ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (214,832)
  • 2020-2023  (41)
  • 2015-2019  (203,197)
  • 1960-1964  (10,271)
  • 1945-1949  (1,323)
  • 2020  (43)
  • 2018  (203,197)
  • 1963  (10,271)
  • 1948  (891)
  • 1946  (432)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 294 (1992), S. 466-478 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters B 317 (1993), S. 474-484 
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jacox, M. G., Alexander, M. A., Siedlecki, S., Chen, K., Kwon, Y., Brodie, S., Ortiz, I., Tommasi, D., Widlansky, M. J., Barrie, D., Capotondi, A., Cheng, W., Di Lorenzo, E., Edwards, C., Fiechter, J., Fratantoni, P., Hazen, E. L., Hermann, A. J., Kumar, A., Miller, A. J., Pirhalla, D., Buil, M. P., Ray, S., Sheridan, S. C., Subramanian, A., Thompson, P., Thorne, L., Annamalai, H., Aydin, K., Bograd, S. J., Griffis, R. B., Kearney, K., Kim, H., Mariotti, A., Merrifield, M., & Rykaczewski, R. Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Progress in Oceanography, 183, (2020): 102307, doi:10.1016/j.pocean.2020.102307.
    Description: Marine ecosystem forecasting is an area of active research and rapid development. Promise has been shown for skillful prediction of physical, biogeochemical, and ecological variables on a range of timescales, suggesting potential for forecasts to aid in the management of living marine resources and coastal communities. However, the mechanisms underlying forecast skill in marine ecosystems are often poorly understood, and many forecasts, especially for biological variables, rely on empirical statistical relationships developed from historical observations. Here, we review statistical and dynamical marine ecosystem forecasting methods and highlight examples of their application along U.S. coastlines for seasonal-to-interannual (1–24 month) prediction of properties ranging from coastal sea level to marine top predator distributions. We then describe known mechanisms governing marine ecosystem predictability and how they have been used in forecasts to date. These mechanisms include physical atmospheric and oceanic processes, biogeochemical and ecological responses to physical forcing, and intrinsic characteristics of species themselves. In reviewing the state of the knowledge on forecasting techniques and mechanisms underlying marine ecosystem predictability, we aim to facilitate forecast development and uptake by (i) identifying methods and processes that can be exploited for development of skillful regional forecasts, (ii) informing priorities for forecast development and verification, and (iii) improving understanding of conditional forecast skill (i.e., a priori knowledge of whether a forecast is likely to be skillful). While we focus primarily on coastal marine ecosystems surrounding North America (and the U.S. in particular), we detail forecast methods, physical and biological mechanisms, and priority developments that are globally relevant.
    Description: This study was supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) program through grants NA17OAR4310108, NA17OAR4310112, NA17OAR4310111, NA17OAR4310110, NA17OAR4310109, NA17OAR4310104, NA17OAR4310106, and NA17OAR4310113. This paper is a product of the NOAA/MAPP Marine Prediction Task Force.
    Keywords: Prediction ; Predictability ; Forecast ; Ecological forecast ; Mechanism ; Seasonal ; Interannual ; Large marine ecosystem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-16
    Description: On September 6, 2017, the solar active region AR 2673 emitted two solar flares: the first at 08:57 UT (X2.2) and the second at 11:53 UT (X9.3); both were powerful enough to black-out high and low frequency radio waves (where UT is universal time). The X9.3 was the strongest solar flare event in the past decade. In this study, we took the advantage of these two extreme flare events to investigate corresponding effects on the ionosphere using multi-instrument observations from magnetometers, Global Positioning System – Total Electron content (GPS-TEC) receivers, ionosondes and Swarm satellites over a large geographical extent covering South American, African and European sectors. During the X2.2 flare, European and African sectors were sunlit and during X9.3 European, African, and South American sectors were sunlit and exposed to the solar flare radiation. During the X2.2 flare, there was an ionosonde blackout for a duration of about 45 min, while during the X9.3 flare this blackout lasted for 1 h and 30 min. The blackout are seen over a large global extent which demonstrates the severity of solar flare events in disrupting the radio communication. The horizontal component of Earth’s geomagnetic field has shown ripples and enhancements during these flare events. The ionospheric Vertical Total Electron Content (VTEC) showed a positive phase along with an intensification of the Equatorial Ionization Anomaly (EIA) over the South American and African sectors. The dynamical and physical processes associated with the TEC and EIA variabilities due to solar flare are discussed.
    Description: Published
    Description: 1775-1791
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-07
    Description: Palaeoenvironmental reconstructions with temporal coverages extending beyond Marine Isotope Stage (MIS) three are scarce within the data sparse region of Chukotka, Far East Russia. The objective of this paper is to infer palaeoenvironmental variability from a 10.76 m long, OSL- and 14C- dated sediment core from Lake Ilirney, Chukotka (67°21′N, 168°19′E). We analysed high-resolution sediment-geochemistry (XRF), sedimentology (TC, TN, TOC, grain-size), mineralogy (XRD) and preliminary micropalaeontological data (diatoms and pollen) from the core as well as acoustic sub-bottom profiling data from the lake basin. Our results affirm the application of XRF-based sediment-geochemical proxies as effective tracers of palaeoenvironmental variability within arctic lake systems. Our study reveals that a lake formed during MIS3 from 51.8 (±4.1) ka BP, following extensive MIS4 glaciation. Catchment palaeoenvironmental conditions during this time remained harsh associated with the continued presence of a catchment glacier until 36.2 (±2.6) ka BP. Partial amelioration reflected by increased diatom, catchment vegetation and lake organic productivity and clastic sediment input from mixed sources from 36.2 (±2.6) ka BP resulted in a lake high-stand ∼15 m above present and is interpreted as evidence of a more productive palaeoenvironment coincident with the MIS3 interstadial optimum. A transitional period of deteriorating palaeoenvironmental conditions occurred ∼30–27.9 ka BP and was superseded by periglacial-glacial conditions from 27.9 (±0.8) ka BP, during the last glacial maximum. Deglaciation as marked by sediment-geochemical proxies commenced at 20.2 (±0.8) ka BP. Our findings are compared with lacustrine, Yedoma and river-bluff records from across Beringia and potentially yield limited support for a marked Younger Dryas cooling in the study area.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-10
    Description: In fold and thrust belts developing at convergent margins, the migration of the advancing wedge is accompanied by bulging of the downgoing plate, followed by the development of a foredeep basin filled by a thick succession of syn-orogenic sediments. The transition from forebulge to foredeep marks a key moment in the evolution of the orogenic system. In deep water environments, the record of this transition is typically complete and progressive. Conversely, in the shallow-water/continental environment of many collisional systems, the uplift of the forebulge area can imply emersion and erosion, obliterating the stratigraphic record of key steps of the evolution of the orogenic system. The southern Apennines constitute one of these collisional fold and thrust belts where the development of the forebulge has implied emersion and erosion, with the development of a Miocene forebulge erosional unconformity, accompanied by extensional deformation associated with the bending of the lithosphere during the forebulge stage. In this paper, we use strontium isotope stratigraphy to constrain with unprecedented time-resolution the age of the forebulge unconformity in areas presently incorporated in the northern sector of the southern Apennines fold and thrust belt. Integration of our results and those of previous studies indicates, at the regional scale, a younging toward the foreland of the forebulge unconformity across the belt. Our highresolution ages also reveal a diachronous onset of the flexural subsidence over short distances, associated with the occurrence of horst and graben structures, possibly resulting from inherited paleotopography along with forebulge extension. This work highlights how high-resolution dating is critical to unravel the evolution of foreland basin systems at different scales.
    Description: Published
    Description: 105634
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Foreland basin system ; Forebulge unconformity ; Strontium isotope stratigraphy ; Forebulge extension ; Miocene ; Southern Apennines (Italy)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Du, J., Park, K., Yu, X., Zhang, Y. J., & Ye, F. Massive pollutants released to Galveston Bay during Hurricane Harvey: Understanding their retention and pathway using Lagrangian numerical simulations. Science of the Total Environment, 704, (2019): 135364, doi: 10.1016/j.scitotenv.2019.135364.
    Description: Increasing frequency of extreme precipitation events under the future warming climate makes the storm-related pollutant release more and more threatening to coastal ecosystems. Hurricane Harvey, a 1000-year extreme precipitation event, caused massive pollutant release from the Houston metropolitan area to the adjacent Galveston Bay. 0.57 × 106 tons of raw sewage and 22,000 barrels of oil, refined fuels and chemicals were reportly released during Harvey, which would likely deteriorate the water quality and damage the coastal ecosystem. Using a Lagrangian particle-tracking method coupled with a validated 3D hydrodynamic model, we examined the retention, pathway, and fate of the released pollutants. A new timescale, local exposure time (LET), is introduced to quantitatively evaluate the spatially varying susceptibility inside the bay and over the shelf, with a larger LET indicating the region is more susceptible to the released pollutants. We found LET inside the bay is at least one order of magnitude larger for post-storm release than storm release due to a quick recovery in the system's flushing. More than 90% of pollutants released during the storm exited the bay within two days, while those released after the storm could stay inside the bay for up to three months. This implies that post-storm release is potentially more damaging to water quality and ecosystem health. Our results suggest that not only the amount of total pollutant load but also the release timing should be considered when assessing a storm's environmental and ecological influence, because there could be large amounts of pollutants steadily and slowly discharged after storm through groundwater, sewage systems, and reservoirs.
    Description: We like to acknowledge the Texas Coastal Management Program, the Texas General Land Office and NOAA for partial funding of this project through CMP Contract #19-040-000-B074. This work was performed using computing facilities at the College of William and Mary, which were provided by contributions from the National Science Foundation, the Commonwealth of Virginia Equipment Trust Fund and the Office of Naval Research.
    Keywords: Storm discharge ; Retention ; Local exposure time ; Particle tracking ; SCHISM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mundl-Petermeier, A., Walker, R. J., Jackson, M. G., Blichert-Toft, J., Kurz, M. D., & Halldorsson, S. A. Temporal evolution of primordial tungsten-182 and he-3/He-4 signatures in the Iceland mantle plume. Chemical Geology, 525, (2019): 245-259. doi: 10.1016/j.chemgeo.2019.07.026.
    Description: Studies of short-lived radiogenic isotope systems and noble gas isotopic compositions of plume-derived rocks suggest the existence of primordial domains in Earth's present-day mantle. Tungsten-182 anomalies together with high 3He/4He in Phanerozoic rocks from large igneous provinces and ocean island basalts demonstrate the preservation of early-formed (within the first 60 Ma of solar system history) mantle domains tapped by modern mantle plumes. It has proven difficult to link the evidence for primordial domains with geochemical evidence for more recent processes, such as recycling. The Greenland-Iceland plume system, starting with eruptions of the Paleocene North Atlantic Igneous Province, is later manifested in the mid-Miocene to modern volcanic products of Iceland. Here, we report Pb isotopic compositions, μ182W (deviations in 182W/184W of a sample from a laboratory reference standard in parts per million), and 3He/4He, as well as highly siderophile element concentrations and Re-Os isotopic systematics of basaltic samples erupted at different times during the ~60 Ma history of the Greenland-Iceland plume. Paleocene samples from Greenland, representing the early stage of the mantle plume, are characterized by variable 3He/4He ranging from 7 to 48 R/RA (measured 3He/4He normalized to the atmospheric ratio) and an average μ182W of −4.0 ± 3.6 (2SD), within modern upper mantle-like values of 0 ± 4.5. The basalts from Iceland can be divided into two groups based on their Pb isotope compositions. One group, consisting mostly of Miocene basalts, is characterized by 206Pb/204Pb ranging from ~18.4 to 18.5, 3He/4He ranging from 17.8 to 40.2 R/RA, and μ182W values ranging from +1.7 to −9.1 ± 4.5. The other group, consisting mainly of Pleistocene and Holocene basalts, is characterized by higher 206Pb/204Pb, ranging from ~18.7 to 19.2, 3He/4He ranging from 7.9 to 25.7 R/RA, and μ182W values ranging from −0.6 to −11.7 ± 4.5. Collectively, the Greenland-Iceland suite examined requires mixing between a minimum of three mantle source domains characterized by distinct Pb-He-W isotopic compositions, in order to account for this range of isotopic data. The temporal changes in the isotopic data for these rocks appear to track the dominant contributing plume components as the system evolved. One of the domains is indistinguishable from the ambient upper oceanic mantle and contributed substantial material throughout the time progression. The other two domains are most likely primordial reservoirs that underwent limited de-gassing. Given the negative μ182W values in some rocks, one of these domains likely formed within the first 60 Ma of solar system history and is a major contributor to the youngest basalts. The isotopic characteristics of Greenland-Iceland plume-derived rocks reveal episodic changes in the source component proportions.
    Description: This study was supported by NSF grant EAR-1624587 (to RJW and AMP). AMP acknowledges FWF grant V659-N29. MJ acknowledges NSF grant EAR-1624840, and MK acknowledges OCE-1259218. We would like to thank Lotte M. Larsen and Asger K. Pedersen for providing the West Greenland samples, and Bernard Marty for the samples from East Greenland. We thank Catherine Chauvel for the editorial handling and Rita Parai, Dominique Weis, David Graham and an anonymous reviewer for the helpful and constructive comments on this and an earlier version of the manuscript.
    Keywords: μ182W ; Iceland ; Mantle plume ; 3He/4He ; Primordial reservoir
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wheat, C. G., Seewald, J. S., & Takai, K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount. Geochimica Et Cosmochimica Acta, 269, (2020): 413-428, doi: 10.1016/j.gca.2019.10.037
    Description: Natural fluids with a pH (25 °C) up to 12.3 were collected from a sub-seafloor borehole observatory (Ocean Drilling Program (ODP) Hole 1200C) on South Chamorro Seamount, a serpentinite mud volcano in the Mariana forearc. We used systematic differences in the chemical compositions of pore waters from drilling operations during ODP Leg 195 and borehole fluids collected subsequently from Hole 1200C to define two endmember solutions, one of which was a sulfate-rich fluid with a methane concentration of 50 mM that ascends from the subduction channel and the other was a low-sulfate fluid. The sequence of sample collection and fluid compositions constrain subsurface hydrologic conditions. Deep-sourced, sulfate- and methane-rich, sterile fluids from the subduction channel can reach the seafloor unchanged within the central conduit, whereas other fluid pathways likely intersect the pelagic sediment that underlies the serpentinite mud volcano, providing potentially suitable conditions and inoculum for microbial anaerobic oxidation of methane (AOM). These AOM-affected, low-sulfate fluids also make it to the seafloor where they discharge. The source of the sulfate- and methane-rich fluid in the subduction channel is attributed to abiotic methane production fueled by hydrogen production from serpentinization and carbonate dissolution. This methane production includes a mechanism to raise the pH above values from serpentinization alone. Results from South Chamorro Seamount represent an end member along a transect defined by the distance from the trench. Results from this site are applied to other serpentinite mud volcanoes along this transect to speculate on likely chemical conditions within shallower and cooler portions of the subduction channel.
    Description: The authors thank the entire shipboard parties of cruises NT09-01 and NT09-07 on the R/V Nastushima and the crews and pilots of the ROV HyperDolphin. We also thank Tom Pettigrew for removing the dummy plug and designing the insert for the borehole. This research was supported by the National Science Foundation (OCE-0727120 and 1439564 (CGW) and OCE--0725204 (JS)) and the Japan Agency for Marine-Earth Science and Technology. This is C-DEBI contribution 497.
    Keywords: Serpentinization ; Mud volcano ; Subduction ; Mariana forearc ; Dissolved gases ; Anaerobic methane oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Horowitz, E. J., Cochran, J. K., Bacon, M. P., & Hirschberg, D. J. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Research Part I: Oceanographic Research Papers, 164, (2020): 103339, doi:10.1016/j.dsr.2020.103339.
    Description: During the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS), water column sampling for particulate and dissolved 210Po and 210Pb was performed four times (26 April and 4, 20, 30 May 1989) during a month-long Lagrangian time-series occupation of the NABE site, as well as one-time samplings at stations during transit to and from the site. There are few prior studies documenting short-term changes in 210Po and 210Pb profiles over the course of a phytoplankton bloom, and we interpret the profiles in terms of the classical “steady-state” (SS) approach used in most studies, as well as by using a non-steady state approach suggested by the temporal evolution of the profiles. Changes in 210Po profiles during a bloom are expectable as this radionuclide is scavenged and exported. During NABE, 210Pb profiles also displayed non-steady state, with significant increases in upper water column inventory occurring midway through the experiment. Export of 210Po from the upper 150 m using the classic “steady-state” model shows increases from 0.5 ± 8.5 dpm m−2 d−1 to 68.2 ± 4.2 dpm m−2 d−1 over the ~one-month occupation. Application of a non-steady state model, including changes in both 210Pb and 210Po profiles, gives higher 210Po export fluxes. Detailed depth profiles of particulate organic carbon (〉0.8 μm) and particulate 210Po (〉0.4 μm) are available from the 20 and 30 May samplings and show maxima in POC/Po at ~37 m. Applying the POC/210Po ratios at 150 m to the “steady state” 210Po fluxes yields POC export from the upper 150 m of 8.2 ± 1.5 mmol C m− 2 d−1 on 20 May and 6.0 ± 1.6 mmol C m−2 d−1 on 30 May. The non-steady state model applied to the interval 20 to 30 May yields POC export of 24.3 mmol C m−2 d−1. The non-steady state (NSS) 210Po-derived POC fluxes are comparable to, but somewhat less than, those estimated previously from 234Th/238U disequilibrium for the same time interval (37.3 and 45.0 mmol m−2 d−1, depending on the POC/Th ratio used). In comparison, POC fluxes measured with a floating sediment trap deployed at 150 m from 20 to 30 May were 11.6 mmol m−2 d−1. These results suggest that non-steady state Po-derived POC fluxes during the NABE agree well with those derived from 234Th/238U disequilibrium and agree with sediment trap fluxes within a factor of ~2. However, unlike the 234Th-POC flux proxy, non-steady stage changes in profiles of 210Pb, the precursor of 210Po, must be considered.
    Description: We are grateful to T. Hammar and A. Fleer (WHOI) for assistance at sea and in the laboratory. This work was supported originally by National Science Foundation (United States) grant OCE-8819544 to JKC and more recently by OCE-1736591. We thank Stephen Thurston (American Museum of Natural History) for graphics assistance Robert Aller, Steven Beaupre, and two anonymous reviewers for helpful comments.
    Keywords: Polonium-210 ; Lead-210 ; 210Po ; 210Pb ; North Atlantic ; Spring bloom ; POC flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, P., Pickart, R. S., Fissel, D., Ross, E., Kasper, J., Bahr, F., Torres, D. J., O'Brien, J., Borg, K., Melling, H., & Wiese, F. K. Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array. Progress in Oceanography, 187, (2020): 102396, doi:10.1016/j.pocean.2020.102396.
    Description: Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.
    Description: The authors are indebted to Fisheries and Oceans Canada for building the logistics for MARES into the at-sea missions of the Integrated Beaufort Observatory. We are grateful to the captain and crew of the CCGS Sir Wilfred Laurier for ably deploying and recovering the MARES array. Marshall Swartz assisted with the cruise preparation logistics. We thank the two anonymous reviewers for their input which helped improve the paper. This project was funded by the US Bureau of Ocean Energy Management (BOEM), on behalf of the National Ocean Partnership Program. The Canadian contribution was supported by the Environmental Studies Research Fund (ESRF Project 2014-02N). MARES publication 003.
    Keywords: Canadian Beaufort Sea ; Mackenzie Canyon ; Boundary currents ; Canyon circulation ; Ice-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hirst, W. G., Biswas, A., Mahalingan, K. K., & Reber, S. Differences in intrinsic tubulin dynamic properties contribute to spindle length control in Xenopus species. Current Biology, 30(11), (2020): 2184-2190.e5, doi: 10.1016/j.cub.2020.03.067.
    Description: The function of cellular organelles relates not only to their molecular composition but also to their size. However, how the size of dynamic mesoscale structures is established and maintained remains poorly understood [1, 2, 3]. Mitotic spindle length, for example, varies several-fold among cell types and among different organisms [4]. Although most studies on spindle size control focus on changes in proteins that regulate microtubule dynamics [5, 6, 7, 8], the contribution of the spindle’s main building block, the αβ-tubulin heterodimer, has yet to be studied. Apart from microtubule-associated proteins and motors, two factors have been shown to contribute to the heterogeneity of microtubule dynamics: tubulin isoform composition [9, 10] and post-translational modifications [11]. In the past, studying the contribution of tubulin and microtubules to spindle assembly has been limited by the fact that physiologically relevant tubulins were not available. Here, we show that tubulins purified from two closely related frogs, Xenopus laevis and Xenopus tropicalis, have surprisingly different microtubule dynamics in vitro. X. laevis microtubules combine very fast growth and infrequent catastrophes. In contrast, X. tropicalis microtubules grow slower and catastrophe more frequently. We show that spindle length and microtubule mass can be controlled by titrating the ratios of the tubulins from the two frog species. Furthermore, we combine our in vitro reconstitution assay and egg extract experiments with computational modeling to show that differences in intrinsic properties of different tubulins contribute to the control of microtubule mass and therefore set steady-state spindle length.
    Description: This article was prompted by our stay at the Marine Biological Laboratory (MBL), Woods Hole, MA in the summer of 2016 funded by the Princeton-Humboldt Strategic Partnership Grant together with the lab of Sabine Petry (Princeton University). We thank Jeff Woodruff (UT Southwestern), David Drechsel (IMP), and Marcus J. Taylor (MPI IB) for constructive criticism and comments on the manuscript and Helena Jambor for constructive comments on figure design. We thank the AMBIO imaging facility (Charité, Berlin) and Nikon at MBL for imaging support, Aliona Bogdanova and Barbara Borgonovo (MPI CBG) for their help with protein purification, and Francois Nedelec (University of Cambridge) for help with Cytosim. We are grateful to the Görlich lab (MPI BPC), in particular Bastian Hülsmann and Jens Krull, and the NXR for supply with X. tropicalis frogs. We thank Antonina Roll-Mecak (National Institute of Neurological Disorders and Stroke) for help with mass spectrometry analysis and discussions and Duck-Yeon Lee in the Biochemistry Core (National Heart, Lung and Blood Institute) for access to mass spectrometers. For mass spectrometry, we would like to acknowledge the assistance of Benno Kuropka and Chris Weise from the Core Facility BioSupraMol supported by the Deutsche Forschungsgemeinschaft (DFG). We thank all former and current members of the Reber lab for discussion and helpful advice, in particular, Christoph Hentschel and Soma Zsoter for technical assistance and Sebastian Reusch for help with tubulin purification. S.R. acknowledges funding from the IRI Life Sciences (Humboldt-Universität zu Berlin, Excellence Initiative/DFG). W.G.H. was supported by the Alliance Berlin Canberra co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University. K.K.M. was supported by funds in the Roll-Mecak lab, intramural program of the National Institute of Neurological Disorders and Stroke.
    Keywords: Spindle scaling ; Tubulin ; Microtubule dynamics ; Xenopus ; Spindle length
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marty, B., Almayrac, M., Barry, P. H., Bekaert, D., V., Broadley, M. W., Byrne, D. J., Ballentine, C. J., & Caracausi, A. An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications. Earth and Planetary Science Letters, 551, (2020): 116574, doi:10.1016/j.epsl.2020.116574.
    Description: The terrestrial carbon to nitrogen ratio is a key geochemical parameter that can provide information on the nature of Earth's precursors, accretion/differentiation processes of our planet, as well as on the volatile budget of Earth. In principle, this ratio can be determined from the analysis of volatile elements trapped in mantle-derived rocks like mid-ocean ridge basalts (MORB), corrected for fractional degassing during eruption. However, this correction is critical and previous attempts have adopted different approaches which led to contrasting C/N estimates for the bulk silicate Earth (BSE) (Marty and Zimmermann, 1999; Bergin et al., 2015). Here we consider the analysis of CO2-rich gases worldwide for which a mantle origin has been determined using noble gas isotopes in order to evaluate the C/N ratio of the mantle source regions. These gases experienced little fractionation due to degassing, as indicated by radiogenic 4He / 40Ar* values (where 4He and 40Ar* are produced by the decay of U+Th, and 40K isotopes, respectively) close to the mantle production/accumulation values. The C/N and C/3 He ratios of gases investigated here are within the range of values previously observed in oceanic basalts. They point to an elevated mantle C/N ratio (∼350-470, molar) higher than those of potential cosmochemical accretionary endmembers. For example, the BSE C/N and 36 Ar / N ratios (160-220 and 75 x 10-7, respectively) are higher than those of CM-CI chondrites but within the range of CV-CO groups. This similarity suggests that the Earth accreted from evolved planetary precursors depleted in volatile and moderately volatile elements. Hence the high C / N composition of the BSE may be an inherited feature rather than the result of terrestrial differentiation. The C / N and 36 Ar / N ratios of the surface (atmosphere plus crust) and of the mantle cannot be easily linked to any known chondritic composition. However, these compositions are consistent with early sequestration of carbon into the mantle (but not N and noble gases), permitting the establishment of clement temperatures at the surface of our planet.
    Description: M.A, D.V.B, M.W.B, D.J.B and B.M were supported by the European Research Council (PHOTONIS project, grant agreement No. 695618 to B.M.). Samples were collected as part of Study # YELL-08056 - Xenon anomalies in the Yellowstone Hotspot. We would like to thank Annie Carlson and all of the rangers at the Yellowstone National Park for providing invaluable advice and help when collecting the samples. This work was partially supported by a grant (G-2016-7206) from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B as well as NSF award 2015789 to P.H.B.. Sampling at Mt. Etna and gas analysis was supported by Instituto Nazionale di Geofisica e Vulcanologia Palermo. Fruitful discussions with Marc Hirschmann helped us to shape the ideas presented in this work. We acknowledge detailed and insightful reviews by Sami Mikhail and an anonymous reviewer, and efficient editing by Frederic Moynier. This is CRPG contribution 2741.
    Keywords: Carbon ; Nitrogen ; Earth ; Mantle ; Gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-06-09
    Description: Joint analysis of high-penetration multi-channel and high-resolution single-channel seismic reflection profiles, calibrated by deep well boreholes, allowed a detailed reconstruction of the Late Miocene to Recent tectonic history of the Capo Granitola and Sciacca fault systems offshore southwestern Sicily. These two fault arrays are part of a regional system of transcurrent faults that dissect the foreland block in front of the Neogene Sicilian fold and thrust belt. The Capo Granitola and Sciacca faults are thought to reactivate inherited Mesozoic to Miocene normal faults developed on the northern continental margin of Africa. During Latest Miocene-Pliocene, the two ~NNE-SSW striking faults were active in left transpression, which inverted Late Miocene extensional half-grabens and created push-up ridges along both systems. Tectonic activity decreased during the Pleistocene, but transpressional folds deform Middle-Late Pleistocene sediments as well, suggesting that the two fault systems are active. The ~40 km long longitudinal amplitude profile of 1st order folds (Capo Granitola and Sciacca anticlines) shows ~15–20 km bell-shaped undulations that represents 2nd order folds. The length of these undulations together with the map pattern of faults allowed to divide the CGFS and SFS into two segments, northern and southern, respectively. Total uplift of the Sciacca Anticline is twice than the uplift of the Capo Granitola Anticline. Incremental fold growth rates decreased during time from 0.22 mm/yr (Capo Granitola Anticline) and 0.44 mm/yr (Sciacca Anticline) in the Pliocene, to 0.07 and 0.22 mm/yr, respectively, during the last ~1.8 Ma.
    Description: Published
    Description: 187-204
    Description: 2T. Deformazione crostale attiva
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: Multiscale analysis ; Basin inversion ; Strike-slip faults ; Fold growth rates ; Pelagian foreland ; SW Sicily offshore ; 04.07. Tectonophysics ; 04.04. Geology ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-06-14
    Description: Observations from satellites provide high-resolution images of ground deformation allowing to infer deformation sources by developing advanced modeling of magma ascent and intrusion processes. Nevertheless, such models can be strongly biased without a precise model of the internal structure of the volcano. In this study, we jointly exploited two interferometric techniques to interpret the 2011–2013 unrest at Campi Flegrei caldera (CFc). The first is the Interferometric Synthetic Aperture Radar (InSAR) technique, which provides highly-resolved spatial and temporal images of ground deformation. The second is the Ambient Noise Tomography (ANT), which images subsurface structures, providing the constraints necessary to infer the depth of the shallow source at CFc (between 0.8 and 1.2 km). We applied for the first time a tool to delineate the deformation source boundaries from the observed deformation maps: the Total Horizontal Derivative (THD) technique. The THD processes the vertical component of the ground deformation field detected through InSAR applied to COSMO-SkyMed data. The patterns retrieved by applying the THD technique show consistent spatial correlations with (1) the seismic group-velocity maps achieved through the ANT and (2) the distribution of the earthquakes nucleated during the unrest at ~1 km. High-velocity anomalies, the retrieved geometrical features of the deformation field, and the spatial distribution of seismicity coincide with extinct volcanic vents in the eastern part of the caldera (Solfatara/ Pisciarelli and Astroni). Such a coincidence hints at a significant role of the extinct plumbing system in either constraining or channeling the eastward propagation of magmatic fluids. Here, we demonstrated that a joint analysis of the InSAR patterns, seismic structures, and seismicity allows us to model in space and time the characteristics and nature of the shallow deformation source at CFc. Using published literature, we show that the effects of structural heterogeneities at shallow depths may have a more significant early-stage impact on the evolution of the surface displacement signals than deeper magmatic sources: these secondary structural effects may produce local amplification in the deformation records which can be mistakenly interpreted as early signals of impending eruptions. The achieved results are particularly relevant for the understanding of the origin of deformation signal at volcanoes where magma propagation within sills is expected, as at CFc.
    Description: Published
    Description: 111440
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: InSAR ; Ambient noise tomography ; Total horizontal derivative ; Campi Flegrei caldera ; Natural seismicity
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-06-10
    Description: Active lava lakes represent a variety of open-vent volcanism in which a sizable body of lava accumulates at the top of the magma column, constrained by the vent and/or crater geometry. The longevity of lava lakes reflects a balancing of cooling and outgassing occurring at the surface and input of hot and gas-rich magma from below. Due to their longevity and relative accessibility, lava lakes provide a natural laboratory for studying fundamental volcanic processes such as degassing, convection and cooling. This article examines all seven lakes that existed at the time of writing in 2018, located in the Pacific, Antarctica, Africa, and South and Central America. These lakes span all tectonic environments, and a range of magma compositions. We focus on analysis of the lake surface motion using image velocimetry, which reveals both similarities and contrasts in outgassing and lake dynamics when comparing the different lakes. We identify two categories of lake behavior: Organized (Erta’Ale, Nyiragongo, Kīlauea after 2011, and Erebus) and Chaotic (Villarrica, Masaya, Marum). This division does not map directly to lake size, viscosity, gas emission rate, or temperature. Instead, when examined together, we find that the lakes follow a linear relationship between average surface speed and the ratio of total gas flux to lake surface area. This relationship points to the combined importance of both flux and lake size in addition to the total volume of gas emission, and suggests that a shared deep mechanism controls the supply of heat and gas to all lakes. On the other hand, the differences between Chaotic and Organized lakes highlight the important role of the geometry of the conduit-lake transition, which superimposes a shallow signal on that of the deep circulation. The spatial patterns of surface motion we document suggest that the release of gas bubbles at Chaotic lakes is more efficient (i.e., bubbles are less likely to be retained and recycled) compared with Organized lakes. In addition, the data presented here indicate that the solidified crust of Organized lakes plays a role in regulating convection and outgassing in lava lakes.
    Description: Published
    Description: 16-31
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-06-09
    Description: A 3D crustal density model for Egypt was compiled. It is constrained by available deep seismic refraction, receiver functions analysis, borehole, and geological data. In Egypt, seismic data are sparsely and irregularly distributed. Consequently, we developed the crustal thickness model by integrating seismic and gravity data. Satellite gravity data was inverted to build an initial model, which was followed by a detailed 3D forward gravity modelling. The initial crustal thickness is determined by applying seismically constrained non-linear inversion, based on the modified Bott's method and Tikhonov regularization assuming spherical Earth approximation. Moreover, the gravity inversion-based Moho depth estimates are in good agreement with results of seismic studies and are exploited for the 3D forward modelling. Crustal thicknesses range from 25 to 30 km along the rifted margins of the Red Sea, which thin toward the Mediterranean Sea. Thicknesses in southern Egypt reach values between 35 and 40 km. A maximum crustal thickness of 45 km is found in the southwestern part of Egypt. Within the Sinai Peninsula, the thickness varies from the shallow southern edge (∼ 31 km) and increases toward the North (∼ 36 km). Our model revealed a thick lower crust beneath the southern part of Egypt, which can be associated with crustal modification that occurred during the collision of East Gondwana and the Saharan Metacraton along the Keraf suture zone during the final assembly of Gondwana in the Neoproterozoic. Finally, the isostatic implications of the differences between the seismic and gravity-derived Mohos are thoroughly discussed. In conclusion, the developed 3D crustal thickness model provides high-resolution Moho depth estimates that closely resembles the major geological and tectonic features. Also, the existing correlation between the topography, Bouguer anomalies, and Moho depths indicates that the investigated area is close to its isostatic equilibrium.
    Description: Published
    Description: 52-67
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E. B., & Kwiatkowski, B. L. An approach to modeling resource optimization for substitutable and interdependent resources. Ecological Modelling, 425, (2020): 109033, doi:10.1016/j.ecolmodel.2020.109033.
    Description: We develop a hierarchical approach to modeling organism acclimation to changing availability of and requirements for substitutable and interdependent resources. Substitutable resources are resources that fill the same metabolic or stoichiometric need of the organism. Interdependent resources are resources whose acquisition or expenditure are tightly linked (e.g., light, CO2, and water in photosynthesis and associated transpiration). We illustrate the approach by simulating the development of vegetation with four substitutable sources of N that differ only in the cost of their uptake and assimilation. As the vegetation develops, it uses the least expensive N source first then uses progressively more expensive N sources as the less expensive sources are depleted. Transition among N sources is based on the marginal yield of N per unit effort expended, including effort expended to acquire C to cover the progressively higher uptake costs. We illustrate the approach to interdependent resources by simulating the expenditure of effort to acquire light energy, CO2, and water to drive photosynthesis in vegetation acclimated to different conditions of soil water, atmospheric vapor pressure deficit, CO2 concentration, and light levels. The approach is an improvement on the resource optimization used in the earlier Multiple Element Limitation (MEL) model.
    Description: This work was supported in part by the National Science Foundation under NSF grants 1651722, 1637459, 1603560, 1556772, 1841608. Any Opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
    Keywords: Resource optimization ; Acclimation ; Substitutable resources ; Interdependent resources ; Resource limitation ; Multiple resource limitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trathan, P. N., Wienecke, B., Barbraud, C., Jenouvrier, S., Kooyman, G., Le Bohec, C., Ainley, D. G., Ancel, A., Zitterbart, D. P., Chown, S. L., LaRue, M., Cristofari, R., Younger, J., Clucas, G., Bost, C., Brown, J. A., Gillett, H. J., & Fretwell, P. T. The emperor penguin - vulnerable to projected rates of warming and sea ice loss. Biological Conservation, 241, (2020): 108216, doi:10.1016/j.biocon.2019.108216.
    Description: We argue the need to improve climate change forecasting for ecology, and importantly, how to relate long-term projections to conservation. As an example, we discuss the need for effective management of one species, the emperor penguin, Aptenodytes forsteri. This species is unique amongst birds in that its breeding habit is critically dependent upon seasonal fast ice. Here, we review its vulnerability to ongoing and projected climate change, given that sea ice is susceptible to changes in winds and temperatures. We consider published projections of future emperor penguin population status in response to changing environments. Furthermore, we evaluate the current IUCN Red List status for the species, and recommend that its status be changed to Vulnerable, based on different modelling projections of population decrease of ≥50% over the current century, and the specific traits of the species. We conclude that current conservation measures are inadequate to protect the species under future projected scenarios. Only a reduction in anthropogenic greenhouse gas emissions will reduce threats to the emperor penguin from altered wind regimes, rising temperatures and melting sea ice; until such time, other conservation actions are necessary, including increased spatial protection at breeding sites and foraging locations. The designation of large-scale marine spatial protection across its range would benefit the species, particularly in areas that have a high probability of becoming future climate change refugia. We also recommend that the emperor penguin is listed by the Antarctic Treaty as an Antarctic Specially Protected Species, with development of a species Action Plan.
    Description: We thank Thomas J. Bracegirdle, Tony Phillips and Kevin Hughes for helpful comments on earlier drafts of this manuscript. PNT acknowledges the support of WWF-UK under GB095701 and SJ the support of NSF OPP1744794 and 1643901.
    Keywords: Antarctic ; Climate change ; Aptenodytes forsteri ; IUCN Red List threat status ; Protection ; Conservation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jin, D., Hoagland, P., & Buesseler, K. O. The value of scientific research on the ocean's biological carbon pump. Science of the Total Environment, 749, (2020): 141357, doi:10.1016/j.scitotenv.2020.141357.
    Description: The ocean's biological carbon pump (BCP) sequesters carbon from the surface to the deep ocean and seabed, constituting one of Earth's most valuable ecosystem services. Significant uncertainty exists surrounding the amounts and rates of organic carbon sequestered in the oceans, however. With improved understanding of BCP sequestration, especially its scale, world policymakers would be positioned to make more informed decisions regarding the mitigation of carbon emissions. Here, an analytical model of the economic effects of global carbon emissions—including scientific uncertainty about BCP sequestration—was developed to estimate the value of marine scientific research concerning sequestration. The discounted net economic benefit of a putative 20-year scientific research program to narrow the range of uncertainty around the amount of carbon sequestered in the ocean is on the order of $0.5 trillion (USD), depending upon the accuracy of predictions, the convexities of climate damage and economic output functions, and the initial range of uncertainty.
    Description: This research is supported by WHOI's Ocean Twilight Zone program which is part of the Audacious Project, a collaborative endeavor, housed at TED. DJ was also funded by National Oceanic and Atmospheric Administration (NOAA) Cooperative Institutes (CINAR) award NA14OAR4320158. KB was also funded by National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program award 80NSSC17K0555. We thank Ankur Shah for research assistance and three anonymous reviewers for their constructive suggestions.
    Keywords: Economic value of scientific research ; Value of information ; Biological carbon pump ; Carbon sequestration ; Ecosystem service ; Ocean twilight zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brothers, L. L., Foster, D. S., Pendleton, E. A., & Baldwin, W. E. Seismic stratigraphic framework of the continental shelf offshore Delmarva, USA: implications for Mid-Atlantic Bight evolution since the Pliocene. Marine Geology, 428, : (2020)106287, doi:10.1016/j.margeo.2020.106287.
    Description: Understanding how past coastal systems have evolved is critical to predicting future coastal change. Using over 12,000 trackline kilometers of recently collected, co-located multi-channel boomer, sparker and chirp seismic reflection profile data integrated with previously collected borehole and vibracore data, we define the upper (〈 115 m below mean lower low water) seismic stratigraphic framework offshore of the Delmarva Peninsula, USA. Twelve seismic units and 11 regionally extensive unconformities (U1-U11) were mapped over 5900 km2 of North America's Mid-Atlantic continental shelf. We interpret U3, U7, U9, U11 as transgressive ravinement surfaces, while U1,2,4,5,6,8,10 are subaerial unconformities illustrating distinct periods of lower sea-level. Based on areal distribution, stratigraphic relationships and dating results (Carbon 14 and amino acid racemization estimates) from earlier vibracore and borehole studies, we interpret the infilled channels as late Neogene and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York, James rivers and tributaries, and a broad flood plain. These findings indicate that the region's geologic framework is more complex than previously thought and that Pleistocene paleochannels are abundant in the Mid-Atlantic. This study synthesizes and correlates the findings of other Atlantic Margin studies and establishes a large-scale Quaternary framework that enables more detailed stratigraphic analysis in the future. Such work has implications for inner continental shelf systems tract evolution, the relationship between antecedent geology and modern coastal systems, assessments of eustacy, glacial isostatic adjustment, and other processes and forcings that play a role in passive margin evolution.
    Description: This work was supported by the U.S. Department of the Interior's Response to Hurricane Sandy.
    Keywords: N Atlantic ; Shelf (morphology and stratigraphy) ; Quaternary stratigraphy ; Paleochannels ; Geophysics (seismic)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, H. T., Hsieh, C. C., Repeta, D. J., & Rappé, M. S. Sampling of basement fluids via circulation obviation retrofit kits (CORKs) for dissolved gases, fluid fixation at the seafloor, and the characterization of organic carbon. Methodsx, 7, (2020): 101033, doi:10.1016/j.mex.2020.101033.
    Description: The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids. • We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems. • We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor. • We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.
    Description: We dedicate this work to Dr. James P. Cowen, who had envisioned and constructed the integrated instrumentation, GeoMICROBE, to monitor the sub-basement biosphere. We thank the chief scientists, captains, crews, and science teams on board R/V Atlantis cruises AT15-35, AT15-51, AT15-66, AT18-07, MSM20-5, AT26-03, and AT26-18, and the pilots and crews of ROV Jason II and HOV Alvin. We thank our student assistants, Natalie Hamada, Kathryn Hu, Ryan Matzumoto, Everette Omori, and Fan-Chieh Chuang. This work was supported by the National Science Foundation-Microbial Observatory Project (NSF-MCB06-04014 to J. P. Cowen), Center for Dark Energy Biosphere Investigations (C-DEBI; NSF award OCE-0939564 to M. S. Rappé), NSF award OCE-1260723 (to M. S. Rappé), and the Ministry of Science and Technology of Taiwan award (MOST 105-2119-M-002-034, MOST 107-2611-M-002-002, MOST 108-2611-M-002-006, and MOST109-2611-M-002-008 to H.-T. Lin). Ministry of Education (MOE) Republic of China (Taiwan) 109L892601 to H.-T. Lin. NSF award OCE-1634080 (to D. J. Repeta), the Simons Foundation-Simons Collaboration on Ocean Processes and Ecology (SCOPE) award 329108 (to D. J. Repeta), the Gordon and Betty Moore Foundation award 6000 (to D. J. Repeta). This paper is SOEST contribution number 11121, HIMB contribution 1804 and C-DEBI contribution number 543.
    Keywords: GeoMICROBE ; Hydrothermal fluid ; Crustal fluid ; Mobile pumping system ; Helium ; Methane ; Dissolved organic matter ; Extraction and preconcentration ; Deep subseafloor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Arenas Gomez, C. M., Woodcock, M. R., Smith, J. J., Voss, S. R., & Delgado, J. P. A de novo reference transcriptome for Bolitoglossa vallecula, an Andean mountain salamander in Colombia. Data in Brief, 29, (2020): 105256, doi:10.1016/j.dib.2020.105256.
    Description: The amphibian order Caudata, contains several important model species for biological research. However, there is need to generate transcriptome data from representative species of the primary salamander families. Here we describe a de novo reference transcriptome for a terrestrial salamander, Bolitoglossa vallecula (Caudata: Plethodontidae). We employed paired-end (PE) illumina RNA sequencing to assemble a de novo reference transcriptome for B. vallecula. Assembled transcripts were compared against sequences from other vertebrate taxa to identify orthologous genes, and compared to the transcriptome of a close plethodontid relative (Bolitoglossa ramosi) to identify commonly expressed genes in the skin. This dataset should be useful to future comparative studies aimed at understanding important biological process, such as immunity, wound healing, and the production of antimicrobial compounds.
    Description: This work was funded by a research grant from COLCIENCIAS 569 (GRANT 027-2103) and CODI (Programa Sostenibilidad) 2013–2014 of the University of Antioquia. A PhD fellowship to the first author, Claudia Arenas was funded by the COLCIENCIAS 567 Grant. We thank the lab of Juan Fernando Alzate from the University of Antioquia for their help in developing our bioinformatic methodological approach. We thank Andrea Gómez and Melisa Hincapie for their help in animal collection and husbandry.
    Keywords: Bolitoglossa ; Plethodontid ; Salamanders ; Skin ; Transcriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, Y., Stumpf, R. P., McGillicuddy, D. J.,Jr, & He, R. Dynamics of an intense Alexandrium catenella red tide in the Gulf of Maine: satellite observations and numerical modeling. Harmful Algae, 99, (2020): 101927, doi:10.1016/j.hal.2020.101927.
    Description: In July 2009, an unusually intense bloom of the toxic dinoflagellate Alexandrium catenella occurred in the Gulf of Maine. The bloom reached high concentrations (from hundreds of thousands to one million cells L−1) that discolored the water and exceeded normal bloom concentrations by a factor of 1000. Using Medium Resolution Imaging Spectrometer (MERIS) imagery processed to target chlorophyll concentrations (〉2 µg L−1), patches of intense A. catenella concentration were identified that were consistent with the highly localized cell concentrations observed from ship surveys. The bloom patches were generally aligned with the edge of coastal waters with high-absorption. Dense bloom patches moved onshore in response to a downwelling event, persisted for approximately one week, then dispersed rapidly over a few days and did not reappear. Coupled physical-biological model simulations showed that wind forcing was an important factor in transporting cells onshore. Upward swimming behavior facilitated the horizontal cell aggregation, increasing the simulated maximum depth-integrated cell concentration by up to a factor of 40. Vertical convergence of cells, due to active swimming of A. catenella from the subsurface to the top layer, could explain the additional 25-fold intensification (25 × 40=1000-fold) needed to reach the bloom concentrations that discolored the water. A model simulation that considered upward swimming overestimated cell concentrations downstream of the intense aggregation. This discrepancy between model and observed concentrations suggested a loss of cells from the water column at a time that corresponded to the start of encystment. These results indicated that the joint effect of upward swimming, horizontal convergence, and wind-driven flow contributed to the red water event, which might have promoted the sexual reproduction event that preceded the encystment process.
    Description: DJM gratefully acknowledges support of the Woods Hole Center for Oceans and Human Health, funded jointly by the National Science Foundation (OCE-1314642 and OCE-1840381) the National Institute of Environmental Health Sciences (P01ES021923–01 and P01 ES028938–01). RH acknowledges support made possible by NOAA grant NA15NOS4780196 and NA16NOS0120028.
    Keywords: Red water ; Bloom patches ; Cell accumulation ; Coastal upwelling ; Upward swimming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kantha, L., Weller, R. A., Farrar, J. T., Rahaman, H., & Jampana, V. A note on modeling mixing in the upper layers of the Bay of Bengal: importance of water type, water column structure and precipitation. Deep-Sea Research Part II-Topical Studies in Oceanography, 168, (2019): 104643. doi: 10.1016/j.dsr2.2019.104643.
    Description: Turbulent mixing in the upper layers of the northern Bay of Bengal is affected by a shallow layer overlying the saline waters of the Bay, which results from the huge influx of freshwater from major rivers draining the Indian subcontinent and from rainfall over the Bay during the summer monsoon. The resulting halocline inhibits wind-driven mixing in the upper layers. The brackish layer also alters the optical properties of the water column. Air-sea interaction in the Bay is expected to play a significant role in the intraseasonal variability of summer monsoons over the Indian subcontinent, and as such the sea surface temperature (SST) changes during the summer monsoon are of considerable scientific and societal importance. In this study, data from the heavily instrumented Woods Hole Oceanographic Institution (WHOI) mooring, deployed at 18oN, 89.5oE in the northern Bay from December 2014 to January 2016, are used to drive a one-dimensional mixing model, based on second moment closure model of turbulence, to explore the intra-annual variability in the upper layers. The model results highlight the importance of the optical properties of the upper layers (and hence the penetration of solar insolation in the water column), as well as the temperature and salinity in the upper layers prescribed at the start of the model simulation, in determining the SST in the Bay during the summer monsoon. The heavy rainfall during the summer monsoon also plays an important role. The interseasonal and intraseasonal variability in the upper layers of the Bay are contrasted with those in the Arabian Sea, by the use of the same model but driven by data from an earlier deployment of a WHOI mooring in the Arabian Sea at 15.5 oN, 61.5 oE from December 1994 to December 1995.
    Description: LK was supported by U.S. Office of Naval Research (ONR) MISO/BoB DRI under grant number N00014-17-1-2716. RW and JTF were supported by ONR Grants N00014-13-1-0453 and N00014-17-1-2880, and the WHOI mooring was funded by Grant N00014-13-1-0453. RW was supported by ONR for the 1994–1995 deployment of the surface mooring in the Arabian Sea. HR and VJ wish to thank Dr. SSC Shenoi, the Director of INCOIS and Dr. M Ravichandran, Director, NCPOR for the encouragement and support to carry out this study. This work was supported by the Ministry of Earth Sciences (MoES), Govt. of India. This is also INCOIS Contribution number 349.
    Keywords: Bay of Bengal ; Arabian sea ; Mixing in the upper layers ; Second moment closure ; Turbulence ; WHOI mooring ; OMNI mooring ; Water type ; Solar insolation ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwing, F. B., Sissenwine, M. J., Batchelder, H., Dam, H. G., Gomez-Gutierrez, J., Keister, J. E., Liu, H., & Peterson, J. O. William (Bill) Peterson's contributions to ocean science, management, and policy. Progress in Oceanography, 182, (2020): 102241, doi:10.1016/j.pocean.2019.102241.
    Description: In addition to being an esteemed marine ecologist and oceanographer, William T. (Bill) Peterson was a dedicated public servant, a leader in the ocean science community, and a mentor to a generation of scientists. Bill recognized the importance of applied science and the need for integrated “big science” programs to advance our understanding of ecosystems and to guide their management. As the first US GLOBEC program manager, he was pivotal in transitioning the concept of understanding how climate change impacts marine ecosystems to an operational national research program. The scientific insight and knowledge generated by US GLOBEC informed and advanced the ecosystem-based management approaches now being implemented for fishery management in the US. Bill held significant leadership roles in numerous international efforts to understand global and regional ecological processes, and organized and chaired a number of influential scientific conferences and their proceedings. He was passionate about working with and training young researchers. Bill’s academic affiliations, notably at Stony Brook and Oregon State Universities, enabled him to advise, train, and mentor a host of students, post-doctoral researchers, and laboratory technicians. Under his collegial guidance they became critical independent thinkers and diligent investigators. His former students and colleagues carry on Bill Peterson’s legacy of research that helps us understand marine ecosystems and informs more effective resource stewardship and conservation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McCollom, T. M., Klein, F., Moskowitz, B., Berquo, T. S., Bach, W., & Templeton, A. S. Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture. Geochimica Et Cosmochimica Acta, 282, (2020): 55-75, doi:10.1016/j.gca.2020.05.016.
    Description: A series of laboratory experiments was conducted to investigate serpentinization of olivine–pyroxene mixtures at 230 °C, with the objective of evaluating the effect of mixed compositions on Fe partitioning among product minerals, H2 generation, and reaction rates. An initial experiment reacted a mixture of 86 wt.% olivine and 14 wt.% orthopyroxene (Opx) with the same initial grain size for 387 days. The experiment resulted in extensive reaction (∼53% conversion), and solids recovered at termination of the experiment were dominated by Fe-bearing chrysotile and relict olivine along with minor brucite and magnetite. Only limited amounts of H2 were generated during the first ∼100 days of the experiment, but the rate of H2 generation then increased sharply coincident with an increase in pH from mildly alkaline to strongly alkaline conditions. Two shorter term experiments with the same reactants (26 and 113 days) produced a mixture of lizardite and talc that formed a thin coating on relict olivine and Opx grains, with virtually no generation of H2. Comparison of the results with reaction path models indicates that the Opx reacted about two times faster than olivine, which contrasts with some previous studies that suggested olivine should react more rapidly than Opx at the experimental conditions. The models also indicate that the long-term experiment transitioned from producing serpentine ± talc early in the early stages to precipitation of serpentine plus magnetite, with brucite beginning to precipitate only late in the experiment as Opx was depleted. The results indicate that overall reaction of olivine and Opx was initially relatively slow, but reaction rates accelerated substantially when the pH transitioned to strongly alkaline conditions. Serpentine and brucite precipitated from the olivine-Opx mixture had higher Fe contents than observed in olivine-only experiments at mildly alkaline pH, but had comparable Fe contents to reaction of olivine at strongly alkaline pH implying that higher pH may favor greater partitioning of Fe into serpentine and brucite and less into magnetite. Despite the presence of brucite, dissolved silica activities during the long-term olivine-Opx experiment maintained levels well above serpentine-brucite equilibrium. Instead, silica activities converged on levels close to metastable equilibrium between brucite and olivine. It is proposed that silica levels during the experiment may have been regulated by exchange of SiO2 between the fluid and a silica-depleted, brucite-like surface layer on dissolving olivine.
    Description: This research was supported by the U. S. National Science Foundation Marine Geology and Geophysics program through grant NSF-OCE 0927744 and by the NASA Astrobiology Institute through Cooperative Agreement NNA15BB02A. Additional support to TMM from the Hanse Wissenschaftskolleg (Delmenhorst, Germany) at an early stage of this project is gratefully acknowledged. FK acknowledges support through Grant NSF-OCE 1427274. The IRM is supported by the Instruments and Facilities Program of the NSF Division of Earth Science. This is IRM contribution 1711. We very much appreciate the comments of Fabrice Brunet, Gleb Pokrovski and an anonymous reviewer that helped us refine our interpretations and improve communication of the results.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Babbin, A. R., Buchwald, C., Morel, F. M. M., Wankel, S. D., & Ward, B. B. Nitrite oxidation exceeds reduction and fixed nitrogen loss in anoxic Pacific waters. Marine Chemistry, 224, (2020): 103814, doi:10.1016/j.marchem.2020.103814.
    Description: The diversity of nitrogen-based dissimilatory metabolisms in anoxic waters continues to increase with additional studies to the marine oxygen deficient zones (ODZs). Although the microbial oxidation of nitrite (NO2–) has been known for over a century, studies of the pathways and microbes involved have generally proceeded under the assumption that nitrite oxidation to nitrate requires dioxygen (O2). Anaerobic NO2– oxidation until now has been conclusively shown only for anammox bacteria, albeit only as a limited sink for NO2– in their metabolism compared to the NO2– reduced to N2. Here, using direct experimental techniques optimized for replicating in situ anoxic conditions, we show that NO2– oxidation is substantial, widespread, and consistent across the ODZs of the eastern tropical Pacific Ocean. Regardless of the specific oxidant, NO2– oxidation rates are up to an order of magnitude larger than simultaneous N2 production rates for which these zones are known, and cannot be explained by anammox rates alone. Higher rates of NO2– oxidation over reduction in anoxic waters are paradoxical but help to explain how anammox rates can be enhanced over denitrification in shallow anoxic waters (σθ 〈 26.4) at the edge of the ODZs but not within the ODZ core. Furthermore, nitrite oxidation may be the key to reconciliation of the perceived imbalance of the global fixed nitrogen loss budget.
    Description: This work was funded by National Science Foundation grants OCE–1029951 to B.B.W, BIO–1402109 to A.R.B., and OCE-1260373 to S.D.W. Additional financial support to A.R.B. was provided by Simons Foundation grant 622065 and the generous contributions of Dr. Bruce L. Heflinger.
    Keywords: Nitrogen cycling ; Oxygen deficient zones ; Nitrite oxidation ; Denitrification ; Anammox
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., & Wu, L. Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth and Planetary Science Letters, 541, (2020): 11629, doi:10.1016/j.epsl.2020.116294.
    Description: Reconstructing the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM) is essential for understanding glacial-interglacial climate change and the carbon cycle. However, despite many previous studies, uncertainties remain regarding the glacial water mass distributions in the Atlantic and the AMOC intensity. Here we use an isotope enabled ocean model with multiple geotracers (δ 13 C,E Νd,231 Pa/ 230Th,δ 18 Ο and Δ 14 C) and idealized water tracers to study the potential constraints on LGM ocean circulation from multiple proxies. Our model suggests that the glacial Atlantic water mass distribution can be accurately constrained by the air-sea gas exchange signature of water masses (δ13 C AS), but E Nd might overestimate the North Atlantic Deep Water (NADW) percentage in the deep Atlantic probably because of the boundary source of Nd. A sensitivity experiment with an AMOC of similar geometry but much weaker strength suggests that the correct AMOC geometry is more important than the AMOC strength for simulating the observed glacial δ13 C AS and E Nd and distributions. The kinematic tracer 231Pa/230Th is sensitive to AMOC intensity, but the interpretation might be complicated by the AMOC geometry and AABW transport changes during the LGM. δ 18 Ο in the benthic foraminifera (δ 18 Οc) from the Florida Straits provides a consistent measure of the upper ocean boundary current in the model, which potentially provides an unambiguous method to reconstruct glacial AMOC intensity. Finally, we propose that the moderate difference between AMOC intensity at LGM and PD, if any, is caused by the competition of the responses to CO2 forcing and continental ice sheet forcing.
    Description: We thank two anonymous reviewers for their useful and constructive comments. We also thank Editor Dr Laura F. Robinson for handling the manuscript. This work is supported by National Science Foundation of China No. 41630527, US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432). We would like to acknowledge the high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) and Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and from Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao). Data used to produce the results in this study can be obtained from HPSS at CISL: /home/sgu28/CTRACE_decadal or by contacting the authors.
    Keywords: Last Glacial Maximum ; AMOC ; Water mass ; Multi-proxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-01-07
    Description: The Q10 temperature coefficient, which is widely used in scientific literature, is a measure of the temperature sensitivity of chemical reaction rates or biological processes. However, the conclusions drawn from applying this coefficient to experimental data obtained from biological processes are not universal. In many biological processes, Q10 values are often discordant with the results predicted by the Arrhenius law. The hypothesis tested in the present study is that this problem arises mainly from the fact that the Q10 coefficient is defined by the ratio between rates described by exponential laws instead of power laws. Considering this hypothesis and the need to review the mathematical laws and models currently used to describe rates and Q10 coefficients, we propose a model beyond the usual Arrhenius theory or exponential decay law herein. The proposed mathematical model is based on the theory of deformed exponential functions, with the ordinary Q10 model representing the conventional exponential function. Therefore, all results following the standard model remain valid. Moreover, we include a Q10 free open-source code, written in Python, and compatible with Windows, Linux and macOS platforms. The validation of the proposed model and confirmation of the given hypothesis were performed based on the following temperature-dependent biological processes: soil organic carbon (SOC) decomposition (which is essential to forecast the impact of climate change on terrestrial ecosystems); the metabolism of Arctic zooplankton; physiological processes of the respiratory and cardiovascular systems; rate of oxygen consumption in mitochondria of the eurythermal killifish Fundulus heteroclitus, and leaf respiration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-01-07
    Description: Since 2010, the Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors the earth emission at L-Band. It provides the longest time series of Sea Surface Salinity (SSS) from space over the global ocean. However, the SSS retrieval at high latitudes is a challenge because of the low sensitivity L-Band radiometric measurements to SSS in cold waters and to the contamination of SMOS measurements by the vicinity of continents, of sea ice and of Radio Frequency Interferences. In this paper, we assess the quality of weekly SSS fields derived from swath-ordered instantaneous SMOS SSS (so called Level 2) distributed by the European Space Agency. These products are filtered according to new criteria. We use the pseudo-dielectric constant retrieved from SMOS brightness temperatures to filter SSS pixels polluted by sea ice. We identify that the dielectric constant model and the sea surface temperature auxiliary parameter used as prior information in the SMOS SSS retrieval induce significant systematic errors at low temperatures. We propose a novel empirical correction to mitigate those sources of errors at high latitudes. Comparisons with in-situ measurements ranging from 1 to 11 m depths spotlight huge vertical stratification in fresh regions. This emphasizes the need to consider in-situ salinity as close as possible to the sea surface when validating L-band radiometric SSS which are representative of the first top centimeter. SSS Standard deviation of differences (STDD) between weekly SMOS SSS and in-situ near surface salinity significantly decrease after applying the SSS correction, from 1.46 pss to 1.28 pss. The correlation between new SMOS SSS and in-situ near surface salinity reaches 0.94. SMOS estimates better capture SSS variability in the Arctic Ocean in comparison to TOPAZ reanalysis (STDD between TOPAZ and in-situ SSS = 1.86 pss), particularly in river plumes with very large SSS spatial gradients.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-01-07
    Description: The exhumation of peridotite rocks in oceanic transform zones passes by the rheological transition between the ductile and brittle deformation until the complete emplacement in the oceanic lithosphere. The São Pedro and São Paulo Archipelago (SPSPA), in the Equatorial Atlantic, records the deformational products of ductile, brittle and the rocks/fluid interaction generating specific structures in each domain. The deformational stages are related to the transpressional and transtensional geodynamics of São Paulo Transform Fault. Firstly, during transpression, exhumation occurs associated with the ductile domain causing intense mylonitization in temperatures between ~700° and 800 °C, defined by olivine and orthopyroxene recrystallization. The interaction with fluids initially originated from the mantle generates amphibole and oxide-rich layers marking the passage to a semi-brittle deformation. The continuation of peridotite exhumation, associated with an NW-SE shortening and transpressional led to a higher availability of hydrothermal fluids. As a consequence, four serpentinization episodes are recorded, which are associated with semi-brittle to brittle transition under temperatures between 300° and 400 °C. Finally, the complete exhumation and establishment of brittle mechanisms led to carbonatation phase near the surface, with temperatures ranging from 300° to 150 °C. The active NW-SE tectonic stress generated E-W strike-slip faults that were filled by carbonates recording the final exhumation stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Elsevier
    In:  Environmental Technology & Innovation, 17 . Art.-Nr.: 100567.
    Publication Date: 2022-01-07
    Description: The present state of constantly increasing plastic pollution is the major concern of scientific researchers. The conventional techniques applied (i.e., burning and landfilling) to get plastic degraded from the environment are inadequate due to harmful byproducts and limited to its recycling. In this review, we have recapitulated recent biotechnological approaches, including synthetic microbial consortia, systems biology tools, and genetic engineering techniques which can pave the path towards the plastic bioremediation and degradation. Moreover, potential plastic degrader microbes and their degradation pathways are also summarized. Lastly, this review focuses on enhancing the understanding of the degradation ability of microorganisms using contemporary biotechnological tools.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-01-07
    Description: Atmospheric deposition of aerosols to the ocean provides an important pathway for the supply of vital micronutrients, including trace metals. These trace metals are essential for phytoplankton growth, and therefore their delivery to marine ecosystems can strongly influence the ocean carbon cycle. The solubility of trace metals in aerosols is a key parameter to better constrain their potential impact on phytoplankton growth. To date, a wide range of experimental approaches and nomenclature have been used to define aerosol trace metal solubility, making data comparison between studies difficult. Here we investigate and discuss several laboratory leaching protocols to determine the solubility of key trace metals in aerosol samples, namely iron, cobalt, manganese, copper, lead, vanadium, titanium and aluminium. Commonly used techniques and tools are also considered such as enrichment factor calculations and air mass back-trajectory projections and recommendations are given for aerosol field sampling, laboratory processing (including leaching and digestion) and analytical measurements. Finally, a simple 3-step leaching protocol combining commonly used protocols is proposed to operationally define trace metal solubility in aerosols. The need for standard guidelines and protocols to study the biogeochemical impact of atmospheric trace metal deposition to the ocean has been increasingly emphasised by both the atmospheric and oceanographic communities. This lack of standardisation currently limits our understanding and ability to predict ocean and climate interactions under changing environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-01-07
    Description: Highlights • Regional brain iron concentrations are heterogenous. • Regional distribution of iron is most consistent with ferritin mRNA expression. • SEC-ICP-MS reveals the protein masses that cytosolic iron is associated with. • More than 50 % of cytosolic iron is associated with ferritin. Iron is essential for brain development and health where its redox properties are used for a number of neurological processes. However, iron is also a major driver of oxidative stress if not properly controlled. Brain iron distribution is highly compartmentalised and regulated by a number of proteins and small biomolecules. Here, we examine heterogeneity in regional iron levels in 10 anatomical structures from seven post-mortem human brains with no apparent neuropathology. Putamen contained the highest levels, and most case-to-case variability, of iron compared with the other regions examined. Partitioning of iron between cytosolic and membrane-bound iron was generally consistent in each region, with a slightly higher proportion (55 %) in the ‘insoluble’ phase. We expand on this using the Allen Human Brain Atlas to examine patterns between iron levels and transcriptomic expression of iron regulatory proteins and using quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry to assess regional differences in the molecular masses to which cytosolic iron predominantly binds. Approximately 60 % was associated with ferritin, equating to approximately 25 % of total tissue iron essentially in storage. This study is the first of its kind in human brain tissue, providing a valuable resource and new insight for iron biologists and neuroscientists, alike.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-01-07
    Description: The aim of this study was to investigate the syntrophic methanogenesis from the perspective of energy transfer and competition. Effects of redox materials and redox potential on direct interspecies electron transfer (DIET) were examined through thermodynamic analysis based on the energy distribution principle. Types of redox materials could affect the efficiency of DIET via changing the total energy supply of the syntrophic methanogenesis. Decreasing system redox potential could facilitate DIET through increasing the total available energy. The competition between hydrogenotrophic methanogens and DIET methanogens might be the reason for the low proportion of the DIET pathway in the syntrophic methanogenesis. A facilitation mechanism of DIET was proposed based on the energy distribution. Providing sufficient electrons, inhibiting hydrogenotrophic methanogens and adding more competitive redox couples to avoid hydrogen generation might be beneficial for the facilitation of DIET.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-01-07
    Description: Highlights • NH4NO3, Tris-HCl, and NH4CH3COO are optimal buffers for use in SEC-ICP-MS metalloprotein analyses. • Optimal range of buffer concentration is 50–200 mM in SEC-ICP-MS. • 100 mM concentration reduces both protein column interactions and ICP-MS maintenance. • Dextran-based columns are best suited for the analysis of apo-copper proteins. The correct identification of the metalloproteins present in human tissues and fluids is essential to our understanding of the cellular mechanisms underpinning a host of health disorders. Separation and analysis of biological samples are typically done via size exclusion chromatography hyphenated with inductively coupled plasma-mass spectrometry (SEC-ICP-MS). Although this technique can be extremely effective in identification of potential metalloproteins, the choice of mobile phase may have a marked effect on results, results by adversely affecting metal-protein bonds of the metalloproteins of interest. To assess the choice of mobile phase on SEC-ICP-MS resolution and the resulting metalloproteome pattern, we analysed several different sample types (brain homogenate; Cu/Zn-superoxide dismutase (SOD1); a molecular weight standard mix containing ferritin (Ft), ceruloplasmin (Cp), cytochrome c (CytC), vitamin B12 (B12) and thyroglobulin (Tg) using six different mobile phase conditions (200 mM, pH 7.5 solutions of ammonium salts nitrate, acetate, and sulfate; HEPES, MOPS and Tris-HCl). Our findings suggest that ammonium nitrate, ammonium acetate and Tris-HCl are optimal choices for the mobile phase, with the specific choice being dependent on both the number of samples and method of detection that is hyphenated with separation. Furthermore, we found that MOPS, HEPES and ammonium sulfate mobile phases all caused significant changes to peak resolution, retention time and overall profile shape. MOPS and HEPES, in particular, produced additional Fe peaks that were not detected with any of the other mobile phases that were investigated. As well as this, MOPS and HEPES both caused significant concentration dependent matrix suppression of the internal standard.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-01-07
    Description: Symbiotic relationships range from parasitic to mutualistic, yet all endosymbionts face similar challenges, including evasion of host immunity. Many symbiotic organisms have evolved similar mechanisms to face these challenges, including manipulation of the host's transforming growth factor-beta (TGFβ) pathway. Here we investigate the TGFβ pathway in scelaractinian corals which are dependent on symbioses with dinoflagellates from the family Symbiodiniaceae. Using the Caribbean coral, Orbicella faveolata, we explore the effects of enhancement and inhibition of the TGFβ pathway on host gene expression. Following transcriptomic analyses, we demonstrated limited effects of pathway manipulation in absence of immune stimulation. However, manipulation of the TGFβ pathway significantly affects the subsequent ability of host corals to mount an immune response. Enhancement of the TGFβ pathway eliminates transcriptomic signatures of host coral immune response, while inhibition of the pathway maintains the response. This is, to our knowledge, the first evidence of an immunomodulatory role for TGFβ in a scelaractinian coral. These findings suggest variation in TGFβ signaling may have implications in the face of increasing disease prevelance. Our results suggest that the TGFβ pathway can modulate tradeoffs between symbiosis and immunity. Further study of links between symbiosis, TGFβ, and immunity is needed to better understand the ecological implications of these findings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-01-07
    Description: Highlights • Microplastics act as anthropogenic vectors of trace metals in freshwaters. • Adsorption capacity of microplastics is enhanced by biofilms but is not strong as natural substrates. • Biofilms alter the adsorption kinetics and mechanisms of trace metals onto microplastics. • Microplastics enhance exchange rates of trace metals between water and solid materials. • Anthropogenic substrate is necessary in evaluation of migration and fate of trace metals. Microplastics (MPs) are ubiquitous in freshwater environments, and represent an emerging anthropogenic vector for contaminants, such as trace metals. In this study, virgin expanded polystyrene (PS) particles were placed in a eutrophic urban lake and a reservoir serving as the resource of domestic water for 4 weeks, to develop biofilms on the surface. For comparison, natural adsorbents in the form of suspended particles and surficial sediment were also sampled from these waterbodies. The trace metal adsorption properties of anthropogenic (virgin and biofilm covered microplastics) and natural substrates were investigated and compared via batch adsorption experiments. The adsorption isotherms fitted the Langmuir model, revealed that biofilms could enhance the trace metal adsorption capacity of MPs. However, natural substrates still had a greater adsorption capacity. Biofilms also alter the adsorption kinetics of trace metals onto MPs. The process of adsorption onto virgin MPs was dominated by intraparticle diffusion, whereas film diffusion governed adsorption onto biofilm covered microplastics and natural substrates. The trace metal adsorption of all the substrates was significantly dependent on pH and ionic strength. The adsorption mechanisms were further analyzed by SEM-EDS and FT-IR. The enhancement of adsorption was mainly attributed to complexation with functional groups contained in the biofilms, including carboxyl, amino, and phenyl-OH. Collectively, biofilm development intensifies the role of MPs in the migration and fate of trace metals in freshwater, since it does not give MPs an edge over natural substrates in adsorption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-01-07
    Description: Highlights • New insights of CH4 and CO2 hydrates are explored using MD strategy. • The bubble evolution appears to be important over dissociation process. • RDF, MSD, AOP, and diffusion coefficient can be used to examine hydrate stability. • The most stable structure of CH4 and CO2 molecules in the gas hydrate is found. • A promising match is noticed between the MD and literature findings. A comprehensive knowledge and precise estimation of the dynamic, structural, and thermodynamic characteristics of hydrates are needed to assess the stability of gas hydrates. Thermodynamic model and experimental studies can be utilized to compute the physical and dynamic properties of hydrate structures. The use of molecular dynamic (MD) simulation is a well-established approach in gas hydrate studies at the atomic level where the properties of interest are obtained from the numerical solution of Newtonian equations. The present work uses MD simulations by employing the constant temperature-constant pressure (NPT), constant temperature-constant volume (NVT) conditions, and the consistent valence force field (CVFF) to monitor the stability and decomposition of methane and carbon dioxide gas hydrates with different compositions. The effects of temperature and composition on the hydrate stability are investigated. In this study, we also compute the radial distribution function, mean square displacement, diffusion coefficient, lattice parameter, potential energy, dissociation enthalpy as well as the density of methane and carbon dioxide under various thermodynamic and process conditions. The formation of methane and carbon dioxide bubbles is studied to investigate bubble evolution during hydrate dissociation. The sizes of methane and carbon dioxide bubbles are not the same due to different solubility conditions of methane and carbon dioxide in liquid water. In addition, the influences of pressure and temperature on the lattice parameter and density of clathrate hydrates are discussed. The obtained results are consistent with previous theoretical and experimental findings, implying that the methodology followed in this work is reliable. The most stable arrangement of methane and carbon dioxide molecules in the gas hydrate is found. The insights/findings of this study might be useful to further understand detailed transport phenomena (e.g., molecular interactions, gas production rate, carbon dioxide replacement, and carbon dioxide capture) involved in the process of carbon dioxide injection into gas hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-01-07
    Description: Deep-ocean islands have long been associated with the generation of oceanic eddies in their wakes. However, their interaction with incoming eddies has seldom been considered. This study focuses on the characterization of background and locally generated mesoscale eddies in the Cabo Verde archipelago between 2003 and 2014. Special attention is given to the interaction of incoming eddies with the bathymetry of the islands, along with their impacts on the local generation of eddies. Island-induced wind-shear effects are also considered. In addition, some examples of the biological response to background and locally generated eddies are discussed. This is achieved by combining remote-sensing satellite observations for wind, sea surface height, and chlorophyll-a (Chla) surface concentrations. The results show that the interaction between incoming background eddies and the archipelago is a recurrent phenomenon, which results in eddy deflection, splitting, merging, intensification, and termination (sorted by highest to lowest number of occurrences). Local island-induced disturbances are also significant, mainly due to atmospheric effects. Such processes result in the generation of island-induced eddies and in wind-mediated eddy intensification and confinement, more often observed in the leeward group. Nonetheless, it is strongly suggested that many of the locally generated eddies are a direct product or by-product of the interaction of background eddies with the islands. With respect to the biological realm, a locally generated cyclonic eddy is observed to originate a pronounced phytoplankton bloom in the vicinity of the tallest island. Nonetheless, background eddies generated off the African coast are often associated with enhanced Chla concentrations when they intersect the archipelago. Such observations challenge the idea that local biological productivity in deep oceanic islands is exclusively driven by island-induced mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-01-07
    Description: In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-31
    Description: One of the best-known greenhouse gases, CO2, has been increasing in the last decade of about 1.7%. To overcome the well-known global problems related to this gas, researchers of all over the world are working very hard in order to develop any strategies to seriously solve this issue. In this chapter, the authors focus their attention on one of the possible solutions to the problem: bacteria that are CO2 capture cells which have carried out this task since ancient times. In our work we make an excursus on all the biochemical processes of CO2 capture carried out by bacteria, ending with a detailed comparison of the most studied enzymes. One of the alternatives will be to genetically modify the organisms known to date to speed up their conversion process.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-11-18
    Description: The Pomici di Avellino eruption is the Plinian event of Vesuvius with the highest territorial impact. It affected an area densely inhabited by Early Bronze Age human communities and resulted in the long- term abandonment of an extensive zone surrounding the volcano. Traces of human life beneath the eruption products are very common throughout the Campania Region. A systematic review of the available archaeological data, the study of geological and archaeological sequences exposed in excava- tions, and the reconstruction of the volcanic phenomena affecting single sites has yielded an under- standing of local effects and their duration. The archaeological and volcanological analyses have shown that the territory was rapidly abandoned before and during the eruption, with rare post-eruption at- tempts at resettlement of the same sites inhabited previously. The definition of the distribution and stratigraphy of alluvial deposits in many of the studied sequences leads us to hypothesise that the scarce presence of humans during phases 1 and 2 of the Middle Bronze Age in the wide area affected by the eruption was due to diffuse phenomena of remobilisation of the eruption products, generating long- lasting alluvial processes. These were favoured by the deposition of loose fine pyroclastic material on the slopes of the volcano and the Apennines, and by climatic conditions. A significant resettlement of the territory occurred only hundreds of years after the Pomici di Avellino eruption, during phase 3 of the Middle Bronze Age. This study show the role of volcanic and related phenomena from a Plinian event in the settlement dynamics of a complex territory like Campania.
    Description: Published
    Description: 231-244
    Description: 1V. Storia eruttiva
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Plinian eruption Eruption impact ; Volcanoclastic mass flow ; Vesuvius ; Bronze Age ; Eruption impact
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-12-21
    Description: During the last few decades, 4D volcano gravimetry has shown great potential for illuminating subsurface processes at active volcanoes (including some that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide unique information regarding such processes as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, 4D volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravity at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of 4D gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of 4D volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from, campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of 4D volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.
    Description: Published
    Description: 146-179
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: time-variable microgravimetry ; volcano gravimetry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-03-16
    Description: The Nevado del Ruiz volcano is considered one of the most active volcanoes in Colombia, which can potentially threaten approximately 600,000 inhabitants. The existence of a glacier and several streams channelling in some main rivers, flowing downslope, increases the risk for the population living on the flank of the volcano in case of unrest, because of the generation of lahars and mudflows. Indeed, during the November 1985 subplinian eruption, a lahar generated by the sudden melting of the glacier killed twenty thousand people in the town of Armero. Moreover, the involvement of the local hydrothermal system has produced in the past phreatic and phreatomagmatic activity, as occurred in 1989. Therefore, the physico-chemical conditions of the hydrothermal system as well as its contribution to the shallow thermal groundwater and freshwater in terms of enthalpy and chemicals require a close monitoring. The phase of unrest occurred since 2010 and culminated with an eruption in 2012, after several years of relative stability, stillmaintains amoderate alert, as required by the high seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and stream water, located at 2600–5000 m of elevation on the slope of Nevado del Ruiz, analyzed for water chemistry and stable isotopes. Some of these waters are typically steam-heated (low pH and high sulfate content) by the vapour probably separating from a zoned hydrothermal system. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated themass rate of hydrothermal steam discharging in the different springs. The composition of the hottest thermal spring (Botero Londono) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250 °C and low salinity (Cl ~1500 mg/l), which suggest, along with the retrieved isotope composition, a chiefly meteoric origin. The vapour discharged at the steam vent “Nereidas” (3600 m asl) is hypothesized to be separated from a high temperature hydrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, aswell as its pH and fO2. The vapour feeding Nereidas would separate from a biphasic hydrothermal system characterized by the following parameters: t= 315 °C, P= 15 MPa, NaCl = 10 wt%, CO2=5 wt%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, pH would approach the value of 1.5 while fO2 would correspond to the FeO-Fe2O3 buffer. Chlorine content is estimated at 10,300mg/l. Changes in the magmatic input into the hydrothermal system couldmodify its degree of vapourization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation.
    Description: Published
    Description: 40-53
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Nevado del Ruiz ; Water isotopes ; Geothermal system ; Equilibrium modelling ; Water chemistry ; 04.08. Volcanology ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-03-02
    Description: Since hydrofracking is used for shale gas production, human caused seismicity have become a subject of increasing interest. Seismic monitoring is common for earthquakes generated by human operations like mining, reservoir impoundments, hydrocarbon and geothermal production, as well as reinjection of fluids. In Italy the Mw6.1 Reggio-Emilia earthquake of 20 May 2012 triggered particular interest in anthropogenic seismicity. It also raised the question of whether hydrocarbon exploitation induced variations in crustal stress that influenced the generation of these earthquakes. The Italian government commissioned a technical report compiling cases of documented and hypothesized anthropogenic seismicity. Following a governmental request, a technical report was compiled, describing the relation between anthropogenic activities and induced or triggered seismicity in Italy. This paper reviews these cases, on the basis of previously published works, and additional new analyses. Three cases of seismicity in Central Italy, occurring close to anthropogenic activities, are: (i) extraction of carbon dioxide (CO_2) from a borehole near Pieve Santo Stefano, (ii) the impoundment of the Montedoglio reservoir and (iii) geothermal energy production at Mt. Amiata. Since the sites are situated in the seismically active area of the Northern Apennines, we illustrate both by standard seismological analysis as well as by modeling to tackle the challenge of discriminating anthropogenic from natural seismicity.
    Description: Published
    Description: 80-94
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: triggered/induced seismicity ; Italy ; CO2 extraction ; reservoir impoundment ; Mt. Amiata ; Upper Tiber Valley ; Solid Earth, Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-03-19
    Description: Syneruptive gas flux time series can, in principle, be retrieved from satellite maps of SO2 collected during and immediately after volcanic eruptions, and used to gain insights into the volcanic processes which drive the volcanic activity. Determination of the age and height of volcanic plumes are key prerequisites for such calculations. However, these parameters are challenging to constrain using satellite-based techniques. Here, we use imagery from OMI and GOME-2 satellite sensors and a novel numerical procedure based on back-trajectory analysis to calculate plume height as a function of position at the satellite measurement time together with plume injection height and time at a volcanic vent location. We applied this new procedure to three Etna eruptions (12 August 2011, 18 March 2012 and 12 April 2013) and compared our results with independent satellite and ground-based estimations. We also compare our injection height time-series with measurements of volcanic tremor, which reflects the eruption intensity, showing a good match between these two datasets. Our results are a milestone in progressing towards reliable determination of gas flux data from satellite-derived SO2 maps during volcanic eruptions, which would be of great value for operational management of explosive eruptions.
    Description: 1) European Research Council under the European Union's Seventh Framework Programme (FP/2.007-2013)/ERC Grant Agreement no. 279802, project 283 CO2Volc. 2) MEDiterranean SUpersite Volcanoes 280 (MED-SUV) WP 3.3.3
    Description: Published
    Description: 79-91
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Volcanic SO2 ; Trajectory modelling ; Remote sensing ; Volcanic tremor ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-06-30
    Description: Volcanic activity exhibits a wide range of eruption styles, from relatively slow effusive eruptions that produce lava flows and lava domes, to explosive eruptions that can inject large volumes of fragmented magma and volcanic gases high into the atmosphere. Although controls on eruption style and scale are not fully understood, previous research suggests that the dynamics of magma ascent in the shallow subsurface (〈 10 km depth) may in part control the transition from effusive to explosive eruption and variations in eruption style and scale. Here we investigate the initial stages of explosive eruptions using a 1D transient model for magma ascent through a conduit based on the theory of the thermodynamically compatible systems. The model is novel in that it implements finite rates of volatile exsolution and velocity and pressure relaxation between the phases. We validate the model against a simple two-phase Riemann problem, the Air-Water Shock Tube problem, which contains strong shock and rarefaction waves. We then use the model to explore the role of the aforementioned finite rates in controlling eruption style and duration, within the context of two types of eruptions at the Soufrière Hills Volcano, Montserrat: Vulcanian and sub-Plinian eruptions. Exsolution, pressure, and velocity relaxation rates all appear to exert important controls on eruption duration. More significantly, however, a single finite exsolution rate characteristic of the Soufrière Hills magma composition is able to produce both end-member eruption durations observed in nature. The duration therefore appears to be largely controlled by the timescales available for exsolution, which depend on dynamic processes such as ascent rate and fragmentation wave speed.
    Description: Published
    Description: 110-139
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Magma ascent ; Conduit dynamics ; Soufrière Hills Volcano ; Finite-rate exsolution ; Pressure relaxation ; Velocity relaxation ; 04.08. Volcanology ; Numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-01-25
    Description: A combined approach merging stable isotopes and fatty acids was applied to study anthropogenic pollution in the Río Negro estuary. Fatty acid markers of vegetal detritus indicated considerable allochthonous inputs at freshwater sites. Correlative evidence of diatom fatty acids, δ13C, chlorophyll and particulate organic matter suggested the importance of diatoms for the autochthonous organic matter production at the river mouth. Low δ15N values (~0�) and high fatty acid 18:1(n-7) concentrations in the suspended particulate matter, in combination with the peaks of coliforms and ammonium, indicated a strong impact of untreated sewage discharge. The 15N depletion was related to oxygen-limited ammonification processes and incorporation of 15N depleted ammonium to microorganisms. This work demonstrates that the combined use of lipid and isotopic markers can greatly increase our understanding of biogeochemical factors and pollutants influencing estuaries, and our findings highlight the urgent need for water management actions to reduce eutrophication.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-04-03
    Description: Harde (2017) proposes an alternative accounting scheme for the modern carbon cycle and concludes that only 4.3% of today's atmospheric CO2 is a result of anthropogenic emissions. As we will show, this alternative scheme is too simple, is based on invalid assumptions, and does not address many of the key processes involved in the global carbon cycle that are important on the timescale of interest. Harde (2017) therefore reaches an incorrect conclusion about the role of anthropogenic CO2 emissions. Harde (2017) tries to explain changes in atmospheric CO2 concentration with a single equation, while the most simple model of the carbon cycle must at minimum contain equations of at least two reservoirs (the atmosphere and the surface ocean), which are solved simultaneously. A single equation is fundamentally at odds with basic theory and observations. In the following we will (i) clarify the difference between CO2 atmospheric residence time and adjustment time, (ii) present recently published information about anthropogenic carbon, (iii) present details about the processes that are missing in Harde (2017), (iv) briefly discuss shortcoming in Harde's generalization to paleo timescales, (v) and comment on deficiencies in some of the literature cited in Harde (2017).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-10-01
    Description: In paleoenvironmental studies, the mineralogical composition of sediments is an important indicator. In combination with other indicators, they contribute to the understanding of changes in sediment sourcing as well as in weathering and depositional processes. Fourier transforminfrared spectroscopy (FTIRS) spectra contain information on mineralogical composition because eachmineral has a unique absorption pattern in the mid-IR range. Although easily obtained, FTIR spectra are often too complex to infermineral concentrations directly. In this study, we use a calibration set of ca. 200 sediment samples conventionally measured using X-ray diffraction (XRD) in order to developmultivariate, partial least squares (PLS) regressionmodels relatingmineral contents to sediment spectra. Good correlations were obtained for the most common minerals (e.g. quartz, K-feldspar, illite, plagioclase, smectite, calcite). Correlation coefficients ranged from 0.85 to 0.92, coefficients for the validation varied from 0.64 to 0.80, the number of latent variables (PLS regression components) in the models ranged between 3 and 7 and the range of variation of the RMSEcv gradient was from 15.28 to 5.7.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-03-29
    Description: Most palaeo-deep-water reconstructions are based on geochemical information stored in the calcareous shells of Cibicidoides species but hardly anything is known about their life cycle, population dynamics or ecology. The number of specimens of a single Cibicidoides species can locally be very limited and species may be lacking completely during certain intervals in the geological past. As a consequence, geochemical analyses are often carried out on lumped Cibicidoides spp. assuming that they share the same epizoic to epifaunal habitat and precipitated their shell in comparable offsets to surrounding bottom water mass properties. However, there is a growing body of evidence that particularly Cibicidoides pachyderma and its morphotypes C. mundulus and C. kullenbergi, may not be reliable bottom water recorders. We have recently developed aquaria that allowed, for the first time, observations of Cibicidoides pachyderma var. C. mundulus under in situ pressure and temperature. Experiments were carried out with and without artificial sediments to simulate soft sediments and rocks, respectively. Seawater was set to pH 8 and pH 7.4 to simulate more or less particulate carbon export or more or less ventilation of bottom water. Our experiments demonstrate that C. mundulus may opt for an epifaunal or an infaunal habitat depending on elapsed time following physical disturbance, pH, current activity, the availability of sediments and growth. The specimen's initial response following transfer from atmospheric pressure into the high-pressure aquaria was to immerse into the sediment or to cover more or less parts of the test with aggregated sediments or algae. However, within 24 h a strong rheotaxis became apparent and most specimens moved to sites of increased current activity under normal pH conditions (pH 8). Only few specimens remained in algae cysts or in the sediment in the pH-8 experiment. On the contrary, all specimens under pH 7.4 agglutinated a firm sediment cyst around their test and remained infaunal throughout the experimental period of three months. Independent of pH, growth was only observed in specimens that lived within an agglutinated cyst or infaunal. A solid thick cyst covered the specimens of the pH 7.4 experiment throughout the experiment and possibly restricted water exchange between the in-cyst water and the surrounding artificial bottom water mass. We suggest that a more fragile and possibly more porous sedimentary envelope may, at least temporally, have covered the infaunal specimens under pH 8 but no evidence for this was found upon termination of the experiment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Ecological MOdelling, Elsevier, 387, pp. 17-26
    Publication Date: 2020-01-21
    Description: Salpa thompsoni is an important grazer in the Southern Ocean. It is found from the Subtropical Convergence southward to the coastal Antarctic Seas but being most abundant in the Antarctic Polar Frontal Zone. Low temperatures appear to negatively affect their development, limiting their ability to occur in the krill dominated high Antarctic ecosystems. Yet reports indicate that with ocean warming S. thompsoni have experienced a southward shift in their distribution. As they are efficient filter feeders, this shift can result in large-scale changes in the Southern Ocean ecosystem by increasing competitive or predatory interactions with Antarctic krill. To explore salp bloom dynamics in the Southern Ocean a size-structured S. thompsoni population model was developed with growth, consumption, reproduction and mortality rates dependent on temperature and chlorophyll a conditions. The largest uncertainties in S. thompsoni population ecology are individual and population growth rates, with a recent study identifying the possibility that the life cycle could be much shorter than previously considered. Here we run a suite of hypothesis scenarios under various environmental conditions to determine the most appropriate growth rate. Temperature and chlorophyll a were sufficient drivers to recreate seasonal and interannual dynamics of salp populations at two locations. The most suitable growth model suggests that mean S. thompsoni growth rates are likely to be ∼1mm body length d−1, 2-fold higher than previous calculations. S. thompsoni biomass was dependent on bud release time, with larger biomass years corresponding to bud release occurring during favorable environmental conditions; increasing the survival and growth of blastozooids and resulting in higher embryo release. This model confirms that it is necessary for growth and reproductive rates to be flexible in order for the salp population to adapt to varying environmental conditions and provides a framework that can examine how future salp populations might respond to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Encyclopedia of the Anthropocene, Encyclopedia of the Anthropocene, Elsevier, 3, pp. 217-228
    Publication Date: 2020-02-09
    Description: Human influence on the climate system, through greenhouse gas emissions, is clear and climate warming unequivocal. Recent climate change has had widespread impacts on natural systems including shifts in the ranges (distributions) of land, freshwater, and marine organisms. Effects of these biogeographical shifts transcend single-species to impact on ecosystem goods and services resulting in significant social and economic costs to human communities. In this article we provide a general overview of these factors by reviewing current evidence from terrestrial, freshwater, and marine ecosystems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-02-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-05
    Description: Fossil carbonate skeletons of marine organisms are archives for understanding the development and evolution of palaeo-environments. However, the correct assessment of past environment dynamics is only possible when pristine skeletons and their biogenic characteristics are unequivocally distinguishable from diagenetically-alteredskeletal elements and non-biogenic features. In this study, we extend our work on diagenesis of biogenic aragonite (Casella et al. 2017) to the investigation of biogenic low-Mg calcite using brachiopod shells. We examined and compared microstructural characteristics inducedby laboratory-based alteration to structural features derived from diagenetic alteration in natural environments. We used four screening methods: cathodoluminescence (CL), cryogenic and conventional field emission-scanning electronmicroscopy (FE-SEM), atomic force microscopy (AFM) and electron backscatter diffraction (EBSD).We base our assessments of diagenetic alteration and overprint on measurements of, a) images of optical overprint signals, b) changes in calcite crystal orientation patterns, and c) crystal co-orientation statistics. According to the screening process, altered and overprinted samples define two groups. In Group 1 the entire shell is diagenetically overprinted, whereas in Group 2 the shell contains pristine as well as overprinted parts. In the case of Group 2 shells, alteration occurred either along the periphery of the shell including the primary layer or at the interior-facing surface of the fibrous/columnar layer. In addition, we observed an important mode of the overprinting process, namely the migration of diagenetic fluids through the endopunctae corroborated by mineral formation and overprinting in their immediate vicinity, while leaving shell parts between endopunctae in pristine condition. Luminescence (CL) and microstructural imaging (FE-SEM) screening give first-order observations of the degree of overprint as they cover macro-to micron scale alteration features. For a comprehensive assessment of diagenetic overprint these screening methods should be complemented by screening techniques such as EBSD and AFM. They visualise diagenetic changes at submicron and nanoscale levels depicting the replacement of pristine nanocomposite mesocrystal biocarbonate (NMB) by inorganic rhombohedral calcite (IRC). The integration of screening methods allows for the unequivocal identification of highly-detailed alteration features as well as an assessment of the degree of diagenetic alteration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-12-05
    Description: We study the basement configuration in the slow-spreading Eurasia Basin, Arctic Ocean. Two multichannel seismic (MCS) profiles, which we acquired during ice-free conditions with a 3600 m long streamer, image the transition from the North Barents Sea Margin into the southern Eurasia Basin. The seismic lines resolve the up to 5000 m thick sedimentary section, as well as the crustal architecture of the southern Eurasia Basin along 120 km and 170 km, respectively. The seismic data show large faulted and rotated basement blocks. Gravity modeling indicates a thin basement with a thickness of 1–3 km and a density of 2.8*103 kg/m3 between the base of the sediments and the top of the mantle, which indicates exhumed and serpentinized mantle. The Gakkel spreading ridge, located in northern prolongation of the seismic lines is characterized by an amagmatic or sparsely magmatic segment. From the structural similarity between the basement close to the ultra-slow spreading ridge and our study area, we conclude that the basement in the Eurasia Basin is predominantly formed by exhumed and serpentinized mantle, with magmatic additions. An initial strike-slip movement of the Lomonosov Ridge along the North Barents Sea Margin and subsequent near-orthogonal opening of the Nansen Basin is supposed to have brought mantle material to the surface, which was serpentinized during this process. Continuous spreading thinned the serpentinized mantle and subsequent normal faulting produced distinct basement blocks. We propose that mantle exhumation has likely been active since the opening of the Eurasia Basin.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier, 149, pp. 25-30, ISSN: 09670645
    Publication Date: 2018-06-19
    Description: The deep basins of the Bransfield Strait (BS) are ventilated by Weddell Sea (WS) waters from different origins. Depending on the source and density, these water masses follow different routes across the complex topography near the tip of the Antarctic Peninsula and thus into the Bransfield Strait abyss. Using a global setup of the Finite Element Sea-ice Ocean Model (FESOM) we show that the WS waters found at the western WS continental shelf break have a higher influence on the short period variability of BS bottom waters than the waters present over the continental shelf. Adding passive tracers to the glacial melt water (GMW) from two different origins, Larsen Ice Shelf (LIS) and Filchner-Ronne Ice Shelf (FRIS), we show that the GMW from FRIS has a larger influence on BS bottom waters than the GMW from LIS. FRIS GMW has a higher concentration in the BS eastern basin, while LIS GMW is more abundant in the BS central basin. This duality mainly leads to the difference between BS central and eastern basins seen on the observations. This is a novel result and we believe is a significant contribution to the understanding of the BS-WS circulation and interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-09-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-03-08
    Description: Which are the trends that are transforming research management and how do research organizations respond to these changes? What are the available services to support research during EC projects’ life-cycles? Are there research information systems in use and to which extent are they integrated? The paper is structured as follows: a survey conducted over a sample of universities and research centers in Italy is presented in section 2. Section 3 describes significant case studies. Section 4 illustrates mobility figures and trends in EU funded projects. Section 5 concludes with considerations about trends and suggestions for improvement.
    Description: Published
    Description: 309-314
    Description: 7TM. Sviluppo e Trasferimento Tecnologico
    Description: N/A or not JCR
    Keywords: Research support services ; CRIS ; research information management ; Human Resources Strategy for Researchers
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-03-26
    Description: At Vulcano (Aeolian Islands, Italy), different measurement methods have been developed for more than 30 years and models were formulated to account for the real time evolution of the actual solphataric activity. The results of a long term monitoring of surface temperature and of CO2 flux from soil, reviewed in a multidisciplinary framework, are presented here. These two parameters, monitored at the ground surface, highlighted local variations of the hydrothermal release and the time series of data showed in several instances, different range of values. The background and anomalous ranges defined by this long term monitoring are robust by a statistical point of view. The long term data-series offered a useful tool to verify conceptual framework and to better define the natural hazard evaluation integrating “classical” and “new” investigation techniques. Moreover, La Fossa area lays in a geodynamic context with active seismo- tectonic processes, frequently perturbing the pressure field of the hydrothermal system under investigation. Any perturbation in the pressure state variable (P) of the system, results in an excited state of its components and a relevant transfer of energy and mass towards the surface starts to counterbalance the perturbation. The continuous monitoring of surface temperature reveals the effects of the forces guiding the heat flows whereas the space variation of temperature indicates the rising paths of hydrothermal and magmatic fluids. The occurrence of new fumaroles and mofetes, or even changing emission rates of fluids by these vents, rises questions about the evolution of the equilibrium state of buried hydrothermal system, or about changing physical condition of overburden rocks. The conceptual framework suggesting the potential of our time series of field data is that a rock body, can be seen as a multiphase geochemical system where the fluid phases play a crucial role in defining the physical changes of the body and its response to the different forces acting on it. The changes of pore pressure depend on the balance between gas phases production and gas leaked out from a geochemical system. Analyses of fluxes at the system boundaries can give information on the equilibrium of the interacting geospheres. Even if playing variables are too many, some specific compounds and parameters can be selected as indicators of the state of the system.#
    Description: Published
    Description: Yokohama, Japan
    Description: 4V. Dinamica dei processi pre-eruttivi
    Keywords: Long term monitoring ; Vulcano ; Fluid geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-03-02
    Description: The action of using someone else’s production, ideas, or research without acknowledging the source and then claiming credit for them is known as plagiarism. Plagiarism is in principle a moral offense; it is not always an illegal action but certainly is an ethical complex case. Copying without permission or stealing someone else’s work violates the standard codes of scholarly conduct and ethical behavior in professional scientific research. Science may be somewhat more prone to plagiarism in that scholars exchange ideas and proposals more frequently than artists, for example. Workshops, scientific meetings, and round tables are places where primitive and preliminary researches are presented and discussed before their official presentation. This chapter discusses plagiarism and self plagiarism and tries to point out the role of the scientific community toward this kind of scientific misconduct.
    Description: Published
    Description: 5TM. Informazione ed editoria
    Keywords: Copyright infringement, Ethical conduct, Plagiarism. ; 05.03. Educational, History of Science, Public Issues
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-02-16
    Description: Among the considerable number of studies that can be carried out using muons, we pay specific attention to the radiography of volcanoes based on the same principle of the X-ray radiography of human body. Thanks to their high penetration capability, cosmic-ray muons can be used to reconstruct the density distribution of the interior of huge structures by measuring the attenuation induced by the material on the muon flux. In particular, the quantitative understanding of the inner structure of volcanoes is a key-point to forecast the dangerous stages of activity and mitigate volcanic hazards. The instrumental approach is currently based on the detection of muons crossing hodoscopes made up of scintillator planes. Unfortunately, these detectors are affected by a strong background comprised by accidental coincidence of vertical shower particles, horizontal high-energy electrons and upward going particles. We propose an alternative technique based on the detection of the Cherenkov light produced by muons. This can be achieved with an imaging atmospheric Cherenkov telescope composed of a high reflectivity optical system that focus the Cherenkov light onto a multi-pixel focal camera with fast read-out electronics. The Cherenkov light emitted by a muon is imaged on the camera as an annular pattern which contains information to reconstruct the direction of the incident muon. We have estimated that using the Cherenkov imaging technique for muon radiography of volcanoes gives the advantage of a negligible background and improved spatial resolution, compared to the majority of the particle detectors. We present results of simulations based on a telescope with a positioning resolution of 13.5 m which corresponds to an acceptance of 9 cm2 sr. The telescope is located 1500 m far from a toy-model volcano, namely, a cone with a base diameter of 500 m and a height of 240 m. We test the feasibility of the proposed method by estimating the minimum number of observation nights needed to resolve inner empty conduits of different diameter.
    Description: Published
    Description: 122–125
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: N/A or not JCR
    Keywords: Imaging Atmospheric Cherenkov Telescope ; Volcano radiography ; Muons, ; Volcano monitoring ; Mount Etna
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-03-26
    Description: We present soil temperature data from a peripheral fumarole emission of Mt Etna at the top end of a radial fracture called Bottoniera. This area lies in the northern flank of the volcano (2,500m a.s.l.), and was interested by fissure eruption during 2002/2003. In the steam heated soil lying around the fumarole release, a shallow vertical profile has been monitored from October 2009 to September 2012. We estimated the local surface heat flux and compared its time variations to the eruptive activity occurred during the monitoring period. The eruptive vents were located on the opposite flank, (〉3200m a.s.l.), far about 4km. The heat flux from this peripheral emission has been highly influenced by the eruptive activity. Its time variations are correlated to the variable rates of products emitted from January 2011 to April 2012. Different ranges of heat flux values have been associated to the pre-eruptive phase, to the productive eruption period and to the end of this eruptive cycle. The decrease of heat flux was registered before the end of the eruptive cycle. The continuous thermal monitoring revealed in real time that ascending magma through the active conduits is the heating bottom source of the heat flux dispersed by a complex network of active fractures present in this area. The recorded data suggest the steam heated soil around fumaroles vents as a possible new investigation field for a low cost monitoring of the local variation in the structural weakness of the apparatus. Extending this thermal monitoring to the other steaming grounds of this complex volcanic system we could also follow variations of the fluid circulation paths and obtain direct information about local pore pressure changes. A multivariate analysis of recorded data could suggest, which part of this complex apparatus is being involved, time by time, with the ongoing evolution. It would contribute to the evaluation of flank instability caused by physical changes occurring on the network of active fractures, and inferred by multidisciplinary investigations (such as deformation patterns, tectonic lineaments and geochemical features of underground waters and diffuse gas emissions).
    Description: Published
    Description: Yokohama, Japan
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Keywords: Fumaroles ; Steam heated Soil ; Thermal monitoring ; Eruptive cycle ; Fluid geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-03-26
    Description: The examples of geochemical monitoring results provided in this review article show the close relationships among data analysis, interpretation, and modeling. We particularly focus on describing the fieldwork procedures, since any theoretical approach must always be verified and supported by field data, rather than just by experiments controlled in laboratory.
    Description: Fluids discharged from volcanic systems are the direct surface manifestation of magma degassing at depth and provide primary insights for evaluating the state of volcanic activity. We review the geochemical best practice in volcanic surveillance based to a huge amount of monitoring data collected at different active volcanoes using both continuous and discontinuous approaches. The targeted volcanoes belong to the Aeolian Arc located in the Tyrrhenian Sea (Italy), and they have exhibited different activity states during the monitoring activities reported here. La Fossa cone on Vulcano Island has been in an uninterrupted quiescent stage characterized by variable solfataric activity. In contrast, Stromboli Island has shown a persistent mild explosive activity, episodically interrupted by effusive eruptions (in 1985, 2002, 2007, and 2014). Panarea Island, which is the summit of a seamount rising from the seafloor of the southern Tyrrhenian Sea, showed only undersea fluid release. The only observable clues of active volcanism at Panarea Island have been impulsive changes in the undersea fluid release, with the last submarine gas burst event being observed in November 2002. The geochemical monitoring and observations at each of these volcanoes has directly involved the volcanic plume and/or the fumarole vents, thermal waters, and diffuse soil degassing, depending on the type of manifestations and the level of activity encountered. Through direct access to the magmatic samples (when possible) and the collection of as much observable data related to the fluid release as possible, the aim has been (i) to verify the thermodynamic equilibrium condition, (ii) to discern among the possible hydrothermal, magmatic, marine, and meteoric sources in the fluid mixtures, (iii) to develop models of the fluid circulation supported by data, (iv) to follow the evolution of these natural systems by long-term monitoring, and (v) to support surveillance actions related to defining the volcanic risk and the evaluation and possible mitigation of related hazards. The examples provided in this review article show the close relationships among data analysis, interpretation, and modeling. We particularly focus on describing the fieldwork procedures, since any theoretical approach must always be verified and supported by field data, rather than just by experiments controlled in laboratory. Indeed the natural systems involve many variables producing effects that cannot be neglected. The monitored volcanic systems have been regarded as natural laboratories, and all of the activities have focused on both volcanological research and surveillance purposes in order to ensure that these two goals have overlapped. An appendix is also included that explains the scientific approach to the systematic activities, regarding geochemical monitoring of volcanic activity.
    Description: Published
    Description: 241-276
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: geochemical methodologies ; Vulcano ; Stromboli ; Panarea ; Geochemical Monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Regional Studies in Marine Science 18 (2018): 1-10, doi:10.1016/j.rsma.2017.12.004.
    Description: The variations of temperature and salinity in the Sudanese coastal zone of the Red Sea are studied for the first time using measurements acquired from survey cruises during 2009–2013 and from a mooring during 2014–2015. The measurements show that temperature and salinity variability above the permanent pycnocline is dominated by seasonal signals, similar in character to seasonal temperature and salinity oscillations observed further north on the eastern side of the Red Sea. Using estimates of heat flux, circulation and horizontal temperature/salinity gradients derived from a number of sources, we determined that the observed seasonal signals of temperature and salinity are not the product of local heat and mass flux alone, but are also due to alongshore advection of waters with spatially varying temperature and salinity. As the temperature and salinity gradients, characterized by warmer and less saline water to the south, exhibit little seasonal variation, the seasonal salinity and temperature variations are closely linked to an observed seasonal oscillation in the along-shore flow, which also has a mean northward component. We find that the inclusion of the advection terms in the heat and mass balance has two principal effects on the computed temperature and salinity series. One is that the steady influx of warmer and less saline water from the south counteracts the long-term trend of declining temperatures and rising salinities computed with only the local surface flux terms, and produces a long-term steady state in temperature and salinity. The second effect is produced by the seasonal alongshore velocity oscillation and most profoundly affects the computed salinity, which shows no seasonal signal without the inclusion of the advective term. In both the observations and computed results, the seasonal salinity signal lags that of temperature by roughly 3 months.
    Description: The SPS surveys were funded by the Norwegian Norad’s Program for Master Studies and organized by IMR–RSU in Port Sudan. The central Red Sea mooring data were acquired as part of a WHOI–KAUST collaboration funded by Award Nos. USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia. The work of I. Skjelvan and A.M. Omar was partly supported by the Research Council of Norway through the MIMT Center for Research-based Innovation. This work is part of a Ph.D. project at GFI–UiB funded by the Norwegian Quota program .
    Keywords: Coastal Red Sea ; Temperature ; Salinity ; Time series ; Seasonality ; Alongshore advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Quaternary Science Reviews 185 (2018): 135-152, doi:10.1016/j.quascirev.2018.02.012.
    Description: The largest coherent cold-water coral (CWC) mound province in the Atlantic Ocean exists along the Mauritanian margin, where up to 100 m high mounds extend over a distance of ∼400 km, arranged in two slope-parallel chains in 400–550 m water depth. Additionally, CWCs are present in the numerous submarine canyons with isolated coral mounds being developed on some canyon flanks. Seventy-seven Uranium-series coral ages were assessed to elucidate the timing of CWC colonisation and coral mound development along the Mauritanian margin for the last ∼120,000 years. Our results show that CWCs were present on the mounds during the Last Interglacial, though in low numbers corresponding to coral mound aggradation rates of 16 cm kyr−1. Most prolific periods for CWC growth are identified for the last glacial and deglaciation, resulting in enhanced mound aggradation (〉1000 cm kyr−1), before mound formation stagnated along the entire margin with the onset of the Holocene. Until today, the Mauritanian mounds are in a dormant state with only scarce CWC growth. In the canyons, live CWCs are abundant since the Late Holocene at least. Thus, the canyons may serve as a refuge to CWCs potentially enabling the observed modest re-colonisation pulse on the mounds along the open slope. The timing and rate of the pre-Holocene coral mound aggradation, and the cessation of mound formation varied between the individual mounds, which was likely the consequence of vertical/lateral changes in water mass structure that placed the mounds near or out of oxygen-depleted waters, respectively.
    Description: This study received funding from and contributes to the DFG-projects "Palaeo-WACOM" (HE 3412/17-1) and "Cold-water coral mound development in a tropical upwelling cell – the great wall of(f) Mauritania" (Ti 706/3-1). A. Freiwald received funding from the Hessian initiative for the development of scientific and economic excellence (LOEWE) at the Biodiversity and Climate Research Centre (BiK-F), Frankfurt, Germany.
    Keywords: Lophelia pertusa ; Coral mound ; Submarine canyon ; Uranium-series dating ; Mound aggradation rate ; Last glacial ; Dissolved oxygen concentration ; South Atlantic Central Water ; Mauritanian margin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing of Environment 217 (2018): 126-143, doi:10.1016/j.rse.2018.08.010.
    Description: Diatoms dominate global silica production and export production in the ocean; they form the base of productive food webs and fisheries. Thus, a remote sensing algorithm to identify diatoms has great potential to describe ecological and biogeochemical trends and fluctuations in the surface ocean. Despite the importance of detecting diatoms from remote sensing and the demand for reliable methods of diatom identification, there has not been a systematic evaluation of algorithms that are being applied to this end. The efficacy of these models remains difficult to constrain in part due to limited datasets for validation. In this study, we test a bio-optical algorithm developed by Sathyendranath et al. (2004) to identify diatom dominance from the relationship between ratios of remote sensing reflectance and chlorophyll concentration. We evaluate and refine the original model with data collected at the Martha's Vineyard Coastal Observatory (MVCO), a near-shore location on the New England shelf. We then validated the refined model with data collected in Harpswell Sound, Maine, a site with greater optical complexity than MVCO. At both sites, despite relatively large changes in diatom fraction (0.8–82% of chlorophyll concentration), the magnitude of variability in optical properties due to the dominance or non-dominance of diatoms is less than the variability induced by other absorbing and scattering constituents of the water. While the original model performance was improved through successive re-parameterizations and re-formulations of the absorption and backscattering coefficients, we show that even a model originally parameterized for the Northwest Atlantic and re-parameterized for sites such as MVCO and Harpswell Sound performs poorly in discriminating diatom-dominance from optical properties.
    Description: This work was supported by: a Woods Hole Oceanographic Institution Summer Student Fellowship (NSF REU award #1156952) and a Bowdoin College Grua/O'Connell Research Award to SJK; grants to HMS from NASA (Ocean Biology and Biogeochemistry program and Biodiversity and Ecological Forecasting program), NSF (Ocean Sciences), the Gordon and Betty Moore Foundation, the Simons Foundation, and NOAA through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158; and grants to CSR from NASA (Ocean Biology and Biogeochemistry program).
    Keywords: Phytoplankton ; Community structure ; Ocean color ; Diatoms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Regional Studies in Marine Science 24 (2018): 336-342, doi:10.1016/j.rsma.2018.09.006.
    Description: The variations of sea level over the Red Sea may be divided into three broad categories: tidal, seasonal and weather-band. Our study employs a variety of in situ and satellite-derived data in the first comprehensive examination of the Red Sea water level variations in the weather-band (covering periods of 4–30 days). In the central Red Sea, the range of the weather-band sea level signal is of order 0.7 m, which exceeds the tidal and seasonal sea level ranges. From EOF and correlation analysis, we find that a large fraction of the weather-band sea level variation is due to a single mode of motion that extends over the entire Red Sea. In this mode, the water level rises and falls in unison with an amplitude that declines going southward over the southern Red Sea. The temporal signal of this mode is highly correlated with the along-axis surface wind stress over the southern Red Sea, and is closely reproduced by a simple one-dimensional barotropic model with forcing by the along-axis wind stress. Although this model does not account for the full suite of dynamics affecting weather-band sea level variations in the Red Sea, it may serve as a useful predictive tool. Sea level changes associated with the development and movement of sub-mesoscale features (e.g., eddies and boundary currents) are also shown to contribute to weather-band sea level motions in the Red Sea.
    Description: The pressure sensor and meteorological buoy data were acquired as part of a program supported by Award Nos. USA00001, USA00002 and KSA00011 made by KAUST to WHOI. The data analysis and modeling work of this study were supported General Commission for Survey (GCS), under a project number RGC/3/1612-01-01 made by Office of Sponsored research (ORS)/KAUST, Kingdom of Saudi Arabia.
    Keywords: Red Sea water levels ; Wind-driven sea level variations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Global and Planetary Change 167 (2018): 1-23, doi:10.1016/j.gloplacha.2018.04.004.
    Description: A compilation of foraminiferal stable isotope measurements from southern high latitude (SHL) deep-sea sites provides a novel perspective important for understanding Earth's paleotemperature and paleoceanographic changes across the rise and fall of the Cretaceous Hot Greenhouse climate and the subsequent Paleogene climatic optimum. Both new and previously published results are placed within an improved chronostratigraphic framework for southern South Atlantic and southern Indian Ocean sites. Sites studied were located between 58° and 65°S paleolatitude and were deposited at middle to upper bathyal paleodepths. Oxygen isotope records suggest similar trends in both bottom and surface water temperatures in the southern sectors of the South Atlantic and in the Indian Ocean basins. Warm conditions were present throughout the Albian, extreme warmth existed during the Cretaceous Thermal Maximum (early-mid-Turonian) through late Santonian, and long-term cooling began in the Campanian and culminated in Cretaceous temperature minima during the Maastrichtian. Gradients between surface and seafloor δ18O and δ13C values were unusually high throughout the 11.5 m.y. of extreme warmth during the Turonian-early Campanian, but these vertical gradients nearly disappeared by the early Maastrichtian. In absolute terms, paleotemperature estimates that use standard assumptions for pre-glacial seawater suggest sub-Antarctic bottom waters were ≥21 °C and sub-Antarctic surface waters were ≥27 °C during the Turonian, values warmer than published climate models support. Alternatively, estimated temperatures can be reduced to the upper limits of model results through freshening of high latitude waters but only if there were enhanced precipitation of water with quite low δ18O values. Regardless, Turonian planktonic δ18O values are ~1.5‰ lower than minimum values reported for the Paleocene-Eocene Thermal Maximum (PETM) from the same region, a difference which corresponds to Turonian surface temperatures ~6 °C warmer than peak PETM temperatures if Turonian and Paleocene temperatures are estimated using the same assumptions. It is likely that warm oceans surrounding and penetrating interior Antarctica (given higher relative sea level) prevented growth of Antarctic ice sheets at all but the highest elevations from the late Aptian through late Campanian; however, Maastrichtian temperatures may have been cool enough to allow growth of small, ephemeral ice sheets. The standard explanation for the sustained warmth during Cretaceous Hot Greenhouse climate invokes higher atmospheric CO2 levels from volcanic outgassing, but correlation among temperature estimates, proxy estimates of pCO2, and intervals of high fluxes of both mafic and silicic volcanism are mostly poor. This comparison demonstrates that the relative timing between events and their putative consequences need to be better constrained to test and more fully understand relationships among volcanism, pCO2, temperature ocean circulation, Earth's biota and the carbon cycle.
    Description: Funding from the Smithsonian National Museum of Natural History and the National Science Foundation (NSF-OCE 1261586) helped support this research.
    Keywords: Cretaceous Hot Greenhouse ; Foraminiferal stable isotopes ; Volcanic outgassing ; pCO2 proxies ; Greenhouse glacier hypothesis ; Southern high latitudes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 493 (2018): 210-223, doi:10.1016/j.chemgeo.2018.05.040.
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, OCE-1243377, and OCE-1546580. Financial support was also provided by the UK Natural Environment Research Council (NERC), the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas ; IDP2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 152 (2018): 67-81, doi:10.1016/j.dsr2.2018.05.020.
    Description: Ocean acidification (OA), driven by rising anthropogenic carbon dioxide (CO2), is rapidly advancing in the Pacific Arctic Region (PAR), producing conditions newly corrosive to biologically important carbonate minerals like aragonite. Naturally short linkages across the PAR food web mean that species-specific acidification stress can be rapidly transmitted across multiple trophic levels, resulting in widespread impacts. Therefore, it is critical to understand the formation, transport, and persistence of acidified conditions in the PAR in order to better understand and project potential impacts to this delicately balanced ecosystem. Here, we synthesize data from process studies across the PAR to show the formation of corrosive conditions in colder, denser winter-modified Pacific waters over shallow shelves, resulting from the combination of seasonal terrestrial and marine organic matter respiration with anthropogenic CO2. When these waters are subsequently transported off the shelf, they acidify the Pacific halocline. We estimate that Barrow Canyon outflow delivers ~2.24 Tg C yr-1 to the Arctic Ocean through corrosive winter water transport. This synthesis also allows the combination of spatial data with temporal data to show the persistence of these conditions in halocline waters. For example, one study in this synthesis indicated that 0.5–1.7 Tg C yr-1 may be returned to the atmosphere via air-sea gas exchange of CO2 during upwelling events along the Beaufort Sea shelf that bring Pacific halocline waters to the ocean surface. The loss of CO2 during these events is more than sufficient to eliminate corrosive conditions in the upwelled Pacific halocline waters. However, corresponding moored and discrete data records indicate that potentially corrosive Pacific waters are present in the Beaufort shelfbreak jet during 80% of the year, indicating that the persistence of acidified waters in the Pacific halocline far outweighs any seasonal mitigation from upwelling. Across the datasets in this large-scale synthesis, we estimate that the persistent corrosivity of the Pacific halocline is a recent phenomenon that appeared between 1975 and 1985. Over that short time, these potentially corrosive waters originating over the continental shelves have been observed as far as the entrances to Amundsen Gulf and M’Clure Strait in the Canadian Arctic Archipelago. The formation and transport of corrosive waters on the Pacific Arctic shelves may have widespread impact on the Arctic biogeochemical system and food web reaching all the way to the North Atlantic.
    Description: National Science Foundation Grant PLR-1303617.
    Keywords: Ocean acidification ; Pacific Arctic ; Arctic Ocean ; East Siberian Sea ; Chukchi Sea ; Beaufort Sea ; Transport ; Arctic Rivers ; Sea Ice ; Respiration ; Upwelling ; Biological vulnerability ; Community resilience
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing of Environment 209 (2018): 677-699, doi:10.1016/j.rse.2018.02.075.
    Description: We analyse ten years of QuikSCAT satellite surface winds to statistically characterize the spatio-temporal variability of the westward mountain-gap wind jets over the northern Red Sea. These wind jets bring relatively cold and dry air from the Arabian Desert, increasing heat loss and evaporation over the region similar to cold-air outbreaks from mid and subpolar latitudes. QuikSCAT captures the spatial structure of the wind jets and agrees well with in situ observations from a heavily instrumented mooring in the northern Red Sea. The local linear correlations between QuikSCAT and in situ winds are 0.96 (speed) and 0.85 (direction). QuikSCAT also reveals that cross-axis winds such as the mountain-gap wind jets are a major component of the regional wind variability. The cross-axis wind pattern appears as the second (or third) mode in the four vector Empirical Orthogonal Function analyses we performed, explaining between 6% to 11% of the wind variance. Westward wind jets are typical in winter, especially in December and January, but with strong interannual variability. Several jets can occur simultaneously and cover a large latitudinal range of the northern Red Sea, which we call large-scale westward events. QuikSCAT recorded 18 large-scale events over ten years, with duration between 3 to 8 days and strengths varying from 3–4 to 9–10 m/s. These events cause large changes in the wind stress curl pattern, imposing a remarkable sequence of positive and negative curl along the Red Sea main axis, which might be a wind forcing mechanism for the oceanic mesoscale circulation.
    Description: This work was supported by NSF grant OCE-1435665 and NASA grant NNX14AM71G.
    Keywords: QuikSCAT ; Air-sea interaction ; Wind jets ; Mountain gap ; Evaporation ; Heat loss
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Coastal Engineering 136 (2018): 147-160, doi:10.1016/j.coastaleng.2018.01.003.
    Description: The performance of a linear depth inversion algorithm, cBathy, applied to coastal video imagery was assessed using observations of water depth from vessel-based hydrographic surveys and in-situ altimeters for a wide range of wave conditions (0.3 〈 significant wave height 〈 4.3 m) on a sandy Atlantic Ocean beach near Duck, North Carolina. Comparisons of video-based cBathy bathymetry with surveyed bathymetry were similar to previous studies (root mean square error (RMSE) = 0.75 m, bias = −0.26 m). However, the cross-shore locations of the surfzone sandbar in video-derived bathymetry were biased onshore 18–40 m relative to the survey when offshore wave heights exceeded 1.2 m or were greater than half of the bar crest depth, and broke over the sandbar. The onshore bias was 3–4 m when wave heights were less than 0.8 m and were not breaking over the sandbar. Comparisons of video-derived seafloor elevations with in-situ altimeter data at three locations onshore of, near, and offshore of the surfzone sandbar over ∼1 year provide the first assessment of the cBathy technique over a wide range of wave conditions. In the outer surf zone, video-derived results were consistent with long-term patterns of bathymetric change (r2 = 0.64, RMSE = 0.26 m, bias = −0.01 m), particularly when wave heights were less than 1.2 m (r2 = 0.83). However, during storms when wave heights exceeded 3 m, video-based cBathy over-estimated the depth by up to 2 m. Near the sandbar, the sign of depth errors depended on the location relative to wave breaking, with video-based depths overestimated (underestimated) offshore (onshore) of wave breaking in the surfzone. Wave speeds estimated by video-based cBathy at the initiation of wave breaking often were twice the speeds predicted by linear theory, and up to three times faster than linear theory during storms. Estimated wave speeds were half as fast as linear theory predictions at the termination of wave breaking shoreward of the sandbar. These results suggest that video-based cBathy should not be used to track the migration of the surfzone sandbar using data when waves are breaking over the bar nor to quantify morphological evolution during storms. However, these results show that during low energy conditions, cBathy estimates could be used to quantify seasonal patterns of seafloor evolution.
    Description: This research was funded by the U.S. Army Corps of Engineers Coastal Field Data Collection Program, the Deputy Assistant Secretary of the Army for Research and Technology under ERDC's research program titled “Force Projection Entry Operations, STO D.GRD.2015.34”, the U.S. Naval Research Laboratory base program from the Office of Naval Research, a Vannevar Bush Faculty Fellowship funded by the Assistant Secretary of Defense for Research and Engineering, and the National Science Foundation.
    Keywords: Remote sensing ; Beach morphology ; Depth inversion ; Bathymetry estimation ; Video imaging ; Surfzone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 228 (2018): 95-118, doi:10.1016/j.gca.2018.01.021.
    Description: Hosted in basaltic substrate on the ultra-slow spreading Mid-Cayman Rise, the Piccard hydrothermal field is the deepest currently known seafloor hot-spring (4957–4987 m). Due to its great depth, the Piccard site is an excellent natural system for investigating the influence of extreme pressure on the formation of submarine vent fluids. To investigate the role of rock composition and deep circulation conditions on fluid chemistry, the abundance and isotopic composition of organic, inorganic, and dissolved volatile species in high temperature vent fluids at Piccard were examined in samples collected in 2012 and 2013. Fluids from the Beebe Vents and Beebe Woods black smokers vent at a maximum temperature of 398 °C at the seafloor, however several lines of evidence derived from inorganic chemistry (Cl, SiO2, Ca, Br, Fe, Cu, Mn) support fluid formation at much higher temperatures in the subsurface. These high temperatures, potentially in excess of 500 °C, are attainable due to the great depth of the system. Our data indicate that a single deep-rooted source fluid feeds high temperature vents across the entire Piccard field. High temperature Piccard fluid H2 abundances (19.9 mM) are even higher than those observed in many ultramafic-influenced systems, such as the Rainbow (16 mM) and the Von Damm hydrothermal fields (18.2 mM). In the case of Piccard, however, these extremely high H2 abundances can be generated from fluid-basalt reaction occurring at very high temperatures. Magmatic and thermogenic sources of carbon in the high temperature black smoker vents are described. Dissolved ΣCO2 is likely of magmatic origin, CH4 may originate from a combination of thermogenic sources and leaching of abiotic CH4 from mineral-hosted fluid inclusions, and CO abundances are at equilibrium with the water–gas shift reaction. Longer-chained n-alkanes (C2H6, C3H8, n-C4H10, i-C4H10) may derive from thermal alteration of dissolved and particulate organic carbon sourced from the original seawater source, entrainment of microbial ecosystems peripheral to high temperature venting, and/or abiotic mantle sources. Dissolved ΣHCOOH in the Beebe Woods fluid is consistent with thermodynamic equilibrium for abiotic production via ΣCO2 reduction with H2 at 354 °C measured temperature. A lack of ΣHCOOH in the relatively higher temperature 398 °C Beebe Vent fluids demonstrates the temperature sensitivity of this equilibrium. Abundant basaltic seafloor outcrops and the axial location of the vent field, along with multiple lines of geochemical evidence, support extremely high temperature fluid-rock reaction with mafic substrate as the dominant control on Piccard fluid chemistry. These results expand the known diversity of vent fluid composition, with implications for supporting microbiological life in both the modern and ancient ocean.
    Description: This work was supported by the National Aeronautics and Space Administration (NASA) Astrobiology Science and Technology for Exploring Planets program [award number NNX09AB75G to CRG and JSS]; and the National Science Foundation [award number OCE-1061863 to CRG and JSS].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 487 (2018): 165-178, doi:10.1016/j.epsl.2018.01.032.
    Description: A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes. Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998–1353 °C with cooling rates of 0.003–10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.
    Description: C. Sun acknowledges support from the Devonshire postdoctoral scholarship at WHOI and NSF grant OCE-1637130. This work was also supported by Natural Environment Research Council (NERC) Grant NE/I001670/1 to J. Lissenberg.
    Keywords: Oceanic crust ; Cooling rate ; Crystallization temperature ; Plagioclase ; Clinopyroxene ; Hess Deep
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 19 (2002): 971-987, doi:10.1016/S0264-8172(02)00132-0.
    Description: Considerable crustal thickness variations are inferred along Cayman Trough, a slow-spreading ocean basin in the Caribbean Sea, from modeling of the gravity field. The crust to a distance of 50 km from the spreading center is only 2–3 km thick in agreement with dredge and dive results. Crustal thickness increases to ∼5.5 km at distances between 100 and 430 km west of the spreading center and to 3.5–6 km at distances between 60 and 370 km east of the spreading center. The increase in thickness is interpreted to represent serpentinization of the uppermost mantle lithosphere, rather than a true increase in the volume of accreted ocean crust. Serpentinized peridotite rocks have indeed been dredged from the base of escarpments of oceanic crust rocks in Cayman Trough. Laboratory-measured density and P-wave speed of peridotite with 40–50% serpentine are similar to the observed speed in published refraction results and to the inferred density from the model. Crustal thickness gradually increases to 7–8 km at the far ends of the trough partially in areas where sea floor magnetic anomalies were identified. Basement depth becomes gradually shallower starting 250 km west of the rise and 340 km east of the rise, in contrast to the predicted trend of increasing depth to basement from cooling models of the oceanic lithosphere. The gradual increase in apparent crustal thickness and the shallowing trend of basement depth are interpreted to indicate that the deep distal parts of Cayman Trough are underlain by highly attenuated crust, not by a continuously accreted oceanic crust.
    Description: DFC was partly supported by NSF grant EAR-92-19796.
    Keywords: Caribbean plate ; Cayman trough ; Continental margins ; Gravity anomalies ; Serpentinized peridotite ; Slow spreading
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 206 (2018): 7-18, doi:10.1016/j.marchem.2018.08.005.
    Description: The lateral export of carbon from coastal marshes via tidal exchange is a key component of the marsh carbon budget and coastal carbon cycles. However, the magnitude of this export has been difficult to accurately quantify due to complex tidal dynamics and seasonal cycling of carbon. In this study, we use in situ, high-frequency measurements of dissolved inorganic carbon (DIC) and water fluxes to estimate lateral DIC fluxes from a U.S. northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor (CHANOS) that provided an in situ concentration measurement at 15-min intervals, during periods in summer (July – August) and late fall (December). Seasonal changes in the marsh had strong effects on DIC concentrations, while tidally-driven water fluxes were the fundamental vehicle of marsh carbon export. Episodic events, such as groundwater discharge and mean sea water level changes, can impact DIC flux through altered DIC concentrations and water flow. Variability between individual tides within each season was comparable to mean variability between the two seasons. Estimated mean DIC fluxes based on a multiple linear regression (MLR) model of DIC concentrations and high-frequency water fluxes agreed reasonably well with those derived from CHANOS DIC measurements for both study periods, indicating that high-frequency, modeled DIC concentrations, coupled with continuous water flux measurements and a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis of sampling strategies revealed that DIC fluxes calculated using conventional sampling frequencies (hourly to two-hourly) of a single tidal cycle are unlikely to capture a representative mean DIC flux compared to longer-term measurements across multiple tidal cycles with sampling frequency on the order of tens of minutes. This results from a disproportionately large amount of the net DIC flux occurring over a small number of tidal cycles, while most tides have a near-zero DIC export. Thus, high-frequency measurements (on the order of tens of minutes or better) over the time period of interest are necessary to accurately quantify tidal exports of carbon species from salt marshes.
    Description: This work was funded by NSF Graduate Research Fellowship Program, NSF Ocean Sciences Postdoctoral Fellowship (OCE-1323728), Link FoundationOcean Engineering and Instrumentation Fellowship, National Institute of Science and Technology (NIST no. 60NANB10D024), the USGS LandCarbon and Coastal & Marine Geology Programs, NSF Chemical Oceanography Program (OCE-1459521), NSF Ocean Technology and Interdisciplinary Coordination program (OCE-1233654) and NOAA Science Collaborative (NA09NOS4190153).
    Keywords: Dissolved inorganic carbon ; Carbon export ; Salt marshes ; Wetlands
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 337 (2013): 53-66, doi:10.1016/j.margeo.2013.01.005.
    Description: Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.
    Keywords: Turbidity flow ; Debris flow ; Multibeam bathymetry ; Regression ; Power law ; Landslide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-03-09
    Description: Stream chemistry reflects the mixture of complex biogeochemical reactions that vary across space and time within watersheds. For example, streams experience changing hydrologic connectivity to heterogeneous water sources under different flow regimes; however, it remains unclear how seasonal flow paths link these different sources and regulate concentration-discharge behavior, i.e., changes in stream solute concentration as a function of discharge. At the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania, USA, concentrations of chemostatic solutes (K, Mg, Na, Si, Cl) vary little across a wide range of discharge values while concentrations of chemodynamic solutes (Fe, Mn, Ca) decrease sharply with increasing stream discharge. To elucidate controls on chemodynamic solute behavior, we investigated the chemistry of surface water and shallow subsurface water at the SSHCZO in early autumn when discharge was negligible and concentrations of chemodynamic solutes were high. Dissolved ions, colloids, and micron-sized particles were extracted from hillslope soils and stream sediments to evaluate how elements were mobilized into pore waters and transported from hillslopes to the stream. During the study period when flow was intermittent, the stream consisted of isolated puddles that were chemically variable along the length of the channel. Inputs of subsurface water to the stream were limited to an area of upwelling near the stream headwaters, and the water table remained over a meter below the stream bed along the rest of the channel. Chemodynamic elements Fe and Mn were preferentially mobilized from organic-rich soils as a mixture of dissolved ions, colloids, and micron-sized particles; consequently, subsurface water draining organic-rich soils in the upper catchment was enriched in Fe and Mn. Conversely, Ca increased towards the catchment outlet and was primarily mobilized from stream sediments as Ca2+. Concentrations of chemostatic solutes were relatively invariable throughout the catchment. We conclude that chemodynamic behavior at SSHCZO is driven by seasonally variable connectivity between the stream and hillslope soils. During the dry season, stream water derives from a shallow perched water table (interflow) that upwells to generate metal-rich stream headwaters. High concentrations of soluble Fe and Mn at low discharge occur when metal-rich headwaters are flushed to the catchment outlet during periodic rain events. Interflow during the dry season originates from water that infiltrates through organic-rich swales; thus, metals in the stream at low flow are ultimately derived from convergent hillslopes where biological processes have concentrated and/or mobilized these chemodynamic elements. In contrast, high concentrations of Ca2+ at low discharge are likely mobilized from stream sediments that contain secondary calcite precipitates. We infer that chemodynamic solutes are diluted at high discharge primarily due to increased flow through planar hillslopes. This study highlights how spatially heterogeneous biogeochemistry and seasonally variable flow paths regulate concentration-discharge behavior within catchments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-06-06
    Description: A network of shear zones that evolved through the brittle-ductile transition is exposed in the Calamita Schists, Elba Island, Italy. The shear zones formed during Late Miocene contractional deformation coeval with high grade contact metamorphism (∼650 °C) related to the emplacement of plutonic rocks at shallow crustal levels (∼7–10 Km). An early stage high metamorphic grade foliation was overprinted by mylonitic deformation that progressively localized on low-metamorphic grade shear bands producing S-C mylonites during cooling of contact aureole. Localization of deformation on shear bands was driven by temperature decrease that triggered strain partitioning between ‘hard’ high grade relics and ‘soft’ shear bands. Softening of shear bands occurred likely due to fluid influx and retrograde growth of fine-grained phyllosilicates. The interconnection of anastomosing shear bands and passive rotation of the relic high grade foliation caused widening of the shear bands producing mylonites with a composite mylonitic foliation and C′ shear bands. An estimate of the vorticity number Wk of the flow of ∼0.3–0.5 was obtained from the orientation of C′ shear bands measured at the meso- and thin sectionscale. Close to the brittle-ductile transition, the growth of soft phyllosilicates allowed C′ shear bands to act as precursory structures to brittle deformation localized into an array of low-angle faults and shear fractures.
    Description: Published
    Description: 100-114
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Brittle-ductile transition ; Mylonite Shear zone ; Shear band Faulting ; Strain localization ; Structural geology, brittle ductile transition
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-06-09
    Description: To obtain a 3-D crustal density and shear-wave velocity structure beneath the Po plain we exploit seismic records gathered from 2006 to 2014 and Bouguer gravity data assembled for the last estimation of the Italian Geoid. 2-D maps for both Love and Rayleigh fundamental mode at periods between 4 and 20 s are obtained applying a tomographic inversion. The defined local dispersion curves are then jointly inverted using a linearized scheme to obtain a 3-D isotropic shear-wave velocity model across the Po plain region. The model, transformed into density through a priori velocity-density relationships, is then the input of the Sequential Integrated Inversion algorithm, which enables us to recover a new 3-D density-shear wave velocity coupling and inferences on the lithology and tectonics. Low and fast S-wave velocities are highlighted for the shallow Pliocene–Quaternary sediments along the foredeep, in front of the Northern Apennines, and for the presence of limestone units in the upper crust, respectively. Whereas sediment trends seem to be consistent with the results obtained, the Mesozoic carbonates, which are inherently characterized by high variability, are less resolved. A major result is the recovery of a high speed (3.3 km/s) - density (2.2 kg/m3) structure in the upper crust (6–10 km) localized beneath the arcuate Po plain thrust front expanding from the external margin of the Ferrara arc toward the Alps and the Adriatic Sea. At the boundaries of this brittle body, we locate earthquakes of the Emilia 2012 seismic sequence and the historical seismicity. Mapping lateral discontinuities in density and shear wave velocity could provide insights in defining strengthening and weakening zones, and in focusing on transition zones often prone to earthquakes.
    Description: Published
    Description: 262-279
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: Po plain ; 3D crustal model ; Surface waves ; Bouguer gravity anomalies
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Geology 404 (2018): 1-14, doi:10.1016/j.margeo.2018.06.016.
    Description: Recent major storms have piqued interest in understanding the responses of estuarine hydrodynamics and sediment transport to these events. To that end, flow velocity, wave characteristics, and suspended-sediment concentration (SSC) were measured for 11 months at eight locations in Chincoteague Bay, MD/VA, USA, a shallow back-barrier estuary. Daily breezes and episodic storms generated sediment-resuspending waves and modified the flow velocity at all sites, which occupied channel, shoal, and sheltered-bay environments with different bed-sediment characteristics. Despite comparable SSC during calm periods, SSC at the channel locations was considerably greater than at the shoal sites during windy periods because of relatively more erodible bed sediment in the channels. Sediment fluxes were strongly wind modulated: within the bay's main channel, depth-integrated unit-width sediment flux increased nonlinearly with increasing wind speed. When averaged over all sites, about 35% of the flux occurred during windy periods (wind speed greater than 6 m s−1), which represented just 15% of the deployment time. At channel sites, the net water and sediment fluxes were opposite to the direction of the wind forcing, while at shoal sites, the fluxes generally were aligned with the wind, implying complex channel–shoal dynamics. Yearly sediment fluxes exceed previous estimates of sediment delivery to the entirety of Chincoteague Bay. These observations illustrate the dynamic sedimentary processes occurring within microtidal back-barrier lagoons and highlight the importance of storm events in the hydrodynamics and overall sediment budgets of these systems.
    Description: his study was part of the Estuarine Physical Response to Storms project (GS2-2D), supported by the Department of the Interior Hurricane Sandy Recovery program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Geology 395 (2018): 301-319, doi:10.1016/j.margeo.2017.10.014.
    Description: A high-resolution multibeam echosounder (MBES) dataset covering over 279,000 km2 was acquired in the southeastern Indian Ocean to assist the search for Malaysia Airlines Flight 370 (MH370) that disappeared on 8 March 2014. The data provided an essential geospatial framework for the search and is the first large-scale coverage of MBES data in this region. Here we report on geomorphic analyses of the new MBES data, including a comparison with the Global Seafloor Geomorphic Features Map (GSFM) that is based on coarser resolution satellite altimetry data, and the insights the new data provide into geological processes that have formed and are currently shaping this remote deepsea area. Our comparison between the new MBES bathymetric model and the latest global topographic/bathymetric model (SRTM15_plus) reveals that 62% of the satellite-derived data points for the study area are comparable with MBES measurements within the estimated vertical uncertainty of the SRTM15_plus model (± 100 m). However, 〉 38% of the SRTM15_plus depth estimates disagree with the MBES data by 〉 100 m, in places by up to 1900 m. The new MBES data show that abyssal plains and basins in the study area are significantly more rugged than their representation in the GSFM, with a 20% increase in the extent of hills and mountains. The new model also reveals four times more seamounts than presented in the GSFM, suggesting more of these features than previously estimated for the broader region. This is important considering the ecological significance of high-relief structures on the seabed, such as hosting high levels of biodiversity. Analyses of the new data also enabled sea knolls, fans, valleys, canyons, troughs, and holes to be identified, doubling the number of discrete features mapped. Importantly, mapping the study area using MBES data improves our understanding of the geological evolution of the region and reveals a range of modern sedimentary processes. For example, a large series of ridges extending over approximately 20% of the mapped area, in places capped by sea knolls, highlight the preserved seafloor spreading fabric and provide valuable insights into Southeast Indian Ridge seafloor spreading processes, especially volcanism. Rifting is also recorded along the Broken Ridge – Diamantina Escarpment, with rift blocks and well-bedded sedimentary bedrock outcrops discernible down to 2400 m water depth. Modern ocean floor sedimentary processes are documented by sediment mass transport features, especially along the northern margin of Broken Ridge, and in pockmarks (the finest-scale features mapped), which are numerous south of Diamantina Trench and appear to record gas and/or fluid discharge from underlying marine sediments. The new MBES data highlight the complexity of the search area and serve to demonstrate how little we know about the vast areas of the ocean that have not been mapped with MBES. The availability of high-resolution and accurate maps of the ocean floor can clearly provide new insights into the Earth's geological evolution, modern ocean floor processes, and the location of sites that are likely to have relatively high biodiversity.
    Keywords: Indian Ocean ; Multibeam echosounder ; Geomorphology ; Processes ; Deepsea ; Seamount
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Modelling 368 (2018): 357-376, doi:10.1016/j.ecolmodel.2017.12.010.
    Description: Despite diel and seasonal vertical migrations (DVM and SVM) of high-latitude zooplankton have been studied since the late-19th century, questions still remain about the influence of environmental seasonality on vertical migration, and the combined influence of DVM and SVM on zooplankton fitness. Toward addressing these, we developed a model for simulating DVM and SVM of high-latitude herbivorous copepods in high spatio-temporal resolution. In the model, a unique timing and amplitude of DVM and SVM and its ontogenetic trajectory were defined as a vertical strategy. Growth, survival and reproductive performances of numerous vertical strategies hardwired to copepods spawned in different times of the year were assessed by a fitness estimate, which was heuristically maximized by a Genetic Algorithm to derive the optimal vertical strategy for a given model environment. The modelled food concentration, temperature and visual predation risk had a significant influence on the observed vertical strategies. Under low visual predation risk, DVM was less pronounced, and SVM and reproduction occurred earlier in the season, where capital breeding played a significant role. Reproduction was delayed by higher visual predation risk, and copepods that spawned later in the season used the higher food concentrations and temperatures to attain higher growth, which was efficiently traded off for survival through DVM. Consequently, the timing of SVM did not change much from that predicted under lower visual predation risk, but the body and reserve sizes of overwintering stages and the importance of capital breeding diminished. Altogether, these findings emphasize the significance of DVM in environments with elevated visual predation risk and shows its contrasting influence on the phenology of reproduction and SVM, and moreover highlights the importance of conducting field and modeling work to study these migratory strategies in concert.
    Description: This project was funded by VISTA (project no. 6165), a basic research program in collaboration between The Norwegian Academy of Science and Letters and Statoil. ØV received funding from the Fulbright Arctic Initiative.
    Keywords: Vertical migration ; Seasonality ; Phenology ; Optimization model ; Genetic algorithm ; Habitat choice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Pollution Bulletin 126 (2018): 1-18, doi:10.1016/j.marpolbul.2017.10.034.
    Description: Loud sound emitted during offshore industrial activities can impact marine mammals. Regulations typically prescribe marine mammal monitoring before and/or during these activities to implement mitigation measures that minimise potential acoustic impacts. Using seismic surveys under low visibility conditions as a case study, we review which monitoring methods are suitable and compare their relative strengths and weaknesses. Passive acoustic monitoring has been implemented as either a complementary or alternative method to visual monitoring in low visibility conditions. Other methods such as RADAR, active sonar and thermal infrared have also been tested, but are rarely recommended by regulatory bodies. The efficiency of the monitoring method(s) will depend on the animal behaviour and environmental conditions, however, using a combination of complementary systems generally improves the overall detection performance. We recommend that the performance of monitoring systems, over a range of conditions, is explored in a modelling framework for a variety of species.
    Description: This work was supported by the Joint Industry Programme on E&P Sound and Marine Life - Phase III. TAM was partially supported by CEAUL (funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013).
    Keywords: Marine mammals ; Monitoring methods ; Underwater noise ; Seismic survey ; Detection performance ; Low visibility
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 121 (2018): 49-75, doi:10.1016/j.ocemod.2017.11.008.
    Description: Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
    Description: EvS has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 715386). This research for PJW was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. Funding for HFD was provided by Grant No. DE-SC0012457 from the US Department of Energy. PB acknowledges support for this work from NERC grant NE/R011567/1. SFG is supported by NERC National Capability funding through the Extended Ellett Line Programme.
    Keywords: Ocean circulation ; Lagrangian analysis ; Connectivity ; Particle tracking ; Future modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-05-26
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Geomorphology 300 (2018): 189-202, doi:10.1016/j.geomorph.2017.08.004.
    Description: Hurricane Sandy at Fire Island, New York presented unique challenges in the quantification of storm impacts using traditional metrics of coastal change, wherein measured changes (shoreline, dune crest, and volume change) did not fully reflect the substantial changes in sediment redistribution following the storm. We used a time series of beach profile data at Fire Island, New York to define a new contour-based morphologic change metric, the Beach Change Envelope (BCE). The BCE quantifies changes to the upper portion of the beach likely to sustain measurable impacts from storm waves and capture a variety of storm and post-storm beach states. We evaluated the ability of the BCE to characterize cycles of beach change by relating it to a conceptual beach recovery regime, and demonstrated that BCE width and BCE height from the profile time series correlate well with established stages of recovery. We also investigated additional applications of this metric to capture impacts from storms and human modification by applying it to several post-storm historical datasets in which impacts varied considerably; Nor'Ida (2009), Hurricane Irene (2011), Hurricane Sandy (2012), and a 2009 community replenishment. In each case, the BCE captured distinctive upper beach morphologic change characteristic of these different beach building and erosional events. Analysis of the beach state at multiple profile locations showed spatial trends in recovery consistent with recent morphologic island evolution, which other studies have linked with sediment availability and the geologic framework. Ultimately we demonstrate a new way of more effectively characterizing beach response and recovery cycles to evaluate change along sandy coasts.
    Description: This work was supported by the 2013 Disaster Relief Appropriations Act, Department of Interior Hurricane Sandy Supplemental Project GS2-2B.
    Keywords: Barrier Island ; Coastal geomorphology ; Storm response ; Beach recovery
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Micropaleontology 138 (2018): 12-32, doi:10.1016/j.marmicro.2017.10.005.
    Description: We report systematic transmission electron microscope (TEM) observations of the cellular ultrastructure of selected, small rotalid benthic foraminifera. Nine species from different environments (intertidal mudflat, fjord, and basin) were investigated: Ammonia sp., Elphidium oceanense, Haynesina germanica, Bulimina marginata, Globobulimina sp., Nonionellina labradorica, Nonionella sp., Stainforthia fusiformis and Buliminella tenuata. All the observed specimens were fixed just after collection from their natural habitats allowing description of intact and healthy cells. Foraminiferal organelles can be divided into two broad categories: (1) organelles that are present in all eukaryotes, such as the nuclei, mitochondria, endoplasmic reticulum, Golgi apparatus, and peroxisomes; and (2) organelles observed in all foraminifera but not common in all eukaryotic cells, generally with unknown function, such as fibrillar vesicles or electron-opaque bodies. Although the organelles of the first category were observed in all the observed species, their appearance varies. For example, subcellular compartments linked to feeding and metabolism exhibited different sizes and shapes between species, likely due to differences in their diet and/or trophic mechanisms. The organelles of the second category are common in all foraminiferal species investigated and, according to the literature, are frequently present in the cytoplasm of many different species, both benthic and planktonic. This study, thus, provides a detailed overview of the major ultrastructural components in benthic foraminiferal cells from a variety of marine environments, and also highlights the need for further research to better understand the function and role of the various organelles in these fascinating organisms.
    Description: This work was supported by the Swiss National Science Foundation (grant no. 200021_149333), The Investment in Science Fund at WHOI and the French national program EC2CO-LEFE (project ForChlo). TJ was funded by the “FRESCO” project, a project supported by the Region Pays de Loire and the University of Angers.
    Keywords: Protist ; Organelles ; TEM ; Cytology ; Mudflat ; Gullmar Fjord
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science of The Total Environment 621 (2018): 1185-1198, doi:10.1016/j.scitotenv.2017.10.109.
    Description: We made an assessment of the levels of radionuclides in the ocean waters, seafloor and groundwater at Bikini and Enewetak Atolls where the US conducted nuclear weapons tests in the 1940's and 50's. This included the first estimates of submarine groundwater discharge (SGD) derived from radium isotopes that can be used here to calculate radionuclide fluxes in to the lagoon waters. While there is significant variability between sites and sample types, levels of plutonium (239,240Pu) remain several orders of magnitude higher in lagoon seawater and sediments than what is found in rest of the world's oceans. In contrast, levels of cesium-137 (137Cs) while relatively elevated in brackish groundwater are only slightly higher in the lagoon water relative to North Pacific surface waters. Of special interest was the Runit dome, a nuclear waste repository created in the 1970's within the Enewetak Atoll. Low seawater ratios of 240Pu/239Pu suggest that this area is the source of about half of the Pu in the Enewetak lagoon water column, yet radium isotopes suggest that SGD from below the dome is not a significant Pu source. SGD fluxes of Pu and Cs at Bikini were also relatively low. Thus radioactivity associated with seafloor sediments remains the largest source and long term repository for radioactive contamination. Overall, Bikini and Enewetak Atolls are an ongoing source of Pu and Cs to the North Pacific, but at annual rates that are orders of magnitude smaller than delivered via close-in fallout to the same area.
    Description: Finally, none of this would have been possible without the generous financial support from the Dalio Explore Fund (WHOI #25531513) for the vessel and our post cruise analyses that together resulted in this unique and successful research program.
    Keywords: Marshall Islands ; Runit dome ; Plutonium ; Cesium ; Radium ; Nuclear weapons tests
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Marine Policy, Elsevier, 89, pp. 50-57, ISSN: 0308-597X
    Publication Date: 2024-02-07
    Description: The ‘Code of Conduct for Responsible Fisheries’ developed by the United Nations Food and Agriculture Organisation has been central for the governance of fisheries. Most responsible fisheries initiatives are market-driven and motivate transitions towards greener economies. These added-value fish economies have increasingly connected fishing grounds to external markets that demand high quality sustainable products. This article problematizes the framework of responsible fishing and examines its intersections with place-base institutional processes in the Pacific coast of Colombia. In doing this, it explores how the concept of ‘responsible fishing’ has been framed, arguing that it has been used to operationalize the expansion of neoliberal processes in the oceans. It draws on small-scale fisheries performed by Afro-descendant people in the Gulf of Tribugá, where responsible fishing narratives have been linked to the creation of marine protected areas and responsible fish supply chains. Two dominant framings of responsible fishing were identified; a 'sustainability’ framing that denotes the sustainable use of fishing resources, and a ‘technical’ framing that refers to the use of environmentally safe practices. However, none of these framings accounts for social responsibility. Instead they have enforced the division of fishing practices between ‘responsible’/‘irresponsible’, and produced static, ahistorical and oversimplified understandings of fishing dynamics. All this has triggered a local need for external control over fisheries governance, disempowering place-based control mechanisms. This article concludes by questioning whether responsible fishing can successfully ensure a sustainable use of fishing resources, or if moving beyond ‘responsibility’ is needed to strengthen local institutional processes and autonomy among coastal peoples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-01
    Print ISSN: 0360-5442
    Electronic ISSN: 1873-6785
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-11-01
    Print ISSN: 0960-1481
    Electronic ISSN: 1879-0682
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-04-01
    Print ISSN: 0031-3203
    Electronic ISSN: 1873-5142
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-01-01
    Print ISSN: 0031-3203
    Electronic ISSN: 1873-5142
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-01-01
    Print ISSN: 0360-3199
    Electronic ISSN: 1879-3487
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018
    Description: 〈p〉Publication date: January 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Progress in Oceanography, Volume 170〈/p〉 〈p〉Author(s): Alba María Martínez–Pérez, Teresa S. Catalá, Mar Nieto–Cid, Jaime Otero, Marta Álvarez, Mikhail Emelianov, Isabel Reche, Xosé Antón Álvarez–Salgado, Javier Arístegui〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Fluorescent dissolved organic matter (FDOM) in the Mediterranean Sea was analysed by excitation–emission matrix (EEM) spectroscopy and parallel factor (PARAFAC) analysis during the cruise HOTMIX 2014. A 4–component model, including 3 humic–like and 1 protein–like compounds, was obtained. To decipher the environmental factors that dictate the distributions of these components, we run generalized additive models (GAMs) in the epipelagic layer and an optimum multiparametric (OMP) water masses analysis in the meso– and bathypelagic layers. In the epipelagic layer, apparent oxygen utilization (AOU) and temperature presented the most significant effects on the variability of the marine humic-like peak M fluorescence, suggesting that its distribution was controlled by the net community respiration of organic matter and photobleaching. On the contrary, the variability of the soil humic-like peak E and the protein–like peak T fluorescence was explained mainly by the prokaryotic heterotrophic abundance, which decreased eastwards. In the meso– and bathypelagic layers, water mass mixing and basin–scale mineralization processes explained 〉72% and 63% of the humic–like and protein–like fluorescence variability, respectively. When analysing the two basins separately, the OMP model offered a better explanation of the distribution of fluorescence in the eastern Mediterranean Sea, as expected from the reduced biological activity in this ultra–oligotrophic basin. Furthermore, while western Mediterranean deep waters display the usual trend in the global ocean (increase of humic–like fluorescence and decrease of protein–like fluorescence with higher AOU values), the eastern Mediterranean deep waters presented an opposite trend. Different initial fluorescence intensities of the water masses that mix in the eastern basin, with Adriatic and Aegean origins, seem to be behind this contrasting pattern. The analysis of the transect–scale mineralization processes corroborate this hypothesis, suggesting a production of humic–like and a consumption of protein–like fluorescence in parallel with water mass ageing. Remarkably, the transect–scale variability of the chromophoric dissolved organic matter (CDOM) absorbing at the excitation wavelength of the humic–like peak M indicates an unexpected loss with increasing AOU, which suggests that the consumption of the non–fluorescent fraction of CDOM absorbing at that wavelength exceeded the production of the fluorescent fraction observed here.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0079-6611
    Electronic ISSN: 1873-4472
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018
    Description: 〈p〉Publication date: 15 January 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of Algebra, Volume 518〈/p〉 〈p〉Author(s): William Cocke, Meng-Che “Turbo” Ho〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Word maps provide a wealth of information about finite groups. We examine the connection between the probability distribution induced by a word map and the underlying structure of a finite group. We show that a finite group is nilpotent if and only if every surjective word map has fibers of uniform size. Moreover, we show that probability distributions themselves are sufficient to identify nilpotent groups, and these same distributions can be used to determine abelian groups up to isomorphism. In addition we answer a question of Amit and Vishne.〈/p〉〈/div〉
    Print ISSN: 0021-8693
    Electronic ISSN: 1090-266X
    Topics: Mathematics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018
    Description: 〈p〉Publication date: 15 January 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of Algebra, Volume 518〈/p〉 〈p〉Author(s): Benjamin Steinberg〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Work of Jean Renault shows that, for topologically principal étale groupoids, a diagonal-preserving isomorphism of reduced 〈math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"〉〈msup〉〈mrow〉〈mi〉C〈/mi〉〈/mrow〉〈mrow〉〈mo〉⁎〈/mo〉〈/mrow〉〈/msup〉〈/math〉-algebras yields an isomorphism of groupoids. Several authors have proved analogues of this result for ample groupoid algebras over integral domains under suitable hypotheses. In this paper, we extend the known results by allowing more general coefficient rings and by weakening the hypotheses on the groupoids. Our approach has the additional feature that we only need to impose conditions on one of the two groupoids. Applications are given to Leavitt path algebras.〈/p〉〈/div〉
    Print ISSN: 0021-8693
    Electronic ISSN: 1090-266X
    Topics: Mathematics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...