ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (239)
  • Annual Reviews
  • 2020-2022  (174)
  • 2000-2004
  • 1950-1954  (65)
  • 2020  (174)
  • 1950  (65)
  • Chemistry and Pharmacology  (172)
  • Geosciences  (67)
Collection
  • Articles  (239)
Years
  • 2020-2022  (174)
  • 2000-2004
  • 1950-1954  (65)
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 1-20 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 21-42 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 43-66 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 67-88 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 89-110 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 111-124 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 149-186 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 125-148 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 187-214 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 235-260 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 261-276 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 277-318 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 215-234 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 319-338 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 339-370 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 371-388 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 409-430 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 389-408 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 431-452 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 453-486 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 487-516 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 19 (1950), S. 517-542 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-05-30
    Description: Melanin and other pigments are now well known to be important in exceptional preservation of soft tissues in vertebrates and other animals. Because pigments confer coloration and even structural colors, they have opened a new field of paleocolor reconstruction. Since its inception about a decade ago, reconstruction of color patterns has been performed on several vertebrates, including feathered and scale-clad dinosaurs. Iridescence and other types of structural color can also be identified through melanosome shape and arrangement. How pigments and melanosomes fossilize and are altered has become an important research subject. Ancient color patterns that may range from crypsis to brilliant displays have revealed insights into the evolution and escalation of visual systems, the nature of ancient animal interactions, and how several unique characteristics of birds already arose among dinosaurs. ▪  Melanin and other pigments preserve in exceptional fossils; this opens paths for reconstructing coloration of extinct organisms, such as dinosaurs. ▪  The most abundant pigment is melanin, which can be identified chemically and through preserved melanosome microbodies. ▪  Melanosome shape reveals clues to original hue ranging from reddish brown and black to gray and structural coloration. ▪  Other pigments may preserve, such as porphyrin pigments in theropod dinosaur eggshells. ▪  Fossil color patterns contribute new insights into the evolution of visual systems, predator-prey interactions, and key innovations.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-05-30
    Description: The atmosphere is the synthesizer, transformer, and communicator of exchanges at its boundaries with the land and oceans. These exchanges depend on and, in turn, alter the states of the atmosphere, land, and oceans themselves. To a large extent, the interactions between the carbon cycle and climate have mapped, and will map, the trajectory of the Earth system. My quest to understand climate dynamics and the global carbon cycle has been propelled by new puzzles that emerge from each of the investigations and has led me to study subdisciplines of Earth science beyond my formal training. This article sketches my trek and the lessons I have learned. ▪  About half the CO2 emitted from combustion of fossil fuels and from cement production has remained airborne. Where are the contemporary carbon sinks? To what degree will these sinks evolve with, and in turn accelerate, climate change itself? ▪  The pursuit of these questions has been propelled by the integration of in situ and satellite observations of the atmosphere, land, and oceans, as well as by advances in theory and coupled climate–carbon cycle modeling. ▪  The urgency of climate change demands new approaches to cross-check national emission statistics.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-05-30
    Description: Carbonate sediments and rocks are valuable archives of Earth's past whose geochemical compositions inform our understanding of Earth's surface evolution. Yet carbonates are also reactive minerals and often undergo compositional alteration between the time of deposition and sampling and analysis. These changes may be mineralogical, structural, and/or chemical, and they are broadly referred to as diagenesis. Building on work over the past 40 years, we present an overview of key carbonate diagenesis terminology and a process-based framework for evaluating the geochemical impacts of carbonate diagenesis; we also highlight recent experimental and field observations that suggest metal isotopes as valuable diagenetic indicators. Our primary objectives are to demonstrate the value of coupling quantitative and analytical approaches, specifically with regard to metal isotopes and Mg/Ca, and to focus attention on key avenues for future work, including the role of authigenesis in impacting global geochemical cycles and the isotopic composition of the rock record. ▪  Quantitative frameworks utilizing well-understood diagenetic indicators and basic geochemical parameters allow us to assess the extent of diagenetic alteration in carbonate sediments. ▪  The reactivity, duration of reaction, and degree of isotopic or elemental/chemical disequilibrium determine the extent to which carbonates may be altered. ▪  Metal isotopic ratios (δ44Ca, δ26Mg, 87Sr/86Sr) can be used to constrain the extent and rate of carbonate recrystallization. ▪  Diagenetic signals may be globally synchronous, while diagenetic fluxes may impact global geochemical cycles.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-05-30
    Description: The strong ground motions, large crustal deformation, and tsunami generated by the 2011 Tohoku-oki earthquake ( Mw 9.1) reveal that a large coseismic slip likely propagated to shallow depth in the Japan Trench. Although data acquired by onshore networks cannot resolve the slip behavior of the updip fault rupture, marine geophysical and geological studies provide direct evidence of coseismic slip to the trench. Differential bathymetry data show ∼50 m of coseismic seafloor displacement extending to the central Japan Trench (38–39.2°N). Seismic data show that coseismic slip ruptured the seafloor within the trench. Pelagic clays may have promoted slip propagation to shallow depths, whereas disturbed/metamorphosed clays may have restricted slip to the main rupture zone. Those observations imply that a smooth, broadly distributed, weak, clay-rich sediment in a shallow part of a subduction zone is a characteristic factor that can foster a large coseismic slip to the trench and, consequently, the generation of a large tsunami. ▪  During the 2011 Tohoku-oki earthquake ( Mw 9.1), more than ∼50 m of slip occurred on a fault that ruptured the seafloor in the central Japan Trench. ▪  The fault rupture reaching the seafloor caused a large tsunami. ▪  Marine geophysical explorations revealed that a clay-rich sediment in the subduction zone was one factor fostering the large fault slip. ▪  Understanding of slip behavior in the shallow portion of a subduction zone will help us prepare for future large tsunamis along the Japan-Kuril Trench.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-05-30
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-05-30
    Description: The Human System is within the Earth System. They should be modeled bidirectionally coupled, as they are in reality. The Human System is rapidly expanding, mostly due to consumption of fossil fuels (approximately one million times faster than Nature accumulated them) and fossil water. This threatens not only other planetary subsystems but also the Human System itself. Carrying Capacity is an important tool to measure sustainability, but there is a widespread view that Carrying Capacity is not applicable to humans. Carrying Capacity has generally been prescribed a priori, mostly using the logistic equation. However, the real dynamics of human population and consumption are not represented by this equation or its variants. We argue that Carrying Capacity should not be prescribed but should insteadbe dynamically derived a posteriori from the bidirectional coupling of Earth System submodels with the Human System model. We demonstrate this approach with a minimal model of Human–Nature interaction (HANDY). ▪  The Human System is a subsystem of the Earth System, with inputs (resources) from Earth System sources and outputs (waste, emissions) to Earth System sinks. ▪  The Human System is growing rapidly due to nonrenewable stocks of fossil fuels and water and threatens the sustainability of the Human System and to overwhelm the Earth System. ▪  Carrying Capacity has been prescribed a priori and using the logistic equation, which does not represent the dynamics of the Human System. ▪  Our new approach to human Carrying Capacity is derived from dynamically coupled Earth System–Human System models and can be used to estimate the sustainability of the Human System.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-05-30
    Description: The connection between the geological record and dynamic topography driven by mantle convective flow has been established over widely varying temporal and spatial scales. As observations of the process have increased and numerical modeling of thermochemical convection has improved, a burgeoning direction of research targeting outstanding issues in ice age paleoclimate has emerged. This review focuses on studies of the Plio-Pleistocene ice age, including investigations of the stability of ice sheets during ice age warm periods and the inception of Northern Hemisphere glaciation. However, studies that have revealed nuanced connections of dynamic topography to biodiversity, ecology, ocean chemistry, and circulation since the start of the current ice-house world are also considered. In some cases, a recognition of the importance of dynamic topography resolves enigmatic events and in others it confounds already complex, unanswered questions. All such studies highlight the role of solid Earth geophysics in paleoclimate research and undermine a common assumption, beyond the field of glacial isostatic adjustment, that the solid Earth remains a rigid, passive substrate during the evolution of the ice age climate system. ▪  Dynamic topography is the large-scale, vertical deflection of Earth's crust driven by mantle convective flow. ▪  This review highlights recent research exploring the implications of the process on key issues in ice age paleoclimate. ▪  This research includes studies of ice sheet stability and inception as well as inferences of peak sea levels during periods of relative ice age warmth. ▪  This review also includes studies on longer timescales, continental-scale ecology and biodiversity, the long-term carbon cycle, and water flux across oceanic gateways.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-06-12
    Description: Development and application of nanotechnology-enabled medical products, including drugs, devices, and in vitro diagnostics, are rapidly expanding in the global marketplace. In this review, the focus is on providing the reader with an introduction to the landscape of commercially available nanotechnology-enabled medical products as well as an overview of the international documentary standards and reference materials that support and facilitate efficient regulatory evaluation and reliable manufacturing of this diverse group of medical products. We describe the materials, test methods, and standards development needs for emerging medical products. Scientific and measurement challenges involved in the development and application of innovative nanoenabled medical products motivate discussion throughout this review.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-06-12
    Description: Acoustic microfluidic devices are powerful tools that use sound waves to manipulate micro- or nanoscale objects or fluids in analytical chemistry and biomedicine. Their simple device designs, biocompatible and contactless operation, and label-free nature are all characteristics that make acoustic microfluidic devices ideal platforms for fundamental research, diagnostics, and therapeutics. Herein, we summarize the physical principles underlying acoustic microfluidics and review their applications, with particular emphasis on the manipulation of macromolecules, cells, particles, model organisms, and fluidic flows. We also present future goals of this technology in analytical chemistry and biomedical research, as well as challenges and opportunities.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-06-12
    Description: High-resolution SIMS analysis can be used to explore a wide range of problems in material science and engineering materials, especially when chemical imaging with good spatial resolution (50–100 nm) can be combined with efficient detection of light elements and precise separation of isotopes and isobaric species. Here, applications of the NanoSIMS instrument in the analysis of inorganic materials are reviewed, focusing on areas of current interest in the development of new materials and degradation mechanisms under service conditions. We have chosen examples illustrating NanoSIMS analysis of grain boundary segregation, chemical processes in cracking, and corrosion of nuclear components. An area where NanoSIMS analysis shows potential is in the localization of light elements, in particular, hydrogen and deuterium. Hydrogen embrittlement is a serious problem for industries where safety is critical, including aerospace, nuclear, and oil/gas, so it is imperative to know where in the microstructure hydrogen is located. By charging the metal with deuterium, to avoid uncertainty in the origin of the hydrogen, the microstructural features that can trap hydrogenic species, such as precipitates and grain and phase boundaries, can be determined by NanoSIMS analysis on a microstructurally relevant scale.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-06-12
    Description: Transporters are key to understanding how an individual will respond to a particular dose of a drug. Two patients with similar systemic concentrations may have quite different local concentrations of a drug at the required site. The transporter profile of any individual depends upon a variety of genetic and environmental factors, including genotype, age, and diet status. Robust models (virtual patients) are therefore required and these models are data hungry. Necessary data include quantitative transporter profiles at the relevant organ. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is currently the most powerful method available for obtaining this information. Challenges include sourcing the tissue, isolating the hydrophobic membrane-embedded transporter proteins, preparing the samples for MS (including proteolytic digestion), choosing appropriate quantification methodology, and optimizing the LC-MS/MS conditions. Great progress has been made with all of these, especially within the last few years, and is discussed here.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-06-12
    Description: The electrochemical behavior of platinum single crystal surfaces can be taken as a model response for the interpretation of the activity of heterogeneous electrodes. The cyclic voltammogram of a given platinum electrode can be considered a fingerprint characteristic of the distribution of sites on its surface. We start this review by providing some simple mathematical descriptions of the voltammetric response in the presence of adsorption processes. We then describe the voltammogram of platinum basal planes, followed by the response of stepped surfaces. The voltammogram of polycrystalline materials can be understood as a composition of the response of the different basal contributions. Further resolution in the discrimination of different surface sites can be achieved with the aid of surface modification using adatoms such as bismuth or germanium. The application of these ideas is exemplified with the consideration of real catalysts composed of platinum nanoparticles with preferential shapes.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-06-12
    Description: Technological advances in mass spectrometry have enabled the extensive identification, characterization, and quantification of proteins in any biological system. In disease processes proteins are often altered in response to external stimuli; therefore, proteomics, the large-scale study of proteins and their functions, represents an invaluable tool for understanding the molecular basis of disease. This review highlights the use of mass spectrometry–based proteomics to study the pathogenesis, etiology, and pathology of several neglected tropical diseases (NTDs), a diverse group of disabling diseases primarily associated with poverty in tropical and subtropical regions of the world. While numerous NTDs have been the subject of proteomic studies, this review focuses on Buruli ulcer, dengue, leishmaniasis, and snakebite envenoming. The proteomic studies highlighted provide substantial information on the pathogenic mechanisms driving these diseases; they also identify molecular targets for drug discovery and development and uncover promising biomarkers that can assist in early diagnosis.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-09-25
    Description: Ocean temperature variability is a fundamental component of the Earth's climate system, and extremes in this variability affect the health of marine ecosystems around the world. The study of marine heatwaves has emerged as a rapidly growing field of research, given notable extreme warm-water events that have occurred against a background trend of global ocean warming. This review summarizes the latest physical and statistical understanding of marine heatwaves based on how they are identified, defined, characterized, and monitored through remotely sensed and in situ data sets. We describe the physical mechanisms that cause marine heatwaves, along with their global distribution, variability, and trends. Finally, we discuss current issues in this developing research area, including considerations related to the choice of climatological baseline periods in defining extremes and how to communicate findings in the context of societal needs. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-06-12
    Description: The detailed molecular characterization of petroleum-related samples by mass spectrometry, often referred to as petroleomics, continues to present significant analytical challenges. As a result, petroleomics continues to be a driving force for the development of new ultrahigh resolution instrumentation, experimental methods, and data analysis procedures. Recent advances in ionization, resolving power, mass accuracy, and the use of separation methods, have allowed for record levels of compositional detail to be obtained for petroleum-related samples. To address the growing size and complexity of the data generated, vital software tools for data processing, analysis, and visualization continue to be developed. The insights gained impact upon the fields of energy and environmental science and the petrochemical industry, among others. In addition to advancing the understanding of one of nature's most complex mixtures, advances in petroleomics methodologies are being adapted for the study of other sample types, resulting in direct benefits to other fields.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-06-12
    Description: Traditional microfabrication techniques suffer from several disadvantages, including the inability to create truly three-dimensional (3D) architectures, expensive and time-consuming processes when changing device designs, and difficulty in transitioning from prototyping fabrication to bulk manufacturing. 3D printing is an emerging technique that could overcome these disadvantages. While most 3D printed fluidic devices and features to date have been on the millifluidic size scale, some truly microfluidic devices have been shown. Currently, stereolithography is the most promising approach for routine creation of microfluidic structures, but several approaches under development also have potential. Microfluidic 3D printing is still in an early stage, similar to where polydimethylsiloxane was two decades ago. With additional work to advance printer hardware and software control, expand and improve resin and printing material selections, and realize additional applications for 3D printed devices, we foresee 3D printing becoming the dominant microfluidic fabrication method.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-06-12
    Description: Protein separations have gained increasing interest over the past two decades owing to the dramatic growth of proteins as therapeutics and the completion of the Human Genome Project. About every decade, the field of protein high-performance liquid chromatography (HPLC) seems to mature, having reached what appears to be a theoretical limit. But then scientists well versed in the basic principles of HPLC invented a way around the limit, generating another decade of exciting progress. There is still the need for higher resolution and better compatibility with mass spectrometry because it is an essential tool for identification of proteins and their modifications. To make advances, the fundamental principles need to be understood. This review covers recent advances and current needs in the context of the principles that underlie the many contributions to peak broadening.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-06-12
    Description: Avoiding the growth of SiOx has been an enduring task for the use of silicon as an electrode material in dynamic electrochemistry. This is because electrochemical assays become unstable when the SiOx levels change during measurements. Moreover, the silicon electrode can be completely passivated for electron transfer if a thick layer of insulating SiOx grows on the surface. As such, the field of silicon electrochemistry was mainly developed by electron-transfer studies in nonaqueous electrolytes and by applications employing SiOx-passivated silicon-electrodes where no DC currents are required to cross the electrode/electrolyte interface. A solution to this challenge began by functionalizing Si–H electrodes with monolayers based on Si–O–Si linkages. These monolayers have proven very efficient to avoid SiOx formation but are not stable for a long-term operation in aqueous electrolytes due to hydrolysis. It was only with the development of self-assembled monolayers based on Si–C linkages that a reliable protection against SiOx formation was achieved, particularly with monolayers based on α,ω-dialkynes. This review discusses in detail how this surface chemistry achieves such protection, the electron-transfer behavior of these monolayer-modified silicon surfaces, and the new opportunities for electrochemical applications in aqueous solution.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-06-12
    Description: The National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards, was established by the US Congress in 1901 and charged with establishing a measurement foundation to facilitate US and international commerce. This broad language provides NIST with the ability to establish and implement its programs in response to changes in national needs and priorities. This review traces some of the changes in NIST's reference material programs over time and presents the NIST Material Measurement Laboratory's current approach to promoting accuracy and metrological traceability of chemical measurements and validation of chemical measurement processes.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-06-12
    Description: As the core component of cell metabolism, central carbon metabolism, consisting of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle converts nutrients into metabolic precursors for biomass and energy to sustain the life of virtually all extant species. The metabolite levels or distributions in central carbon metabolism often change dynamically with cell fates, development, and disease progression. However, traditional biochemical methods require cell lysis, making it challenging to obtain spatiotemporal information about metabolites in living cells and in vivo. Genetically encoded fluorescent sensors allow the rapid, sensitive, specific, and real-time readout of metabolite dynamics in living organisms, thereby offering the potential to fill the gap in current techniques. In this review, we introduce recent progress made in the development of genetically encoded fluorescent sensors for central carbon metabolism and discuss their advantages, disadvantages, and applications. Moreover, several future directions of metabolite sensors are also proposed.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-06-12
    Description: Neuronal transmission relies on electrical signals and the transfer of chemical signals from one neuron to another. Chemical messages are transmitted from presynaptic neurons to neighboring neurons through the triggered fusion of neurotransmitter-filled vesicles with the cell plasma membrane. This process, known as exocytosis, involves the rapid release of neurotransmitter solutions that are detected with high affinity by the postsynaptic neuron. The type and number of neurotransmitters released and the frequency of vesicular events govern brain functions such as cognition, decision making, learning, and memory. Therefore, to understand neurotransmitters and neuronal function, analytical tools capable of quantitative and chemically selective detection of neurotransmitters with high spatiotemporal resolution are needed. Electrochemistry offers powerful techniques that are sufficiently rapid to allow for the detection of exocytosis activity and provides quantitative measurements of vesicle neurotransmitter content and neurotransmitter release from individual vesicle events. In this review, we provide an overview of the most commonly used electrochemical methods for monitoring single-vesicle events, including recent developments and what is needed for future research.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-06-12
    Description: The current teaching and practice of analytical chemistry reflect the evolution of measurement science over time. Qualitative and quantitative measurements can be traced back to prebiblical times, have been important throughout human history, and today are key to the functioning of a modern society. This review is designed to provide a brief overview of the evolution of analytical science and a summary of the evolution, development, and growth of analytical chemistry in the United States, with emphasis on developments up to the mid-twentieth century. Some degree of emphasis is placed on early centers of analytical chemistry and contributions of pioneers of analytical chemistry within the United States. The evolution of journals, early textbooks, and reference books on analytical chemistry as well as developments in analytical chemistry curricula in the United States are traced.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-06-12
    Description: Single particle tracking (SPT) has proven to be a powerful technique in studying molecular dynamics in complicated systems. We review its recent development, including three-dimensional (3D) SPT and its applications in probing nanostructures and molecule-surface interactions that are important to analytical chemical processes. Several frequently used 3D SPT techniques are introduced. Especially of interest are those based on point spread function engineering, which are simple in instrumentation and can be easily adapted and used in analytical labs. Corresponding data analysis methods are briefly discussed. We present several important case studies, with a focus on probing mass transport and molecule-surface interactions in confined environments. The presented studies demonstrate the great potential of 3D SPT for understanding fundamental phenomena in confined space, which will enable us to predict basic principles involved in chemical recognition, separation, and analysis, and to optimize mass transport and responses by structural design and optimization.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-06-12
    Description: Organs-on-chips (OOC) are widely seen as being the next generation in vitro models able to accurately recreate the biochemical-physical cues of the cellular microenvironment found in vivo. In addition, they make it possible to examine tissue-scale functional properties of multicellular systems dynamically and in a highly controlled manner. Here we summarize some of the most remarkable examples of OOC technology's ability to extract clinically relevant tissue-level information. The review is organized around the types of OOC outputs that can be measured from the cultured tissues and transferred to clinically meaningful information. First, the creation of functional tissues-on-chip is discussed, followed by the presentation of tissue-level readouts specific to OOC, such as morphological changes, vessel formation and function, tissue properties, and metabolic functions. In each case, the clinical relevance of the extracted information is highlighted.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-06-12
    Description: Measurement of humoral factors secreted from cells has served as an indispensable method to monitor the states of a cell ensemble because humoral factors play crucial roles in cell–cell interaction and aptly reflect the states of individual cells. Although a cell ensemble consisting of a large number of cells has conventionally been the object of such measurements, recent advances in microfluidic technology together with highly sensitive immunoassays have enabled us to quantify secreted humoral factors even from individual cells in either a population or a temporal context. Many groups have reported various miniaturized platforms for immunoassays of proteins secreted from single cells. This review focuses on the current status of time-resolved assay platforms for protein secretion with single-cell resolution. We also discuss future perspectives of time-resolved immunoassays from the viewpoint of systems biology.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-06-12
    Description: Live-cell single-molecule fluorescence imaging has become a powerful analytical tool to investigate cellular processes that are not accessible to conventional biochemical approaches. This has greatly enriched our understanding of the behaviors of single biomolecules in their native environments and their roles in cellular events. Here, we review recent advances in fluorescence-based single-molecule bioimaging of proteins in living cells. We begin with practical considerations of the design of single-molecule fluorescence imaging experiments such as the choice of imaging modalities, fluorescent probes, and labeling methods. We then describe analytical observables from single-molecule data and the associated molecular parameters along with examples of live-cell single-molecule studies. Lastly, we discuss computational algorithms developed for single-molecule data analysis.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-06-12
    Description: Most of my research directions were opportunistic. Having worked with lasers in the early stages of laser applications in analytical chemistry, attending conferences, workshops, and administrative meetings that were not exactly aligned with our own research, locating to a building or in a department that housed scientists with different backgrounds, having certain specialized equipment at the right time, and having funding agencies that were broad-minded clearly contributed to my ventures into diverse fields. Most of all, it had to be the many eager minds that I have had the fortune to work with. I have always tried to suggest research topics that might be interesting to the individual coworker rather than something straight out of my own research proposals. Only then did each person actually own the project rather than consider it a chore. After all, we work in the field of analytical chemistry, in which almost anything we do can fit in.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-06-20
    Description: The investigation of water oxidation in photosynthesis has remained a central topic in biochemical research for the last few decades due to the importance of this catalytic process for technological applications. Significant progress has been made following the 2011 report of a high-resolution X-ray crystallographic structure resolving the site of catalysis, a protein-bound Mn4CaOx complex, which passes through ≥5 intermediate states in the water-splitting cycle. Spectroscopic techniques complemented by quantum chemical calculations aided in understanding the electronic structure of the cofactor in all (detectable) states of the enzymatic process. Together with isotope labeling, these techniques also revealed the binding of the two substrate water molecules to the cluster. These results are described in the context of recent progress using X-ray crystallography with free-electron lasers on these intermediates. The data are instrumental for developing a model for the biological water oxidation cycle.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-06-20
    Description: DNA methylation at the 5-position of cytosine (5mC) plays vital roles in mammalian development. DNA methylation is catalyzed by DNA methyltransferases (DNMTs), and the two DNMT families, DNMT3 and DNMT1, are responsible for methylation establishment and maintenance, respectively. Since their discovery, biochemical and structural studies have revealed the key mechanisms underlying how DNMTs catalyze de novo and maintenance DNA methylation. In particular, recent development of low-input genomic and epigenomic technologies has deepened our understanding of DNA methylation regulation in germ lines and early stage embryos. In this review, we first describe the methylation machinery including the DNMTs and their essential cofactors. We then discuss how DNMTs are recruited to or excluded from certain genomic elements. Lastly, we summarize recent understanding of the regulation of DNA methylation dynamics in mammalian germ lines and early embryos with a focus on both mice and humans.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-06-20
    Description: Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1950-06-01
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-06-20
    Description: ATP-binding cassette (ABC) transporters constitute one of the largest and most ancient protein superfamilies found in all living organisms. They function as molecular machines by coupling ATP binding, hydrolysis, and phosphate release to translocation of diverse substrates across membranes. The substrates range from vitamins, steroids, lipids, and ions to peptides, proteins, polysaccharides, and xenobiotics. ABC transporters undergo substantial conformational changes during substrate translocation. A comprehensive understanding of their inner workings thus requires linking these structural rearrangements to the different functional state transitions. Recent advances in single-particle cryogenic electron microscopy have not only delivered crucial information on the architecture of several medically relevant ABC transporters and their supramolecular assemblies, including the ATP-sensitive potassium channel and the peptide-loading complex, but also made it possible to explore the entire conformational space of these nanomachines under turnover conditions and thereby gain detailed mechanistic insights into their mode of action.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-06-20
    Description: The zona pellucida (ZP) is an extracellular matrix that surrounds all mammalian oocytes, eggs, and early embryos and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is composed of three or four glycosylated proteins, ZP1–4, that are synthesized, processed, secreted, and assembled into long, cross-linked fibrils by growing oocytes. ZP proteins have an immunoglobulin-like three-dimensional structure and a ZP domain that consists of two subdomains, ZP-N and ZP-C, with ZP-N of ZP2 and ZP3 required for fibril assembly. A ZP2–ZP3 dimer is located periodically along ZP fibrils that are cross-linked by ZP1, a protein with a proline-rich N terminus. Fibrils in the inner and outer regions of the ZP are oriented perpendicular and parallel to the oolemma, respectively, giving the ZP a multilayered appearance. Upon fertilization of eggs, modification of ZP2 and ZP3 results in changes in the ZP's physical and biological properties that have important consequences. Certain structural features of ZP proteins suggest that they may be amyloid-like proteins.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-06-20
    Description: It is impossible to do justice in one review article to a researcher of the stature of Christopher Dobson. His career spanned almost five decades, resulting in more than 870 publications and a legacy that will continue to influence the lives of many for decades to come. In this review, I have attempted to capture Chris's major contributions: his early work, dedicated to understanding protein-folding mechanisms; his collaborative work with physicists to understand the process of protein aggregation; and finally, his later career in which he developed strategies to prevent misfolding. However, it is not only this body of work but also the man himself who inspired an entire generation of scientists through his patience, ability to mentor, and innate generosity. These qualities remain a hallmark of the way in which he conducted his research—research that will leave a lasting imprint on science.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-06-20
    Description: Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs’ central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and Escherichia coli class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-06-20
    Description: Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-06-20
    Description: DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-06-20
    Description: Transcription in several organisms from certain bacteria to humans has been observed to be stochastic in nature: toggling between active and inactive states. Periods of active nascent RNA synthesis known as bursts represent individual gene activation events in which multiple polymerases are initiated. Therefore, bursting is the single locus illustration of both gene activation and repression. Although transcriptional bursting was originally observed decades ago, only recently have technological advances enabled the field to begin elucidating gene regulation at the single-locus level. In this review, we focus on how biochemical, genomic, and single-cell data describe the regulatory steps of transcriptional bursts.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-06-20
    Description: This review focuses on imaging DNA and single RNA molecules in living cells to define eukaryotic functional organization and dynamic processes. The latest advances in technologies to visualize individual DNA loci and RNAs in real time are discussed. Single-molecule fluorescence microscopy provides the spatial and temporal resolution to reveal mechanisms regulating fundamental cell functions. Novel insights into the regulation of nuclear architecture, transcription, posttranscriptional RNA processing, and RNA localization provided by multicolor fluorescence microscopy are reviewed. A perspective on the future use of live imaging technologies and overcoming their current limitations is provided.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-06-20
    Description: Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type–specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type–specific transcriptional programming with exquisite fidelity is essential for normal development.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-06-20
    Description: The spliceosome removes introns from messenger RNA precursors (pre-mRNA). Decades of biochemistry and genetics combined with recent structural studies of the spliceosome have produced a detailed view of the mechanism of splicing. In this review, we aim to make this mechanism understandable and provide several videos of the spliceosome in action to illustrate the intricate choreography of splicing. The U1 and U2 small nuclear ribonucleoproteins (snRNPs) mark an intron and recruit the U4/U6.U5 tri-snRNP. Transfer of the 5′ splice site (5′SS) from U1 to U6 snRNA triggers unwinding of U6 snRNA from U4 snRNA. U6 folds with U2 snRNA into an RNA-based active site that positions the 5′SS at two catalytic metal ions. The branch point (BP) adenosine attacks the 5′SS, producing a free 5′ exon. Removal of the BP adenosine from the active site allows the 3′SS to bind, so that the 5′ exon attacks the 3′SS to produce mature mRNA and an excised lariat intron.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-06-20
    Description: Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone–mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein–mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-06-20
    Description: Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-06-20
    Description: Protein folding in the cell is mediated by an extensive network of 〉1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology–informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-06-20
    Description: My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-06-12
    Description: Microfluidic paper-based analytical devices (μPADs) are the newest generation of lab-on-a-chip devices and have made significant strides in both our understanding of fundamental behavior and performance characteristics and expansion of their applications. μPADs have become useful analytical techniques for environmental analysis in addition to their more common application as medical point-of-care devices. Although the most common method for device fabrication is wax printing, numerous other techniques exist and have helped address factors ranging from solvent compatibility to improved device function. This review highlights recent reports of fabrication and design, modes of detection, and broad applications of μPADs. Such advances have enabled μPADs to be used in field and laboratory studies to address critical needs in fast, cheaper measurement technologies.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-06-12
    Description: In seeking to develop and optimize reagentless electroanalytical assays, a consideration of the transducing interface features lies key to any subsequent sensitivity and selectivity. This review briefly summarizes some of the most commonly used receptive interfaces that have been employed within the development of impedimetric molecular sensors. We discuss the use of high surface area carbon, nanoparticles, and a range of bioreceptors that can subsequently be integrated. The review spans the most commonly utilized biorecognition elements, such as antibodies, antibody fragments, aptamers, and nucleic acids, and touches on some novel emerging alternatives such as nanofragments, molecularly imprinted polymers, and bacteriophages. Reference is made to the immobilization chemistries available along with a consideration of both optimal packing density and recognition probe orientation. We also discuss assay-relevant mechanistic details and applications in real sample analysis.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-06-12
    Description: Lipids are an important class of biomolecules with many roles within cells and tissue. As targets for study, they present several challenges. They are difficult to label, as many labels lack the specificity to the many different lipid species or the labels maybe larger than the lipids themselves, thus severely perturbing the natural chemical environment. Mass spectrometry provides exceptional specificity and is often used to examine lipid extracts from different samples. However, spatial information is lost during extraction. Of the different imaging mass spectrometry methods available, secondary ion mass spectrometry (SIMS) is unique in its ability to analyze very small features, with probe sizes
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-06-20
    Description: In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αβ T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αβ CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αβ CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αβ T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-06-20
    Description: Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-06-20
    Description: Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-06-20
    Description: The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-06-20
    Description: Facultative heterochromatin (fHC) concerns the developmentally regulated heterochromatinization of different regions of the genome and, in the case of the mammalian X chromosome and imprinted loci, of only one allele of a homologous pair. The formation of fHC participates in the timely repression of genes, by resisting strong trans activators. In this review, we discuss the molecular mechanisms underlying the establishment and maintenance of fHC in mammals using a mouse model. We focus on X-chromosome inactivation (XCI) as a paradigm for fHC but also relate it to genomic imprinting and homeobox ( Hox) gene cluster repression. A vital role for noncoding transcription and/or transcripts emerges as the general principle of triggering XCI and canonical imprinting. However, other types of fHC are established through an unknown mechanism, independent of noncoding transcription ( Hox clusters and noncanonical imprinting). We also extensively discuss polycomb-group repressive complexes (PRCs), which frequently play a vital role in fHC maintenance.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-06-20
    Description: Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-05-30
    Description: Hydrocarbon seeps, deep sea extreme environments where deeply sourced fluids discharge at the seabed, occur along continental margins across the globe. Energy-rich reduced substrates, namely hydrocarbons, support accelerated biogeochemical dynamics, creating unique geobiological habitats. Subseafloor geology dictates the surficial expression of seeps, generating hydrocarbon (gas and/or oil) seeps, brine seeps, and mud volcanoes. Biogeochemical processes across the redox spectrum are amplified at hydrocarbon seeps due to the abundance and diversity of reductant; anaerobic metabolism dominates within the sediment column since oxygen is consumed rapidly near the sediment surface. Microbial activity is constrained by electron acceptor availability, with rapid recycling required to support observed rates of hydrocarbon consumption. Geobiologic structures, from gas hydrate to solid asphalt to authigenic minerals, form as a result of hydrocarbon and associated fluid discharge. Animal-microbial associations and symbioses thrive at hydrocarbon seeps, generating diverse and dense deep sea oases that provide nutrition to mobile predators. ▪  Hydrocarbon seeps are abundant deep sea oases that support immense biodiversity and where specialization and adaptation create extraordinary lifestyles. ▪  Subseafloor geology shapes and defines the geochemical nature of fluid seepage and regulates the flux regime, which dictate the surface expression. ▪  High rates of anaerobic oxidation of methane require coupling to multiple processes and promote diversity in the anaerobic methanotroph microbial community. ▪  The recent discovery of novel phyla possessing hydrocarbon oxidation potential signals that aspects of seep biogeochemistry and geobiology remain to be discovered.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-08-31
    Description: Urban and periurban ocean developments impact 1.5% of the global exclusive economic zones, and the demand for ocean space and resources is increasing. As we strive for a more sustainable future, it is imperative that we better design, manage, and conserve urban ocean spaces for both humans and nature. We identify three key objectives for more sustainable urban oceans: reduction of urban pressures, protection and restoration of ocean ecosystems, and support of critical ecosystem services. We describe an array of emerging evidence-based approaches, including greening gray infrastructure, restoring habitats, and developing biotechnologies. We then explore new economic instruments and incentives for supporting these new approaches and evaluate their feasibility in delivering these objectives. Several of these tools have the potential to help bring nature back to the urban ocean while also addressing some of the critical needs of urban societies, such as climate adaptation, seafood production, clean water, and recreation, providing both human and environmental benefits in some of our most impacted ocean spaces. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-01-03
    Description: We have known for more than 45 years that microplastics in the ocean are carriers of microbially dominated assemblages. However, only recently has the role of microbial interactions with microplastics in marine ecosystems been investigated in detail. Research in this field has focused on three main areas: ( a) the establishment of plastic-specific biofilms (the so-called plastisphere); ( b) enrichment of pathogenic bacteria, particularly members of the genus Vibrio, coupled to a vector function of microplastics; and ( c) the microbial degradation of microplastics in the marine environment. Nevertheless, the relationships between marine microorganisms and microplastics remain unclear. In this review, we deduce from the current literature, new comparative analyses, and considerations of microbial adaptation concerning plastic degradation that interactions between microorganisms and microplastic particles should have rather limited effects on the ocean ecosystems. The majority of microorganisms growing on microplastics seem to belong to opportunistic colonists that do not distinguish between natural and artificial surfaces. Thus, microplastics do not pose a higher risk than natural particles to higher life forms by potentially harboring pathogenic bacteria. On the other hand, microplastics in the ocean represent recalcitrant substances for microorganisms that are insufficient to support prokaryotic metabolism and will probably not be microbially degraded in any period of time relevant to human society. Because we cannot remove microplastics from the ocean, proactive action regarding research on plastic alternatives and strategies to prevent plastic entering the environment should be taken promptly.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-09-21
    Description: Reactive oxygen species (ROS) are produced ubiquitously across the tree of life. Far from being synonymous with toxicity and harm, biological ROS production is increasingly recognized for its essential functions in signaling, growth, biological interactions, and physiochemical defense systems in a diversity of organisms, spanning microbes to mammals. Part of this shift in thinking can be attributed to the wide phylogenetic distribution of specialized mechanisms for ROS production, such as NADPH oxidases, which decouple intracellular and extracellular ROS pools by directly catalyzing the reduction of oxygen in the surrounding aqueous environment. Furthermore, biological ROS production contributes substantially to natural fluxes of ROS in the ocean, thereby influencing the fate of carbon, metals, oxygen, and climate-relevant gases. Here, we review the taxonomic diversity, mechanisms, and roles of extracellular ROS production in marine bacteria, phytoplankton, seaweeds, and corals, highlighting the ecological and biogeochemical influences of this fundamental and remarkably widespread process. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-09-21
    Description: Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have effects on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including river–ocean mixing, upwelling, air–water gas exchange, biological production and subsequent respiration, anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 ( pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries—Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-09-21
    Description: The Deepwater Horizon oil spill was the largest, longest-lasting, and deepest oil accident to date in US waters. As oil and natural gas jetted from release points at 1,500-m depth in the northern Gulf of Mexico, entrainment of the surrounding ocean water into a buoyant plume, rich in soluble hydrocarbons and dispersed microdroplets of oil, created a deep (1,000-m) intrusion layer. Larger droplets of liquid oil rose to the surface, forming a slick of mostly insoluble, hydrocarbon-type compounds. A variety of physical, chemical, and biological mechanisms helped to transform, remove, and redisperse the oil and gas that was released. Biodegradation removed up to 60% of the oil in the intrusion layer but was less efficient in the surface slick, due to nutrient limitation. Photochemical processes altered up to 50% (by mass) of the floating oil. The surface oil expression changed daily due to wind and currents, whereas the intrusion layer flowed southwestward. A portion of the weathered surface oil stranded along shorelines. Oil from both surface and intrusion layers were deposited onto the seafloor via sinking marine oil snow. The biodegradation rates of stranded or sedimented oil were low, with resuspension and redistribution transiently increasing biodegradation. The subsequent research efforts increased our understanding of the fate of spilled oil immensely, with novel insights focusing on the importance of photooxidation, the microbial communities driving biodegradation, and the formation of marine oil snow that transports oil to the seafloor. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-09-18
    Description: The dissolution of CaCO3 minerals in the ocean is a fundamental part of the marine alkalinity and carbon cycles. While there have been decades of work aimed at deriving the relationship between dissolution rate and mineral saturation state (a so-called rate law), no real consensus has been reached. There are disagreements between laboratory- and field-based studies and differences in rates for inorganic and biogenic materials. Rates based on measurements on suspended particles do not always agree with rates inferred from measurements made near the sediment–water interface of the actual ocean. By contrast, the freshwater dissolution rate of calcite has been well described by bulk rate measurements from a number of different laboratories, fit by basic kinetic theory, and well studied by atomic force microscopy and vertical scanning interferometry to document the processes at the atomic scale. In this review, we try to better unify our understanding of carbonate dissolution in the ocean via a relatively new, highly sensitive method we have developed combined with a theoretical framework guided by the success of the freshwater studies. We show that empirical curve fits of seawater data as a function of saturation state do not agree, largely because the curvature is itself a function of the thermodynamics. Instead, we show that models that consider both surface energetic theory and the complicated speciation of seawater and calcite surfaces in seawater are able to explain most of the most recent data. This new framework can also explain features of the historical data that have not been previously explained. The existence of a kink in the relationship between rate and saturation state, reflecting a change in dissolution mechanism, may be playing an important role in accelerating CaCO3 dissolution in key sedimentary environments. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-01-03
    Description: Tides are changing worldwide at rates not explained by astronomical forcing. Rather, the observed evolution of tides and other long waves, such as storm surges, is influenced by shelf processes and changes to the roughness, depth, width, and length of embayments, estuaries, and tidal rivers. In this review, we focus on processes in estuaries and tidal rivers, because that is where the largest changes to tidal properties are occurring. Recent literature shows that changes in tidal amplitude have been ubiquitous worldwide over the past century, often in response to wetland reclamation, channel dredging, and other environmental changes. While tidal amplitude changes are sometimes slight (
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-09-14
    Description: Monitoring Earth's energy imbalance requires monitoring changes in the heat content of the ocean. Recent observational estimates indicate that ocean heat uptake is accelerating in the twenty-first century. Examination of estimates of ocean heat uptake over the industrial era, the Common Era of the last 2,000 years, and the period since the Last Glacial Maximum, 20,000 years ago, permits a wide perspective on modern-day warming rates. In addition, this longer-term focus illustrates how the dynamics of the deep ocean and the cryosphere were active in the past and are still active today. The large climatic shifts that started with the melting of the great ice sheets have involved significant ocean heat uptake that was sustained over centuries and millennia, and modern-ocean heat content changes are small by comparison. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-01-03
    Description: In this article, we analyze the impacts of climate change on Antarctic marine ecosystems. Observations demonstrate large-scale changes in the physical variables and circulation of the Southern Ocean driven by warming, stratospheric ozone depletion, and a positive Southern Annular Mode. Alterations in the physical environment are driving change through all levels of Antarctic marine food webs, which differ regionally. The distributions of key species, such as Antarctic krill, are also changing. Differential responses among predators reflect differences in species ecology. The impacts of climate change on Antarctic biodiversity will likely vary for different communities and depend on species range. Coastal communities and those of sub-Antarctic islands, especially range-restricted endemic communities, will likely suffer the greatest negative consequences of climate change. Simultaneously, ecosystem services in the Southern Ocean will likely increase. Such decoupling of ecosystem services and endemic species will require consideration in the management of human activities such as fishing in Antarctic marine ecosystems.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-01-03
    Description: In the last few decades, numerous studies have investigated the impacts of simulated ocean acidification on marine species and communities, particularly those inhabiting dynamic coastal systems. Despite these research efforts, there are many gaps in our understanding, particularly with respect to physiological mechanisms that lead to pathologies. In this review, we trace how carbonate system disturbances propagate from the coastal environment into marine invertebrates and highlight mechanistic links between these disturbances and organism function. We also point toward several processes related to basic invertebrate biology that are severely understudied and prevent an accurate understanding of how carbonate system dynamics influence organismic homeostasis and fitness-related traits. We recommend that significant research effort be directed to studying cellular phenotypes of invertebrates acclimated or adapted to elevated seawater pCO2 using biochemical and physiological methods.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-01-03
    Description: Photosynthesis evolved in the ocean more than 2 billion years ago and is now performed by a wide range of evolutionarily distinct organisms, including both prokaryotes and eukaryotes. Our appreciation of their abundance, distributions, and contributions to primary production in the ocean has been increasing since they were first discovered in the seventeenth century and has now been enhanced by data emerging from the Tara Oceans project, which performed a comprehensive worldwide sampling of plankton in the upper layers of the ocean between 2009 and 2013. Largely using recent data from Tara Oceans, here we review the geographic distributions of phytoplankton in the global ocean and their diversity, abundance, and standing stock biomass. We also discuss how omics-based information can be incorporated into studies of photosynthesis in the ocean and show the likely importance of mixotrophs and photosymbionts.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-01-03
    Description: This narrative is a personal account of my evolution as a student of phytoplankton and the ocean. Initially I focused on phytoplankton nutrient physiology and uptake, later switching to photosynthetic physiology. Better models of photosynthesis naturally require a better understanding of spectral underwater light fields and absorption coefficients, which precipitated my involvement in the nascent field of bio-optical oceanography. Establishment of the now 34-year-old summer graduate course in ocean optics, which continues to attract students from around the globe, is a legacy of my jumping into optics. The importance of social interactions in advancing science cannot be underestimated; a prime example is how a TGIF gathering led to my immersion in the world of autonomous underwater vehicles for the past two decades of my career. Working with people who you like and respect is also critical; I believe collegial friendship played a major role in the great success of the 2008 North Atlantic Bloom Experiment.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-08-28
    Description: Implementation of marine conservation strategies, such as increasing the numbers, extent, and effectiveness of protected areas (PAs), can help achieve conservation and restoration of ocean health and associated goods and services. Despite increasing recognition of the importance of including aspects of ecological functioning in PA design, the physical characteristics of habitats and simple measures of species diversity inform most PA designations. Marine and terrestrial ecologists have recently used biological traits to assess community dynamics, functioning, and vulnerability to anthropogenic impacts. Here, we explore potential trait-based marine applications to advance PA design. We recommend strategies to integrate biological traits into ( a) conservation objectives (e.g., by assessing and predicting impacts and vulnerability), ( b) PA spatial planning (e.g., mapping ecosystem functions and functional diversity hot spots), and ( c) time series monitoring protocols (e.g., using functional traits to detect recoveries). We conclude by emphasizing the need for pragmatic tools to improve the efficacy of spatial planning and monitoring efforts. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-01-03
    Description: With the decline of reef-building corals on tropical reefs, sponges have emerged as an important component of changing coral reef ecosystems. Seemingly simple, sponges are highly diverse taxonomically, morphologically, and in terms of their relationships with symbiotic microbes, and they are one of nature's richest sources of novel secondary metabolites. Unlike most other benthic organisms, sponges have the capacity to disrupt boundary flow as they pump large volumes of seawater into the water column. This seawater is chemically transformed as it passes through the sponge body as a consequence of sponge feeding, excretion, and the activities of microbial symbionts, with important effects on carbon and nutrient cycling and on the organisms in the water column and on the adjacent reef. In this review, we critically evaluate developments in the recently dynamic research area of sponge ecology on tropical reefs and provide a perspective for future studies.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-01-03
    Description: Bays in coastal upwelling regions are physically driven and biochemically fueled by their interaction with open coastal waters. Wind-driven flow over the shelf imposes a circulation in the bay, which is also influenced by local wind stress and thermal bay–ocean density differences. Three types of bays are recognized based on the degree of exposure to coastal currents and winds (wide-open bays, square bays, and elongated bays), and the characteristic circulation and stratification patterns of each type are described. Retention of upwelled waters in bays allows for dense phytoplankton blooms that support productive bay ecosystems. Retention is also important for the accumulation of larvae, which accounts for high recruitment in bays. In addition, bays are coupled to the shelf ecosystem through export of plankton-rich waters during relaxation events. Ocean acidification and deoxygenation are a concern in bays because local extrema can develop beneath strong stratification.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-01-03
    Description: Much of the global cooling during ice ages arose from changes in ocean carbon storage that lowered atmospheric CO2. A slew of mechanisms, both physical and biological, have been proposed as key drivers of these changes. Here we discuss the current understanding of these mechanisms with a focus on how they altered the theoretically defined soft-tissue and biological disequilibrium carbon storage at the peak of the last ice age. Observations and models indicate a role for Antarctic sea ice through its influence on ocean circulation patterns, but other mechanisms, including changes in biological processes, must have been important as well, and may have been coordinated through links with global air temperature. Further research is required to better quantify the contributions of the various mechanisms, and there remains great potential to use the Last Glacial Maximum and the ensuing global warming as natural experiments from which to learn about climate-driven changes in the marine ecosystem.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-01-03
    Description: More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems—salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose—an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-06-29
    Description: Jellyfish have provided insight into important components of animal propulsion, such as suction thrust, passive energy recapture, vortex wall effects, and the rotational mechanics of turning. These traits are critically important to jellyfish because they must propel themselves despite severe limitations on force production imposed by rudimentary cnidarian muscular structures. Consequently, jellyfish swimming can occur only by careful orchestration of fluid interactions. Yet these mechanics may be more broadly instructive because they also characterize processes shared with other animal swimmers, whose structural and neurological complexity can obscure these interactions. In comparison with other animal models, the structural simplicity, comparative energetic efficiency, and ease of use in laboratory experimentation allow jellyfish to serve as favorable test subjects for exploration of the hydrodynamic bases of animal propulsion. These same attributes also make jellyfish valuable models for insight into biomimetic or bioinspired engineering of swimming vehicles. Here, we review advances in understanding of propulsive mechanics derived from jellyfish models as a pathway toward the application of animal mechanics to vehicle designs. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-06-29
    Description: Over the past several decades, there has developed a community-wide appreciation for the importance of mixing at the smallest scales to geophysical fluid dynamics on all scales. This appreciation has spawned greater participation in the investigation of ocean mixing and new ways to measure it. These are welcome developments given the tremendous separation in scales between the basins, ?(107) m, and the turbulence, ? (10−2) m, and the fact that turbulence that leads to thermodynamically irreversible mixing in high-Reynolds-number geophysical flows varies by at least eight orders of magnitude in both space and time. In many cases, it is difficult to separate the dependencies because measurements are sparse, also in both space and time. Comprehensive shipboard turbulence profiling experiments supplemented by Doppler sonar current measurements provide detailed observations of the evolution of the vertical structure of upper-ocean turbulence on timescales of minutes to weeks. Recent technical developments now permit measurements of turbulence in the ocean, at least at a few locations, for extended periods. This review summarizes recent and classic results in the context of our expanding knowledge of the temporal variability of ocean mixing, beginning with a discussion of the timescales of the turbulence itself (seconds to minutes) and how turbulence-enhanced mixing varies over hours, days, tidal cycles, monsoons, seasons, and El Niño–Southern Oscillation timescales (years). Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-01-03
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-01-03
    Description: Apex predators play pivotal roles in marine ecosystems, mediated principally through diet and nutrition. Yet, compared with terrestrial animals, the nutritional ecology of marine predators is poorly understood. One reason is that the field has adhered to an approach that evaluates diet principally in terms of energy gain. Studies in terrestrial systems, by contrast, increasingly adopt a multidimensional approach, the nutritional geometry framework, that distinguishes specific nutrients and calories. We provide evidence that a nutritional approach is likewise relevant to marine apex predators, then demonstrate how nutritional geometry can characterize the nutrient and energy content of marine prey. Next, we show how this framework can be used to reconceptualize ecological interactions via the ecological niche concept, and close with a consideration of its application to problems in marine predator research.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-06-05
    Description: My career spanned the revolution in understanding of the large-scale fluid ocean, as modern electronics produced vast new capabilities. I started in the days of almost purely mechanical instruments operated by seagoing scientists, ones not so different from those used more than a century earlier. Elegant theories existed of hypothetical steady-state oceans. Today, we understand that the ocean is a highly turbulent fluid, interacting over global scales, and it is now studied by large teams using spacecraft and diverse sets of self-contained in situ instrumentation. Mine was an accidental career: I was lucky to be in the right place at the right time. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-06-05
    Description: While the ocean has suffered many losses, there is increasing evidence that important progress is being made in marine conservation. Examples include striking recoveries of once-threatened species, increasing rates of protection of marine habitats, more sustainably managed fisheries and aquaculture, reductions in some forms of pollution, accelerating restoration of degraded habitats, and use of the ocean and its habitats to sequester carbon and provide clean energy. Many of these achievements have multiple benefits, including improved human well-being. Moreover, better understanding of how to implement conservation strategies effectively, new technologies and databases, increased integration of the natural and social sciences, and use of indigenous knowledge promise continued progress. Enormous challenges remain, and there is no single solution; successful efforts typically are neither quick nor cheap and require trust and collaboration. Nevertheless, a greater focus on solutions and successes will help them to become the norm rather than the exception. Expected final online publication date for the Annual Review of Marine Science, Volume 13 is January 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...