ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1995-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1985-11-01
    Print ISSN: 0009-2614
    Electronic ISSN: 1873-4448
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The airborne Raman lidar recently completed a series of flight tests aboard a C-130 aircraft operated by the NASA Wallops Flight Facility. The Raman lidar is intended to make simultaneous remote measurements of methane, water vapor, temperature, and pressure. The principal purpose of the measurements is to aid in the investigation of polar phenomena related to the formation of ozone 'holes' by permitting the identification of the origin of air parcels using methane as a tracer.
    Keywords: Lasers and Masers
    Type: ; 44-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Ozone observations from ozonesondes, the lidars aboard the DC-8, in situ ozone measurements from the ER-2, and satellite ozone measurements from Polar Ozone and Aerosol Measurement III (POAM) were used to assess ozone loss during the Sage III Ozone Loss and Validation Experiment (SOLVE) 1999-2000 Arctic campaign. Two methods of analysis were used. In the first method a simple regression analysis is performed on the ozonesonde and POAM measurements within the vortex. In the second method, the ozone measurements from all available ozone data were injected into a free running diabatic trajectory model and carried forward in time from December 1 to March 15. Vortex ozone loss was then estimated by comparing the ozone values of those parcels initiated early in the campaign with those parcels injected later in the campaign. Despite the variety of observational techniques used during SOLVE, the measurements provide a fairly consistent picture. Over the whole vortex, the largest ozone loss occurs between 550 and 400 K potential temperatures (approximately 23-16 km) with over 1.5 ppmv lost by March 15, the end of the SOLVE mission period. An ozone loss rate of 0.04-0.05 ppmv/day was computed for March 15. Ozonesondes launched after March 15 suggest that an additional 0.5 ppmv or more ozone was lost between March 15 and April 1. The small disagreement between ozonesonde and POAM analysis of January ozone loss is found to be due to biases in vortex sampling. POAM makes most of its solar occultation measurements at the vortex edge during January 2000 which bias samples toward air parcels that have been exposed to sunlight and likely do experience ozone loss. Ozonesonde measurements and the trajectory technique use observations that are more distributed within the interior of the vortex. Thus the regression analysis of the POAM measurements tends to overestimate mid-winter vortex ozone loss. Finally, our loss calculations are broadly consistent with other loss computations using ER-2 tracer data and MLS satellite data, but we find no evidence for the 1992 high mid-January loss reported using the Match technique.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: A mobile dual-wavelength differential absorption lidar capable of making precise measurements of stratospheric ozone between 20 and 45 km has been developed at the Goddard Space Flight Center as part of the international Network for the Detection of Stratospheric Change. The system is installed in a 46-ft trailer, which enables the instrument to act as a network transfer standard and to be set up at any location where power can be obtained. A description of the instrument is presented, along with a discussion of the data analysis. Some results from an intercomparison held at JPL's Table Mountain Observatory in California during October and November 1988 are also presented.
    Keywords: LASERS AND MASERS
    Type: Optical Engineering (ISSN 0091-3286); 30; 31-39
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: The AROTEL instrument is a collaboration between scientists at NASA, Goddard Space Flight Center and NASA Langley Research Center. The instrument was designed and constructed to be flown on the NASA DC-8, and to measure vertical profiles of ozone, temperature and aerosol. The instrument transmits radiation at 308, 355, 532, and 1064 nm. Depolarization is measured at 532 nm. In addition to the transmitted wavelengths, Raman scattered signals at 332 nm and 387 nm are also collected. The instrument was installed aboard the DC-8 for the SAGE III Ozone Loss and Validation Experiment (SOLVE) which deployed from Kiruna, Sweden, during the winter of 1999-2000 to study the polar stratosphere. During this time, profile measurements of polar stratospheric clouds, ozone and temperature were made. This paper provides an instrumental overview as an introduction to several data papers to be presented in the poster sessions. In addition to samples of the measurements, examples will be given to establish the quality of the various data products.
    Keywords: Environment Pollution
    Type: International Laser Radar Conference; Jul 10, 2000 - Jul 14, 2000; Vichy; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: The AROTEL instrument, deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss and Validation Experiment (SOLVE), flew over the NDSC station operated by the Alfred Wegner Institute at Ny Aalesund, Spitsbergen. AROTEL ozone and temperature measurements made during near overflights of Ny Aalesund are compared with sonde ozone and temperature, and lidar ozone measurements from the NDSC station. Nine of the seventeen science flights during the December through March measurement period overflew near Ny Aalesund. Agreement of AROTEL with the ground-based temperature and ozone values at altitudes from just above the aircraft to about 30 km gives strong confidence in using AROTEL temperature and ozone mixing ratio to study the mechanisms of ozone loss in the winter arctic polar region.
    Keywords: Meteorology and Climatology
    Type: International Laser Radar Conference; Jul 10, 2000 - Jul 14, 2000; Vichy; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: During the winter of 1999-2000, the AROTEL instrument was deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss Validation Experiment (SOLVE). Measurements of ozone, temperature and aerosols were made on 18 local science flights from December to March. Extremely low temperatures were observed throughout most of the Arctic vortex and polar stratospheric clouds were observed throughout the Arctic area during January. Significant ozone loss was measured after the sun began to rise on the vortex area in February. Ozone mixing ratios as low as 800 ppbv were observed during flights in March.
    Keywords: Environment Pollution
    Type: International Laser Radar Conference; Jul 10, 2000 - Jul 14, 2000; Vichy; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Retrievals of CO2 profiles within the planetary boundary layer (PBL) are required to understand CO2 transport over regional scales and for validating the future space borne CO2 remote sensing instrument, such as the CO2 Laser Sounder, for the ASCENDS mission, We report the use of a return-to-zero (RZ) pseudo noise (PN) code modulation technique for making range resolved measurements of CO2 within the PBL using commercial, off-the-shelf, components. Conventional, range resolved, measurements require laser pulse widths that are s#rorter than the desired spatial resolution and have pulse spacing such that returns from only a single pulse are observed by the receiver at one time (for the PBL pulse separations must be greater than approximately 2000m). This imposes a serious limitation when using available fiber lasers because of the resulting low duty cycle (less than 0.001) and consequent low average laser output power. RZ PN code modulation enables a fiber laser to operate at much higher duty cycles (approaching 0.1) thereby more effectively utilizing the amplifier's output. This results in an increase in received counts by approximately two orders of magnitude. The approach involves employing two, back to back, CW fiber amplifiers seeded at the appropriate on and offline CO2 wavelengths (approximately 1572 nm) using distributed feedback diode lasers modulated by a PN code at rates significantly above 1 megahertz. An assessment of the technique, discussions of measurement precision and error sources as well as preliminary data will be presented.
    Keywords: Lasers and Masers
    Type: 2010 AGU Fall Meeting; Dec 13, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Fall Meeting; Dec 06, 2002 - Dec 10, 2002; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...