simulated from the GCE model have been provided to the TRMM Science Data and Information System (TSDIS) to develop and improve algorithms for retrieving rainfall and latent heating rates for TRMM and the NASA Earth Observing System (EOS). More than 90 referred papers using the GCE model have been published in the last two decades. Also, more than 10 national and international universities are currently using the GCE model for research and teaching. In this talk, five specific major GCE improvements: (1) ice microphysics, (2) longwave and shortwave radiative transfer processes, (3) land surface processes, (4) ocean surface fluxes and (5) ocean mixed layer processes are presented. The performance of these new GCE improvements will be examined. Observations are used for model validation.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Japan Frontier Research System for Global Change; Oct 28, 2002; Yokohama; Japan
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2019-07-18
    Beschreibung: Global measurements of atmospheric carbon dioxides (CO2) are needed to resolve significant discrepancies that exist in our understanding of the global carbon budget and, therefore, man's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision c .3%) No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise required to measure column CO2 at the target specification. We are presently engaged in the construction of a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. In the first 6 months we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also undertaking some measurements of signal and noise levels for actual sunlight reflecting from the ground. We shall present results from some of these ground based studies and discuss their implications for a space based system.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Remote Sensing of the Atmosphere, Ocean, Environment and Space; Oct 23, 2002 - Oct 27, 2002; Hangzhou; China
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Publikationsdatum: 2019-07-18
    Beschreibung: Under a joint agreement between the National Aeronautics and Space Agency (NASA) and the Russian Aviation and Space Agency (RASA), the Stratospheric Aerosol Gas Experiment III (SAGE III) instrument was launched in low earth orbit on December 10,2001 aboard the Russian Meteor-3M satellite from the Baikonur Cosmodrome. SAGE III is a spectrometer that measures attenuated radiation in the 282 nm to 1550 nm wavelength range to obtain the vertical profiles of ozone, aerosols, and other chemical species that are critical in studying the trends for the global climate change phenomena. This instrument version is more advanced than any of the previous versions and has more spectral bands, elaborate data gathering and storage, and intelligent terrestrial software. There are a number of Russian scientific instruments aboard the Meteor satellite in addition to the SAGE III instrument. These instruments deal with land imaging and biomass changes, hydro-meteorological monitoring, and helio-geophysical research. This mission was under development for over a period of six years and offered a number of unique technical and program management challenges for both Agencies. SAGE III has a long space heritage, and four earlier versions of this instrument have flown in space for nearly two decades now. In fact, SAGE II, the fourth instrument, is still flying in space on NASA s Earth Radiation Budget Satellite (ERBS), and has been providing important atmospheric data over the last 18 years. It has provided vital ozone and aerosol data in the mid latitudes and has contributed vastly in ozone depletion research. Ball Aerospace built the instrument under Langley Research Center s (LaRC) management. This paper presents innovative approaches deployed by the SAGE III and the Meteor teams in performing the initial on-orbit checkout. It further documents a number of early science results obtained by deploying low risk, carefully coordinated procedures in resolving the serious operational issues of this satellite.
    Schlagwort(e): Meteorology and Climatology
    Materialart: SPIE Remote Sensing Symposium; Oct 23, 2002 - Oct 27, 2002; Hangzhou; China
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2019-07-18
    Beschreibung: During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation of opportunity. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain- radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate- change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural variability of a fixed rate cycle.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International Symposium on Earth Observation from Space; Nov 14, 2002; Osaka; Japan
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    Publikationsdatum: 2019-07-18
    Beschreibung: Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) observations over mesoscale convective systems (MCSs) reveal that there are localized maxima in the rain rate with a scale of about 10 to 20 km that represent thunderstorms (Cbs). Some of these Cbs are developing or intense, while others are decaying or weak. These Cbs constitute only about 20 % of the rain area of a given MCS. Outside of Cbs, the average rain rate is much weaker than that within Cbs. From an analysis of the PR data, we find that the spatial distribution of rain and its character, convective or stratiform, is highly inhomogeneous. This complex nature of rain exists on a scale comparable to that of a Cb. The 85 GHz brightness temperature, T85, observations of the TRMM Microwave Imager (TMI) radiometer taken over an MCS reflect closely the PR rain rate pattern over land. Local maxima in rain rate shown by PR are observed as local minima in T85. Where there are no minima in T85, PR observations indicate there is light rain. However, the TMI brightness temperature measurements (Tbs) have poor ability to discriminate convective rain from stratiform rain. For this reason, a TMI rain retrieval procedure that depends primarily on the magnitude of Tbs performs poorly. In order to retrieve rain rate from TMI data on land one has to include the spatial distribution information deduced from the T85 data in the retrieval method. Then, quantitative estimation of rain rate can be accomplished. A TMI rain retrieval method developed along these lines can yield estimates of rain rate and its frequency distribution which agree closely with that given by PR. We find the current TRMM project TMI (Version 5) rain retrieval algorithm on land could be improved with the retrieval scheme developed here. To support the conceptual frame work of the rain retrieval method developed here, a theoretical analysis of the TMI brightness temperatures in convective and stratiform regions is presented.
    Schlagwort(e): Meteorology and Climatology
    Materialart: International Tropical Rainfall Measuring Mission(TRMM)Science Meeting; Jul 22, 2002 - Jul 26, 2002; Honolulu, HI; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2019-07-18
    Beschreibung: In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, broken by a frontal passage that reduced boundary layer ozone by 30%. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39-54 Dobson Units (note 1.3 km elevation at the launch site). A stable layer of high ozone at 2-5 km was advected from rural burning regions in western Zambia and neighboring countries, making Lusaka a collection point for transboundary pollution. This is confirmed by trajectories that show ozone leaving Angola, Namibia, Botswana and South Africa before heading toward the Indian Ocean and returning to Lusaka via Mozambique and Zimbabwe. Ozone in the mixed layer at Lusaka is heavily influenced by local sources.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Joint CACGP/IGAC 2002 Symposium; Sep 18, 2002 - Sep 25, 2002; Heraklion; Greece
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    Publikationsdatum: 2019-07-18
    Beschreibung: Remote sensing observations reveal the frequent occurrence of tropopause cirrus, thin cirrus layers located near the tropical cold-point tropopause. Here, we present a theory in which tropical convection plays several important roles in tropopause cirrus formation. First, tropical convection is the primary means by which the moisture required for tropopause cirrus formation is transported into the upper troposphere. However, previous studies suggest that this convection rarely penetrates to the altitudes at which tropopause cirrus layers are observed, suggesting that additional vertical moisture transport is required to explain tropopause cirrus formation. We propose a mechanism for explaining this transport in which tropical convection plays the key role. According to this hypothesis, the transport is accomplished by meridional circulations that develop within the tropopause transition layer (TTL) in response to momentum transport by Rossby waves generated by tropical convection. Results of a series of global scale model runs designed to test this hypothesis will be presented. In addition, reanalyses vertical velocity data will be examined for evidence of the expected correlation between large-scale rising motion within the TTL and tropical convection. Once moisture is present near the cold-point tropopause, large-scale cooling is required to initiate tropopause cirrus formation. One source of this cooling is stratospheric tropical waves induced by tropical convection, as we will show using a time series of radiosonde temperature data superimposed with data on cloud occurrence from the DOE ARM Nauru99 field experiment. Observations of the global characteristics of these waves from a longer time series of reanalysis data will also be presented.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2002 Spring AGU: Physics and Chemistry Near the Tropical Tropopause; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: The Thermal Emission Spectrometer (TES) on the Mars Global Surveyor has made extensive observations of the Martian atmospheric water vapor column since the beginning of its mapping mission in early 1999. The results show broad agreement with the earlier Viking Mars Atmospheric Water Detector (MAWD) results (though column amounts in southern summer are higher, perhaps due to dust obscuration during the Viking mission). General circulation model (GCM) simulations of the annual Martian water cycle also show broad agreement with the TES observations. Details of the simulations depend on cloud and boundary layer parameterizations and on the adsorbing properties of the regolith. In order to make quantitative assessments of this agreement and to obtain observational values for the required physical parameters, a tracer transport data assimilation model has been developed. Model winds are derived from both tracer measurements and retrieved atmospheric temperature structures, providing a useful check of the underlying dynamical core of the GCM. By allowing detailed intercomparison between spacecraft and ground-based observations of Martian water vapor, the model should also contribute significantly to our understanding of the diurnal water cycle.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Committee on Space Research (COSPAR) 2002; Oct 10, 2002 - Oct 19, 2002; Houston, TX; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Publikationsdatum: 2019-07-18
    Beschreibung: Thin cirrus clouds (with optical depth tau much less than 1) play a potentially important role in the Earth atmosphere. The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite has a channel at 1.375 microns that is specifically designed to detect these clouds. During two three-day periods from December 2000 and June 2001, I show that thin cirrus clouds are ubiquitous throughout the tropics. These thin cirrus generally have optical depths below 0.05 and appear with greater frequency and optical depth near deep convection. Regressing top-of-atmosphere outgoing longwave flux data from the Clouds and the Earth's Radiant Energy System (CERES) against optical depth, we calculate that these thin clouds decrease outgoing longwave flux by approx. 1 W/sq m/(0.01 tau). This translates into longwave forcing of several W/sq m near convection and zero away from convection. Averaging over the whole tropics, these thin cirrus decrease average longwave forcing is approx. 1.4 W/sq m.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 2002 Spring AGU Meeting; May 28, 2001 - May 31, 2001; Washington, DC; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2019-07-18
    Beschreibung: Mineral aerosols can absorb significant radiation in the infrared spectrum. Consequently, there may be errors in TIROS Operational Vertical Sounder (TOVS) retrieved temperature and moisture profiles in regions of heavy dust loading. We first investigate the potential error in the temperature retrievals and secondly attempt to account for radiative effects of the dust in retrievals. Information on the dust concentrations and size distribution is from the Goddard Chemistry Aerosol Transport model (GOCART). Aerosol optical parameters are calculated from mie scattering theory assuming a composition of pure illite. We used the cloud-clearing DAO TOVS retrieval system of Joiner and Rokke (2000). It is incorporated into the Data Assimilation Office (DAO) Finite Volume Data Assimilation System (NDAS). The advantage of this approach is that the first guess temperature profile used in the TOVS retrieval are forecasted temperatures from the previous assimilated time period. The operational DAO fvDAS was run for 10 days during June 2001 during a period of dust outbreaks off the coast of Africa over the Atlantic. The observed minus the forecast (O-F) brightness temperature at each TOVS channel is a measure of the accuracy of the retrieval. Since there was no account of dust during this operational run, a dependence of O-F on the estimated atmospheric dust concentrations from GOCART indicates that the dust is contaminating the TOVS retrievals. Channels that measure the surface temperature, lower tropospheric temperature and moisture show this dependence. There are errors in the retrieved brightness temperature of a half a degree or more during heavy dust loading conditions. The forecasted brightness temperature is always greater than the observed value. The radiative transfer module used in the DAO TOVS retrieval system was modified to account for dust. We calculate the sensitivity of the brightness temperature of the TOVS channels to the dust concentrations in GOCART assuming pure illite. For most channels the observed relationship between O-F and dust concentrations in GOCART is consistent with these calculated sensitivities. The fvDAS run was repeated using the modified DAO TOVS retrieval system that accounts for dust. Preliminary results from this run show that there are significant effects on the retrieved surface temperature and tropospheric moisture.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Geophysical Union Spring Meeting; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2019-07-18
    Beschreibung: The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 kin or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the computational design of the dynamical core using a hybrid distributed- shared memory programming paradigm that is portable to virtually any of today's high-end parallel super-computing clusters.
    Schlagwort(e): Meteorology and Climatology
    Materialart: CCSR Workshop; Mar 04, 2002 - Mar 08, 2002; Awaji Island; Japan|GRIPS Workshop; Mar 12, 2002 - Mar 15, 2002; Tsukuba; Japan
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: The first measurements of cloud condensation nuclei (CCN) within and around tropical cyclones were made with the Desert Research Institute (DRI) CCN spectrometer (Hudson 1909) from a NOAA P-3 Hurricane Hunter aircraft throughout the 2001 season. Two penetrations of the closed eye of Hurricane Erin off the northeast US coast on Sept. 10 showed concentrations consistently well in excess of 1000 per cubic cm at approximately 1.4% supersaturation. Simultaneous condensation nuclei (CN--total particle) concentrations were consistently well in excess of 2000 per cubic cm throughout these closed eye penetrations. These within eye measurements at 4 km altitude for exceeded CCN and CN measurements just outside of the storm at similar altitudes--300 and 600 per cubic cm respectively. These CCN and CN concentrations within this closed eye were far above concentrations in maritime air masses; they are characteristic of continental or polluted air masses. Although there was a possibility that Saharan duct may have gotten into this storm these sub tenth micrometer particles are much too small and much too numerous to be dust. Such high concentrations may have originated from European air pollution, which may have been transported by similar airflow patterns to those that carry Saharan dust across the Atlantic. These high concentrations may be a manifestation of descending air that brings higher concentrations that are often characteristic of the upper troposphere (Clarke and Kapustin 2002). Later in the month measurements in Humberto showed highly variable CCN and CN concentrations that ranged from lots than 5 per cubic cm to more than 1000 per Cubic cm over km scale distances within and around the open eye of this tropical storm/hurricane. These very low concentrations suggest strong cloud scavenging.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AGU Spring 2002 Meeting; May 28, 2002 - May 31, 2002; Washington, DC; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2019-07-18
    Beschreibung: Based on the single-scattering optical properties pre-computed with an improved geometric optics method, the bulk absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the effective particle size of a mixture of ice habits, the ice water amount, and spectral band. The parameterization has been applied to computing fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. It is found that flux calculations are not overly sensitive to the assumed particle habits if the definition of the effective particle size is consistent with the particle habits that the parameterization is based. Otherwise, the error in the flux calculations could reach a magnitude unacceptable for climate studies. Different from many previous studies, the parameterization requires only an effective particle size representing all ice habits in a cloud layer, but not the effective size of individual ice habits.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meteorological Society 11th Conference on Atmospheric Radiation; Jun 03, 2002 - Jun 07, 2002; Ogden, UT; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Publikationsdatum: 2019-07-18
    Beschreibung: Physical thickness of a cloud layer, and sometimes multiple cloud layers, can be estimated from the time delay of off-beam returns from a pulsed laser source illuminating one side of the cloud layer. In particular, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. The halo method works best for thick cloud layers, typically optical thickness exceeding 2, and thus compliments conventional lidar which cannot penetrate thick clouds. Cloud layer top and base have been measured independently over the ARM/SGP site using conventional laser ranging (lidar) and the top minus base thickness are compared with a cloud top halo estimate obtained from the NASA/Goddard THOR System (THOR = THickness from Offbeam Returns). THOR flies on the NASA P3, and measures the halo timings from several km above cloud top, at the same time providing conventional lidar cloud top height. The ARM/SGP micropulse lidar provides cloud base height for validation.
    Schlagwort(e): Meteorology and Climatology
    Materialart: ARM Science Team Meeting; Apr 08, 2002 - Apr 12, 2002; St. Petersburg, FL; United States|European Geophysical Society; Apr 21, 2002 - Apr 26, 2002; Nice; France
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: Global wind profiles are needed for a wide range of meteorological applications. Since the 1980's, observing system simulation experiments have been conducted in order to evaluate the potential impact of space-based wind profiler data on numerical weather prediction, and to evaluate trade-offs in lidar design. These experiments indicated tremendous potential for satellite lidar observations to improve atmospheric analyses and forecasts. More recent experiments are aimed at assessing the precise requirements for space-based lidar wind profile data and to evaluate the potential for alternative technologies. At the workshop, OSSE methodology, and results from experiments conducted at the DAO to the define requirements for space-based lidar wind will be presented.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 6th International Winds Workshop; May 06, 2002 - May 10, 2002; Madison, WI; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    Publikationsdatum: 2019-07-18
    Beschreibung: The Tropical Rainfall Measuring Mission (TRMM) has completed more than four years in orbit. A summary of research highlights will be presented focusing on application of TRMM data to topics ranging over climate analysis, improving forecasts, precipitation processes and non-precipitation applications. One focus of the talk will be the quasi-global TRMM real-time merged rainfall analysis with 3-hr resolution, which uses TRMM to calibrate estimates from other polar-orbit and geosynchronous satellites. These rainfall estimates provide useful information for applications for assimilation into numerical models and for hydrological studies. The status of precipitation estimates from different TRMM instruments and algorithms will be described. Monthly surface rainfall estimates over the ocean based on different instruments on TRMM currently differ by 20% in overall mean. In addition, time changes in global ocean rainfall between El Nino and La Nina conditions show differences between the active and passive microwave products. Improved versions of algorithms will shortly resolve most of these differences. The TRMM rainfall estimates are intercompared among themselves and with other estimates, including those of the standard, monthly Global Precipitation Climatology Project (GPCP) analysis. A four-year TRMM rainfall climatology is presented, including anomaly fields related to the changing ENSO situation during the mission. The evolution of precipitation analysis incorporating Advanced Microwave Scanning Radiometer (AMSR) data on AQUA and ADEOS II and eventually data from the Global Precipitation Mission (GPM) will also be described.
    Schlagwort(e): Meteorology and Climatology
    Materialart: EGS 2002 Meeting; Apr 21, 2002 - Apr 26, 2002; Nice; France
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    Publikationsdatum: 2019-07-18
    Beschreibung: During the last three weeks of September 2001, the East Pacific Investigation of Climate Processes in the Coupled Ocean-Atmosphere System (EPIC2001) intensive field campaign focused on studies of deep convection in the ITCZ-cold tongue complex over the Mexican warm-pool region (10 deg. N 95 deg. W) of the eastern Pacific Ocean. Major observational platforms deployed during this phase of EPIC2001 included two ships, the NOAA R/V Ronald H. Brown and the NSF R/V Horizon, and two research aircraft including a NOAA P-3 and the NCAR C-130. This study utilizes new C-band Doppler radar and sounding observations collected aboard the R/V Ronald Brown to describe the 4-D structure of ITCZ convection as a function of the environmental forcing and phase of 3-5 day easterly wave passages. Three distinct easterly wave passages occurred during EPIC2001. Each wave originated in the eastern Atlantic Ocean and after moving over Central America and into the eastern Pacific, were easily identified in time-height profiles of wind and thermodynamic data collected at the position of the R/V Brown. In all cases, the wave trough axes (as defined by changes in the meridional and zonal wind direction and changes in pressure altitude) exhibited relatively weak shear at low to mid-levels and tilted westward with height. The humidity profile in each wave did not exhibit as great a tilt in the vertical as the trough axes. Consistent with previous studies of westward tilting waves over the western Pacific Ocean, peaks in radar diagnosed rainfall tended to lead the passage of the surface wave trough by 0-2 days.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meteorological Society 25th Conference on Hurricanes and Tropical Meteorology; Apr 29, 2002 - May 03, 2002; San Diego, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    Publikationsdatum: 2019-07-18
    Beschreibung: The 22 year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP), the four year (1997-present) daily GPCP analysis and 3-hr semi-global analyses using Tropical Rainfall Measuring Mission (TRMM) data are used to study global and regional variations and trends during the 22 years and the shorter-time scale events that constitute those variations. The GPCP monthly data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. In terms of regional trends 1979 to 2000 the tropics have a distribution of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes Positive anomalies extend in the Southern Hemisphere (S.H.) from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere (N.H.) the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe. In the Southern Hemisphere an anomaly feature is shown to spiral into the Antarctica land mass. The extremes of ENSO-related anomalies are also examined and indicate that globally, during both El Nino and La Nina, more extremes of precipitation (both wet and dry) occur than during the "neutral" regime, with the El Nino regime showing larger magnitudes. The distribution is different for the globe as a whole and when the area is restricted to just land.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS Annual meeting; Jan 13, 2002 - Jan 17, 2002; Orlando, FL; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    Publikationsdatum: 2019-07-18
    Beschreibung: During the last three weeks of September 2001, the EPIC-2001 intensive field campaign focused on studies of deep convection in the ITCZ over the Mexican warm pool region (10N, 95W) of the East Pacific. This study focuses on the pronounced observed diurnal cycle of environmental and convective parameters within the experiment domain. Data from three primary sources are examined: the R/V Ronald H. Brown C-band weather radar, 4-hourly soundings from the Brown and the Global Atmospherics, Inc. National Lightning Detection Network (long range product). Satellite data from TRMM, GOES and OV-1 are also used. The domain boundary layer shows a robust daily evolution of moist enthalpy (as reflect by equivalent potential temperature, theta-e, or wet bulb potential temperature, theta-w), with contributions from changes in both dry and moist entropy. Peak theta-w is found after local nightfall; the average diurnal range of theta-w is approximately 1 deg C. A composite diurnal cycle of convective properties was derived from the C-band volume scans, sampled continuously through the experiment at 10 minute updates. Products derived from the volumetric data include a surface PPI, 15 and 30 dBZ echo top height, vertically integrated liquid, and 6 km (mixed phase region) reflectivity CAPPIs. For almost all products, the parameter means showed virtually no diurnal cycle. However, for the upper-level products, the parameter spectra showed a clear peak in the occurrence of deep/vigorous convection (the "tail end of the distribution") between 7-9 UTC (1-3 AM local), while overall frequency of occurrence peaked later, from 12-15 UTC (6-9 AM local). This represents a daily "outbreak" of isolated deep cells a couple of hours after sunset and subsequent growth, organization and decay through the nighttime hours. The coherence of the diurnal cycle of the convective spectrum is impressive given the wide variety of convective organization observed during the experiment, and given the modulation by passage of 3-5 day easterly waves. While earlier satellite OLR composites suggested an offshore coastal migration of storms into the domain at night, examination of the 150 km and 300 km range radar products showed little evidence of such organization; almost all convection developed "in-place" within the analysis domain. Consistent with the diurnal thermodynamic and microphysical evolution, a clear cycle in cloud-to-ground (CG) lightning occurrence was observed. The local CG diurnal cycle is significantly stronger than the satellite-derived tropical ocean diurnal cycle of total (IC+CG) lightning. Flash rates of 3-4 fl/min were often visually observed after nightfall; these are fairly 'healthy' flash rates for tropical ocean storms, and the domain was qualitatively noted to be unusually lightning-productive by the R/V Brown crew (also consistent with satellite-based climatologies).
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meteorological Society 25th Conference on Hurricanes and Tropical Meteorology; Apr 29, 2002 - May 03, 2002; San Diego, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    Publikationsdatum: 2019-07-18
    Beschreibung: During the 1998 and 2001 hurricane seasons, the Advanced Microwave Precipitation Radiometer (AMPR) was flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture EXperiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. The passive microwave observations of these tropical cyclones collected at frequencies of 10.7, 19.35, 37.1, and 85.5 GHz will be presented to explain differences in precipitation features of the hurricanes. In particular, the relationship of the passive microwave signatures of precipitation-sized ice to vertical updraft strength will be examined as a possible indicator of future convective intensity. Correlated aircraft radar, lightning, visible and infrared information will also be examined to provide further insight.
    Schlagwort(e): Meteorology and Climatology
    Materialart: 25th Conference on Hurricanes and Tropical Meteorology; Apr 29, 2002 - May 03, 2002; San Diego, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2019-07-18
    Beschreibung: During the recently completed East Pacific Investigation of Climate Processes in the Coupled Ocean-Atmosphere System (EPIC) field program, the NOAA research vessel Ronald H. Brown (RHB) was deployed in the east Pacific Inter Tropical Convergence Zone (ITCZ) for approximately 3 weeks near 10 deg. N, 95 deg. W. One of the principal objectives of the EPIC-ITCZ program was to observe the modulation of convection by synoptic-scale easterly waves and the air-sea coupling process in this poorly sampled region of the east Pacific. Data from the experiment will be used as validation to improve forecast models. The RHB carried a variety of platforms during EPIC to sample atmospheric and oceanic phenomena, including a scanning C-band Doppler radar, radiation flux instrumentation, air-sea flux system, Doppler lidar, 35 GHz cloud radar, UHF wind profiler, sea surface temperature (SST) sensors, as well as standard surface meteorological instrumentation and a suite of rain gauges. This presentation will focus on the analysis of C-band radar data that was collected on 10 September, 2001 as the ship passed through an easterly wave which later developed into hurricane Ivo. The ship captured approximately 12 hours of convection associated with the tropical disturbance. During this period, the domain sampled by the radar (approximately 71,000 sq km) contained a significant number of echo features. Specifically, the fraction of the domain containing radar echo above 10 dBZ reached 80% for over 2 hours and remained near 60% for a continuous six hour period. Animation of radar images showed distinct rotation in echo features associated with the easterly wave passage. Despite an approximate 4 C drop in surface air temperature and sustained winds approaching 20 m/ s, the SST remained nearly constant throughout the observation period (approx. 29.5 C). Peak values of latent and sensible heat flux exceeded 400 and 100 W /sq m, respectively. The radar documented the change in precipitation vertical structure as the ship passed through regions of significant convection with echo tops approaching 14 km and 30 dBZ echo tops extending to near 9 km embedded in regions that were predominantly stratiform in nature. Single Doppler retrievals (Extended Velocity Azimuth Display) were conducted continuously at 10-minute resolution for approximately 4 hours in the latter part of the observation period, and documented the transition from convection (low-level convergence, upper level divergence) to stratiform (mid-level convergence sandwiched between upper and lower level divergence) kinematic structure.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Meteorological Society 25th Conference on Hurricanes and Tropical Meteorology; Apr 29, 2002 - May 03, 2002; San Diego, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    Publikationsdatum: 2019-07-18
    Beschreibung: Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 12 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Time-height analyses of the three strongest supercells are presented in order to document storm kinematic structure and evolution. These Beryl mini-supercells were comparable in radar-observed intensity but much more persistent than other tropical cyclone-spawned tornadic cells documented thus far with Doppler radars. Cloud-to-ground lightning data are also examined for all the tornadic cells in this severe swarm-type tornado outbreak. These data show many of the characteristics of previously reported heavy-precipitation supercells. Lightning rates were weak to moderate, even in the more intense supercells, and in all the storms the lightning flashes were almost entirely negative in polarity. No lightning at all was detected in some of the single-tornado storms. In the stronger cells, there is some evidence that lightning rates can decrease during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final cloud-to-ground lightning flashes. These findings suggest possible benefits from implementation of observing systems capable of monitoring intracloud as well as cloud-to-ground lightning activity.
    Schlagwort(e): Meteorology and Climatology
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    Publikationsdatum: 2019-07-18
    Beschreibung: The first view of lower stratospheric and upper tropospheric structure from sondes is provided by a 3-year, 10-site record from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network: http://code9 16.gsfc.nasa.gov/Data_services/shadoz. Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; La Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Taking the UT/LS (upper troposphere-lower stratosphere) as the region between 12 and 17 km, we examine ozone variability in this region on a week-to- week and seasonal basis. The tropopause is lower in September-October-November than in March-April-May, when ozone is a minimum at most SHADOZ stations. A zonal wave-one pattern (referring to ozone mixing ratios greater over the Atlantic and adjacent continents than over the Pacific and eastern Indian Ocean), persists all year. The wave, predominantly in the troposphere and with variable magnitude, appears to be due to general circulation - with subsidence over the Atlantic and frequent deep convection over the Pacific and Indian Ocean. The variability of deep convection - most prominent at Java, Fiji, Samoa and Natal - is explored in time-vs-altitude ozone curtains. Stratospheric incursions into the troposphere are most prominent in soundings at Irene and Reunion Island.
    Schlagwort(e): Meteorology and Climatology
    Materialart: AMS 83rd Annual Meeting; Feb 09, 2003 - Feb 13, 2003; Long Beach, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    Publikationsdatum: 2019-07-18
    Beschreibung: Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    Publikationsdatum: 2019-07-18
    Beschreibung: Our Numerical Spectral Model (NSM) extends from the ground up into the thermosphere and has a vertical grid point resolution of about 0.5 km to resolve the interactions of gravity waves (GWs) described with Hines' Doppler Spread Parameterization (DSP). This model produces in the stratosphere and mesosphere the major features of QBO, SAO, tides, and planetary waves. The purpose of this paper is to discuss results from an initial study with our 3D model that shows how certain tropospheric processes can affect the dynamics of the middle atmosphere. Under the influence of tropospheric heating, and augmented by GW interactions, two distinct but related processes can be identified. (1) A meridional circulation develops in the stratosphere, with rising motions at low latitudes that are in magnitude comparable to the downward propagation of the QBO. As Dunkerton pointed out, a larger GW source is then required to reproduce the observed QBO, which tends to move us closer to the values recommended for the DSP. This has significant consequences for our model results that describe the upper mesosphere, considering the general importance of GWs for this region and in influencing planetary waves (e.g., 2-day wave) and tides in particular. (2) Tropospheric heating produces zonal jets near the tropopause that are related to latitudinal variations in pressure and reversing temperature variations (resembling the dynamical conditions near the mesopause), which in turn is conducive to generate baroclinic instability. Modeling results show that our ability to generate the QBO critically depends on the magnitude of the temperature reversal that is a measure of this instability. Planetary waves are generated in this process, which can apparently interfere with or augment the GW interactions. As originally demonstrated by Lindzen and Holton, the eastward propagating Kelvin waves and westward propagating Rossby gravity waves (generated by tropospheric convection) can in principle provide the acceleration to influence the QBO, and we were able to confirm this with our 3D model.
    Schlagwort(e): Meteorology and Climatology
    Materialart: American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    Publikationsdatum: 2019-07-18
    Beschreibung: Four global scale and three regional scale chemical transport models are intercompared and evaluated during NASA's TRACE-P experiment. Model simulated and measured CO are statistically analyzed along aircraft flight tracks. Results for the combination of eleven flights show an overall negative bias in simulated CO. Biases are most pronounced during large CO events. Statistical agreements vary greatly among the individual flights. Those flights with the greatest range of CO values tend to be the worst simulated. However, for each given flight, the models generally provide similar relative results. The models exhibit difficulties simulating intense CO plumes. CO error is found to be greatest in the lower troposphere. Convective mass flux is shown to be very important, particularly near emissions source regions. Occasionally meteorological lift associated with excessive model-calculated mass fluxes leads to an overestimation of mid- and upper- tropospheric mixing ratios. Planetary Boundary Layer (PBL) depth is found to play an important role in simulating intense CO plumes. PBL depth is shown to cap plumes, confining heavy pollution to the very lowest levels.
    Schlagwort(e): Meteorology and Climatology
    Materialart: FSU-1338-835-26
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    Publikationsdatum: 2019-07-18
    Beschreibung: The catastrophic August 2002 floods in central Europe followed very intense rains over a span of several days, reported over a large region. On Aug. 12 meteorological stations over an elongated swath, from the vicinity of Saltzburg (Austria) in the south to the vicinity of Berlin in the north, reported precipitation exceeding 100 mm/day. Synoptic analysis points to a jet streak in the mid-Atlantic. moving eastward, which reached Spain on about 9th of August. An understanding of the mechanism that ultimately produced the unprecedented rains was derived conveniently from the GEOS 3 Model developed at NASA Goddard Space Flight Center. Examining the scenarios of omega, we observe on Aug. 10, OOZ, a center of ascending vertical motions, stronger than 0.6 Pa/s at the 700 hPa level over the western Mediterranean. Advecting moist and warm air to higher levels from the near-ocean level, the center moved eastward, reaching the northern Adriatic on Aug. 11, OOZ, then continuing northeast to the regions where most intense precipitation was reported on Aug. 12. The omega at 850 hPa shows a closely similar pattern but especially interesting is the 850 omega pattern on Aug. 12, 12Z, which shows descending motions stronger than 0.4 Pa/s over the eastern Po Valley (northern Italy), and an elongated region of ascending motions stronger than 1.0 Pa/s coinciding in extent with the extreme-precipitation region on that day. At that time, the cyclone which formed over the Po Valley, was centered on eastern Czech Republic, producing on its western side these strong ascending motions over the precipitation region. The pattern of the surface-pressure lows provides further insight into the processes, and specifically, the Aug. 12,06Z map, shows a 996 mb low over the western Czech Republic. The flooding following the extreme rains was acerbated by the fact that river-channels were made narrower over the recent decades by the urbanization of river banks.
    Schlagwort(e): Meteorology and Climatology
    Materialart: European Conference on Applied Climatology; Nov 01, 2002; Brussels; Belgium
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Publikationsdatum: 2019-07-18
    Beschreibung: The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: 〈http://code916.gsfc.nasa.nov/Data_services/shadoz〉. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole and convective mixing. Pollution transport from Africa and South America is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Joint CACGP/IGAC2002 Symposium; Sep 18, 2002 - Sep 25, 2002; Heraklion; Greece
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...