ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics  (39)
  • Aircraft Stability and Control  (18)
  • AERODYNAMICS  (11)
  • Fluid Mechanics and Thermodynamics  (11)
  • Temperatur  (7)
  • 1950-1954  (86)
  • 1954  (39)
  • 1953  (47)
Collection
Keywords
Years
  • 1950-1954  (86)
Year
  • 1
    Publication Date: 1954
    Description: Bericht über Untersuchungen zur Terminwahl für die Bekämpfung von Kohlschotenrüßler und Kohlschotengallmücke sowie Vergleiche der Ergebnisse mit der bisherigen Literatur KATASTER-BESCHREIBUNG: Einfluss der Temperatur auf das Auftreten des Kohlschotenrüßlers KATASTER-DETAIL: Delta T +: Tmit 〉 15°C, dann Erscheinen des Kohlschotenrüßlers
    Keywords: Sachsen-Anhalt ; 1952-1953 ; Pflanzenschädling ; Temperatur ; Raps
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Mitteilungen aus der Biologischen Zentralanstalt für Land- und Forstwirtschaft Berlin-Dahlem, Heft 79
    Publication Date: 1954
    Description: Zusammenfassender Bericht über die in den Jahren 1947-1952 in Westdeutschland durchgeführten Untersuchungen zur Epidemiologie, Verbreitung, wirtschaftlichen Bedeutung und Bekämpfung dieser Virose KATASTER-BESCHREIBUNG: Hauptbefallsgebiete sind solche, mit mildem Winterklima, in denen die langjährigen Mittelwerte des kältesten Monats Januar nicht unter 0°C abfallen; KATASTER-DETAIL: Delta T(Sommer)+ und Delta Nied (Sommer) -, dann Delta t(Individualentwicklung der Überträger)- und Massenentwicklung (der Überträger) +; Delta T(Sommer)+ und Delta Nied (Sommer)-, dann Vergilbungsschäden +; Delta T - und Delta Lichtintensität -, dann Wirkung des Virus -;
    Keywords: Westdeutschland ; 1947-1952 ; Infektionskrankheiten ; Ertrag ; Niederschlag ; Pflanzenkrankheit ; Pflanzenschädling ; Temperatur ; Trockenheit ; Wachstum ; Witterung ; Düngung
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-SL54F28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The presence of radomes and instruments that are sensitive to water films or ice formations in the nose section of all-weather aircraft and missiles necessitates a knowledge of the droplet impingement characteristics of bodies of revolution. Because it is possible to approximate many of these bodies with an ellipsoid of revolution, droplet trajectories about an ellipsoid of revolution with a fineness ratio of 10 were computed for incompressible axisymmetric air flow. From the computed droplet trajectories, the following impingement characteristics of the ellipsoid surface were obtained and are presented in terms of dimensionless parameters: (1) total rate of water impingement, (2) extent of droplet impingement zone, and (3) local rate of water impingement. These impingement characteristics are compared briefly with those previously reported for an ellipsoid of revolution with a fineness ratio of 5.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-3147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: An investigation at a free-stream Mach number of 2.02 was made to determine the effects of a propulsive jet on a wing surface located in the vicinity of a choked convergent nozzle. Static-pressure surveys were made on a flat surface that was located in the vicinity of the propulsive jet. The nozzle was operated over a range of exit pressure ratios at different fixed vertical distances from the flat surface. Within the scope of this investigation, it was found that shock waves, formed in the external flow because of the presence of the propulsive jet, impinged on the flat surface and greatly altered the pressure distribution. An integration of this pressure distribution, with the location of the propulsive jet exit varied from 1.450 propulsive-jet exit diameters to 3.392 propulsive-jet exit diameters below the wing, resulted in an incremental lift for all jet locations that was equal to the gross thrust at an exit pressure ratio of 2.86. This incremental lift increased with increase in exit pressure ratio, but not so rapidly as the thrust increased, and was approximately constant at any given exit pressure ratio.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L54E05a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Keywords: AERODYNAMICS
    Type: NACA-TN-3283
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The effects of primary and runback ice formations on the section drag of a 36 deg swept NACA 63A-009 airfoil section with a partial-span leading-edge slat were studied over a range of angles of attack from 2 to 8 deg and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.39 to 1.23 grams per cubic meter and datum air temperatures from 10 to 25 F. The results with slat retracted showed that glaze-ice formations caused large and rapid increases in section drag coefficient and that the rate of change in section drag coefficient for the swept 63A-009 airfoil was about 2-1 times that for an unswept 651-212 airfoil. Removal of the primary ice formations by cyclic de-icing caused the drag to return almost to the bare-airfoil drag value. A comprehensive study of the slat icing and de-icing characteristics was prevented by limitations of the heating system and wake interference caused by the slat tracks and hot-gas supply duct to the slat. In general, the studies showed that icing on a thin swept airfoil will result in more detrimental aerodynamic characteristics than on a thick unswept airfoil.
    Keywords: AERODYNAMICS
    Type: NACA-RM-E53J30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Keywords: AERODYNAMICS
    Type: NASA-TM-79864 , NACA-TN-3062
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Keywords: AERODYNAMICS
    Type: NASA-TM-79844 , NACA-TR-1198 , NACA-TN-3018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: The effects of several wing leading-edge camber and deflected-tip modifications on the force and moment characteristics of a 1/20-scale model of the Convair F-102 airplane have been determined at Mach numbers from 0.60 t o 1.14 for angles of attack up to 14 deg. in the Langley 8-foot transonic tunnel. The effects of elevator deflections from 0 deg. to -10 deg. were also obtained for a configuration incorporating favorable leading- edge and tip modifications. Leading-edge modifications which had a small amount of constant-chord camber obtained by vertically adjusting the thickness distribution over the forward (3.9 percent of the mean aerodynamic chord) portion of the wing were ineffective in reducing the drag at lifting conditions at transonic speeds. Leading edges with relatively large cambers designed to support nearly elliptical span load distributions at lift coefficients of 0.15 and 0.22 near a Mach number of 1.0 produced substantial reductions in drag at most lift coefficients.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54K29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley low-turbulence pressure tunnel of the aerodynamic characteristics of the NACA 0012, 64(sub 2)-015, and 64(sub 3)-018 airfoil sections. Data were obtained at Mach numbers from 0.3 to that for tunnel choke, at angles of attack from -2deg to 30deg, and with the surface. of each airfoil smooth-and with roughness applied at the leading edge.The Reynolds numbers of the tests ranged from 0.8 x 10(exp 6) to 4.4 x 10(exp 6). The results are presented as variations of lift, drag, and quarter-chord pitching-moment coefficients with Mach number.
    Keywords: Aerodynamics
    Type: NACA-RM-L54H06a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: The effects of deflecting full-span, constant-chord, leading-edge flaps, having either round or sharp leading edges, upon the lift, drag,. and pitching moment characteristics of a model of an interceptor-type aircraft have been determined experimentally at subsonic and supersonic speeds. Results indicate that the variations of lift with angle of attack and of pitching moment with lift were unaffected by either the shape of the flap leading edge or flap deflection. Deflection of the flaps having either a round or sharp leading edge increased the drag at zero lift at both subsonic and supersonic speeds. In spite of the increase in the drag at zero lift, however, deflection of the flaps increased the maximum lift-drag ratio at subsonic speeds and had no deleterious effect at supersonic speeds.
    Keywords: Aerodynamics
    Type: NACA-RM-SA54B16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: Transfer functions descriptive of the response of most engine variables were determined from transient data that were obtained from approximate step inputs in fuel flow and in exhaust-nozzle area. The speed responses of both spools to fuel flow and to turbine-inlet temperature appeared as identical first-order lags. Response to exhaust-nozzle area was characterized by a first-order lag response of the outer-spool speed, accompanied by virtually no change in inner-spool speed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E54J11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-12
    Description: The static lateral- and directional-stability characteristics of a high-speed fighter-type airplane, obtained from wind-tunnel tests of a model, are presented. The model consisted of a thin, unswept wing of aspect ratio 2.3 and taper ratio 0.385, a body, and a horizontal tail mounted in a high position on a vertical tail. Rolling-moment, yawing moment, and cross-wind-force coefficients are presented for a range of sideslip angles of -5 deg. to +5 deg, for Mach numbers of 0.90, 1.45, and 1.90. Data are presented which show the effects on the lateral and directional stability of: (1) component parts of the complete model, (2) modification of the empennage so as to provide different heights of the horizontal tail above the wing plane, (3) angle of attack, and (4) dihedral of the wing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-SA54H26b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-12
    Description: An investigation to determine the altitude performance of the J57-P-1 turbojet engine and components was conducted at the NACA Lewis altitude wind tunnel. Data were obtained over a corrected inboard rotor speed range from 56 to 106 percent of rated speed, with intercompressor bleeds both open and closed, at altitudes from 15,000 to 50,000 feet and at a flight Mach number of 0.81. The corresponding range of Reynolds number indices was from 0.858 to 0.213. All data presented were obtained with a fixed-area exhaust nozzle sized according to the manufacturer's specification. Over-all engine performance parameters are presented as functions of inboard rotor speed corrected on the basis of engine inlet temperature. Component parameters are presented as functions of their respective corrected rotor speeds. A tabulation of all performance data is included in addition to the graphical presentation. Corrected net thrust is unusually sensitive to changes in corrected inboard rotor speed in the high speed region. A change of 1 percent in speed, at sated speed, produced a change of 6 percent in corrected net thrust . At rated engine speed, increasing the altitude from 15,000 to 50,000 feet at a constant flight Mach number of 0.81 increased the specific fuel consumption 13 percent but did not affect corrected net thrust.
    Keywords: Aerodynamics
    Type: NACA-RM-SE54D30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-11
    Description: An investigation was made of a 1/10-scale dynamically similar model of the North American F-86 airplane to study its behavior when ditched. The model was landed in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds, and conditions of damage were simulated. The behavior of the model was determined from visual observations, acceleration records, and motion-picture records of the ditchings. Data are presented in tabular form, sequence photographs, and time-history acceleration curves. From the results of the investigation it was concluded that the airplane should be ditched at the nose-high, 14 deg attitude to avoid the violent dive which occurs at the 4 deg attitude. The flaps and leading-edge slats should be fully extended to obtain the lowest possible landing speed. The wing tanks should be jettisoned to avoid the undesirable behavior which occurs with the tanks attached. In a calm-water ditching under these conditions the airplane will run smoothly for about 600 feet. Maximum longitudinal and vertical decelerations of about 3g will be encountered.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9K01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-11
    Description: An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54C19a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-11
    Description: A supplementary investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the Grumman F9F-6 airplane. The primary purpose of the investigation was to reevaluate the spin-recovery characteristics of the airplane in view of the fact that the ailerons had been eliminated from the flaperon-aileron lateral control system of the airplane. A spin-tunnel investigation on a model of the earlier version of the F9F-6 airplane had indicated that use of ailerons with the spin (stick right in a right spin) was essential to insure recovery. The results indicate that with.ailerons eliminated, it may be difficult to obtain an erect developed spin but if a fully developed spin is obtained on the airplane, recovery therefrom may be difficult or impossible. Flaperon deflection should have little effect on spins or recoveries.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54L01a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted to determine the stability and control characteristics of a 0.13-scale free-flight model of the Convair XFY-1 airplane during take-offs and landings in steady winds. The tests indicated that take-offs in headwinds up to at least 20 knots (full scale) will be fairly easy to perform although the airplane may be blown downstream as much as 3 spans before a trim condition can be established. The distance that the airplane will be blown down-stream can be reduced by restraining the upwind landing gear until the instant of take-off. The tests also indicated that spot landings in headwinds up to at least 30 knots (full scale) and in crosswinds up to at least 20 knots (full scale) can be accomplished with reasonable accuracy although, during the landing approach, there will probably be an undesirable nosing-up tendency caused by ground effect and by the change in angle of attack resulting from vertical descent. Some form of arresting gear will probably be required to prevent the airplane from rolling downwind or tipping over after contact. This rolling and tipping can be prevented by a snubbing line attached to the tip of the upwind' wing or tail or by an arresting gear consisting of a wire mesh on the ground and hooks on the landing gear to engage the mesh.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54E28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-11
    Description: The effect on drag of positioning symmetrically mounted Douglas Aircraft Company, Inc. stores in pairs on a parabolic fuselage of fineness ratio 10.0 has been determined by flight tests of rocket-propelled, zero-lift models through a range of Mach number from 0.9 to 1.8. The stores were mounted in half-submerged positions and on pylons and were tested in three longitudinal locations on the fuselage with the forward position being located at the maximum diameter of the fuselage. The effects on drag of removing the half-submerged stores or extending them outward on pylons also was investigated by tests of models with half-submerged-store cavities on the fuselage. Two pylons differing in airfoil section and thickness were tested at the forward position of the stores on the fuselage with cavities. The half-submerged stores gave the smallest drag increments, which were approximately equal regardless of their respective longitudinal locations. Removing the half-submerged stores to expose the cavities increased the drag increments from two to three times. For the pylon-mounted stores, the store in the midposition had less drag than in the forward or rear positions at supersonic speeds. Adding the half-submerged-store cavities to the pylon-mounted-store configurations reduced the drag at the rear position between Mach numbers 0.95 and 1.50 and increased the drag at the midposition throughout the speed range. Changing from the 6-percent-thick flat pylon to the 10-percent-thick airfoil pylon increased the total drag slightly above Mach number 1.10. Good agreement was obtain& between the experimental and theoretical interference drag coefficients for the pylon-mounted stores (without fuselage cavities} in the three longitudinal locations tested at Mach numbers 1.2 and 1.5.
    Keywords: Aerodynamics
    Type: NACA-RM-L54E26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-14
    Description: The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing-tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift-interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the distance between the wing trailing vortex wake and the tail surfaces and thus was a function of angle of attack, angle of roll, and wing-tail interdigitation. Although the configuration at zero roll with the wing and tail in line exhibited the least center-of-pressure travel, the configuration with the wing and tail interdigitated had the least change in wing-tail interference over the angle-of-attack range. The lift effectiveness of the variable-incidence wing was reduced by more than 70 percent as a result of an increase in the combined angle of attack and wing incidence from 0 deg to 40 deg. The wing-tail interference (effective downwash at the tail) due to wing deflection was nearly zero as a result of a region of negative vorticity shed from the inboard portion of the wing. The lift characteristics of the configuration and its components were satisfactorily predicted by the calculated results, but the pitching moments at large angles of attack were not because of the influence of factors for which no adequate theory is available, such as the variation of the crossflow drag coefficient along the body and the effect of the wing downwash field on the afterbody loading.
    Keywords: Aerodynamics
    Type: NACA-RM-A54H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-11
    Description: A flight test has been conducted to determine the longitudinal stability and control,characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane without propellers for the Mach number range between 0.73 and 1.19.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54B03A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the Langley high-speed 7- by 10-foot tunnel to determine effects of modifications to a bomb model (particularly with regard to drag) when mounted on a wing-fuselage model and tested at Mach numbers from 0.70 to 1.10. In addition, the static longitudinal stability characteristics of several configurations of a larger scale model of the bomb alone were obtained over a Mach number range from 0.50 to 0.95. The results obtained for the wing-fuselage-bomb model indicate that large reductions in installation drag were obtained for the wing-fuselage-bomb model when the flat nose of the basic bomb was replaced by rounded or pointed noses of various calibers. Shortening the mounting pylon gave further decreases in the installation drag. The tests of the bomb alone indicated that only the flat-nose configurations were stable over the greater part of the Mach number range. Nose-shape modifications which improved the drag also caused the bombs to become unstable at low angles of attack. The stability of the low-drag bomb configurations could be improved by lengthening the cylindrical portion of the body behind the center of gravity.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54D30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 8-foot transonic tunnel to determine the effects of several fuselage modifications on the transonic drag-rise characteristics of a 1/20-scale model of the Convair F-102 airplane. Tests covered an angle-of-attack range from 0deg to about 10deg and a Mach number range from 0.60 to 1.14. Results indicated that the transonic drag rise .for the basic F-102 airplane could be substantially reduced by extending the fuselage after-body approximately 8 percent of the fuselage length. Tests of other bodies indicated that a shorter (4-percent) afterbody extension may have a similar effect on the drag rise. Further improvement of the axial cross-sectional-area distribution of the 8-percent extended configuration through the addition of fuselage volume resulted in additional reductions in the drag rise at a Mach number of 1.0 and caused no or only slight drag penalties at the higher Mach numbers. The results of the present tests generally substantiate the area-rule concept with respect to the prediction of the transonic drag rise through the use of an equivalent-area body of revolution for a practical delta-wing airplane configuration.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54K18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-11
    Description: A low-speed wind-tunnel investigation has been made of some aspects of the aerodynamic problems associated with the use of air-to-air missiles when carried externally on aircraft. Measurements of the forces and moments on a missile model for a range of positions under the mid-semispan location of a 45deg sweptback wing indicated longitudinal and lateral forces with regard to both carriage and release of the missiles. Surveys of the characteristics of the flow field in the region likely to be traversed by the missiles showed abrupt gradients in both flow angularity and in local dynamic pressure. Through the use of aerodynamic data on the isolated missile and the measured flow-field characteristics, the longitudinal forces and moments acting on the missile while in the presence of the wing-fuselage combination could be estimated with fair accuracy. Although the lateral forces and moments predicted were qualitatively correct, there existed some large discrepancies in absolute magnitude.
    Keywords: Aerodynamics
    Type: NACA-RM-L54J20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: Experimental results showing the static longitudinal-stability and control characteristics of a model of a fighter airplane employing a low-aspect-ratio unswept wing and an all-movable horizontal tail are presented. The investigation was made over a Mach number range from 0.60 to 0.90 and from 1.35 to 1.90 at a constant Reynolds number of 2.40 million, based on the wing mean aerodynamic chord. Because of the location of the horizontal tail at the tip of the vertical tail, interference was noted between the vertical tail and the horizontal tail and between the wing and the horizontal tail. This interference produced a positive pitching-moment coefficient at zero lift throughout the Mach number range of the tests, reduced the change in stability with increasing lift coefficient of the wing at moderate lift coefficients in the subsonic speed range, and reduced the stability at low lift coefficients at high supersonic speeds. The lift and pitching-moment effectiveness of the all movable tail was unaffected by the interference effects and was constant throughout the lift-coefficient range of the tests at each Mach number except 1.90.
    Keywords: Aerodynamics
    Type: NACA-RM-SA54D05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-12
    Description: This paper presents the results of an investigation of the dynamic stability and controllability of a model which approximately represents the Lockheed XFV-1 airplane to a 1/8 scale. The investigation consisted of hovering flights in still air at a considerable height above the ground, hovering flights very close to the ground, vertical take-offs and landings, flights through the transition range from hovering to normal forward flight, and sideways translational flights. The model could be flown smoothly and easily in hovering flight despite the fact that the uncontrolled pitching and yawing motions were unstable oscillations. There was a noticeable reduction in the controllability of the model when hovered very close to the ground but take-offs could be made easily and landings on a g,ven spot could be made accurately in spite of this adverse ground effect. Flights through the transition range from hovering to normal forward flight could be performed fairly easily. The model seemed to have stability of angle of attack and angle of roll over most of the transition range. The yawing motion was divergent in the very high angle-of-attack range but could be controlled easily. At the lower angles of attack, the model seemed to become stable in yaw. In sideways flight there was an increasingly strong tendency to diverge in roll as the speed was increased and finally, at a speed of about 25 knots (full scale), the model rolled off despite efforts of the pilot to control it.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54J18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.41 to determine the static stability and control and drag characteristics of a l/l5-scale model of the Grunman F9F-9 airplane. The effects of alternate fuselage shapes, wing camber, wing fences, and fuselage dive brakes on the aerodynamic characteristics were also investigated. These tests were made at a Reynolds number of 1.96 x l0 (exp 6) based on the wing mean aerodynamic chord of 0.545 foot. The basic configuration had a static margin of stability of 38.4 percent of the mean aerodynamic chord and a minimum drag coefficient of 0.049. For the maximum horizontal tail deflection investigated (-l0 deg), the maximum trim lift coefficient was 0.338. The basic configuration had positive static lateral stability at zero angle of attack and positive directional control throughout the angle-of-attack range investigated up to ll deg.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54G08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: The longitudinal stability and control characteristics of a 1/30-scale model of the Republic XF-103 airplane were investigated in the Langley 8-foot transonic tunnel. The effect of speed brakes located at the end of the fuselage was also investigated. The main part of the investigation was made with internal flow in the model, but some data were obtained with no internal flow. The longitudinal stability and control at transonic-speeds appeared satisfactory. The transonic drag rise was small. The speed brakes had no adverse effects on longitudinal stability.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54H24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-12
    Description: An investigation to determine the steady-state and surge characteristics of the J57-P-1 two-spool turbojet engine with various inlet air-flow distortions was conducted in the altitude wind tunnel at the NACA Lewis laboratory. Along with a uniform inlet total-pressure distribution, one circumferential and three radial pressure distortions were investigated. Data were obtained over a complete range of compressor speeds both with and without intercompressor air bleed at a flight Mach number of 0.8 and at altitudes of 35,000 and 50,000 feet. Total-pressure distortions of the magnitudes investigated had very little effect on the steady-state operating line for either the outer or inner compressor. The small radial distortions investigated also had engine over that obtained with the uniform inlet pressure distribution. The circumferential distortion, however, raised the minimum speed at which the engine could operate without encountering surge when the intercompressor bleeds were closed. This increase in minimum speed resulted in a substantial reduction in the operable speed range accompanied by a reduction in the altitude operating limit.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-SE54K19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-12
    Description: The performance and operational characteristics of the J71-A2 turbojet-engine afterburner were investigated for a range of altitudes from 23,000 to 60,000 feet at a flight Mach number of 0,9 and at flight Mach numbers of 0.6, 0.9, and 1.0 at an altitude of 45,000 feet. The combustion performance and altitude operational limits, as well as the altitude starting characteristics have been determined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-SE54J06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-12
    Description: At the request of the Bureau of Aeronautics, Department of the Navy, National Advisory Committee for Aeronautics has conducted a preliminary investigation at high subsonic speeds of the static longitudinal and lateral stability characteristics of a 0.05-scale model of the Convair F2Y-1 water-based fighter airplane. The tests covered a Mach number range from 0.5 to 0.94 and corresponding Reynolds numbers, based on the wing mean aerodynamic chord, from 3.3 x 10(exp 6) to 4.3 x 10(exp 6). The maximum angle-of-attack range (obtained at the lower Mach numbers) was from -2 degrees to 25 degrees. Sideslip angles from -4 degrees to 12 degrees also were investigated. The investigation included effects of various arrangements of wing fences and of rocket packages.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54A12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: A 1/5-scale, rocket-propelled model of the Convair F-102 configuration was tested in free flight to determine zero-lift drag at Mach numbers up to 1.34 and at Reynolds numbers comparable to those of the full-scale airplane. This large-scale model corresponded to the prototype airplane and had air flow through the duct. Additional zero-lift drag tests involved a series of small equivalent bodies of revolution which were launched by means of a helium gun. The several small-scale models tested corresponded to: the basic configuration, the 1/5-scale rocket-propelled model configuration, a 2-foot (full-scale) fuselage-extension configuration, and a 7-foot (full-scale) fuselage-extension configuration. Models designed to correspond to the area distribution at a Mach number of 1.0 were flown for each of these 'shapes and, in addition, models designed to correspond to the area distribution at a Mach number of 1.2 were flown for the 1/5-scale rocket-propelled model and the 7-foot-fuselage-extension configuration. The value of external pressure drag coefficient (including base drag) obtained from the large-scale rocket model was 0.0190 at a Mach number of 1..05 and the corresponding values from the equivalent-body tests varied from 0.0183 for the rocket-propelled model shape to 0.0137 for the 7-foot-fuselage-extension configuration. From the results of tests of equivalent bodies designed to correspond to the area distribution at a Mach number of 1.0, it is evident that the small changes in shape incorporated in the basic and 2-foot-fuselage-extension configurations from that of the rocket-propelled model configuration will provide no significant change in pressure drag. On the other hand, the data from the 7-foot-fuselage-extension model indicate a substantial reduction in pressure drag at transonic speeds.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54DO9b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: The first four stages were found to cause a major part of the poor low-speed efficiency of this compressor. The low design-speed over-all pressure ratio at surge was caused by the first and the twelfth to fifteenth stages. The multiple over-all performance curves in the intermediate-speed range were at least partly the result of double-branched characteristic curves for the third and seventh stages.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-SE54J19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54K19a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: The effects of elevator deflections from 0deg to -20deg on the force and moment characteristics of a 1/20-scale model of the Convair F-102 airplane with chordwise fences have been determined a t Mach numbers from 0.6 to 1.1 for angles of attack up to 20deg in the Langley 8-foot transonic tunnel. The configuration exhibited static longitudinal stability throughout the range tested, although a mild pitch-up tendency was indicated a t Mach numbers from 0.85 to 0.95. Elevator pitch effectiveness decreased rapidly between the Mach numbers of 0.9 and 1.0, however, no complete loss or reversal was indicated for all conditions tested. Because of the type of longitudinal control used, trimming the configuration from the zero elevator condition resulted in substantial decreases in lift-curve slope and maximum lift-drag ratio and increases in drag due to lift. The drag at zero lift, drag due to lift, and trim drag were high for this configuration.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54G15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: A 1/10-scale rocket model of the Lockheed XF-104 with faired inlets has been flown over a Mach number range from 0.80 to 1.45 to determine low-lift drag and a limited amount of stability data. The center-of-gravity locations were 4.0 and 1.5 percent of the mean aerodynamic chord before and after sustainer firing, respectively. Oscillations induced by pulse rockets were used to determine stability data. The external transonic drag coefficient increased from a value of 0.0160 at Mach number 0.80 to a maximum of 0.0432 near Mach number 1-13, with a drag rise Mach number of about 0.93. At Mach numbers where it could be determined, the model exhibited stable dynamic and static stability characteristics at low lift.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54E14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: A flight test has been conducted to determine the longitudinal stability and control characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane with windmilling propellers for the Mach number range between 0.70 and 1.13. The variation of lift-curve slope C(sub L(sub alpha) with Mach number was gradual with a maximum value of 0.074 occurring at a Mach number of 0.97. Propellers had little effect upon the values of lift-curve slope or the linearity of lift coefficient with angle of attack. At lift coefficients between approximately 0.25 and 0.45 with an elevon angle of approximately -l0 deg, there was a region of neutral longitudinal stability at Mach numbers below 0.93 introduced by the addition of windmilling propellers. Below a lift coefficient of 0.10 and above a lift coefficient of 0.45, the model was longitudinally stable throughout the Mach number range of the test. There was a forward shift in the aerodynamic center of about 3-percent mean aerodynamic chord introduced by the addition of propellers. The aerodynamic center as determined at low lift moved gradually from a value of 28.5-percent mean aerodynamic chord at a Mach number of 0.75 to a value of 47-percent mean aerodynamic chord at a Mach number of 1.10. There was an abrupt decrease in pitch damping between Mach numbers of 0.88 and 0.99 followed by a rapid increase in damping to a Mach number of 1.06. The propellers had little effect upon the pitch damping characteristics . The transonic trim change was a large pitching-down tendency with and without windmilling propellers. The elevons were effective pitch controls throughout the speed range; however, their effectiveness was reduced about 50 percent at supersonic speeds. The propellers had no appreciable effect upon the control effectiveness.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54F11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  Nachrichtenblatt des deutschen Pflanzenschutzdienstes 5, Nr.10; p.145-150
    Publication Date: 1953
    Description: Der Autor untersuchte die für das Auftreten des weißen Bärenspinners günstigen Temperaturen im ehemaligen Jugoslawien (Palic, Vojvodina) und Österreich (Burgenland) und identifizierte die Temperaturen von Mai bis August als wichtige Einflußfaktoren auf die Entwicklungszeit des Falters. Hierdurch konnten Temperaturen identifiziert werden bei denen eine, zwei oder sogar drei Generationen im Jahresverlauf vorkommen können. Sobald die Temperaturen 14-15°C überschreiten, kann die Entwicklung der ersten Generation beginnen. Die gewonnenen Erkenntnisse wurden dazu eingesetzt, um das Ausbreitungspotential des Schmetterlings aufgrund klimatischer Parameter nach Mitteleuropa abzuschätzen. KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Jugoslawien, Österreich, Deutschland ; 1946-1952 ; Pflanzenschädling ; Temperatur
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  Beiträge zur Entomologie, Band 3, p. 518-529
    Publication Date: 1953
    Description: Untersuchungen zum Ausbleiben des erwarteten starken Befalls im Herbst 1952 und Vergleich mit bereits veröffentlichten Erkenntnissen zum Massenwechsel des Rapserdflohs; KATASTER-BESCHREIBUNG: Abhängigkeit des Massenwechsels des Rapserdflohs von der Witterung (Temperatur) KATASTER-DETAIL: Delta T -: Delta T (August, September) -, dann Zuwanderung der Rapserdflöhe -;
    Keywords: Sachsen-Anhalt ; 1951-1953 ; Pflanzenschädling ; Temperatur ; Witterung ; Raps
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Gesunde Pflanzen 5: 261-263
    Publication Date: 1953
    Description: Beschreibung der Auswirkungen von Spätfrösten auf den Ertrag von verschiedenen frostempfindlichen Kulturpflanzen (Winter-Gerste, Erbsen, Kartoffeln) KATASTER-BESCHREIBUNG: Einfluss der Witterung (Temperatur, Niederschlag) auf den Ertrag KATASTER-DETAIL: Delta T (April) + und Delta T (Mai) - (Spätfröste), dann Ertrag (Erbsen) --; Delta T (April) + und Delta T (Mai) - (Spätfröste), dann Erntezeitpunkt (Kartoffeln) + (später);
    Keywords: Mitteldeutschland ; 1952 ; Kartoffeln ; Anbautermine ; Boden ; Ertrag ; Niederschlag ; Temperatur ; Wachstum ; Wassermangel ; Witterung ; Frost ; Gerste ; Erbsen
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1953
    Description: Beobachtungen zu den wichtigsten Massenwechselphasen, welche phänologisch mit Hilfe der Temperatursummenregel ausgewertet wurden sowie Beobachtungen zum Einfluss des Mikroklimas auf die Flugphase KATASTER-BESCHREIBUNG: Zusammenhang zwischen den wichtigsten Massenwechselperioden und der Temperatur, angegeben mit der mittleren Temperatursumme ab dem Eintritt des Vorfrühlings (Schneeglöckchenblüte); Einfluss von flugbegrenzenden Faktoren (Licht, Wind, Niederschlag) und flugbeeinflussenden Faktoren (Temperatur, Luftfeuchtigkeit) KATASTER-DETAIL: Temperatursumme = 160°C, dann Schlüpfen der ersten Fundatrixlarven; Temperatursumme = 360°C, dann Eintreten erster reifer Fundatrizen; Temperatursumme = 600°C, dann Reife der ersten fundatrigenen Fliegen und Anfang des fundatrigenen Zufluges; Temperatursumme = 1000-1050°C, dann Ende des fundatrigenen Zufluges und Anfang des virginogenen Zufluges; temperatursumme = 2280-2420°C, dann Ende des virginogenen Zufluges; Delta Lichtintensität + und Windgeschwindigkeit 〈 0,6m/s und T(Blattoberfläche ) 〉= 17°C, bzw. T (Luft) 〉= 15-16°C und Delta Nied -, dann Abflug +; Delta T +, dann Ablfug +, T 〉 20-26°C, dann Abflug -; Relf = 60%, dann optimaler Bereich für Abflug;
    Keywords: Quedlinburg, Thüringen ; 1949-1952 ; Luftfeuchte ; Klima ; Korrelationsmethode ; Niederschlag ; Pflanzenschädling ; Phänologie ; Temperatur ; Wind ; Witterung
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  Nachrichtenblatt für den deutschen Pflanzenschutzdienst, p. 143-148
    Publication Date: 1953
    Description: Bericht über die Untersuchungen zur Frage der Abhängigkeit der Imagines von klimatischen Faktoren KATASTER-BESCHREIBUNG: Einfluss der Witterung (Temperatur, Wind, Sonnenscheindauer, Luftfeuchte) auf die Flugaktivität KATASTER-DETAIL: Delta T +: T= 18°C, dann Höchstwert an geschlüpften und geschlechtsreifen Käfern; T 〉 18°C oder T 〈 18°C, dann Zahl an geschlüpften und geschlechtsreifen Käfern -; Delta Sonn +, dann Flugaktivität +; T = 23°C und Relf = 70%, dann Optimum der Flugaktivität; T = 13°C, dann Flugaktivität verhindert Delta Wind +: Wind 〉 1m/s, dann Flugaktivität vermindert, Wind 〉 2m/s, dann Flugaktivität stark gehemmt
    Keywords: Sachsen-Anhalt ; 1951-1952 ; Insekten ; Luftfeuchte ; Korrelationsmethode ; Niederschlag ; Pflanzenschädling ; Temperatur ; Wind ; Witterung ; Sonnenscheindauer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-05-29
    Description: Conference on aerodynamics of high speed aircraft
    Keywords: AERODYNAMICS
    Type: NASA-TM-X-57121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-05-23
    Description: Drag measurements at low lift of four-nacelle aircraft configuration with longitudinal distribution of cross-sectional area conducive to low transonic drag rise
    Keywords: AERODYNAMICS
    Type: NACA-RM-L53E29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-28
    Description: During the flight program on the Bell X-5 airplane with 59 deg sweepback to determine the practical Mach number and normal-force coefficient limits of this configuration, a reduction in static longitudinal stability was encountered in maneuvering flight. A determination of the boundary for reduction of longitudinal stability extending to a Mach number of 0.98 is presented in this paper. A reduction of static longitudinal stability existed for all elevator and all stabilizer-executed maneuvers. The reduction of stability existed for maneuvers executed with elevator near a normal-force coefficient of 0.6 for a Mach number range of about 0.31 to 0.76. Above a Mach number of 0.76 the normal-force coefficient for reduction of stability gradually decreased to a value of 0.2 at a Mach number of 0.98. For stabilizer-executed maneuvers the stability boundary was the same as for elevator maneuvers up to a Mach number of 0.88. Above this Mach number the reduction of stability occurred at slightly higher normal-force coefficients decreasing from about 0.51 at a Mach number of 0.92 to a value of 0.311 at a Mach number of 0.97. The airplane has been flown to a Mach number of 1.04 at a normal-force coefficient of about 0.15 without encountering any reduction of stability. The pilot did not consider the reduction of stability to be dangerous at altitudes above 30,000 feet; however, precise flight was impossible. At angles of attack above that at which the reduction of longitudinal stability occurred, directional instability and aileron control overbalance were encountered.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L53A09b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52K18b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Description: Flight measurements of the stability characteristics of the Bell X-5 research airplane at 59 deg sweepback were made in steady sideslips at Mach numbers from 0.62 to 0.97 at altitudes ranging between 35,000 and 40,000 feet. The results showed that the apparent directional stability was positive and increased at Mach numbers above 0.90. The apparent effective dihedral was positive and high, increasing at Mach numbers above 0.75. The cross-wind force coefficient per degree of sideslip was positive and increased rapidly at Mach numbers above 0.94.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52K13b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Description: Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
    Keywords: Aerodynamics
    Type: NACA-TN-2888
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-06-28
    Description: A method is presented for the estimation of the subsonic-flight-speed characteristics of sharp-lip inlets applicable to supersonic aircraft. The analysis, based on a simple momentum balance consideration, permits the computation of inlet pressure recovery - mass-flow relations and additive-drag coefficients for forward velocities from zero to the speed of sound. The penalties for operation of a sharp-lip inlet at velocity ratios other than 1.0 may be severe; at lower velocity ratios an additive drag is incurred that is not cancelled by lip suction, while at higher velocity ratios, unavoidable losses in inlet total pressure will result. In particular, at the take-off condition, the total pressure and the mass flow for a choked inlet are only 79 percent of the values ideally attainable with a rounded lip. Experimental data obtained at zero speed with a sharp-lip supersonic inlet model were in substantial agreement with the theoretical results.
    Keywords: Aerodynamics
    Type: NACA-TN-3004
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-06-28
    Description: The condensation pressure of air was determined over the range of temperature from 60 to 85 K. The experimental results were slightly higher than the calculated values based on the ideal solution law. Heat of vaporization of oxygen was determined at four temperatures ranging from about 68 to 91 K and of nitrogen similarly at four temperatures ranging from 62 to 78 K.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2969
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-28
    Description: Wake development behind circular cylinders at Reynolds numbers from 40 to 10,000 was investigated in a low-speed wind tunnel. Standard hotwire techniques were used to study the velocity fluctuations. The Reynolds number range of periodic vortex shedding is divided into two distinct subranges. At R = 40 to 150, called the stable range, regular vortex streets are formed and no turbulent motion is developed. The range R = 150 to 300 is a transition range to a regime called the irregular range, in which turbulent velocity fluctuations accompany the periodic formation of vortices. The turbulence is initiated by laminar-turbulent transition in the free layers which spring from the separation points on the cylinder. This transition first occurs in the range R = 150 to 300. Spectrum and statistical measurements were made to study the velocity fluctuations. In the stable range the vortices decay by viscous diffusion. In the irregular range the diffusion is turbulent and the wake becomes fully turbulent in 40 to 50 diameters downstream. It was found that in the stable range the vortex street has a periodic spanwise structure. The dependence of shedding frequency on velocity was successfully used to measure flow velocity. Measurements in the wake of a ring showed that an annular vortex street is developed.
    Keywords: Aerodynamics
    Type: NACA-TN-2913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-06-28
    Description: The heat requirements for the icing protection of two radome configurations have been studied over a range of design icing conditions. Both the protection limits of a typical thermal protection system and the relative effects of the various icing variables have been determined. For full evaporation of all impinging water, an effective heat density of 14 watts per square inch was required. When a combination of the evaporation and running wet surface systems was employed, a heat requirement of 5 watts per square inch provided protection at severe icing and operating conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-E53A22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Keywords: AERODYNAMICS
    Type: NACA-RM-A53G08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Description: Calculations have been made for the icing limit of a diamond airfoil at zero angle of attack in terms of the stream Mach number, stream temperature, and pressure altitude. The icing limit is defined as a wetted-surface temperature of 320 F and is related to the stream conditions by the method of Hardy. The results show that the point most likely to ice on the airfoil lies immediately behind the shoulder and is subject to possible icing at Mach numbers as high as 1.4.
    Keywords: AERODYNAMICS
    Type: NACA-TN-2861
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Keywords: AERODYNAMICS
    Type: NACA-RM-E53C26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: The effects of primary and. runback icing and frost formations on the drag of an 8-foot-chord NACA 651-212 airfoil section were investigated over a range of angles of attack from 20 to 80 and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.25 to 1.4 grams per cubic meter and datum air temperatures of -30 to 30 F. The results showed that glaze-ice formations, either primary or runback, on the upper surface near the leading edge of the airfoil caused large and rapid increases in drag, especially at datum air temperatures approaching 32 F and in the presence of high rates of water catch. Ice formations at lower temperatures (rime ice) did not appreciably increase the drag coefficient over the initial (standard roughness) drag coefficient. Cyclic de-icing of the primary Ice formations on the airfoil leading-edge section permitted the drag coefficient to return almost to the bare airfoil drag value. Runback icing on the lower surface did not present a serious drag problem except when heavy spanwise ridges of runback ice occurred aft of the heatable area. Frost formations caused rapid and large increases in drag with incipient stalling of the airfoil.
    Keywords: AERODYNAMICS
    Type: NACA-TN-2962
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: The trajectories of droplets in the air flowing past NACA 65(1)-208 airfoil and an NACA 65(1)-212 airfoil, both at an angle of attack of 4 degrees, were determined. The amount of water in droplet form impinging on the airfoils, the area of droplet impingement, and the rate of droplet impingement per unit area on the airfoil surface affected were calculated from the trajectories and are presented. The amount, extent, and rate of impingement of the NACA 65(1)-208 airfoil are compared with the results for the NACA 65(1)1-212 airfoil. Under similar conditions of operation, the NACA 65(1)-208 airfoil collects less water than the NACA 65(1)-212 airfoil. The extent of impingement on the upper surface of the NACA 65(1)-208 airfoil is much less than on the upper surface of the NACA 65(1)-212 airfoil, but on the lower surface the extents of impingement are about the same.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-TN-2952
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.
    Keywords: AERODYNAMICS
    Type: NACA-RM-E53E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-17
    Description: An analysis has been made of available experimental data to show the effects of most variables that are predominant in determining base pressure at supersonic speeds. Two dimensional bases and bases of bodies of revolution, restricted to turbulent boundary layers, are covered.
    Keywords: Aerodynamics
    Type: NACA-RM-L53C02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-11
    Description: Theory and experiment were compared and found in good agreement for the elastic Buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45deg waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
    Keywords: Aerodynamics
    Type: NACA-RM-L53J27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-11
    Description: The zero-lift damping in roll of the Bell MX-776 missile has been measured by a sting-mounted rocket-model technique at Mach numbers from 0.6 to 1.56. The damping-in-roll data, in general, show no unusual variation with Mach number. Aileron rolling-moment effectiveness derived from these data and previously obtained rolling-effectiveness data appear reasonable,
    Keywords: Aerodynamics
    Type: NACA-RM-SL54A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-11
    Description: An investigation was made to determine the static lateral stability and control characteristics of a l/6-scale model of the Republic XF-84H airplane with the propeller operating. The model had a 40deg swept wing of aspect ratio 3.45 and had a thin 3-blade supersonic-type propeller. Many modifications to the basic configuration were investigated in attempts to alleviate lateral and directional trim problems which appeared to be associated with propeller slipstream rotation. Although significant benefits were realized with several modifications, none of those tested would be expected to afford satisfactory behavior for all normal flight conditions. A marked left-wing roll-off tendency was indicated at high angles of attack for the basic model configuration. Projection of only the left slat was the most effective remedy found for this problem with the propeller operating. The use of differential wing-flap deflection also appeared to offer a promising means for reducing the roll-off tendency with power on. The large sidewash over the vertical tail, associated with slip- stream rotation, severely restricted the conditions for which directional , trim could be maintained. A small triangular dorsal fin, oriented opposite to the slipstream rotation, was found very effective in reducing the adverse sidewash flow at the tail.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Convair YF-102 airplane has been made in the Langley free-flight tunnel. The model was flown over a lift-coefficient range from 0.5 to the stall in its basic configuration and with several modifications involving leading-edge slats and increases in vertical-tail size. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect of freeing the controls. The longitudinal stability characteristics of the model were considered satisfactory for all conditions investigated. The lateral stability characteristics were considered satisfactory for the basic configuration over the speed range investigated except near the stall, where large values of static directional instability caused the model to be directionally divergent. The addition of leading-edge slats or an 8-percent increase in vertical-tail area increased the angle of attack at which the model became directionally divergent. The use of leading-edge slats in combination with a 40-percent increase in vertical-tail size eliminated the directional divergence and produced satisfactory stability characteristics through the stall. The longitudinal and lateral control characteristics were generally satisfactory. Although the adverse sideslip characteristics for the model were considered satisfactory over the angle-of-attack range, analysis indicates that the adverse sideslip characteristics of the airplane may be objectionable at high angles of attack.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53L04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the pitching stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient, control deflections, and propeller blade angle were investigated. The tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-11
    Description: The present investigation was conducted to determine, from low-speed tests in the Langley stability tunnel, the static and rotary derivatives of a 1/9-scale model of the Republic F-91 airplane and various of its components (including the effects of wing incidence) and to determine the accuracy with which the period and damping of the lateral oscillation of the airplane could be calculated by using these experimentally between flight and calculated period and damping of the lateral oscillation were made for Mach numbers from 0.4 to 0.9 at an altitude of 20,OOO feet for 0deg wing incidence and several other wing incidences. Some comparisons were made of the static and rotary derivatives of the model and derivatives estimated by available procedures. determined derivatives (corrected for Mach number effects). Comparisons The results of the investigation have indicated that the model did not have unusual aerodynamic characteristics except for a large (about -0.125) increment in the damping in yaw contributed by the fuselage. Changes in wing incidence, in general, had little effect on the static and rotary derivatives of the model. The static and rotary derivatives of the model could be estimated with good accuracy only in the low angle-of-attack range by using available procedures.
    Keywords: Aerodynamics
    Type: NACA-RM-L53G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-12
    Description: Aeroelastic instability phenomena of isolated open and closed rigid bodies of revolution free to move under elastic restraint have been investigated experimentally at low speeds by means of models suspended at zero angles of attack and yaw on slender flexible struts from a wind tunnel ceiling. Three types of instability were observed - flutter similar to classical bending-torsion flutter, divergence, and an uncoupled oscillatory instability which consists in nonviolent continuous or intermittent small-amplitude oscillations involving only angular deformations. The speeds at which this oscillatory instability starts were found to be as low as about one-third of the speed at flutter or divergence and to depend on the shape of the body, particularly that of the afterbody, and on the relative location of the elastic axis. An attempt has been made to calculate the airspeeds and, in the case of the oscillatory phenomena, the frequencies at which these instabilities occur by using slender-body theory for the aerodynamic forces on the bodies and neglecting the aerodynamic forces on the struts. However, the agreement between the speeds and frequencies calculated in this manner and those actually observed has been found to be generally unsatisfactory; with the exception of the frequencies of the uncoupled oscillations which could be predicted with fair accuracy. The nature of the observed phenomena and of the forces on bodies of revolution suggests that a significant improvement in the accuracy of analytical predictions of these aeroelastic instabilities can be had only by taking into account the effects of boundary-layer separation on the aerodynamic forces.
    Keywords: Aerodynamics
    Type: NACA-RM-L53E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-11
    Description: Three rocket-propelled buffet-research models have been flight tested to determine the buffeting characteristics of a swept-wing- airplane configuration with the horizontal tail operating near the wing wake. The models consisted of parabolic bodies having 45deg sweptback wings of aspect ratio 3.56, at aspect ratio of 0.3, NACA 64A007 airfoil sections, and tail surfaces of geometry and section identical to the wings. Two tests were conducted with the horizontal tail located in the wing chord plane with fixed incidence angles of -1.5deg on one model and 0deg on the other model. The third test was conducted with no horizontal tail. Results of these tests are presented as incremental accelerations in the body due to buffeting, trim angles of attack, trim normal- and side-force coefficients, wing-tip helix angles, static-directional-stability derivatives , and drag coefficients plotted against Mach number. These data indicate that mild low-lift buffeting was experienced by all models over a range of Mach number from approximately 0.7 to 1.4. It is further indicated that this buffeting was probably induced by wing-body interference and was amplified at transonic speeds by the horizontal tail operating in the wing wake. A longitudinal trim change was encountered by the tail-on models at transonic speeds, but no large changes in side force and no wing dropping were indicated.
    Keywords: Aerodynamics
    Type: NACA-RM-L53I10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-11
    Description: Experimental measurements of the attenuation of plane shock waves moving over rough walls have been made in a shock tube. Measurements of the boundary-layer characteristics, including thickness and velocity distribution behind the shock, have also been made with the aid of new cal techniques which provide direct information on the local boundary-layer conditions at the rough walls. Measurements of shock speed and shock pressure ratio are presented for both smooth-wall and rough-wall flow over lengths of machined-smooth and rough strips which lined all four walls of the shock tube. A simplified theory based on Von Karman's expression for skin-friction coefficient for flow over rough walls, along with a wave-model concept and extensions to include time effects, is presented. In this theory, the shock-tube flow is assumed to be one-dimensional at all times and the wave-model concept is used to relate the local layer growth to decreases in shock strength. This concept assumes that local boundary-layer growths act as local mass-flow sinks, which give rise to expansion waves which, in turn, overtake the shock and lower its mass flow accordingly.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53D13A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/23-scale model of the Lockheed XFV-1 airplane to determine the effects of control setting and movement upon the erect-spin and recovery characteristics for a range of airplane loading conditions. A windmilling propeller was simulated on the model for some of the tests. The investigation included determination of the size of tail parachute required for emergency recovery from demonstration spins. The tumbling tendencies of the model were also investigated. The results indicated that any erect or inverted spin obtained on the airplane will be satisfactorily terminated if recovery is attempted by full rudder reversal accompanied by simultaneous lateral and longitudinal movement of the stick to neutral, The model test results showed that an 11.5-foot flat-type tail parachute (drag coefficient approximately 0.73) with a 27.5-foot towline will be effective as an emergency spin-recovery device during demonstration spins of the airplane. The model results also indicate that the airplane will not tumble for any.loading condition indicated possible.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-13
    Description: The observed discrepancy at supersonic speeds between theoretical and apparent experimental average flat plate friction-drag coefficients calculated from boundary layer total-pressure surveys was investigated. Effects of the total-pressure probe, heat transfer through the leading edge region, change in leading-edge radius and strength of the leading-edge wave, possible early transition to turbulent flow or bursts of turbulence, and the slight stream-wise pressure gradient inherent in flat plate flow were investigated for plates with very sharp leading edges. Only one of these factors, the effect of the total-pressure probe, was found to be significant. Total-pressure probes of different tip heights, when placed in laminar boundary layers developing under identical conditions, were found to yield different values of friction drag coefficient. Extrapolation of these measurements indicates that a probe of vanishing size would yield the theoretical predicted values of average flat plate friction-drag coefficients. A correlation describing the relation between the friction-drag discrepancy and the probe tip height is presented.
    Keywords: Aerodynamics
    Type: NACA-TN-2891
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-11
    Description: An investigation was made of the trim and dynamic response characteristics of the free-floating horizontal tail of a 1/7-scale model of the complete tail of the Grumman XF10F-1 airplane in the Langley 8-foot transonic tunnel at Mach numbers up to 1.13. The complete tail was mounted in the tunnel on a 3deg conical support body. Various configurations were investigated. A loss in damping of the horizontal tail at transonic speeds was shown by both tunnel and flight tests. The loss in damping extended over a greater Mach number range and the maximum loss occurred at a higher Mach number in the tunnel tests. Large-amplitude oscillations of the horizontal tail of the basic configuration which occurred at low supersonic Mach numbers appeared to be primarily due to the vertical tail of the basic configuration and the interference effects associated with this tail. Secondary factors contributing to the development of the large-amplitude oscillations of the horizontal tail of the basic configuration were probably the loss in damping of the horizontal tail at transonic speeds and the turbulence of the airstream itself.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53D28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: At subsonic speeds the pressure drag arising from the thickness of the body or wings is negligible so long as the shapes are sufficiently well streamlined to avoid flow separation. In that range there exists no possibility of either favorable or adverse interference on the pressure distributions themselves. If one body is so placed as to receive a drag from the pressure field of another then the second body is sure to receive a corresponding increment of thrust from the first. At supersonic speeds this tolerance, which was permitted the designer, disappears and the drag becomes sensitive to the shape and arrangement of the bodies.To be sure, the primary factor here is the thickness ratio, but nevertheless there exist arrangements in which a large cancellation of drag occurs.
    Keywords: Aerodynamics
    Type: NACA-RM-A53H18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-11
    Description: Calibrations of the Friez Aerovane, Wind Measuring Set AN/GMQ-11, manufactured by the Friez Instrument Division of the Bendix Aviation Corporation, were made in the Langley 300 MPH 7- by 10-foot tunnel at the request of the Signal Corps, U, S. Army. Two propellers snd two generators were tested through a speed range of 15 to 190 knots, The results indicated that at airspeeds greater than 80 knots the instrument indicated airspeeds higher than the tunnel airspeed..
    Keywords: Aerodynamics
    Type: NACA-RM-SL53L23B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-11
    Description: This paper is concerned primarily with the application of the "area rule" to the interpretation and improvement of the drag-rise characteristics of wing-body combinations at transonic and moderate supersonic speeds. Consideration of the general physical nature of the flow at transonic speeds, together with comparisons of the flow fields and drag-rise characteristics for wing-body combinations and bodies of revolution has led to the conclusion that near the speed of sound the drag rise for a thin low-aspect-ratio wing-body combination is primarily dependent on the axial distribution of cross-sectional area normal to the airstream (ref. 1). (The drag rise, sometimes referred to as pressure drag, is the difference between the drag level near the speed of sound and the drag level at subsonic speeds where the drag is due primarily to skin friction.) In order to illustrate the concept, figure 1 shows a wing-body combination and a body of revolution. A typical cross section normal to the airstream for the wing-body combination is shown at AA. The cross-sectional area of the wing is wrapped around the body of revolution so that the body has the same cross-sectional area at BB. All the other cross-sectional areas of the body of revolution are the same as those for the wing-body combination at the same axial stations. On the basis of the conclusion just stated, the drag rise for this body of revolution should be similar to that for the wing-body combination.
    Keywords: Aerodynamics
    Type: NACA-RM-L53I15a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-11
    Description: The effects of inlet circumferential position around the fuselage on the characteristics of a half-conical scoop inlet having a 24.6deg half-angle cone have been investigated in the langley 4- by 4-foot supersonic pressure tunnel. Pressure-recovery results have been obtained at a Mach number of 2.01 for a fixed boundary-layer-bleed height which was 60 percent of the boundary-layer thickness at an angle of attack of 0deg, and for cowling position parameters of 42.4deg and 38.0deg. inlet had a capture area equal to 24.9 percent of the basic-fuselage frontal area. The angle of attack was varied from 0deg to 12deg. The most favorable pressure-recovery characteristics at angles of attack were obtained with the Inlet located on the bottom of the fuselage where the maximum recovery increased from a value of 81 percent at an angle of attack of 0deg to 87 percent at 12deg. In general, the pressure recovery decreased with increasing angle of attack for all other inlet locations. At a given angle of attack the pressure recovery decreased as the inlet location was progressively moved from the bottom to the top of the fuselage. Stable subcritical operation of the inlet with nearly constant pressure recovery was obtained for inlet mass-flow ratios from 1.0 to about 0.76 at an angle of attack of 0deg with the central body in the design position.
    Keywords: Aerodynamics
    Type: NACA-RM-L53D30B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-10
    Description: Tests on equivalent bodies of revolution of six configurations of the Consolidated Vultee Aircraft Corporation proposed supersonic bomber (Convair MX-1964) have indicated that it is possible to reduce the drag of the configuration by designing it to have a favorable area distribution. The method of NACA RM L53I22c to predict the peak pressure drag of a configuration on the basis of its area distribution gave generally good agreement with the subject models.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53K04 , L-82024
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-11
    Description: An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane. This paper presents the results of flight tests to determine the stability and control characteristics of the model during constant-altitude slow transitions from hovering to normal unstalled forward flight. The tests indicated that the airplane can be flown through the transition range fairly easily although some difficulty will probably encountered in controlling the yawing motions at angles of attack between about 60 and 40. An increase in the size of the vertical tail will not materially improve the controllability of the yawing motions in this range of angle of attack but the use of a yaw damper will make the yawing motions easy to control throughout the entire transitional flight range. The tests also indicated that the airplane can probably be flown sideways satisfactorily at speeds up to approximately 33 knots (full scale) with the normal control system and up to approximately 37 knots (full scale) with both elevons and rudders rigged to move differentially for roll control. At sideways speeds above these values, the airplane will have a strong tendency to diverge uncontrollably in roll.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53E18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the rolling stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53E13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to deter+nine the yawing stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53D01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-11
    Description: Tests were made in the Langley 8-foot high-speed tunnel to investigate the aerodynamic characteristics of the D-558-1 airplane and various wing and tail configurations on the D-558-1 fuselage. The various wing and tail configurations were tested to determine the aerodynamic effects of aspect ratio and sweep for suitable use on the second phase of the D-558 project (D-558-2). The tests were conducted through a speed range from a Mach number of 0.40 to approximately 0.94.This part of the investigation includes the lift and drag results available for the configurations tested at this rate. The D-558-1 results indicated that the lift force break would occur at a Mach number of 0.85 with some reduction in lift at speeds above this Mach number. Tests indicated that the airplane will have satisfactory lift and drag characteristics up to and including its design Mach number of 0.85. The 35deg sweptback, 35deg swept-forward, and low-aspect-ratio (2.0) wing configurations all showed pronounced improvements in maintaining lift throughout the Mach number range tested and in increasing the critical speeds above the D-558-1 value &itical to critical Mach numbers on the order of 0.9. Insofar as lift and drag characteristics are concerned level flight at speeds approaching the velocity of sound appears practical if swept or low-aspect-ratio configurations similar to those tested are used.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: A low-speed investigation was made of a 1/6-scale model of the Republic XF-84H airplane. The model had a single tractor propeller and a 40deg swept wing of aspect ratio 3.45. This investigation was undertaken to provide information on the effects of propeller operation on longitudinal stability characteristics for the XF -84H airplane and to provide an indication of slipstream effects that might be encountered on similar swept-wing configurations. Effects of propeller operation were generally destabilizing for all conditions investigated; however, the over-all stability characteristics with power on were greatly dependent on the power-off characteristics. With flaps and slats retracted, longitudinal instability was present at moderate angles of attack both with the propeller off and with power on. The longitudinal stability with flaps and slats deflected, which was satisfactory without power, was decreased by propeller operation, but no marked pitch-up tendency was indicated. Significant improvement in the power-on stability with flaps retracted was achieved by use of either a wing fence at 75 percent semispan, a leading-edge chord-extension from 65 to 94 percent semispan, or a raised horizontal tail located 65 percent semispan above the thrust line.
    Keywords: Aerodynamics
    Type: NACA-RM-SL-53F26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: Drag and longitudinal trim at low lift of the North American YF-100A airplane at Mach numbers from 0.76 to 1.77 as determined from the flight test of a 0.11-scale rocket model are presented herein. Also included are some longitudinal stability and some qualitative pitch-damping data. The subsonic external-drag-coefficient level was about 0.012, and the supersonic level was about 0.043. The drag rise occurred at a Mach number of 0.95. The longitudinal trim change at low lift consisted basically of a mild nose-up tendency at a Mach number of 0.90. An indication of wing flutter was present at Mach numbers from 0.95 to 1.11. However, the full-scale airplane wing has approximately twice the scaled first-bending frequency as the model tested and, hence, will probably be free of this type of flutter. The aerodynamic-center location was 71 percent behind the leading edge of the mean aerodynamic chord at a Mach number of 1.03 and 62 percent at a Mach number of 1.74. Qualitative measurement of damping in pitch indicates that at low lift coefficients damping will be low at a Mach number of 1.03.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53E11a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: Flight tests were conducted between Mach numbers of 0.9 and 1.8 over a Reynolds number range of 9(exp 6) to 30(exp 6) to determine the zero-lift drag and some rolling-effectiveness characteristics of the Northrop MX -775B missile with small and large body. The MX-775B is a proposed long range, supersonic, ground-to-ground missile having an arrow wing with 67.5 degree leading-edge sweep, 15 deg trailing-edge sweep, and a modified NACA 0004 airfoil section. The configuration has no horizontal tail but has wing trailing-edge elevons which serve a dual purpose as elevators and ailerons. The ratio of body frontal area to wing plan-form area is 0.0127 for the small-body configuration and 0.0330 for the large-body configuration. Five 1/4-scale models were flown permitting determination of the drag coefficient for the basic small-body configuration, the incremental drag due to the large body, the incremental drag resulting from a blunt wing trailing edge, the wing-plus-interference drag, and some rolling-effectiveness data. Results indicated that the MX-775B has low supersonic zero-lift drag, the maximum zero-lift drag coefficients being respectively 0.0125 and 0.0155 at a Mach number of M = 1803 for the small- and large-body configurations. The effect of a blunt wing trailing edge, obtained by cutting off 10 percent of the wing chord, was to increase the zero-lift drag by 13 to 21 percent. Wing-plus-interference drag accounted for 78 percent of the total drag at M = 0.9 and 70 percent at M = 195 for the small-body configuration. The ailerons produced positive rolling effectiveness for the wing stiffness of the test models and the dynamic pressures of the test.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53J02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: The present status of available information relative to the prediction of shock-induced boundary-layer separation is discussed. Experimental results showing the effects of Reynolds number and Mach number on the separation of both laminar and turbulent boundary layer are given and compared with available methods for predicting separation. The flow phenomena associated with separation caused by forward-facing steps, wedges, and incident shock waves are discussed. Applications of the flat-plate data to problems of separation on spoilers, diffusers, and scoop inlets are indicated for turbulent boundary layers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NACA-RM-L53I16a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...