ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: This work addresses the significant differences in compressor rotor wake mixing loss which exist in a stage environment relative to a rotor in isolation. The wake decay for a rotor in isolation is due solely to viscous dissipation which is an irreversible process and thus leads to a loss in both total pressure and efficiency. Rotor wake decay in the stage environment is due to both viscous mixing and the inviscid strain imposed on the wake fluid particles by the stator velocity field. This straining process, referred to by Smith (1993) as recovery, is reversible and for a 2D rotor wake leads to an inviscid reduction of the velocity deficit of the wake. A model for the rotor wake decay process is developed and used to quantify the viscous dissipation effects relative to those of inviscid wake stretching. The model is verified using laser anemometer measurements acquired in the wake of a transonic rotor operated in isolation and in a stage configuration at near peak efficiency and near stall operating conditions. Additional insight is provided by a time-accurate 3D Navier-Stokes simulation of the compressor stator flow field at the corresponding stage loading levels. Results from the wake decay model exhibit good agreement with the experimental data. Data from the model, laser anemometer measurements, and numerical simulations indicate that for the rotor/stator spacing used in this work, which is typical of core compressors, rotor wake straining (stretching) is the primary decay process in the stator passage with viscous mixing playing only a minor role. The implications of these results on compressor stage design are discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-1998-206594 , E-11045 , NAS 1.26:206594
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: The tip clearance flows of transonic compressor rotors have a significant impact on rotor and stage performance. Although numerical simulations of these flows are quite sophisticated, they are seldom verified through rigorous comparisons of numerical and measured data because, in high-speed machines, measurements acquired in sufficient detail to be useful are rare. Researchers at the NASA Glenn Research Center at Lewis Field compared measured tip clearance flow details (e.g., trajectory and radial extent) of the NASA Rotor 35 with results obtained from a numerical simulation. Previous investigations had focused on capturing the detailed development of the jetlike flow leaking through the clearance gap between the rotating blade tip and the stationary compressor shroud. However, we discovered that the simulation accuracy depends primarily on capturing the detailed development of a wall-bounded shear layer formed by the relative motion between the leakage jet and the shroud.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: This report documents a study of the use of liquid crystals to visualize boundary layer development on a turbomachine blade. A turbine blade model in a linear cascade of blades was used for the tests involved. Details of the boundary layer development on the suction surface of the turbine blade model were known from previous research. Temperature sensitive and shear sensitive liquid crystals were tried as visual agents. The temperature sensitive crystals were very effective in their ability to display the location of boundary layer flow separation and reattachment. Visualization of natural transition from laminar to turbulent boundary layer flow with the temperature sensitive crystals was possible but subtle. The visualization of separated flow reattachment with the shear sensitive crystals was easily accomplished when the crystals were allowed to make a transition from the focal-conic to a Grandjean texture. Visualization of flow reattachment based on the selective reflection properties of shear sensitive crystals was achieved only marginally because of the larger surface shear stress and shear stress gradient levels required for more dramatic color differences.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-190433 , NAS 1.26:190433 , ISU-ERI-AMES-92114 , TCRL-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: The performance of compressors and the sophistication of analysis tools have reached a level such that less well understood flow mechanisms are gaining importance to designers. In current design systems, the effect on performance of many of these mechanisms, such as blade row interactions, is not typically addressed rigorously. A detailed set of Laser Doppler Velocimetry data was used to confirm the fidelity of an unsteady model of a transonic compressor stage (rotor-stator) simulated with the TURBO unsteady multistage turbomachinery solver. The kinematics of the velocity field were accurately simulated, and the unsteady simulation was then used to assess changes in loss production due to unsteady blade-row-interaction mechanisms. This work was done at the NASA Glenn Research Center in support of the Ultra-Efficient Engine Technology Program.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Decreased axial spacing between blade rows in an axial compressor stage is thought to increase stage performance because of an unsteady process that occurs in the downstream blade row and acts on the upstream blade row wakes. This process results in the "recovery" of part of the wake energy before all of this energy is irreversibly lost due to viscous diffusion. To study the wake-blade interaction mechanism, researchers at the NASA Lewis Research Center acquired two-component Laser Fringe Anemometer measurements of the rotor wake in the single-stage transonic compressor at two stage loading levels. The detailed measurements were acquired for one stator pitch in circumference at axial positions from the rotor trailing edge to 20 percent of the stator axial chord, at the exit of the stator passage, and downstream of the stator row including the stator wake. These data show that the changes in wake energy that occur inside the stator passage are not due to viscous dissipation alone, and thus the data provide evidence that "wake recovery" is occurring. A time-accurate, three-dimensional Navier Stokes simulation of the compressor stator was done at the corresponding stage loading levels. The measurements and simulations are being used in combination to show the effects of stator blade loading, quantify the effects of viscosity, and quantify the stage efficiency gain due to the wake recovery process. The accuracy of simple models of the wake recovery process is being evaluated in an effort to include the effects of wake recovery in the NASA-developed Average Passage code for multistage turbomachinery simulations.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1996; NASA-TM-107350
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2012-217713 , AIAA Paper 2012-4039 , E-18418 , 48th Joint Propulsion Conference and Exhibit; Jul 30, 2012 - Aug 01, 2012; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecmaand GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. Current test status for the 8x6 SWT high speed testing is presented as well as future scheduled testing which includes the FAA/CLEEN test entry. The tunnel blockage and propeller thrust calibration configurations are shown.
    Keywords: Acoustics
    Type: E-17798 , Acoustics Technical Working Group; Apr 21, 2011 - Apr 22, 2011; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecma and GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. The research program in both the low and high-speed wind tunnels is reviewed. Some detailed flowfield and acoustics measurements acquired for an internal NASA program are highlighted. The publically available research data is presented also.
    Keywords: Acoustics
    Type: E-17771 , ERA Advanced Vehicle Concepts NRA discussions with Boeing; Feb 01, 2011; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17514-1 , NASA Tech Briefs, October 2005; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Blade row interaction effects on loss generation in compressors have received increased attention as compressor work-per-stage and blade loading have increased. Two dimensional Laser Doppler Velocimeter measurements of the velocity field in a NASA transonic compressor stage show the magnitude of interactions in the velocity field at the peak efficiency and near stall operating conditions. The experimental data are presented along with an assessment of the velocity field interactions. In the present study the experimental data are used to confirm the fidelity of a three-dimensional, time-accurate, Navier Stokes calculation of the stage using the MSU-TURBO code at the peak efficiency and near stall operating conditions. The simulations are used to quantify the loss generation associated with interaction phenomena. At the design point the stator pressure field has minimal effect on the rotor performance. The rotor wakes do have an impact on loss production in the stator passage at both operating conditions. A method for determining the potential importance of blade row interactions on performance is presented.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2003-212180 , NAS 1.15:212180 , E-13781 , GT-2002-30575 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...