ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Propulsion and Power  (418)
  • Aircraft Propulsion and Power
  • 2000-2004  (610)
  • 1970-1974
  • 1950-1954  (6)
  • 2003  (375)
  • 2000  (235)
  • 1952  (6)
Collection
Years
  • 2000-2004  (610)
  • 1970-1974
  • 1950-1954  (6)
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-10-30
    Description: Europa is the only body in the solar system besides Mars that is currently viewed as a body of significant interest relative to the process of chemical evolution and/or the origin of life or for which scientific opinion provides a significant chance of contamination which could jeopardize a future biological experiment. Thus, both NASA and COSPAR policy require that Europa be protected from biological contamination that could result from scientific exploration conducted by robotic spacecraft. In 2000, the Task Group on the Forward Contamination of Europa (Space Studies Board) published its report on Preventing the Forward Contamination of Europa recommending a limit of 10(exp -4) probability of contamination of Europa's ocean per mission (at any time in the future) by a single viable terrestrial microbe. While NASA guidelines do not yet explicitly reflect this new recommendation, it is likely that the SSB recommendation will be adopted by NASA planetary protection in the form of a sterility requirement or at least a stringent total microbial burden requirement. In our presentation, we will present an overview of the anticipated planetary protection requirements for both orbiters and landers destined for Europa and some of the challenges these requirements will present.
    Keywords: Spacecraft Propulsion and Power
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 40; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-23
    Description: The total temperatures (enthalpies) required to ground-test air-breathing (aero-propulsion) engines at high Mach number flight conditions can be achieved in a number of ways. Among these are: 1. Heat exchangers, including pre-heated ceramic beds. 2. direct electrical heating, e.g., arc discharge and resistance heaters. 3. Compression heating. 4. Shock heating, and 5. In-stream combustion, with oxygen replenishment to match air content. Each method has distinct advantages, disadvantages and limitations. All have a common characteristic of being designed for intermittent flow, due to the extreme energy required for continuous operation at simulated Mach numbers above about 3. All also distort the composition of atmospheric air to some degree, due to the high temperatures that occur in the plenum section prior to expansion of the flow to simulated flight conditions. In the case of in-stream combustion, the resulting test medium is commonly referred to as "vitiated air", being composed of oxygen, nitrogen and some fraction of combustion products.
    Keywords: Aircraft Propulsion and Power
    Type: JANNAF 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simultation Subcommittee Joint Meeting; Volume 1; 243-271; CPIA-Publ-703-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-07
    Description: The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.
    Keywords: Spacecraft Propulsion and Power
    Type: ST Day 2000: Risk Reduction for The Next Generations
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.
    Keywords: Spacecraft Propulsion and Power
    Type: Journal of Propulsion and Power; Volume 16; No. 6; 1030-1039
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-07
    Description: Joints in the Space Shuttle solid rocket motors are sealed by O-rings to contain combustion gases inside the rocket that reach pressures of up to 900 psi and temperatures of up to 5500 F. To provide protection for the O-rings, the motors are insulated with either phenolic or rubber insulation. Gaps in the joints leading up to the O-rings are filled with polysulfide joint-fill compounds as an additional level of protection. The current RSRM nozzle-to-case joint design incorporating primary, secondary, and wiper O-rings experiences gas paths through the joint-fill compound to the innermost wiper O-ring in about one out of every seven motors. Although this does not pose a safety hazard to the motor, it is an undesirable condition that NASA and rocket manufacturer Thiokol want to eliminate. Each nozzle-to-case joint gas path results in extensive reviews and evaluation before flights can be resumed. Thiokol and NASA Marshall are currently working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design that has been used successfully in the field and igniter joint. They are also planning to incorporate the NASA Glenn braided carbon fiber thermal barrier into the joint. The thermal barrier would act as an additional level of protection for the O-rings and allow the elimination of the joint-fill compound from the joint.
    Keywords: Spacecraft Propulsion and Power
    Type: 1999 NASA Seal/Secondary Air System Workshop; Volume 1; 299-315; NASA/CP-2000-210472/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The purpose of this presentation is to show flight demonstrations, complete preflight ground tests, and the assembling of the first QRT 4 engine.
    Keywords: Aircraft Propulsion and Power
    Type: 1999 NASA Seal/Secondary Air System Workshop; Volume 1; 61-78; NASA/CP-2000-210472/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The NASA Glenn Research Center is developing Rocket-Based Combined-Cycle (RBCC) propulsion technology for application to reusable launch vehicles in its "Trailblazer" program. This presentation will explain the cost reduction potential of RBCC propulsion, highlight the major technical issues, and describe the elements of the Trailblazer program.
    Keywords: Spacecraft Propulsion and Power
    Type: 1999 NASA Seal/Secondary Air System Workshop; Volume 1; 433-457; NASA/CP-2000-210472/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-07
    Description: Current system simulations are mature, difficult to modify, and poorly documented. Probabilistic life prediction techniques for space applications are in their early application stage. Many parts of the full system, variable fidelity simulation, have been demonstrated individually or technology is available from aeronautical applications. A 20% reduction in time to design with improvements in performance and risk reduction is anticipated. GRC software development will proceed with similar development efforts in aeronautical simulations. Where appropriate, parallel efforts will be encouraged/tracked in high risk areas until success is assured.
    Keywords: Spacecraft Propulsion and Power
    Type: ST Day 2000: Risk Reduction for The Next Generations
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-07
    Description: It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated 〉2400 s, 〉500 mN thrust over 1000 hours of operation documented.
    Keywords: Spacecraft Propulsion and Power
    Type: ST Day 2000: Risk Reduction for The Next Generations
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Deep Space 1 Technology Validatation Symposium; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: 2000 IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-08
    Description: The successful demonstration of ion propulsion on NASA's Deep Space 1 mission has stimulated substantial interest in the application of this technology to future solar system exploration missions.
    Keywords: Spacecraft Propulsion and Power
    Type: 2003 Joint Propulsion Conference; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-08
    Description: A Vaporizing Liquid Micro-Thruster (VLM) microfabricated thruster was tested on water propellant on a thrust stand and performance data obtained.
    Keywords: Spacecraft Propulsion and Power
    Type: International Electric Propulsion Conference 2003; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: 28th International Electric Propulsion Conference; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-08
    Description: This paper provides an overview of the system and presents the first flight validation data on an ion propulsion system in interplanetary space.
    Keywords: Spacecraft Propulsion and Power
    Type: IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: DS1 Technology Validation Symposium; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Informational Electric Propulsion Conference; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-12
    Description: The advantages, development, and fabrication of toroidal propellant tanks are profiled in this viewgraph presentation. Several images are included of independent research and development (IR&D) of toroidal propellant tanks at Marshall Space Flight Center (MSFC). Other images in the presentation give a brief overview of Thiokol conformal tank technology development. The presentation describes Thiokol's approach to continuous composite toroidal tank fabrication in detail. Images are shown of continuous and segmented toroidal tanks fabricated by Thiokol.
    Keywords: Spacecraft Propulsion and Power
    Type: 5th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2003-212931
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-12
    Description: Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this propulsion method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the irradiation of candidate solar sail materials to energetic electrons, in vacuum, to determine the hardness of several candidate sail materials.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-12
    Description: The focus of the evaluation was to develop a back-up method to cell plating for the improvement or repair of seal surface defects within D6-AC steel and 7075-T73 aluminum used in the RSRM program. Several techniques were investigated including thermal and non-thermal based techniques. Ideally the repair would maintain the inherent properties of the substrate without losing integrity at the repair site. The repaired sites were tested for adhesion, corrosion, hardness, microhardness, surface toughness, thermal stability, ability to withstand bending of the repair site, and the ability to endure a high-pressure water blast without compromising the repaired site. The repaired material could not change the inherent properties of the substrate throughout each of the test in order to remain a possible technique to repair the RSRM substrate materials. One repair method, Electro-Spark Alloying, passed all the testing and is considered a candidate for further evaluation.
    Keywords: Spacecraft Propulsion and Power
    Type: 5th Conference on Aerospace Materials, Processes, and Environmental Technology; NASA/CP-2003-212931
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: Physical constraints of any real system can have a drastic effect on its performance. Some of the more recognized constraints are actuator and sensor saturation and bandwidth, power consumption, sampling rate (sensor and control-loop) and computation limits. These constraints can degrade system s performance, such as settling time, overshoot, rising time, and stability margins. In order to address these issues, researchers have investigated the use of robust and nonlinear controllers that can incorporate uncertainty and constraints into a controller design. For instance, uncertainties can be addressed in the synthesis model used in such algorithms as H(sub infinity), or mu. There is a significant amount of literature addressing this type of problem. However, there is one constraint that has not often been considered; that is, actuator authority resolution. In this work, thruster resolution and controller schemes to compensate for this effect are investigated for position and attitude control of a Low Earth Orbit formation flight system In many academic problems, actuators are assumed to have infinite resolution. In real system applications, such as formation flight systems, the system actuators will not have infinite resolution. High-precision formation flying requires the relative position and the relative attitude to be controlled on the order of millimeters and arc-seconds, respectively. Therefore, the minimum force resolution is a significant concern in this application. Without the sufficient actuator resolution, the system may be unable to attain the required pointing and position precision control. Furthermore, fuel may be wasted due to high-frequency chattering phenomena when attempting to provide a fine control with inadequate actuators. To address this issue, a Sliding Mode Controller is developed along with the boundary Layer Control to provide the best control resolution constraints. A Genetic algorithm is used to optimize the controller parameters according to the states error and fuel consumption criterion. The tradeoffs and effects of the minimum force limitation on performance are studied and compared to the case without the limitation. Furthermore, two methods are proposed to reduce chattering and improve precision.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-05
    Description: Typical installed separate-flow exhaust nozzle system. The jet noise from modern turbofan engines is a major contributor to the overall noise from commercial aircraft. Many of these engines use separate nozzles for exhausting core and fan streams. As a part of NASA s Advanced Subsonic Technology (AST) program, the NASA Glenn Research Center at Lewis Field led an experimental investigation using model-scale nozzles in Glenn s Aero-Acoustic Propulsion Laboratory. The goal of the investigation was to develop technology for reducing the jet noise by 3 EPNdB. Teams of engineers from Glenn, the NASA Langley Research Center, Pratt & Whitney, United Technologies Research Corporation, the Boeing Company, GE Aircraft Engines, Allison Engine Company, and Aero Systems Engineering contributed to the planning and implementation of the test.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-05
    Description: The Radiation and Technology Demonstration (RTD) Mission is under joint study by three NASA Centers: the NASA Johnson Space Center, the NASA Goddard Space Flight Center, and the NASA Glenn Research Center at Lewis Field. This Earth-orbiting mission, which may launch on a space shuttle in the first half of the next decade, has the primary objective of demonstrating high-power electric thruster technologies. Secondary objectives include better characterization of Earth's Van Allen trapped-radiation belts, measurement of the effectiveness of the radiation shielding for human protection, measurement of radiation effects on advanced solar cells, and demonstration of radiation-tolerant microelectronics. During the mission, which may continue up to 1 year, the 2000-kg RTD spacecraft will first spiral outward from the shuttle-deployed, medium-inclination, low Earth orbit. By the phased operation of a 10-kW Hall thruster and a 10-kW Variable Specific Impulse Magneto-Plasma Rocket, the RTD spacecraft will reach a low-inclination Earth orbit with a radius greater than five Earth radii. This will be followed by an inward spiraling orbit phase when the spacecraft deploys 8 to 12 microsatellites to map the Van Allen belts. The mission will conclude in low Earth orbit with the possible retrieval of the spacecraft by the space shuttle. A conceptual RTD spacecraft design showing two photovoltaic (PV) array wings, the Hall thruster with propellant tanks, and stowed microsatellites is presented. Early power system studies assessed five different PV array design options coupled with a 120-Vdc power management and distribution system (PMAD) and secondary lithium battery energy storage. Array options include (1) state-of-the-art 10-percent efficient three-junction amorphous SiGe thin-film cells on thin polymer panels deployed with an inflatable (or articulated) truss, (2) SCARLET array panels, (3) commercial state-of-the-art, planar PV array rigid panels with 25-percent efficient, three-junction GaInP2/GaAs/Ge solar cells, (4) rigid panels with 25-percent efficient, three-junction GaInP2/GaAs/Ge solar cells, in a 2 -concentrator trough configuration, and (5) thin polymer panels with 25-percent efficient, three-junction GaInP2/GaAs/Ge solar cells deployed with an inflatable (or articulated) truss. To assess the relative merits of these PV array design options, the study group developed a dedicated Fortran code to predict power system performance and estimate system mass. This code also modeled Earth orbital environments important for accurately predicting PV array performance. The most important environmental effect, solar cell radiation degradation, was calculated from electron-proton fluence input from the industry standard AE8/AP8 trapped radiation models and the concept of damage equivalence. Power systems were sized to provide 10 kW of thruster power and approximately 1 kW of spacecraft power at end of life. Of the five PV array design options, the option 1 (thin-film cells) power system was the most massive 590 kg, whereas the option 4 (trough concentrator) power system was the lightest 260 kg. Arguably, the lowest cost would come from the option 3 (commercial array panels) power system with an acceptable, albeit greater, system mass of 320 kg. Predicted power system performance during the spiral-out mission phase is shown the preceding graph for the option 5 (flexible-panel) array. From the results, the radiation-induced power loss over time is evident as the spacecraft slowly spirals outward through the trapped proton belt. The importance of the spiral trip time is also evident in the two curves representing 74-day and 182-day spiral-out periods. The longer spiral time introduces a beginning-of-life power oversizing penalty greater than 1 kW. Future studies will analyze power system performance and mass with a 50-Vdc power management and distribution architecture favorable to the VASIMR thruster and longer missions.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A Hele-Shaw flow apparatus constructed at Michigan State University (MSU) produces conditions that reduce influences of buoyancy-driven flows. In addition, in the MSU Hele-Shaw apparatus it is possible to adjust the heat losses from the fuel sample (0.001 in. thick cellulose) and the flow speed of the approaching oxidizer flow (air) so that the "flamelet regime of flame spread" is entered. In this regime various features of the flame-to-smolder (and vice versa) transition can be studied. For the relatively wide (approx. 17.5 cm) and long (approx. 20 cm) samples used, approximately ten flamelets existed at all times. The flamelet behavior was studied mechanistically and statistically. A heat transfer analysis of the dominant heat transfer mechanisms was conducted. Results indicate that radiation and conduction processes are important, and that a simple 1-D model using the Broido-Shafizadeh model for cellulose decomposition chemistry can describe aspects of the flamelet spread process. Introduction
    Keywords: Aircraft Propulsion and Power
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 29-32; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and levitated prior to ignition. Therefore, the droplets will begin to vaporize in the acoustic field thus forming the "initial conditions" for the combustion process. Understanding droplet vaporization in the acoustic field of this levitator is a necessary step that will help to interpret the experimental results obtained in low-gravity.
    Keywords: Aircraft Propulsion and Power
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 5-8; NASA/CP-2003-212376-REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.
    Keywords: Spacecraft Propulsion and Power
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 1-4; NASA/CP-2003-212376-REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: In recent years, there has been a tendency toward shrinking the size of spacecraft. New classes of spacecraft called micro-spacecraft have been defined by their mass, power, and size ranges. Spacecraft in the range of 20 to 100 kg represent the class most likely to be utilized by most small sat users in the near future. There are also efforts to develop 10 to 20 kg class spacecraft for use in satellite constellations. More ambitious efforts will be to develop spacecraft less than 10 kg, in which MEMS fabrication technology is required. These new micro-spacecraft will require new micro-propulsion technology. Although micro-propulsion includes electric propulsion approaches, the focus of this proposed program is micro-chemical propulsion which requires the development of microcombustors. As combustors are scaled down, the surface to volume ratio increases. The heat release rate in the combustor scales with volume, while heat loss rate scales with surface area. Consequently, heat loss eventually dominates over heat release when the combustor size becomes smaller, thereby leading to flame quenching. The limitations imposed on chamber length and diameter has an immediate impact on the degree of miniaturization of a micro-combustor. Before micro-combustors can be realized, such a difficulty must be overcome. One viable combustion alternative is to take advantage of surface catalysis. Micro-chemical propulsion for small spacecraft can be used for primary thrust, orbit insertion, trajectory-control, and attitude control. Grouping micro-propulsion devices in arrays will allow their use for larger thrust applications. By using an array composed of hundreds or thousands of micro-thruster units, a particular configuration can be arranged to be best suited for a specific application. Moreover, different thruster sizes would provide for a range of thrust levels (from N s to mN s) within the same array. Several thrusters could be fired simultaneously for thrust levels higher than the basic units, or in a rapid sequence in order to provide gradual but steady low-g acceleration. These arrays of micro-propulsion systems would offer unprecedented flexibility and redundancy for satellite propulsion and reaction control for launch vehicles. A high-pressure bi-propellant micro-rocket engine is already being developed using MEMS technology. High pressure turbopumps and valves are to be incorporated onto the rocket chip . High pressure combustion of methane and O2 in a micro-combustor has been demonstrated without catalysis, but ignition was established with a spark. This combustor has rectangular dimensions of 1.5 mm by 8 mm (hydraulic diameter 3.9 mm) and a length of 4.5 mm and was operated at 1250 kPa with plans to operate it at 12.7 MPa. These high operating pressures enable the combustion process in these devices, but these pressures are not practical for pressure fed satellite propulsion systems. Note that the use of these propellants requires an ignition system and that the use of a spark would impose a size limitation to this micro-propulsion device because the spark unit cannot be shrunk proportionately with the thruster. Results presented in this paper consist of an experimental evaluation of the minimum catalyst temperature for initiating/supporting combustion in sub-millimeter diameter tubes. The tubes are resistively heated and reactive premixed gases are passed through the tubes. Tube temperature and inlet pressure are monitored for an indication of exothermic reactions and composition changes in the gases.
    Keywords: Spacecraft Propulsion and Power
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 385-388; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: A viewgraph presentation on the concept of compliant casing for transonic axial compressors is shown. The topics include: 1) Concept for compliant casing; 2) Rig and facility details; 3) Experimental results; and 4) Numerical results.
    Keywords: Aircraft Propulsion and Power
    Type: 2002 NASA Seal/Secondary Air System Workshop; Volume 1; 163-170; NASA/CP-2003-212458/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-06
    Description: Model the interactions between the structural dynamics and the performance dynamics of a gas turbine engine. Generally these two aspects are considered separate, unrelated phenomena and are studied independently. For diagnostic purposes, it is desirable to bring together as much information as possible, and that involves understanding how performance is affected by structural dynamics (if it is) and vice versa. This can involve the relationship between thrust response and the excitation of structural modes, for instance. The job will involve investigating and characterizing these dynamical relationships, generating a model that incorporates them, and suggesting and/or developing diagnostic and prognostic techniques that can be incorporated in a data fusion system. If no coupling is found, at the least a vibration model should be generated that can be used for diagnostics and prognostics related to blade loss, for instance.
    Keywords: Aircraft Propulsion and Power
    Type: 2003 NASA Faculty Fellowship Program at Glenn Research Center; 64-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The fellowship work this summer will be in support of the development of a fuel mixer for a liquid fuel reformer that is upstream of a fuel cell. Tasks for the summer shall consist of design of a fuel mixer, setup of the laser diagnostics for determining the degree of fuel mixing, and testing of the fuel mixer. The fuel mixer shall be a venturi section with fuel injected at or near the throat, and an air swirler upstream of the venturi. Data to determine the performance of the mixer shall be taken using a Phase Doppler Particle Analyzer (PDPA).
    Keywords: Spacecraft Propulsion and Power
    Type: NASA-OAI Collaborative Aerospace Research and Fellowship Program; 12-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-05
    Description: Space shuttle solid rocket motor case assembly joints are sealed with conventional O-ring seals that are shielded from 5500 F combustion gases by thick layers of insulation and by special joint-fill compounds that fill assembly splitlines in the insulation. On a number of occasions, NASA has observed hot gas penetration through defects in the joint-fill compound of several of the rocket nozzle assembly joints. In the current nozzle-to-case joint, NASA has observed penetration of hot combustion gases through the joint-fill compound to the inboard wiper O-ring in one out of seven motors. Although this condition does not threaten motor safety, evidence of hot gas penetration to the wiper O-ring results in extensive reviews before resuming flight. The solid rocket motor manufacturer (Thiokol) approached the NASA Glenn Research Center at Lewis Field about the possibility of applying Glenn's braided fiber preform seal as a thermal barrier to protect the O-ring seals. Glenn and Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and by using a braided carbon fiber thermal barrier that would resist any hot gases that the J-leg does not block.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-05
    Description: Solar electric propulsion (SEP) mission architectures are applicable to a wide range NASA missions including the robotic exploration of the outer planets in the next decade and the human exploration of Mars within the next 2 decades. SEP enables architectures that are very mass efficient with reasonable power levels (1-MW class) aerobrake and cryogenic upper-stage transportation technologies are utilized. In this architecture, the efficient SEP stage transfers the payload from low Earth orbit (LEO) High Energy Elliptical Parking Orbit (HEEPO) within a period of 6 to 12 months. highthrust, cryogenic upper stage and payload then separate from the SEP vehicle for injection to the planetary target, allowing for fast heliocentric trip times. This mission architecture offers a potential reduction in mass to LEO in comparison to alternative all-chemical nuclear propulsion schemes. Mass reductions may allow launch vehicle downsizing enable missions that would have been grounded because of cost constraints. The preceding figure illustrates a conceptual SEP stage design for a human Mars mission. Researchers at the NASA Glenn Research Center at Lewis Field designed conceptual SEP vehicle, conceived the mission architecture to use this vehicle, and analyzed the vehicle s performance. This SEP stage has a dry mass of 35 metric tons (MT), 40 MT of xenon propellant, and a photovoltaic array that spans 110 m, providing power to a cluster of eight 100-kW Hall thrusters. The stage can transfer an 80-MT payload and upper stage to the desired HEEPO. Preliminary packaging studies show this space-station-class SEP vehicle meets the proposed "Magnum" launch vehicle and volume requirements with considerable margin. An SEP vehicle for outer planetary missions, such as the Europa Mapper Mission, would be dramatically smaller than human Mars mission SEP stage. In this mission architecture, the SEP power system with the payload to provide spacecraft power throughout the mission. Several photovoltaic array design concepts were considered for the SEP vehicle power system for the human mission to Mars. These include a space station derivative, a SCARLET (Solar Concentrator Arrays with Refractive Linear Element Technology) derivative, and a hybrid inflatable-deployable thin polymer membrane array with thin-film solar cells (as shown in the concept illustration). This concept is based on a design developed for the Next Generation Space Telescope Sun shield. The array is divided into 16 independent electrical sections with 500-V, negative-grounded solar cell strings. The power system employs a channelized, 500-Vdc power management and distribution (PMAD) architecture with lithium ion batteries for energy storage for vehicle and payload secondary loads (the high-power Hall thrusters do not operate in eclipse periods). The 500-V PMAD voltage permits "direct-drive" thruster operation, greatly reducing the power processing unit size, complexity, and power loss. Similar power system architecture, designs, and technology are assumed for the Europa Mapper Mission SEP vehicle. The primary exceptions are that the photovoltaic array is assumed to consist of two rectangular wings and that the power system rating is 15 kW in Earth orbit and 200 W at Europa. To size the SEP vehicle power system, a dedicated Fortran code was developed to predict detailed power system performance, mass, and thermal control requirements. This code also modeled all the relevant Earth orbit environments; that is, the particulate radiation, plasma, meteoroids and debris, ultraviolet radiation, contamination, and thermal conditions. Analysis results for the Human Mars Mission SEP vehicle show a power system mass of 9-MT and photovoltaic array area of 5800-square meters for the thin-membrane design concept with CuInS2 thin-film cells. Power processing unit input power for a thin-membrane array design with three-junction, amorphous SiGe solar cells is shown in the graph. Power falls off rapidly inhe first weeks of the mission because of light-induced (Staebler-Wronksi) solar cell losses. During the next 200 days, power decreases steadily as the SEP stage spirals through the proton belts and sustains the bulk of the mission radiation damage. Once the vehicle apogee is above approximately four Earth radii, little additional degradation is incurred. From 400 to 800 days, a 1100-km "parking" orbit is maintained to await the next payload transfer opportunity. This orbit is below the main proton belt, and thus, little radiation dose is accumulated during this time period. During the second LEO-to-HEEPO transfer, power degrades somewhat further, but power requirements are still met. In comparison, the Europa Mapper SEP vehicle power system had a mass of 150 kg and a thin membrane array area of 100 square meters.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center at Lewis Field develops new technologies to increase the fuel efficiency of aircraft engines, improve the safety of engine operation, reduce emissions, and reduce engine noise. With the development of new designs for fans, compressors, and turbines to achieve these goals, the basic aeroelastic requirements are that there should be no flutter (self-excited vibrations) or high resonant blade stresses (due to forced response) in the operating regime. Therefore, an accurate prediction and analysis capability is required to verify the aeroelastic soundness of the designs. Such a three-dimensional viscous propulsion aeroelastic analysis capability has been developed at Glenn with support from the Advanced Subsonic Technology (AST) program. This newly developed aeroelastic analysis capability is based on TURBO, a threedimensional unsteady aerodynamic Reynolds-averaged Navier-Stokes turbomachinery code developed previously under a grant from Glenn. TURBO can model the viscous flow effects that play an important role in certain aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), flutter in the presence of shock and boundary-layer interaction, and forced response due to wakes and shock impingement. In aeroelastic analysis, the structural dynamics representation of the blades is based on normal modes. A finite-element analysis code is used to calculate these in-vacuum vibration modes and the associated natural frequencies. In an aeroelastic analysis using the TURBO code, flutter and forced response are modeled as being uncoupled. To calculate if a blade row will flutter, one prescribes the motion of the blade to be a harmonic vibration in a specified in-vacuum normal mode. An aeroelastic analysis preprocessor is used to generate the displacement field required for the analysis. The work done by aerodynamic forces on the vibrating blade during a cycle of vibration is calculated. If this work is positive, the blade is dynamically unstable, since it will extract energy from the flow, leading to an increase in the blade s oscillation amplitude. The forced-response excitations on a blade row are calculated by modeling the flow through two adjacent blade rows using the TURBO code. The blades are assumed to be rigid. As an option, a single blade row can be modeled with the upstream blade row influence represented by a time-varying disturbance (gust) at the inlet boundary. The unsteady forces on a blade row from such analyses are used in a structural analysis along with the blade structural dynamics characteristics and aerodynamic damping associated with blade vibration to calculate the resulting dynamic stresses on the blade.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-05
    Description: Several experiments on the formation of solid hydrogen particles in liquid helium were recently conducted at the NASA Glenn Research Center at Lewis Field. The solid hydrogen experiments are the first step toward seeing these particles and determining their shape and size. The particles will ultimately store atoms of boron, carbon, or hydrogen, forming an atomic propellant. Atomic propellants will allow rocket vehicles to carry payloads many times heavier than possible with existing rockets or allow them to be much smaller and lighter. Solid hydrogen particles are preferred for storing atoms. Hydrogen is generally an excellent fuel with a low molecular weight. Very low temperature hydrogen particles (T 〈 4 K) can prevent the atoms from recombining, making it possible for their lifetime to be controlled. Also, particles that are less than 1 mm in diameter are preferred because they can flow easily into a pipe when suspended in liquid helium. The particles and atoms must remain at this low temperature until the fuel is introduced into the engine combustion (or recombination) chamber. Experiments were, therefore, planned to look at the particles and observe their formation and any changes while in liquid helium.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-05
    Description: The tip clearance flows of transonic compressor rotors have a significant impact on rotor and stage performance. Although numerical simulations of these flows are quite sophisticated, they are seldom verified through rigorous comparisons of numerical and measured data because, in high-speed machines, measurements acquired in sufficient detail to be useful are rare. Researchers at the NASA Glenn Research Center at Lewis Field compared measured tip clearance flow details (e.g., trajectory and radial extent) of the NASA Rotor 35 with results obtained from a numerical simulation. Previous investigations had focused on capturing the detailed development of the jetlike flow leaking through the clearance gap between the rotating blade tip and the stationary compressor shroud. However, we discovered that the simulation accuracy depends primarily on capturing the detailed development of a wall-bounded shear layer formed by the relative motion between the leakage jet and the shroud.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-05
    Description: Higher operating temperatures increase the efficiency of aircraft gas turbine engines, but can also degrade internal components. High-pressure turbine blades just downstream of the combustor are particularly susceptible to overheating. Computational fluid dynamics (CFD) computer programs can predict the flow around the blades so that potential hot spots can be identified and appropriate cooling schemes can be designed. Various blade and cooling schemes can be examined computationally before any hardware is built, thus saving time and effort. Often though, the accuracy of these programs has been found to be inadequate for predicting heat transfer. Code and model developers need highly detailed aerodynamic and heat transfer data to validate and improve their analyses. The Transonic Turbine Blade Cascade was built at the NASA Glenn Research Center at Lewis Field to help satisfy the need for this type of data.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-05
    Description: The NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) Project provided a xenon ion propulsion system to the Deep Space 1 (DS1) spacecraft to validate the propulsion system as well as perform primary propulsion for asteroid and comet encounters. The On-Board Propulsion Branch of the NASA Glenn Research Center at Lewis Field developed engineering model versions of the 30-cm-diameter ion thruster and the 2.5-kW power processor unit (PPU). Glenn then transferred the thruster and PPU technologies to Hughes Electron Dynamics and managed the contract, which supplied two flight sets of thrusters and PPU s to the Deep Space 1 spacecraft and to a ground-based life verification test at the Jet Propulsion Laboratory (JPL). In addition to managing the DS1 spacecraft development, JPL was responsible for the NSTAR Project management, thruster life tests, the feed system, diagnostics, and propulsion subsystem integration. The ion propulsion development team included NASA Glenn, JPL, Hughes Electronics, Moog Inc., and Spectrum Astro Inc. The overall NSTAR subsystem dry mass, including thruster, PPU, controller, cables, and the xenon storage and feed system, is 48 kg. The mass of the xenon stored onboard DS1 was about 81 kg, and the spacecraft wet mass was approximately 500 kg.The DS1 spacecraft was launched on October 24, 1998, and on July 29, 1999, it flew within 16 miles of the small asteroid Braille (formerly 1992KD) at a relative speed of 35,000 mph. As of November 1999, the ion propulsion system had performed flawlessly for nearly 149 days of thrusting. NASA has approved an extension to the mission, which will allow DS1 to continue thrusting to encounters with two comets in 2001. The DS1 optical and plasma diagnostic instruments will be used to investigate the comet and space environments. The spacecraft is scheduled to fly past the dormant comet Wilson- Harrington in January 2001 and the very active comet Borrelly in September 2001, at which time approximately 500 days of ion engine thrusting will have been completed.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-02
    Description: As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-02
    Description: Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-02
    Description: Ongoing research and testing are essential in the development of air-breathing hypersonic propulsion technology, and this year some positive advancement was made at the NASA Glenn Research Center. Recent work performed for GTX, a rocket-based combined-cycle, single-stage-to-orbit concept, included structural assessments of both the engine and flight vehicle. In the development of air-breathing engine technology, it is impractical to design and optimize components apart from the fully integrated system because tradeoffs must be made between performance and structural capability. Efforts were made to control the flight trajectory, for example, to minimize the aerodynamic heating effects. Structural optimization was applied to evaluate concept feasibility and was instrumental in the determination of the gross liftoff weight of the integrated system. Achieving low Earth orbit with even a small payload requires an aggressive approach to weight minimization through the use of lightweight, oxidation-resistant composite materials. Assessing the integrated system involved investigating the flight trajectory to determine where the critical load events occur in flight and then generating the corresponding environment at each of these events. Structural evaluation requires the mapping of the critical flight loads to finite element models, including the combined effects of aerodynamic, inertial, combustion, and other loads. NASA s APAS code was used to generate aerodynamic pressure and temperature profiles at each critical event. The radiation equilibrium surface temperatures from APAS were used to predict temperatures through the thickness. Heat transfer solutions using NASA's MINIVER code and the SINDA code (Cullimore & Ring Technologies, Littleton, CO) were calculated at selective points external to the integrated vehicle system and then extrapolated over the entire exposed surface. FORTRAN codes were written to expedite the finite element mapping of the aerodynamic heating effects for the internal structure.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-02
    Description: Fluids are difficult to manage in the space environment. Without gravity, the liquid and gas do not always remain separated as they do in the 1g environment of Earth. Instead the liquid and gas volumes mix and migrate under the influence of surface tension, thermodynamic forces, and external disturbances. As a result, liquid propellants may not be in a useable location or may even form a chaotic mix of liquid and gas bubbles. In the past, mechanical pumps, baffles, and a variety of specialized passive devices have been used to control the liquid and gas volumes. These methods need to be carefully tuned to a specific configuration to be effective. With increasing emphasis on long-term human activity in space there is a trend toward liquid systems that are more flexible and provide greater control. We are exploring new methods of manipulating liquids by using the nonlinear acoustic effects achieved by using beams of highly directed high-intensity acoustic waves.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-02
    Description: The original test stand location has a small copper rocket engine mounted on the stand. The new stand, located about 4 feet to the left, has a long pulse detonation combustion engine mounted on it. To the rear of the two stands can be seen a bulkhead with feed line outlets that can be switched at common valves behind the bulkhead to supply either stand. A gauge panel is visible through a doorway in the bulkhead at which various purge pressures are set. A connection panel for instrumentation wiring can be seen above the stands.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-02
    Description: This article highlights fiscal year 2002 work performed by NASA Glenn Research Center personnel to validate algorithms and data developed in-house to predict shadowing effects on the International Space Station (ISS) solar arrays power generation. The validation effort utilized video footage and on-orbit telemetry for cases spanning a 1-yr period. Validation was required because of the uncertainty of various aspects involved in shadowing analysis. Results show that a good comparison exists between actual and predicted shadowed power system performance for solar array front and backside shadowing.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-02
    Description: Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-02
    Description: NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-02
    Description: This work is motivated by the need to accurately predict heat transfer in turbomachinery. For efficient gas turbine operation, flow temperatures in the hot gas path exceed acceptable metal temperatures in many regions of the engine. So that the integrity of the parts can be maintained for an acceptable engine life, the parts must be cooled. Efficient cooling schemes require accurate heat transfer prediction to minimize regions that are overcooled and, even more importantly, to ensure adequate cooling in high-heat-flux regions.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-02
    Description: Future aeropropulsion gas turbine engines must be affordable in addition to being energy efficient and environmentally benign. Progress in aerodynamic design capability is required not only to maximize the specific thrust of next-generation engines without sacrificing fuel consumption, but also to reduce parts count by increasing the aerodynamic loading of the compression system. To meet future compressor requirements, the NASA Glenn Research Center is investigating advanced aerodynamic design concepts that will lead to more compact, higher efficiency, and wider operability configurations than are currently in operation.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-02
    Description: Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-02
    Description: In 2002 the pulsed plasma thruster (PPT) mounted on the Earth Observing-1 spacecraft was operated successfully in orbit. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. The first tests conducted in space demonstrated the full range of PPT operation, followed by calibration of control torques from the PPT in the attitude control system. Then the spacecraft was placed in PPT control mode. To date, it has operated for about 30 hr. The PPT successfully controlled pitch momentum during wheel de-spin, solar array acceleration and deceleration during array rewind, and environmental torques in nominal operating conditions. Images collected with the Advanced Landsat Imager during PPT operation have demonstrated that there was no degradation in comparison to full momentum wheel control. In addition, other experiments have been performed to interrogate the effects of PPT operation on communication packages and light reflection from spacecraft surfaces. Future experiments will investigate the possibility of orbit-raising maneuvers, spacecraft roll, and concurrent operation with the Hyperion imager. Future applications envisioned for pulsed plasma thrusters include longer life, higher precision, multiaxis thruster configurations for three-axis attitude control systems or high-precision, formationflying systems. Advanced components, such as a "dry" mica-foil capacitor, a wear-resistant spark plug, and a multichannel power processing unit have been developed under contract with Unison Industries, General Dynamics, and C.U. Aerospace. Over the last year, evaluation tests have been conducted to determine power processing unit efficiency, atmospheric functionality, vacuum functionality, thruster performance evaluation, thermal performance, and component life.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-02
    Description: The NASA Glenn Research Center was the major contributor of 2-kW-class ion thruster technology to the Deep Space 1 mission, which was successfully completed in early 2002. Recently, NASA s Office of Space Science awarded approximately $21 million to Glenn to develop higher power xenon ion propulsion systems for large flagship missions such as outer planet explorers and sample return missions. The project, referred to as NASA's Evolutionary Xenon Thruster (NEXT), is a logical follow-on to the ion propulsion system demonstrated on Deep Space 1. The propulsion system power level for NEXT is expected to be as high as 25 kW, incorporating multiple ion thrusters, each capable of being throttled over a 1- to 6-kW power range. To date, engineering model thrusters have been developed, and performance and plume diagnostics are now being documented. The project team-Glenn, the Jet Propulsion Laboratory, General Dynamics, Boeing Electron Dynamic Devices, the Applied Physics Laboratory, the University of Michigan, and Colorado State University-is in the process of developing hardware for a ground demonstration of the NEXT propulsion system, which comprises a xenon feed system, controllers, multiple thrusters, and power processors. The development program also will include life assessments by tests and analyses, single-string tests of ion thrusters and power systems, and finally, multistring thruster system tests in calendar year 2005. In addition, NASA's Office of Space Science selected Glenn to lead the development of a 25-kW xenon thruster to enable NASA to conduct future missions to the outer planets of Jupiter and beyond, under the High Power Electric Propulsion (HiPEP) program. The development of a 100-kW-class ion propulsion system and power conversion systems are critical components to enable future nuclear-electric propulsion systems. In fiscal year 2003, a team composed of Glenn, the Boeing Company, General Dynamics, the Applied Physics Laboratory, the Naval Research Laboratory, the University of Wisconsin, the University of Michigan, and Colorado State University will perform a 6-month study that will result in the design of a 25-kW ion thruster, a propellant feed system, and a power processing architecture. The following 2 years will involve hardware development, wear tests, single-string tests of the thruster-power circuits and the xenon feed system, and subsystem service life analyses. The 2-kW-class ion propulsion technology developed for the Deep Space 1 mission will be used for NASA's discovery mission Dawn, which involves maneuvering a spacecraft to survey the asteroids Ceres and Vesta. The 6-kW-class ion thruster subsystem technology under NEXT is scheduled to be flight ready by calendar year 2006. The less mature 25- kW ion thruster system under HiPEP is expected to be ready for a flight advanced development program in calendar year 2006.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-10-04
    Description: The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play architecture, called NPSS Version 1, (2) A full engine simulation that combines a 3D low-pressure subsystem with a 0D high pressure core simulation. This demonstrates the ability to integrate analyses at different levels of detail and to aerodynamically couple components, the fan/booster and low-pressure turbine, through a 3D computational fluid dynamics simulation. (3) Simulation of all of the turbomachinery in a modern turbofan engine on parallel computing platform for rapid and cost-effective execution. This capability can also be used to generate full compressor map, requiring both design and off-design simulation. (4) Three levels of coupling characterize the multidisciplinary analysis under NPSS: loosely coupled, process coupled and tightly coupled. The loosely coupled and process coupled approaches require a common geometry definition to link CAD to analysis tools. The tightly coupled approach is currently validating the use of arbitrary Lagrangian/Eulerian formulation for rotating turbomachinery. The validation includes both centrifugal and axial compression systems. The results of the validation will be reported in the paper. (5) The demonstration of significant computing cost/performance reduction for turbine engine applications using PC clusters. The NPSS Project is supported under the NASA High Performance Computing and Communications Program.
    Keywords: Aircraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-10-04
    Description: Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
    Keywords: Aircraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Twenty-first-century aeropropulsion and power research will enable new transport engine and aircraft systems including: 1) Emerging ultralow noise and emissions with the use of intelligent turbofans; 2) Future distributed vectored propulsion with 24-hour operations and greater community mobility; 3) Research in hybrid combustion and electric propulsion systems leading to silent aircraft with near-zero emissions; and 4) The culmination of these revolutions will deliver an all-electric- powered propulsion system with zero-impact emissions and noise and high-capacity, on-demand operation
    Keywords: Aircraft Propulsion and Power
    Type: 2002 Computing and Interdisciplinary Systems Office Review and Planning Meeting; 1-13; NASA/TM-2003-211896
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The objective is to develop the capability to numerically model the performance of gas turbine engines used for aircraft propulsion. This capability will provide turbine engine designers with a means of accurately predicting the performance of new engines in a system environment prior to building and testing. The 'numerical test cell' developed under this project will reduce the number of component and engine tests required during development. As a result, the project will help to reduce the design cycle time and cost of gas turbine engines. This capability will be distributed to U.S. turbine engine manufacturers and air framers. This project focuses on goals of maintaining U.S. superiority in commercial gas turbine engine development for the aeronautics industry.
    Keywords: Aircraft Propulsion and Power
    Type: 2002 Computing and Interdisciplinary Systems Office Review and Planning Meeting; 73-78; NASA/TM-2003-211896
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-02
    Description: The Reusable Launch Vehicle (RLV) represents the next generation of space transportation for the U.S. space program. The goal for this vehicle is to lower launch costs by an order of magnitude from $10,000/lb to $1,000/lb. Such a large cost reduction will require a highly efficient operation, which naturally will require highly efficient engines. The RS-2200 Linear Aerospike Engine is being considered as the main powerplant for the RLV. Strong, lightweight, temperature-resistant ceramic matrix composite (CMC) materials such as C/SiC are critical to the development of the RS-2200. Preliminary engine designs subject turbopump components to extremely high frequency dynamic excitation, and ceramic matrix composite materials are typically lightly damped, making them vulnerable to high-cycle fatigue. The combination of low damping and high-frequency excitation creates the need for enhanced damping. Thus, the goal of this project has been to develop well-damped C/SiC turbine components for use in the RLV. Foster-Miller and Boeing Rocketdyne have been using an innovative, low-cost process to develop light, strong, highly damped turbopump components for the RS-2200 under NASA s Small Business Innovation Research (SBIR) program. The NASA Glenn Research Center at Lewis Field is managing this work. The process combines three-dimensionally braided fiber reinforcement with a pre-ceramic polymer. The three-dimensional reinforcement significantly improves the structure over conventional two-dimensional laminates, including high through-the-thickness strength and stiffness. Phase I of the project successfully applied the Foster-Miller pre-ceramic polymer infiltration and pyrolysis (PIP) process to the manufacture of dynamic specimens representative of engine components. An important aspect of the program has been the development of the manufacturing process. Results show that the three-dimensionally braided carbon-fiber reinforcement provides good processability and good mechanical stiffness and strength in comparison to materials produced with competing processes as shown in the graphs.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-02
    Description: The NASA Glenn Research Center at Lewis Field, in cooperation with Rocketdyne, has designed, developed, and implemented an automated Post-Test Diagnostic System (PTDS) for the X-33 linear aerospike engine. The PTDS was developed to reduce analysis time and to increase the accuracy and repeatability of rocket engine ground test fire and flight data analysis. This diagnostic system provides a fast, consistent, first-pass data analysis, thereby aiding engineers who are responsible for detecting and diagnosing engine anomalies from sensor data. It uses analytical methods modeled after the analysis strategies used by engineers. Glenn delivered the first version of PTDS in September of 1998 to support testing of the engine s power pack assembly. The system was used to analyze all 17 power pack tests and assisted Rocketdyne engineers in troubleshooting both data acquisition and test article anomalies. The engine version of PTDS, which was delivered in June of 1999, will support all single-engine, dual-engine, and flight firings of the aerospike engine.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: This paper describes the different electro static and electro magnetic emissions of the ion engine for each of the the thrust levels the engine has operated in space and in the test chamber.
    Keywords: Spacecraft Propulsion and Power
    Type: IEEE 2001 Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-08
    Description: This paper discusses a surface kinetics model of sputtering for a molybdenum surface subject to a flux of carbon atoms and xenon ions.
    Keywords: Spacecraft Propulsion and Power
    Type: Joint Propulsion Conference; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-08
    Description: Flow control of propellant to an electric thruster is an important parameter in the design of reliable, versatile and cost effective electric propulsion subsystems for spacecraft.
    Keywords: Spacecraft Propulsion and Power
    Type: 36th Joint Propulsion Conference; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Advanced Propulsion Workshop; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Advanced Space Propulsion Research Workshop; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: DS1 Technical Validation Symposium; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: IEEE Transducers 03; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-08
    Description: NASA has placed new emphasis on the development of advanced propulsion technologies including Nuclear Electric Propulsion (NEP). This technology would provide multiple benefits including high delta-V capability and high power for long duration spacecraft operations.
    Keywords: Spacecraft Propulsion and Power
    Type: IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: NEP, nuclear, transfer vehicle, electric propulsion; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Advanced Space Propulsion Workshop; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: This presentation will give an overview of the Project Prometheus Program (PPP, formerly the Nuclear Systems Initiative, NSI) and the Jupiter Icy Moons Orbiter (JIMO) Project (a component of PPP), a mission to the three icy Galilean moons of Jupiter.
    Keywords: Spacecraft Propulsion and Power
    Type: 14th Annual Advanced Space Propulsion Workshop; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Guidance, Navigation, and Control Conference; Austin, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-08
    Description: Replacing hollow and filament cathodes with field emitter (FE) cathodes could significantly improve the scalability, power, and performance of some meso- and microscale Electric Propulsion (EP) systems.
    Keywords: Spacecraft Propulsion and Power
    Type: Solid State Electronics Special Issue on Vacuum Microelectronics; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: A key feature of future deep-space science missions will be the need for significantly greater on board propulsion capability.
    Keywords: Spacecraft Propulsion and Power
    Type: International Conferece on Low-Cost Planetary Missions; Laurel, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-08
    Description: Replacing hollow and filament cathodes with field emitter (FE) cathodes could significantly improve the scalability, power, and performance of some meso- and microscale Electric Propulsion (EP) systems. This article discusses the motivation and challenges of integrating of FE and Electric Propulsion systems.
    Keywords: Spacecraft Propulsion and Power
    Type: Materials Research Society Conference; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-08
    Description: Reconnaisance of asteriods has thus far been accomplished on a limited scale.
    Keywords: Spacecraft Propulsion and Power
    Type: International Conference on Low-Cost Planetary Missions; Laurel, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: DS1 Technology Validation Symposium; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: DS1 Technical Validation Symposium; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Transducers 03; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: IEEE Aerospace Conference; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-08
    Description: The Dawn Project's mission is to rendezvous and map the two heaviest main belt asteroids Vesta and Ceres. The Ion Propulsion System (IPS) for Dawn will be used for the heliocentric transfer from the Earth to Vesta, orbit capture at Vesta, transfer to a low Vesta orbit, departure and escape from Vesta, the heliocentric transfer from Vesta to Ceres, orbit capture at Ceres, and transfer to a low Ceres orbit.
    Keywords: Spacecraft Propulsion and Power
    Type: 2003 Joint Propulsion Conference; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: Workshop on Technology and System Options Towards Megawatt Level Electric Propulsion; Lerici; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: A proposed Titan aerocapture mission will send an orbiter and surface probe to Titan. Aerocapture technology will be employed to slow the spacecraft and perform the orbit insertion.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Joint Propulsion Conference; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: 20th Symposium on Space Nuclear Power and Propulsion; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-08
    Description: In this paper we apply results from the extensive traveling wave tube vacuum barium impregnated cathode literature to the hollow cathodes used in ion thrusters. We show that the observed space station cathode life is in general agreement with published barium evaporation rates.
    Keywords: Spacecraft Propulsion and Power
    Type: 28th International Electric Propulsion Conference; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Type: International Electric Propulsion Conference 2003; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-06
    Description: In this work, we have considered an annular cascade configuration subjected to unsteady inflow conditions. The unsteady response calculation has been implemented into the time marching CFD code, MSUTURBO. The computed steady state results for the pressure distribution demonstrated good agreement with experimental data. We have computed results for the amplitudes of the unsteady pressure over the blade surfaces. With the increase in gas turbine engine structural complexity and performance over the past 50 years, structural engineers have created an array of safety nets to ensure against component failures in turbine engines. In order to reduce what is now considered to be excessive conservatism and yet maintain the same adequate margins of safety, there is a pressing need to explore methods of incorporating probabilistic design procedures into engine development. Probabilistic methods combine and prioritize the statistical distributions of each design variable, generate an interactive distribution and offer the designer a quantified relationship between robustness, endurance and performance. The designer can therefore iterate between weight reduction, life increase, engine size reduction, speed increase etc.
    Keywords: Aircraft Propulsion and Power
    Type: 2003 NASA Faculty Fellowship Program at Glenn Research Center; 30-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The purpose of this article is to show that the Navier-Stokes equations can be rewritten as a set of linearized inhomogeneous Euler equations (in convective form) with source terms that are exactly the same as those that would result from externally imposed shear stress and energy flux perturbations. These results are used to develop a mathematical basis for some existing and potential new jet noise models by appropriately choosing the base flow about which the linearization is carried out.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-05
    Description: The development of morphing aeropropulsion structural components offers the potential to significantly improve the performance of existing aircraft engines through the introduction of new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. One of the key factors in the successful development of morphing structures is the maturation of smart materials technologies.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-05
    Description: High-power electric propulsion is a critical component of NASA s proposed missions to the outer planets. Mission studies have shown that high-power, high-specific-impulse propulsion systems can deliver 2000 kg of scientific payload to Pluto with trip times on the order of 10 years. Of greater significance is the ability of these propulsion systems to place this science payload in orbit around the planet, rather than making the fast fly-bys associated with traditional chemical propulsion systems. Significant ground test programs are required to develop the new technologies needed for thrusters operating at power levels exceeding 20 kW, an order of magnitude above the state of the art.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-05
    Description: The low-emissions combustor development at the NASA Glenn Research Center is directed toward advanced high-pressure aircraft gas turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low-power conditions. Low-NOx combustors can be classified into rich burn and lean burn concepts. Lean burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) combustors. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibly of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone and, thus, does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, the key is good atomization and mixing of the fuel quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-05
    Description: The performance of compressors and the sophistication of analysis tools have reached a level such that less well understood flow mechanisms are gaining importance to designers. In current design systems, the effect on performance of many of these mechanisms, such as blade row interactions, is not typically addressed rigorously. A detailed set of Laser Doppler Velocimetry data was used to confirm the fidelity of an unsteady model of a transonic compressor stage (rotor-stator) simulated with the TURBO unsteady multistage turbomachinery solver. The kinematics of the velocity field were accurately simulated, and the unsteady simulation was then used to assess changes in loss production due to unsteady blade-row-interaction mechanisms. This work was done at the NASA Glenn Research Center in support of the Ultra-Efficient Engine Technology Program.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-05
    Description: Unsteady ejectors are currently under investigation for use in some pulse detonation engine (PDE) propulsion systems. This is due primarily to their potential high performance in comparison to steady ejectors of similar dimensions relative to the source or driver jet. Although some experimental work has been done in the past to study thrust augmentation with unsteady ejectors, there is no proven theory by which optimal design parameters can be selected and an effective ejector constructed for a given pulsed flow. Therefore, an experimental facility was developed at the NASA Glenn Research Center to study the correlation between ejector design and performance, and to get a better understanding of the flow phenomena that result in thrust augmentation. A commercially available pulsejet was used for the unsteady driving jet. This was paired with a basic, yet flexible, ejector design that allowed parametric evaluation of the effects that length, diameter, and inlet radius have on performance.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-05
    Description: To support the Revolutionary Aeropropulsion Concept Program, NASA Glenn Research Center' s Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future more-electric aircraft. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines that can generate power densities of 50 hp/lb or more, whereas conventional electric machines generate usually 0.2 hp/lb. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20 000 A/cm2 was selected to investigate how much torque and power can be produced. A simple synchronous machine model that consists of rotor and stator windings and back-irons was considered first. The model had a sinusoidally distributed winding that produces a sinusoidal distribution of flux P poles. Excitation of the rotor winding produced P poles of rotor flux, which interacted with the P stator poles to produce torque.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-05
    Description: A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test bed is expected to demonstrate NPSS CORBASec-specific policy functionality, confirm adequate performance, and validate the required Internet configuration in a distributed collaborative aerospace propulsion environment.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-05
    Description: High-power electric propulsion systems have been shown to be enabling for a number of NASA concepts, including piloted missions to Mars and Earth-orbiting solar electric power generation for terrestrial use (refs. 1 and 2). These types of missions require moderate transfer times and sizable thrust levels, resulting in an optimized propulsion system with greater specific impulse than conventional chemical systems and greater thrust than ion thruster systems. Hall thruster technology will offer a favorable combination of performance, reliability, and lifetime for such applications if input power can be scaled by more than an order of magnitude from the kilowatt level of the current state-of-the-art systems. As a result, the NASA Glenn Research Center conducted strategic technology research and development into high-power Hall thruster technology. During program year 2002, an in-house fabricated thruster, designated the NASA-457M, was experimentally evaluated at input powers up to 72 kW. These tests demonstrated the efficacy of scaling Hall thrusters to high power suitable for a range of future missions. Thrust up to nearly 3 N was measured. Discharge specific impulses ranged from 1750 to 3250 sec, with discharge efficiencies between 46 and 65 percent. This thruster is the highest power, highest thrust Hall thruster ever tested.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-05
    Description: As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Also, the large fan diameters of modern engines with increasingly higher bypass ratios pose significant packaging and aircraft installation challenges. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large diameters and high bypass ratio cycles to continue, this approach allows the wing to shield much of the engine noise from people on the ground. The Propulsion Systems Analysis Office at the NASA Glenn Research Center at Lewis Field conducted independent analytical research to estimate the noise reduction potential of mounting advanced turbofan engines above the wing. Certification noise predictions were made for a notional long-haul commercial quadjet transport. A large quad was chosen because, even under current regulations, such aircraft sometimes experience difficulty in complying with certification noise requirements with a substantial margin. Also, because of its long wing chords, a large airplane would receive the greatest advantage of any noise-shielding benefit.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-06
    Description: Integration of entire system includes: Fuel cells, motors, propulsors, thermal/power management, compressors, etc. Use of existing, pre-developed NPSS capabilities includes: 1) Optimization tools; 2) Gas turbine models for hybrid systems; 3) Increased interplay between subsystems; 4) Off-design modeling capabilities; 5) Altitude effects; and 6) Existing transient modeling architecture. Other factors inclde: 1) Easier transfer between users and groups of users; 2) General aerospace industry acceptance and familiarity; and 3) Flexible analysis tool that can also be used for ground power applications.
    Keywords: Aircraft Propulsion and Power
    Type: 2002 Computing and Interdisciplinary Systems Office Review and Planning Meeting; 63-71; NASA/TM-2003-211896
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-06
    Description: The objective is to develop high fidelity tools that can influence ISTAR design In particular, tools for coupling Fluid-Thermal-Structural simulations RBCC/TBCC designers carefully balance aerodynamic, thermal, weight, & structural considerations; consistent multidisciplinary solutions reveal details (at modest cost) At Scram mode design point, simulations give details of inlet & combustor performance, thermal loads, structural deflections.
    Keywords: Aircraft Propulsion and Power
    Type: 2002 Computing and Interdisciplinary Systems Office Review and Planning Meeting; 129-139; NASA/TM-2003-211896
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-06
    Description: The goal of this research is to develop an advanced engineering analysis system that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process (a virtual test cell that integrates propulsion and information technologies). This will enable rapid, high-confidence, cost-effective design of revolutionary systems.
    Keywords: Aircraft Propulsion and Power
    Type: 2002 Computing and Interdisciplinary Systems Office Review and Planning Meeting; 15-22; NASA/TM-2003-211896
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...