ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-10-02
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: We employ the opposed flow flame-spread configuration in order to examine flame-front instability of diffusion flames near cold, solid boundaries. The thermo-diffusive and hydrodynamic instabilities can transform an initially planar flame front into an irregularly curved, corrugated, possibly fragmented front. Under ordinary 1-g conditions, the buoyancy-induced flow masks the thermo-diffusive and hydrodynamic instabilities and produces planar flames. Such stable spreading flames have been observed for decades in laboratory experiments. Experiments in zero gravity are necessary to produce unstable flame fronts. The thermo-diffusive/hydrodynamic microgravity instability appears in diffusion flames such as, for example: the candle flame oscillations observed by Dietrich et al.; smolder instabilities on a recent Space Shuttle flight. Drs. T. Kashiwagi and S. Olson have attributed the latter to a lowered oxygen transport rate to the hot, reactive surface. Consider a burning surface near the flame extinction limit. The flow, or stretch, induced by the diffusion flame is weak, hence buoyancy plays a small role, thereby enabling previously secondary mechanisms, such as differential thermo-diffusion, to become the most important mechanisms. The flame leading edge becomes unstable; and diffusion flame breakup, oscillation, and rejoining all occur at a measurable frequency of approximately O(1 Hz). This project has only begun in January of this year, 1999. To date, there have been no flight experiments on flame spread instabilities. However, we have made numerous experiments in the NASA 2.2 and 5 second drop towers on flame spread over very thin cellulosic fuels. We have been very fortunate through a combination of factors, to be explained, to obtain some interesting, perhaps even compelling, results on diffusion flame instability in the presence of heat losses to cold surfaces.
    Keywords: Materials Processing
    Type: Fifth International Microgravity Combustion Workshop; 163-166; NASA/CP-1999-208917
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A Hele-Shaw flow apparatus constructed at Michigan State University (MSU) produces conditions that reduce influences of buoyancy-driven flows. In addition, in the MSU Hele-Shaw apparatus it is possible to adjust the heat losses from the fuel sample (0.001 in. thick cellulose) and the flow speed of the approaching oxidizer flow (air) so that the "flamelet regime of flame spread" is entered. In this regime various features of the flame-to-smolder (and vice versa) transition can be studied. For the relatively wide (approx. 17.5 cm) and long (approx. 20 cm) samples used, approximately ten flamelets existed at all times. The flamelet behavior was studied mechanistically and statistically. A heat transfer analysis of the dominant heat transfer mechanisms was conducted. Results indicate that radiation and conduction processes are important, and that a simple 1-D model using the Broido-Shafizadeh model for cellulose decomposition chemistry can describe aspects of the flamelet spread process. Introduction
    Keywords: Aircraft Propulsion and Power
    Type: Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems; 29-32; NASA/CP-2003-212376/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Examinations of flame fronts spreading over solid fuels in an opposed flow of oxidizer have shown that the flame front fragments into smaller (cellular) flames. These 'flamelets' will oscillate, recombine, or extinguish, indicating that they are in the near extinction limit regime (i.e., to one side of the quenching branch of the flammability map). Onset of unstable cellular flamelet formation for flame spread over thin fuels occurs when a heat-sink substrate is placed a small distance from the underside of the fuel. This heat-sink substrate (or backing) displaces the quenching branch of the flammability map in a direction that causes the instabilities to occur at higher air velocities. Similar near-limit behavior has been observed in other works using different fuels, thus suggesting that these dynamic mechanisms are fuel-independent and therefore fundamental attributes of flames in this near-limit flame spread regime. The objective of this project is to determine the contributions of the hydrodynamic and thermodiffusive mechanisms to the observed formation of flame instabilities. From this, a model of diffusion flame instabilities shall be generated. Previously, experiments were conducted in NASA drop towers, thereby limiting observation time to O(1-5 sec). The NASA tests exhibited flamelet survival for the entire drop time, suggesting that flamelets (i.e., small cellular flames) might exist, if permitted, for longer time periods. By necessity, experiments were limited to thermally thin cellulose fuels (approximately 0.001 in thick): instabilities could form by virtue of faster spread rates over thin fuels. Unstable behavior was unlikely in the short drop time for thicker fuels. In the International Space Station (ISS), microgravity time is unlimited, so both thin and thick fuels can be tested.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Sixth International Microgravity Combustion Workshop; 345-348; NASA/CP-2001-210826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Flame spread tests have been conducted over polymethylmethacrylate (PMMA) samples in San Diego State University's Narrow Channel Apparatus (SDSU NCA). The Narrow Channel Apparatus (NCA) has the ability to suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression achieved with a NCA allows for tests to be conducted in a simulated microgravity atmosphere-a characteristic that Test 1 lacks since flames present in Test 1 are buoyantly driven. The SDSU NCA allows for flame spread tests to be conducted with varying opposed flow oxidizer velocities, oxygen percent by volume, and total pressure. Also, since the test sample is placed symmetrically between two confining plates so that there is a gap above and below the sample, this gap can be adjusted. This gap height adjustment allows for a compromise between heat loss from the flame to the confining boundaries and buoyancy suppression achieved by those boundaries. This article explores the effect gap height has on the flame spread rate for 75 m thick PMMA at 1 atm pressure and 21% oxygen concentration by volume in the SDSU NCA. Flame spread results from the SDSU NCA for thin cellulose fuels have previously been compared to results from tests in actual microgravity at various test conditions with the same sample materials and were found to be in good agreement. This article also presents results from the SDSU NCA for PMMA at 1 atm pressure, opposed oxidizer velocity ranging from 3 to 35 cm/s, oxygen concentration by volume at 21%, 30 %, and 50% and fuel thicknesses of 50 and 75 m. These results are compared to results obtained in actual microgravity for PMMA obtained at the 4.5s drop tower of MGLAB in Gifu, Japan, and the 5.2s drop tower at NASA's Zero-Gravity Research Facility in Cleveland, OH. This comparison confirms that at 1 atm pressure, the SDSU NCA successfully simulates microgravity for not only thin cellulose fuels, but also for thin PMMA sheets as well. This further supports the idea that the NCA is a viable option to complement or replace NASA's Test 1 for material flammability testing. Tests with thick fuels will be conducted in the future to further characterize the SDSU NCA.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Paper 070FR-0418 , GRC-E-DAA-TN8438 , U. S. National Combustion Meeting; May 19, 2013 - May 22, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...