ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Institute of Physics  (52,567)
  • American Geophysical Union (AGU)
  • Annual Reviews
  • 2000-2004  (55,183)
  • 1980-1984
  • 1935-1939  (505)
  • 2004  (20,004)
  • 2003  (17,929)
  • 2002  (17,250)
  • 1938  (505)
Collection
Years
  • 2000-2004  (55,183)
  • 1980-1984
  • 1935-1939  (505)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 1-44 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 177-206 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Early NMR structural studies of serum lipoproteins were based on 1H, 13C, 31P, and 2H studies of lipid components. From the early studies information on composition, lipid chain dynamics and order parameters, and monolayer organization resulted. More recently, selective or complete isotopic labeling techniques, combined with multidimensional NMR spectroscopy, have resulted in structural information of apoprotein fragments. Finally, use of heteronuclear three- and four-dimensional experiments have yielded solution structures and protein-lipid interactions of intact apolipoproteins C-I, C-II, and A-I.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 235-256 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract During the course of their biological function, proteins undergo different types of structural rearrangements ranging from local to large-scale conformational changes. These changes are usually triggered by their interactions with small-molecular-weight ligands or other macromolecules. Because binding interactions occur at specific sites and involve only a small number of residues, a chain of cooperative interactions is necessary for the propagation of binding signals to distal locations within the protein structure. This process requires an uneven structural distribution of protein stability and cooperativity as revealed by NMR-detected hydrogen/deuterium exchange experiments under native conditions. The distribution of stabilizing interactions does not only provide the architectural foundation to the three-dimensional structure of a protein, but it also provides the required framework for functional cooperativity. In this review, the statistical thermodynamic linkage between protein stability, functional cooperativity, and ligand binding is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 73-95 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Active transport requires the alternation of substrate uptake and release with a switch in the access of the substrate binding site to the two sides of the membrane. Both the transfer and switch aspects of the photocycle have been subjects of magnetic resonance studies in bacteriorhodopsin. The results for ion transfer indicate that the Schiff base of the chromophore is hydrogen bonded before, during, and after its deprotonation. This suggests that the initial complex counterion of the Schiff base decomposes in such a way that the Schiff base carries its immediate hydrogen-bonding partner with it as it rotates during the first half of the photocycle. If so, bacteriorhodopsin acts as an inward-directed hydroxide pump rather than as an outward-directed proton pump. The studies of the access switch explore both protein-based and chromophore-based mechanisms. Combined with evidence from functional studies of mutants and other forms of spectroscopy, the results suggest that maintaining access to the extracellular side of the protein after photoisomerization involves twisting of the chromophore and that the decisive switch in access to the cytoplasmic side results from relaxation of the chromophore when the constraints on the Schiff base are released by decomposition of the complex counterion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 151-175 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract We review the physical properties of phosphatidylinositol 4,5-bisphosphate (PIP2) that determine both its specific interactions with protein domains of known structure and its nonspecific electrostatic sequestration by unstructured domains. Several investigators have postulated the existence of distinct pools of PIP2 within the cell to account for the myriad functions of this lipid. Recent experimental work indicates certain regions of the plasma membrane-membrane ruffles and nascent phagosomes-do indeed concentrate PIP2. We consider two mechanisms that could account for this phenomenon: local synthesis and electrostatic sequestration. We conclude by considering the hypothesis that proteins such as MARCKS bind a significant fraction of the PIP2 in a cell, helping to sequester it in lateral membrane domains, then release this lipid in response to local signals such as an increased concentration of Ca++/calmodulin or activation of protein kinase C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 121-149 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The first crystal structures of intact T cell receptors (TCRs) bound to class I peptide-MHC (pMHCs) antigens were determined in 1996. Since then, further structures of class I TCR/pMHC complexes have explored the degree of structural variability in the TCR-pMHC system and the structural basis for positive and negative selection. The recent determination of class II and allogeneic class I TCR/pMHC structures, as well as those of accessory molecules (e.g., CD3), has pushed our knowledge of TCR/pMHC interactions into new realms, shedding light on clinical pathologies, such as graft rejection and graft-versus-host disease. Furthermore, the determination of coreceptor structures lays the foundation for a more comprehensive structural description of the supramolecular TCR signaling events and those assemblies that arise in the immunological synapse. While these telling photodocumentaries of the TCR/pMHC interaction are composed mainly from static crystal structures, a full description of the biological snapshots in T cell signaling requires additional analytical methods that record the dynamics of the process. To this end, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and ultracentrifugation (UC) have furnished both affinities and kinetics of the TCR/pMHC association. In the past year, structural, biochemical, and molecular biological data describing TCR/pMHC interactions have sublimely coalesced into a burgeoning well of understanding that promises to deliver further insights into T cell recognition. The coming years will, through a more intimate union of structural and kinetic data, allow many pressing questions to be addressed, such as how TCR/pMHC ligation is affected by coreceptor binding and what is the mechanism of TCR signaling in both early and late stages of T cell engagement with antigen-presenting cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 207-233 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The structures of an increasing number of channels and other alpha-helical membrane proteins have been determined recently, including the KcsA potassium channel, the MscL mechanosensitive channel, and the AQP1 and GlpF members of the aquaporin family. In this chapter, the orientation and packing characteristics of bilayer-spanning helices are surveyed in integral membrane proteins. In the case of channels, alpha-helices create the sealed barrier that separates the hydrocarbon region of the bilayer from the permeation pathway for solutes. The helices surrounding the permeation pathway tend to be rather steeply tilted relative to the membrane normal and are consistently arranged in a right-handed bundle. The helical framework further provides a supporting scaffold for nonmembrane-spanning structures associated with channel selectivity. Although structural details remain scarce, the conformational changes associated with gating transitions between closed and open states of channels are reviewed, emphasizing the potential roles of helix-helix interactions in this process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 275-302 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Using luminescent lanthanides, instead of conventional fluorophores, as donor molecules in resonance energy transfer measurements offers many technical advantages and opens up a wide range of new applications. Advantages include farther measurable distances (~100 A) with greater accuracy, insensitivity to incomplete labeling, and the ability to use generic relatively large labels, when necessary. Applications highlighted include the study of ion channels in living cells, protein-protein interaction in cells, DNA-protein complexes, and high-throughput screening assays to measure peptide dimerization associated with DNA transcription factors and ligand-receptor interactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 303-319 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Cryo-electron microscopy (cryo-EM) of biological molecules in single-particle (i.e., unordered, nonaggregated) form is a new approach to the study of molecular assemblies, which are often too large and flexible to be amenable to X-ray crystallography. New insights into biological function on the molecular level are expected from cryo-EM applied to the study of such complexes "trapped" at different stages of their conformational changes and dynamical interactions. Important molecular machines involved in the fundamental processes of transcription, mRNA splicing, and translation are examples for successful applications of the new technique, combined with structural knowledge gained by conventional techniques of structure determination, such as X-ray crystallography and NMR.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 443-484 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The recent report of the crystal structure of rhodopsin provides insights concerning structure-activity relationships in visual pigments and related G protein-coupled receptors (GPCRs). The seven transmembrane helices of rhodopsin are interrupted or kinked at multiple sites. An extensive network of interhelical interactions stabilizes the ground state of the receptor. The ligand-binding pocket of rhodopsin is remarkably compact, and several chromophore-protein interactions were not predicted from mutagenesis or spectroscopic studies. The helix movement model of receptor activation, which likely applies to all GPCRs of the rhodopsin family, is supported by several structural elements that suggest how light-induced conformational changes in the ligand-binding pocket are transmitted to the cytoplasmic surface. The cytoplasmic domain of the receptor includes a helical domain extending from the seventh transmembrane segment parallel to the bilayer surface. The cytoplasmic surface appears to be approximately large enough to bind to the transducin heterotrimer in a one-to-one complex. The structural basis for several unique biophysical properties of rhodopsin, including its extremely low dark noise level and high quantum efficiency, can now be addressed using a combination of structural biology and various spectroscopic methods. Future high-resolution structural studies of rhodopsin and other GPCRs will form the basis to elucidate the detailed molecular mechanism of GPCR-mediated signal transduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 485-516 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Integrins are a structurally elaborate family of heterodimers that mediate divalent cation-dependent cell adhesion in a wide range of biological contexts. The inserted (I) domain binds ligand in the subset of integrins in which it is present. Its structure has been determined in two alternative conformations, termed open and closed. In striking similarity to signaling G proteins, rearrangement of a Mg2+-binding site is linked to large conformational movements in distant backbone regions. Mutations have been used to stabilize either the closed or open structures. These show that the snapshots of the open conformation seen only in the presence of a ligand or a ligand mimetic represent a high-affinity, ligand-binding conformation, whereas those of the closed conformation correspond to a low-affinity conformation. The C-terminal alpha-helix moves 10 A down the side of the domain in the open conformation. Locking in the conformation of the preceding loop is sufficient to increase affinity for ligand 9000-fold. This C-terminal "bell-rope" provides a mechanism for linkage to conformational movements in other domains. The transition from the closed to open conformation has been implicated in fast (〈1 s) regulation of integrin affinity in response to activation signals from inside the cell. Recent integrin structures and functional studies reveal interactions between beta-propeller, I, and I-like domains in the headpiece, and a critical role for integrin EGF domains in the stalk region. These studies suggest that the headpiece of the integrin faces down toward the membrane in the inactive conformation and extends upward in a "switchblade"-like opening motion upon activation. These long-range structural rearrangements of the entire integrin molecule involving multiple interdomain contacts appear closely linked to conformational changes in the I domain, which result in increased affinity and competence for ligand binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 47-67 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Optical single transporter recording (OSTR) is an emerging technique for the fluorescence microscopic measurement of transport kinetics in membrane patches. Membranes are attached to transparent microarrays of cylindrical test compartments (TCs) ~0.1-100 mum in diameter and ~10-100 mum in depth. Transport across membrane patches that may contain single transporters or transporter populations is recorded by confocal microscopy. By these means transport of proteins through single nuclear pore complexes has been recorded at rates of 〈1 translocation/s. In addition to the high sensitivity in terms of measurable transport rates OSTR features unprecedented spatial selectivity and parallel processing. This article reviews the conceptual basis of OSTR and its realization. Applications to nuclear transport are summarized. The further development of OSTR is discussed and its extension to a diversity of transporters, including translocases and ATP-binding cassette (ABC) pumps, projected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 93-114 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Since mid-1990, with cloning and identification of several families of natural killer (NK) receptors, research on NK cells began to receive appreciable attention. Determination of structures of NK cell surface receptors and their ligand complexes led to a fast growth in our understanding of the activation and ligand recognition by these receptors as well as their function in innate immunity. Functionally, NK cell surface receptors are divided into two groups, the inhibitory and the activating receptors. Structurally, they belong to either the immunoglobulin (Ig)-like receptor superfamily or the C-type lectin-like receptor (CTLR) superfamily. Their ligands are either members of class I major histocompatibility complexes (MHC) or homologs of class I MHC molecules. The inhibitory form of NK receptors provides the protective immunity through recognizing class I MHC molecules with self-peptides on healthy host cells. The activating, or the noninhibitory, NK receptors mediate the killing of tumor or virally infected cells through their specific ligand recognition. The structures of activating and inhibitory NK cell surface receptors and their complexes with the ligands determined to date, including killer immunoglobulin-like receptors (KIRs) and their complexes with HLA molecules, CD94, Ly49A, and its complex with H-2Dd, and NKG2D receptors and their complexes with class I MHC homologs, are reviewed here.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 161-182 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Recent years have witnessed a renaissance of fluorescence microscopy techniques and applications, from live-animal multiphoton confocal microscopy to single-molecule fluorescence spectroscopy and imaging in living cells. These achievements have been made possible not so much because of improvements in microscope design, but rather because of development of new detectors, accessible continuous wave and pulsed laser sources, sophisticated multiparameter analysis on one hand, and the development of new probes and labeling chemistries on the other. This review tracks the lineage of ideas and the evolution of thinking that have led to the actual developments, and presents a comprehensive overview of the field, with emphasis put on our laboratory's interest in single-molecule microscopy and spectroscopy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 135-159 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The lamba integrase, or tyrosine-based family of site-specific recombinases, plays an important role in a variety of biological processes by inserting, excising, and inverting DNA segments. Flp, encoded by the yeast 2-mum plasmid, is the best-characterized eukaryotic member of this family and is responsible for maintaining the copy number of this plasmid. Over the past several years, structural and biochemical studies have shed light on the details of a common catalytic scheme utilized by these enzymes with interesting variations under different biological contexts. The emergence of new Flp structures and solution data provides insights not only into its unique mechanism of active site assembly and activity regulation but also into the specific contributions of certain protein residues to catalysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 285-310 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The past decade has witnessed increasingly detailed insights into the structural mechanism of the bacteriorhodopsin photocycle. Concurrently, there has been much progress within our knowledge pertaining to the lipids of the purple membrane, including the discovery of new lipids and the overall effort to localize and identify each lipid within the purple membrane. Therefore, there is a need to classify this information to generalize the findings. We discuss the properties and roles of haloarchaeal lipids and present the structural data as individual case studies. Lipid-protein interactions are discussed in the context of structure-function relationships. A brief discussion of the possibility that bacteriorhodopsin functions as a light-driven inward hydroxide pump rather than an outward proton pump is also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 375-397 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract G protein-coupled receptors (GPCRs) are integral membrane proteins that respond to environmental signals and initiate signal transduction pathways activating cellular processes. Rhodopsin is a GPCR found in rod cells in retina where it functions as a photopigment. Its molecular structure is known from cryo-electron microscopic and X-ray crystallographic studies, and this has reshaped many structure/function questions important in vision science. In addition, this first GPCR structure has provided a structural template for studies of other GPCRs, including many known drug targets. After presenting an overview of the major structural elements of rhodopsin, recent literature covering the use of the rhodopsin structure in analyzing other GPCRs will be summarized. Use of the rhodopsin structural model to understand the structure and function of other GPCRs provides strong evidence validating the structural model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 399-424 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The coupling of high-performance mass spectrometry instrumentation with highly efficient chromatographic and electrophoretic separations has enabled rapid qualitative and quantitative analysis of thousands of proteins from minute samples of biological materials. Here, we review recent progress in the development and application of mass spectrometry-based techniques for the qualitative and quantitative analysis of global proteome samples derived from whole cells, tissues, or organisms. Techniques such as multidimensional peptide and protein separations coupled with mass spectrometry, accurate mass measurement of peptides from global proteome digests, and mass spectrometric characterization of intact proteins hold great promise for characterization of highly complex protein mixtures. Advances in chemical tagging and isotope labeling techniques have enabled quantitative analysis of proteomes, and highly specific isolation strategies have been developed aimed at selective analysis of posttranslationally modified proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 387-413 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide long-range orientational information. RDCs are now widely utilized in structure calculations. Increasingly, they are being used in novel applications to address complex issues in structural biology such as the accurate determination of the global structure of oligonucleotides and the relative orientation of protein domains. This review briefly describes the theory and methods for obtaining RDCs and then describes the range of biological applications where RDCs have been used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 269-295 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Views of how cell membranes are organized are presently changing. The lipid bilayer that constitutes these membranes is no longer understood to be a homogeneous fluid. Instead, lipid assemblies, termed rafts, have been introduced to provide fluid platforms that segregate membrane components and dynamically compartmentalize membranes. These assemblies are thought to be composed mainly of sphingolipids and cholesterol in the outer leaflet, somehow connected to domains of unknown composition in the inner leaflet. Specific classes of proteins are associated with the rafts. This review critically analyzes what is known of phase behavior and liquid-liquid immiscibility in model systems and compares these data with what is known of domain formation in cell membranes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 25-51 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The amyloid precursor protein and the proteases cleaving this protein are important players in the pathogenesis of Alzheimer's disease via the generation of the amyloid peptide. Physiologically, the amyloid precursor protein is implied in axonal vesicular trafficking and the proteases are implicated in developmentally important signaling pathways, most significantly those involving regulated intramembrane proteolysis or RIP. We discuss the cell biology behind the amyloid and tangle hypothesis for Alzheimer's disease, drawing on the many links to the fields of cell biology and developmental biology that have been established in the recent years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 107-133 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The type III mechanism of protein secretion is a pathogenic strategy shared by a number of gram-negative pathogens of plants and animals that has evolved in order to inject virulence proteins into the cytosol of target eukaryotic cells. The pathogens of the Yersinia genus represent a model system where much progress has been made in understanding this secretion pathway. Herein, we review what has been recently learned in yersiniae about the various environmental signals that induce type III secretion, how the synthesis of secretion substrates is regulated, and how such a diverse group of proteins is recognized as a substrate for secretion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 135-161 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The host cytoskeleton plays important roles in the entry, replication, and egress of viruses. An assortment of viruses hijack cellular motor proteins to move on microtubules toward the cell interior during the entry process; others reverse this transport during egress to move assembling virus particles toward the plasma membrane. Polymerization of actin filaments is sometimes used to propel viruses from cell to cell, while many viruses induce the destruction of select cytoskeletal filaments apparently to effect efficient egress. Indeed, the tactics used by any given virus to achieve its infectious life cycle are certain to involve multiple cytoskeletal interactions. Understanding these interactions, and their orchestration during viral infections, is providing unexpected insights into basic virology, viral pathogenesis, and the biology of the cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 193-219 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Spindle microtubules interact with mitotic chromosomes, binding to their kinetochores to generate forces that are important for accurate chromosome segregation. Motor enzymes localized both at kinetochores and spindle poles help to form the biologically significant attachments between spindle fibers and their cargo, but microtubule-associated proteins without motor activity contribute to these junctions in important ways. This review examines the molecules necessary for chromosome-microtubule interaction in a range of well-studied organisms, using biological diversity to identify the factors that are essential for organized chromosome movement. We conclude that microtubule dynamics and the proteins that control them are likely to be more important for mitosis than the current enthusiasm for motor enzymes would suggest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 221-245 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chlamydiae, bacterial obligate intracellular pathogens, are the etiologic agents of several human diseases. A large part of the chlamydial intracellular survival strategy involves the formation of a unique organelle called the inclusion that provides a protected site within which they replicate. The chlamydial inclusion is effectively isolated from endocytic pathways but is fusogenic with a subset of exocytic vesicles that deliver sphingomyelin from the Golgi apparatus to the plasma membrane. A combination of host and parasite functions contribute to the biogenesis of this compartment. Establishment of the mature inclusion is accompanied by the insertion of multiple chlamydial proteins, suggesting that chlamydiae actively modify the inclusion to define its interactions with the eukaryotic host cell. Despite being sequestered within a membrane-bound vacuole, chlamydiae clearly communicate with and manipulate the host cell from within this privileged intracellular niche.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 463-493 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Epithelial morphogenesis comprises the various processes by which epithelia contribute to organ formation and body shape. These complex and diverse events play a central role in animal development and regeneration. Recently, the characterization of some of the molecular mechanisms involved in epithelial morphogenesis has provided an abundance of new information on the role and regulation of the cytoskeleton, cell-cell adhesion, and cell-matrix adhesion in these processes. In this review, we discuss our current understanding of the molecular mechanisms driving cell shape changes, cell intercalation, fusion of epithelia, ingression, egression, and cell migration. Our discussion is mostly focused on results from Drosophila and mammalian tissue culture but also draws on the insights gained from other organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 379-420 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Golgi inheritance proceeds via sequential biogenesis and partitioning phases. Although little is known about Golgi growth and replication (biogenesis), ultrastructural and fluorescence analyses have provided a detailed, though still controversial, perspective of Golgi partitioning during mitosis in mammalian cells. Partitioning requires the fragmentation of the juxtanuclear ribbon of interconnected Golgi stacks into a multitude of tubulovesicular clusters. This process is choreographed by a cohort of mitotic kinases and an inhibition of heterotypic and homotypic Golgi membrane-fusion events. Our model posits that accurate partitioning occurs early in mitosis by the equilibration of Golgi components on either side of the metaphase plate. Disseminated Golgi components then coalesce to regenerate Golgi stacks during telophase. Semi-intact cell and cell-free assays have accurately recreated these processes and allowed their molecular dissection. This review attempts to integrate recent findings to depict a more coherent, synthetic molecular picture of mitotic Golgi fragmentation and reassembly. Of particular importance is the emerging concept of a highly regulated and dynamic Golgi structural matrix or template that interfaces with cargo receptors, Golgi enzymes, Rab-GTPases, and SNAREs to tightly couple biosynthetic transport to Golgi architecture. This structural framework may be instructive for Golgi biogenesis and may encode sufficient information to ensure accurate Golgi inheritance, thereby helping to resolve some of the current discrepancies between different workers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 593-618 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: During brain development, neurons migrate great distances from proliferative zones to generate the cortical gray matter. A series of studies has identified genes that are critical for migration and targeting of neurons to specific brain regions. These genes encode three basic groups of proteins and produce three distinct phenotypes. The first group encodes cytoskeletal molecules and produces graded and dosage-dependent effects, with a significant amount of functional redundancy. This group also appears to play important roles during the initiation and ongoing progression of neuronal movement. The second group encodes signaling molecules for which homozygous mutations lead to an inverted cortex. In addition, this group is responsible for movement of neurons through anatomic boundaries to specific cortical layers. The third group encodes enzymatic regulators of glycosylation and appears to delineate where neuronal migration will arrest. There is significant cross-talk among these different groups of molecules, suggesting possible points of pathway convergence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 725-757 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The principles underlying regeneration in planarians have been explored for over 100 years through surgical manipulations and cellular observations. Planarian regeneration involves the generation of new tissue at the wound site via cell proliferation (blastema formation), and the remodeling of pre-existing tissues to restore symmetry and proportion (morphallaxis). Because blastemas do not replace all tissues following most types of injuries, both blastema formation and morphallaxis are needed for complete regeneration. Here we discuss a proliferative cell population, the neoblasts, that is central to the regenerative capacities of planarians. Neoblasts may be a totipotent stem-cell population capable of generating essentially every cell type in the adult animal, including themselves. The population properties of the neoblasts and their descendants still await careful elucidation. We identify the types of structures produced by blastemas on a variety of wound surfaces, the principles guiding the reorganization of pre-existing tissues, and the manner in which scale and cell number proportions between body regions are restored during regeneration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 481-504 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Plant membrane trafficking shares many features with other eukaryotic organisms, including the machinery for vesicle formation and fusion. However, the plant endomembrane system lacks an ER-Golgi intermediate compartment, has numerous Golgi stacks and several types of vacuoles, and forms a transient compartment during cell division. ER-Golgi trafficking involves bulk flow and efficient recycling of H/KDEL-bearing proteins. Sorting in the Golgi stacks separates bulk flow to the plasma membrane from receptor-mediated trafficking to the lytic vacuole. Cargo for the protein storage vacuole is delivered from the endoplasmic reticulum (ER), cis-Golgi, and trans-Golgi. Endocytosis includes recycling of plasma membrane proteins from early endosomes. Late endosomes appear identical with the multivesiculate prevacuolar compartment that lies on the Golgi-vacuole trafficking pathway. In dividing cells, homotypic fusion of Golgi-derived vesicles forms the cell plate, which expands laterally by targeted vesicle fusion at its margin, eventually fusing with the plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 285-308 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: We review the current status of research in dorsal-ventral (D-V) patterning in vertebrates. Emphasis is placed on recent work on Xenopus, which provides a paradigm for vertebrate development based on a rich heritage of experimental embryology. D-V patterning starts much earlier than previously thought, under the influence of a dorsal nuclear -Catenin signal. At mid-blastula two signaling centers are present on the dorsal side: The prospective neuroectoderm expresses bone morphogenetic protein (BMP) antagonists, and the future dorsal endoderm secretes Nodal-related mesoderm-inducing factors. When dorsal mesoderm is formed at gastrula, a cocktail of growth factor antagonists is secreted by the Spemann organizer and further patterns the embryo. A ventral gastrula signaling center opposes the actions of the dorsal organizer, and another set of secreted antagonists is produced ventrally under the control of BMP4. The early dorsal -Catenin signal inhibits BMP expression at the transcriptional level and promotes expression of secreted BMP antagonists in the prospective central nervous system (CNS). In the absence of mesoderm, expression of Chordin and Noggin in ectoderm is required for anterior CNS formation. FGF (fibroblast growth factor) and IGF (insulin-like growth factor) signals are also potent neural inducers. Neural induction by anti-BMPs such as Chordin requires mitogen-activated protein kinase (MAPK) activation mediated by FGF and IGF. These multiple signals can be integrated at the level of Smad1. Phosphorylation by BMP receptor stimulates Smad1 transcriptional activity, whereas phosphorylation by MAPK has the opposite effect. Neural tissue is formed only at very low levels of activity of BMP-transducing Smads, which require the combination of both low BMP levels and high MAPK signals. Many of the molecular players that regulate D-V patterning via regulation of BMP signaling have been conserved between Drosophila and the vertebrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 455-480 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Macrophages are essential modulators of lipid metabolism and the innate immune system. Lipid and inflammatory pathways induced in activated macrophages are central to the pathogenesis of human diseases including atherosclerosis. Recent work has shown that expression of genes involved in lipid uptake and cholesterol efflux in macrophages is controlled by peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). Other studies have implicated these same receptors in the modulation of macrophage inflammatory gene expression. Together, these observations position PPARs and LXRs at the crossroads of lipid metabolism and inflammation and suggest that these receptors may serve to integrate these pathways in the control of macrophage gene expression. In this review, we summarize recent work that has advanced our understanding of the roles of PPARs and LXRs in macrophage biology and discuss the implication of these results for cardiovascular physiology and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 87-123 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The endoplasmic reticulum (ER) and the Golgi comprise the first two steps in protein secretion. Vesicular carriers mediate a continuous flux of proteins and lipids between these compartments, reflecting the transport of newly synthesized proteins out of the ER and the retrieval of escaped ER residents and vesicle machinery. Anterograde and retrograde transport is mediated by distinct sets of cytosolic coat proteins, the COPII and COPI coats, respectively, which act on the membrane to capture cargo proteins into nascent vesicles. We review the mechanisms that govern coat recruitment to the membrane, cargo capture into a transport vesicle, and accurate delivery to the target organelle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 427-453 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The one-cell Caenorhabditis elegans embryo divides asymmetrically into a larger and smaller blastomere, each with a different fate. How does such asymmetry arise? The sperm-supplied centrosome establishes an axis of polarity in the embryo that is transduced into the establishment of anterior and posterior cortical domains. These cortical domains define the polarity of the embryo, acting upstream of the PAR proteins. The PAR proteins, in turn, determine the subsequent segregation of fate determinants and the plane of cell division. We address how cortical asymmetry could be established, relying on data from C. elegans and other polarized cells, as well as from applicable models. We discuss how cortical polarity influences spindle position to accomplish an asymmetric division, presenting the current models of spindle orientation and anaphase spindle displacement. We focus on asymmetric cell division as a function of the actin and microtubule cytoskeletons, emphasizing the cell biology of polarity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 695-723 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The study of the epithelium of the adult mammalian intestine touches upon many modern aspects of biology. The epithelium is in a constant dialogue with the underlying mesenchyme to control stem cell activity, proliferation in transit-amplifying compartments, lineage commitment, terminal differentiation and, ultimately, cell death. There are spatially distinct compartments dedicated to each of these events. The Wnt, TGF-beta, BMP, Notch, and Par polarity pathways are the major players in homeostatic control of the adult epithelium. Several hereditary cancer syndromes deregulate these same signaling cascades through mutational (in)activation. Moreover, these mutations often also occur in sporadic tumors. Thus symmetry exists between the roles that these signaling pathways play in physiology and in cancer of the intestine. This is particularly evident for the Wnt/APC pathway, for which the mammalian intestine has become one of the most-studied paradigms. Here, we integrate recent knowledge of the molecular inner workings of the prototype signaling cascades with their specific roles in intestinal epithelial homeostasis and in neoplastic transformation of the epithelium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 557-579 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Combinatorial methods provide a means for accelerating the discovery of fuel cell catalysts. The first example of parallel fuel cell catalysts screening was an indirect method that used fluorescent chemosensors to detect changes in pH in proximity to electrocatalyst spots. Serial direct electrochemical methods have been developed that use voltammetry, chronoamperometry, and scanning electrochemical microscopy. An array fuel cell screens catalysts simultaneously, using high-performance fuel cell components. Heuristic models based on mechanistic and spectroscopic studies provide guidance for library development, and detailed studies of discovered catalysts can help to refine these models. The remaining challenges are the development of high throughput synthetic methods that can enable the use of discovery level and focus level screening. Until these synthetic methods are developed, a greater emphasis should be placed on smaller libraries with design of experiment strategies leveraged with informatics and data mining.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 503-555 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The past 10 years have witnessed a tremendous acceleration in research devoted to non-fluorinated polymer membranes, both as competitive alternatives to commercial perfluorosulfonic acid membranes operating in the same temperature range and with the objective of extending the range of operation of polymer fuel cells toward those more generally occupied by phosphoric acid fuel cells. Important requirements are adequate membrane mechanical strength at levels of functionalization (generally sulfonation) and hydration allowing high proton conductivity, and stability in the aggressive environment of a working fuel cell, in particular thermohydrolytic and chemical stability. This review provides an overview of progress made in the development of proton-conducting hydrocarbon and heterocyclic-based polymers for proton exchange and direct methanol fuel cells and describes the various approaches made to polymer modification/synthesis and salient properties of the materials formed, including those relating to proton transport and proton conductivity, e.g., water diffusion and electro-osmotic drag. The microstructure, deduced from small angle X-ray and neutron diffraction measurements of representative non-fluorinated polymers is compared with that of perfluorosulfonic acid membranes. Different degradation mechanisms and aging processes that can result in chemical and morphological alteration are considered, and recent characterization of membrane-electrode assemblies (MEAs) in direct methanol and hydrogen-air (oxygen) fuel cells completes this review of the state of the art. While several types of non-fluorinated polymer membrane have demonstrated lifetimes of 500-4000 h, only a limited number of systems exist that hold promise for long-term operation above 100oC.1
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 83-122 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Semiconductor nanowires and nanotubes exhibit novel electronic and optical properties owing to their unique structural one-dimensionality and possible quantum confinement effects in two dimensions. With a broad selection of compositions and band structures, these one-dimensional semiconductor nanostructures are considered to be the critical components in a wide range of potential nanoscale device applications. To fully exploit these one-dimensional nanostructures, current research has focused on rational synthetic control of one-dimensional nanoscale building blocks, novel properties characterization and device fabrication based on nanowire building blocks, and integration of nanowire elements into complex functional architectures. Significant progress has been made in a few short years. This review highlights the recent advances in the field, using work from this laboratory for illustration. The understanding of general nanocrystal growth mechanisms serves as the foundation for the rational synthesis of semiconductor heterostructures in one dimension. Availability of these high-quality semiconductor nanostructures allows systematic structural-property correlation investigations, particularly of a size- and dimensionality-controlled nature. Novel properties including nanowire microcavity lasing, phonon transport, interfacial stability and chemical sensing are surveyed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 1-40 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Highly strained semiconductors grow epitaxially on mismatched substrates in the Stranski-Krastanow growth mode, wherein islands are formed after a few monolayers of layer-by-layer growth. Elastic relaxation on the facet edges, renormalization of the surface energy of the facets, and interaction between neighboring islands via the substrate are the driving forces for self-organized growth. The dimensions of the defect-free islands are of the order lambaB, the de Broglie wavelength, and provide three-dimensional quantum confinement of carriers. Self-organized In(Ga)As/GaAs quantum dots, or quantum boxes, are grown by molecular beam expitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE) on GaAs, InP, and other substrates and are being incorporated in microelectronic and opto-electronic devices. The use of strain to produce self-organized quantum dots has now become a well-accepted approach and is widely used in III-V semiconductors and other material systems. Much progress has been made in the area of growth, where focus has been on size control, and on optical characterization, where the goal has been the application to lasers and detectors. The unique carrier dynamics in the dots, characterized by femtosecond pump-probe spectroscopy, has led to novel device applications. This article reviews the growth and electronic properties of InGaAs quantum dots and the characteristics of interband and intersublevel lasers and detectors and modulation devices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 123-150 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Carbon nanotubes functionalized with biological molecules (such as protein peptides and nucleic acids) show great potential for application in bioengineering and nanotechnology. Fundamental understanding, description, and regulation of such bio-nano-systems will ultimately lead to a new generation of integrated systems that combine unique properties of the carbon nanotube (CNT) with biological recognition capabilities. In this review, we describe recent advances in understanding the interactions between deoxyribonucleic acids (DNA) and CNT, as well as relevant simulation techniques. We also review progress in simulating DNA noncovalent interactions with CNTs in an aqueous environment. Molecular dynamics simulations indicate that DNA molecules may be encapsulated inside or wrap around CNT owing to van der Waals attraction between DNA and CNT. We focus on the dynamics and energetics of DNA encapsulation inside nanotubes and discuss the mechanism of encapsulation and the effects of nanotube size, nanotube end-group, DNA base sequence, solvent temperature and pressure on the encapsulation process. Finally, we discuss the likely impact of DNA encapsulation on bioengineering and nanotechnology, as well as other potential applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 279-314 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Modeling and simulation are becoming increasingly accepted components of materials research. In this review we discuss application of modeling and simulation in the developing field of biomaterials. To restrict the discussion somewhat, we focus primarily on the structure and properties of biomaterials and do not discuss biochemical or biomedical applications. We start with a discussion of how atomistic-level simulation can be used to study molecules and collections of molecules. We then focus on mesoscale simulations of structure and properties, followed by a brief review of continuum-scale approaches. We end with some thoughts on the future of modeling and simulation in biomaterials applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 557-581 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: We review the evidence of regime shifts in terrestrial and aquatic environments in relation to resilience of complex adaptive ecosystems and the functional roles of biological diversity in this context. The evidence reveals that the likelihood of regime shifts may increase when humans reduce resilience by such actions as removing response diversity, removing whole functional groups of species, or removing whole trophic levels; impacting on ecosystems via emissions of waste and pollutants and climate change; and altering the magnitude, frequency, and duration of disturbance regimes. The combined and often synergistic effects of those pressures can make ecosystems more vulnerable to changes that previously could be absorbed. As a consequence, ecosystems may suddenly shift from desired to less desired states in their capacity to generate ecosystem services. Active adaptive management and governance of resilience will be required to sustain desired ecosystem states and transform degraded ecosystems into fundamentally new and more desirable configurations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 285-322 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Studies of plant and animal assemblages from both the terrestrial and the marine fossil records reveal persistence for extensive periods of geological time, sometimes millions of years. Persistence does not require lack of change or the absence of variation from one occurrence of the assemblage to the next in geological time. It does, however, imply that assemblage composition is bounded and that variation occurs within those bounds. The principal cause for these patterns appears to be species-, and perhaps clade-level, environmental fidelity that results in long-term tracking of physical conditions. Other factors that influence persistent recurrence of assemblages are historical, biogeographic effects, the "law of large numbers," niche differentiation, and biotic interactions. Much research needs to be done in this area, and greater uniformity is needed in the approaches to studying the problem. However, great potential also exists for enhanced interaction between paleoecology and neoecology in understanding spatiotemporal complexity of ecological dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 523-556 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: The evolutionary succession of marine photoautotrophs began with the origin of photosynthesis in the Archean Eon, perhaps as early as 3.8 billion years ago. Since that time, Earth's atmosphere, continents, and oceans have undergone substantial cyclic and secular physical, chemical, and biological changes that selected for different phytoplankton taxa. Early in the history of eukaryotic algae, between 1.6 and 1.2 billion years ago, an evolutionary schism gave rise to "green" (chlorophyll b-containing) and "red" (chlorophyll c-containing) plastid groups. Members of the "green" plastid line were important constituents of Neoproterozoic and Paleozoic oceans, and, ultimately, one green clade colonized land. By the mid-Mesozoic, the green line had become ecologically less important in the oceans. In its place, three groups of chlorophyll c-containing eukaryotes, the dinoflagellates, coccolithophorids, and diatoms, began evolutionary trajectories that have culminated in ecological dominance in the contemporary oceans. Breakup of the supercontinent Pangea, continental shelf flooding, and changes in ocean redox chemistry may all have contributed to this evolutionary transition. At the same time, the evolution of these modern eukaryotic taxa has influenced both the structure of marine food webs and global biogeochemical cycles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 199-227 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Species are routinely used as fundamental units of analysis in biogeography, ecology, macroevolution, and conservation biology. A large literature focuses on defining species conceptually, but until recently little attention has been given to the issue of empirically delimiting species. Researchers confronted with the task of delimiting species in nature are often unsure which method(s) is (are) most appropriate for their system and data type collected. Here, we review twelve of these methods organized into two general categories of tree- and nontree-based approaches. We also summarize the relevant biological properties of species amenable to empirical evaluation, the classes of data required, and some of the strengths and limitations of each method. We conclude that all methods will sometimes fail to delimit species boundaries properly or will give conflicting results, and that virtually all methods require researchers to make qualitative judgments. These facts, coupled with the fuzzy nature of species boundaries, require an eclectic approach to delimiting species and caution against the reliance on any single data set or method when delimiting species. No one definition has as yet satisfied all naturalists; yet every naturalist knows vaguely what he means when he speaks of a species. Darwin (1859/1964)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 175-197 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Mutualisms occur when interactions between species produce reciprocal benefits. However, the outcome of these interactions frequently shifts from positive, to neutral, to negative, depending on the environmental and community context, and indirect effects commonly produce unexpected mutualisms that have community-wide consequences. The dynamic, and context dependent, nature of mutualisms can transform consumers, competitors, and parasites into mutualists, even while they consume, compete with, or parasitize their partner species. These dynamic, and often diffuse, mutualisms strongly affect community organization and ecosystem processes, but the historic focus on pairwise interactions decoupled from their more complex community context has obscured their importance. In aquatic systems, mutualisms commonly support ecosystem-defining foundation species, underlie energy and nutrient dynamics within and between ecosystems, and provide mechanisms by which species can rapidly adjust to ecological variance. Mutualism is as important as competition, predation, and physical disturbance in determining community structure, and its impact needs to be adequately incorporated into community theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 467-490 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Spatial synchrony refers to coincident changes in the abundance or other time-varying characteristics of geographically disjunct populations. This phenomenon has been documented in the dynamics of species representing a variety of taxa and ecological roles. Synchrony may arise from three primary mechanisms:(a) dispersal among populations, reducing the size of relatively large populations and increasing relatively small ones; (b) congruent dependence of population dynamics on a synchronous exogenous random factor such as temperature or rainfall, a phenomenon known as the "Moran effect"; and (c) trophic interactions with populations of other species that are themselves spatially synchronous or mobile. Identification of the causes of synchrony is often difficult. In addition to intraspecific synchrony, there are many examples of synchrony among populations of different species, the causes of which are similarly complex and difficult to identify. Furthermore, some populations may exhibit complex spatial dynamics such as spiral waves and chaos. Statistical tests based on phase coherence and/or time-lagged spatial correlation are required to characterize these more complex patterns of spatial dynamics fully.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 435-466 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Ecologists and evolutionary biologists are broadly interested in how the interactions among organisms influence their abundance, distribution, phenotypes, and genotypic composition. Recently, we have seen a growing appreciation of how multispecies interactions can act synergistically or antagonistically to alter the ecological and evolutionary outcomes of interactions in ways that differ fundamentally from outcomes predicted by pairwise interactions. Here, we review the evidence for criteria identified to detect community-based, diffuse coevolution. These criteria include (a) the presence of genetic correlations between traits involved in multiple interactions, (b) interactions with one species that alter the likelihood or intensity of interactions with other species, and (c) nonadditive combined effects of multiple interactors. In addition, we review the evidence that multispecies interactions have demographic consequences for populations, as well as evolutionary consequences. Finally, we explore the experimental and analytical techniques, and their limitations, used in the study of multispecies interactions. Throughout, we discuss areas in particular need of future research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 375-403 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Floral evolution has often been associated with differences in pollination syndromes. Recently, this conceptual structure has been criticized on the grounds that flowers attract a broader spectrum of visitors than one might expect based on their syndromes and that flowers often diverge without excluding one type of pollinator in favor of another. Despite these criticisms, we show that pollination syndromes provide great utility in understanding the mechanisms of floral diversification. Our conclusions are based on the importance of organizing pollinators into functional groups according to presumed similarities in the selection pressures they exert. Furthermore, functional groups vary widely in their effectiveness as pollinators for particular plant species. Thus, although a plant may be visited by several functional groups, the relative selective pressures they exert will likely be very different. We discuss various methods of documenting selection on floral traits. Our review of the literature indicates overwhelming evidence that functional groups exert different selection pressures on floral traits. We also discuss the gaps in our knowledge of the mechanisms that underlie the evolution of pollination syndromes. In particular, we need more information about the relative importance of specific traits in pollination shifts, about what selective factors favor shifts between functional groups, about whether selection acts on traits independently or in combination, and about the role of history in pollination-syndrome evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 63-101 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract The Kuiper Belt consists of a large number of small, solid bodies in heliocentric orbit beyond Neptune. Discovered as recently as 1992, the Kuiper Belt objects (KBOs) are thought to hold the keys to understanding the early solar system, as well as the origin of outer solar system objects, such as the short-period comets and the Pluto-Charon binary. The KBOs are probably best viewed as aged relics of the Sun's accretion disk. Dynamical structures in the Kuiper Belt provide evidence for processes operative in the earliest days of the solar system, including a phase of planetary migration and a clearing phase, in which substantial mass was lost from the disk. Dust is produced to this day by collisions between KBOs. In its youth, the Kuiper Belt may have compared to the dust rings observed now around such stars as GG Tau and HR 4796A. This review presents the basic physical parameters of the KBOs and makes connections with the disks observed around nearby stars.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 171-216 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Cosmic microwave background (CMB) temperature anisotropies have and will continue to revolutionize our understanding of cosmology. The recent discovery of the previously predicted acoustic peaks in the power spectrum has established a working cosmological model: a critical density universe consisting of mainly dark matter and dark energy, which formed its structure through gravitational instability from quantum fluctuations during an inflationary epoch. Future observations should test this model and measure its key cosmological parameters with unprecedented precision. The phenomenology and cosmological implications of the acoustic peaks are developed in detail. Beyond the peaks, the yet to be detected secondary anisotropies and polarization present opportunities to study the physics of inflation and the dark energy. The analysis techniques devised to extract cosmological information from voluminous CMB data sets are outlined, given their increasing importance in experimental cosmology as a whole.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 539-577 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Considerable progress has been made over the past decade in the study of the evolutionary trends of the population of galaxy clusters in the Universe. In this review we focus on observations in the X-ray band. X-ray surveys with the ROSAT satellite, supplemented by follow-up studies with ASCA and Beppo-SAX, have allowed an assessment of the evolution of the space density of clusters out to z= 1 and the evolution of the physical properties of the intracluster medium out to z= 0.5. With the advent of Chandra and Newton-XMM and their unprecedented sensitivity and angular resolution, these studies have been extended beyond redshift unity and have revealed the complexity of the thermodynamical structure of clusters. The properties of the intracluster gas are significantly affected by nongravitational processes including star formation and Active Galactic Nuclei (AGN) activity. Convincing evidence has emerged for modest evolution of both the bulk of the X-ray cluster population and their thermodynamical properties since redshift unity. Such an observational scenario is consistent with hierarchical models of structure formation in a flat low-density universe with Omegam= 0.3 and sigma8= 0.7-0.8 for the normalization of the power spectrum. Basic methodologies for construction of X-ray-selected cluster samples are reviewed, and implications of cluster evolution for cosmological models are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 103-136 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Giant planet research has moved from the study of a handful of solar system objects to that of a class of bodies with dozens of known members. Since the original 1995 discovery of the first extrasolar giant planets (EGPs), the total number of known examples has increased to ~80 (circa November 2001). Current theoretical studies of giant planets emphasize predicted observable properties, such as luminosity, effective temperature, radius, external gravity field, atmospheric composition, and emergent spectra as a function of mass and age. This review focuses on the general theory of hydrogen-rich giant planets; smaller giant planets with the mass and composition of Uranus and Neptune are not covered. We discuss the status of the theory of the nonideal thermodynamics of hydrogen and hydrogen-helium mixtures under the conditions found in giant-planet interiors, and the experimental constraints on it. We provide an overview of observations of extrasolar giant planets and our own giant planets by which the theory can be validated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 319-348 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Magnetic fields in the intercluster medium have been measured using a variety of techniques, including studies of synchrotron relic and halo radio sources within clusters, studies of inverse Compton X-ray emission from clusters, surveys of Faraday rotation measures of polarized radio sources both within and behind clusters, and studies of cluster cold fronts in X-ray images. These measurements imply that most cluster atmospheres are substantially magnetized, with typical field strengths of order 1 muGauss with high areal filling factors out to Mpc radii. There is likely to be considerable variation in field strengths and topologies both within and between clusters, especially when comparing dynamically relaxed clusters to those that have recently undergone a merger. In some locations, such as the cores of cooling flow clusters, the magnetic fields reach levels of 10-40 muG and may be dynamically important. In all clusters the magnetic fields have a significant effect on energy transport in the intracluster medium. We also review current theories on the origin of cluster magnetic fields.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 211-273 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Turbulence affects the structure and motions of nearly all temperature and density regimes in the interstellar gas. This two-part review summarizes the observations, theory, and simulations of interstellar turbulence and their implications for many fields of astrophysics. The first part begins with diagnostics for turbulence that have been applied to the cool interstellar medium and highlights their main results. The energy sources for interstellar turbulence are then summarized along with numerical estimates for their power input. Supernovae and superbubbles dominate the total power, but many other sources spanning a large range of scales, from swing-amplified gravitational instabilities to cosmic ray streaming, all contribute in some way. Turbulence theory is considered in detail, including the basic fluid equations, solenoidal and compressible modes, global inviscid quadratic invariants, scaling arguments for the power spectrum, phenomenological models for the scaling of higher-order structure functions, the direction and locality of energy transfer and cascade, velocity probability distributions, and turbulent pressure. We emphasize expected differences between incompressible and compressible turbulence. Theories of magnetic turbulence on scales smaller than the collision mean free path are included, as are theories of magnetohydrodynamic turbulence and their various proposals for power spectra. Numerical simulations of interstellar turbulence are reviewed. Models have reproduced the basic features of the observed scaling relations, predicted fast decay rates for supersonic MHD turbulence, and derived probability distribution functions for density. Thermal instabilities and thermal phases have a new interpretation in a supersonically turbulent medium. Large-scale models with various combinations of self-gravity, magnetic fields, supernovae, and star formation are beginning to resemble the observed interstellar medium in morphology and statistical properties. The role of self-gravity in turbulent gas evolution is clarified, leading to new paradigms for the formation of star clusters, the stellar mass function, the origin of stellar rotation and binary stars, and the effects of magnetic fields. The review ends with a reflection on the progress that has been made in our understanding of the interstellar medium and offers a list of outstanding problems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 169-210 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Observation of cooling neutron stars can potentially provide information about the states of matter at supernuclear densities. We review physical properties important for cooling such as neutrino emission processes and superfluidity in the stellar interior, surface envelopes of light elements owing to accretion of matter, and strong surface magnetic fields. The neutrino processes include the modified Urca process and the direct Urca process for nucleons and exotic states of matter, such as a pion condensate, kaon condensate, or quark matter. The dependence of theoretical cooling curves on physical input and observations of thermal radiation from isolated neutron stars are described. The comparison of observation and theory leads to a unified interpretation in terms of three characteristic types of neutron stars: high-mass stars, which cool primarily by some version of the direct Urca process; low-mass stars, which cool via slower processes; and medium-mass stars, which have an intermediate behavior. The related problem of thermal states of transiently accreting neutron stars with deep crustal burning of accreted matter is discussed in connection with observations of soft X-ray transients. Observations imply that some stars cool more rapidly than can be explained on the basis of nonsuperfluid neutron star models cooling via the modified Urca process, whereas other star cool less rapidly. We describe possible theoretical models that are consistent with observations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 79-118 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: We review recent theoretical results on the formation of the first stars in the universe, and emphasize related open questions. In particular, we discuss the initial conditions for Population III star formation, as given by variants of the cold dark matter cosmology. Numerical simulations have investigated the collapse and the fragmentation of metal-free gas, showing that the first stars were predominantly very massive. The exact determination of the stellar masses, and the precise form of the primordial initial mass function, is still hampered by our limited understanding of the accretion physics and the protostellar feedback effects. We address the importance of heavy elements in bringing about the transition from an early star formation mode dominated by massive stars to the familiar mode dominated by low-mass stars at later times. We show how complementary observations, both at high redshifts and in our local cosmic neighborhood, can be utilized to probe the first epoch of star formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 685-721 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Until the late 1990s the rich Hyades and the sparse UMa clusters were the only coeval, comoving concentrations of stars known within 60 pc of Earth. Both are hundreds of millions of years old. Then beginning in the late 1990s the TW Hydrae Association, the Tucana/Horologium Association, the beta Pictoris Moving Group, and the AB Doradus Moving Group were identified within ~60 pc of Earth, and the eta Chamaeleontis cluster was found at 97 pc. These young groups (ages 8-50 Myr), along with other nearby, young stars, will enable imaging and spectroscopic studies of the origin and early evolution of planetary systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 317-364 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: GRS 1915+105-the first stellar-scale, highly relativistic jet source identified-is a key system for our understanding of the disc-jet coupling in accreting black hole systems. Comprehending the coupling between inflow and outflow in this source not only is important for X-ray binary systems but has a broader relevance for studies of active galactic nuclei and gamma-ray bursts. In this paper, we present a detailed review of the observational properties of the system, as established in the decade since its discovery. We attempt to place it in context by a detailed comparison with other sources, and construct a simple model for the disc-jet coupling, which may be more widely applicable to accreting black hole systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 37-49 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract David Crighton, a greatly admired figure in fluid mechanics, Head of the Department of Applied Mathematics and Theoretical Physics at Cambridge, and Master of Jesus College, Cambridge, died at the peak of his career. He had made important contributions to the theory of waves generated by unsteady flow. Crighton's work was always characterized by the application of rigorous mathematical approximations to fluid mechanical idealizations of practically relevant problems. At the time of his death, he was certainly the most influential British applied mathematical figure, and his former collaborators and students form a strong school that continues his special style of mathematical application. Rigorous analysis of well-posed aeroacoustical problems was transformed by David Crighton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 143-175 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Cavitation in vortical structures is a common, albeit complex, problem in engineering applications. Cavitating vortical structures can be found on the blade surfaces, in the clearance passages, and at the hubs of various types of turbomachinery. Cavitating microvortices at the trailing edge of attached sheet cavitation can be highly erosive. Cavitating hub vortices in the draft tubes of hydroturbines can cause major surges and power swings. There is also mounting evidence that vortex cavitation is a dominant factor in the inception process in a broad range of turbulent flows. Most research has focused on the inception process, with limited attention paid to developed vortex cavitation. Wave-like disturbances on the surfaces of vapor cores are an important feature. Vortex core instabilities in microvortices are found to be important factors in the erosion mechanisms associated with sheet/cloud cavitation. Under certain circumstances, intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation. Vortex breakdown phenomena that have some commonalities are also noted, as are some differences with vortex breakdown in fully wetted flow. Simple vortex models can sometimes be used to describe the cavitation process in complex turbulent flows such as bluff body wakes and in plug valves. Although a vortex model for cavitation in jets does not exist, the mechanism of inception appears to be related to the process of vortex pairing. The pairing process can produce negative peaks in pressure that can exceed the rms value by a factor of ten, sometimes exceeding the dynamic pressure by a factor of two. A new and important issue is that cavitation is not only induced in vortical structures but is also a mechanism for vorticity generation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 177-210 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Microstructure in an immiscible polymer blend consists of the size, shape, and orientation of the phases. Blends exhibit many interesting behaviors, including enhanced elasticity at small strains, drop-size hysteresis, enhanced shear thinning, and stress relaxation curves whose shapes are sensitive to deformation history. These behaviors are directly related to changes in the microstructure, which result from phase deformation, coalescence, retraction, and different types of breakup. These phenomena are reviewed, together with models that describe them. Rheological measurements can probe the microstructure because microstructure contributes directly to stress through interfacial tension. Rheo-optical experiments also provide important insights. Droplet theories explain most of the phenomena for Newtonian phases at low concentrations. Behaviors at high volume fractions or with strongly non-Newtonian phases are less well understood.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 417-444 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent advances in the computational modeling of molecular conformational and orientational effects in the flow of viscoelastic fluids are described. These advances involve the coupling of molecular models for the underlying microstructure of macromolecules with the macroscopic equations of change. The kinetic theory for polymeric liquids is described along with the most useful micromechanical models for computing the fluid flow of polymeric liquids. Three levels of description are covered for the computation of molecular orientation effects: methods for molecular models for which closed-form, continuum-like evolution equations for average quantities describing molecular conformations can be obtained, hybrid methods that involve coupling direct solution of the Fokker-Planck equation describing the distribution function for molecular orientations with the equations of change, and hybrid methods that couple stochastic simulations of individual molecule trajectories with the macroscopic equations of change. Illustrative results for rheometric flows (flows with homogeneous, fixed kinematics) and complex flows are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 531-558 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The El Nino variability in the equatorial Tropical Pacific is characterized by sea-surface temperature anomalies and associated changes in the atmospheric circulation. Through an enormous monitoring effort over the last decades, the relevant time scales and spatial patterns are fairly well documented. In the meantime, a hierarchy of models has been developed to understand the physics of this phenomenon and to make predictions of future variability. In this review, the robust and relevant details of the observations, the fluid mechanical "building blocks," the theory of the deterministic part of the variability, and the impact of small-scale ("noise") and remote ("external") processes are evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 1-10 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 45-62 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Drag reduction in wall-bounded flows can be achieved by transverse motions imposed by passive means, e.g., riblets, or by external forcing, such as wall oscillation or transverse traveling-wave excitation. In this article, we review possible physical mechanisms responsible for turbulent drag reduction and corresponding near-wall flow modification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 89-111 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 135-167 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The issue of the physical mechanism(s) that control the efficiency with which the density field in stably stratified fluid is mixed by turbulent processes has remained enigmatic. Similarly enigmatic has been an explanation of the numerical value of ~0.2, which is observed to characterize this efficiency experimentally. We review recent work on the turbulence transition in stratified parallel flows that demonstrates that this value is not only numerically predictable but also that it is expected to be a nonmonotonic function of the Richardson number that characterizes preturbulent stratification strength. This value of the mixing efficiency appears to be characteristic of the late-time behavior of the turbulent flow that develops after an initially laminar shear flow has undergone the transition to turbulence through an intermediate instability of Kelvin-Helmholtz type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 373-412 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent small-scale turbulence observations allow the mixing regimes in lakes, reservoirs, and other enclosed basins to be categorized into the turbulent surface and bottom boundary layers as well as the comparably quiet interior. The surface layer consists of an energetic wave-affected thin zone at the very top and a law-of-the-wall layer right below, where the classical logarithmic-layer characteristic applies on average. Short-term current and dissipation profiles, however, deviate strongly from any steady state. In contrast, the quasi-steady bottom boundary layer behaves almost perfectly as a logarithmic layer, although periodic seiching modifies the structure in the details. The interior stratified turbulence is extremely weak, even though much of the mechanical energy is contained in baroclinic basin-scale seiching and Kelvin waves or inertial currents (large lakes). The transformation of large-scale motions to turbulence occurs mainly in the bottom boundary and not in the interior, where the local shear remains weak and the Richardson numbers are generally large.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 469-496 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Increasing urbanization and concern about sustainability and quality of life issues have produced considerable interest in flow and dispersion in urban areas. We address this subject at four scales: regional, city, neighborhood, and street. The flow is one over and through a complex array of structures. Most of the local fluid mechanical processes are understood; how these combine and what is the most appropriate framework to study and quantify the result is less clear. Extensive and structured experimental databases have been compiled recently in several laboratories. A number of major field experiments in urban areas have been completed very recently and more are planned. These have aided understanding as well as model development and evaluation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 295-315 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract It is classically assumed that the far field of a round turbulent jet discharging into quiescent fluid has a unique behavior characterized only by its momentum flux. However, there is now considerable evidence that different discharge conditions at the jet nozzle exit can give rise to very different far-field flows. Perhaps the most striking examples of these are the bifurcating and blooming jets produced by appropriate combinations of controlled axial and circumferential excitations at the nozzle exit. With the right excitations, a jet can be made to divide into two separate jets (bifurcating jet), each of which carries half the axial momentum and spreads in a manner similar to a single jet. Trifurcating jets can also be produced. Other excitations can produce blooming jets, in which the jet explodes into a shower of vortex rings, producing a far-field flow that is quite unlike a normal unexcited jet. Bifurcating and blooming jets exhibit much greater mixing than normal jets, suggesting possible applications in flow control. This article summarizes our work on bifurcating and blooming jets, which began with our discovery of them in the early 1980s and continued through the mid- 1990s. One of us (D.E.P.) continued exploration of flow control using excited jets, first at the McDonnell Douglas Corporation, and more recently at the Georgia Institute of Technology. The key to flow control is the manipulation of the large vortical structures in the near field of the jet. Ultimately this work, and that of others, led to full-scale testing of jet engine exhaust mixing control. There it was shown that the jet temperature downstream of the engine can be very significantly reduced by application of well-designed and easily implemented excitation at the engine discharge, thereby solving problems encountered during ground operations. Related jet control work by other investigators is included in this review.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 413-440 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The recent progress in three-dimensional boundary-layer stability and transition is reviewed. The material focuses on the crossflow instability that leads to transition on swept wings and rotating disks. Following a brief overview of instability mechanisms and the crossflow problem, a summary of the important findings of the 1990s is given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 557-615 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Cryptococcus neoformans is a pathogenic fungus that primarily afflicts immunocompromised patients, infecting the central nervous system to cause meningoencephalitis that is uniformly fatal if untreated. C. neoformans is a basidiomycetous fungus with a defined sexual cycle that has been linked to differentiation and virulence. Recent advances in classical and molecular genetic approaches have allowed molecular descriptions of the pathways that control cell type and virulence. An ongoing genome sequencing project promises to reveal much about the evolution of this human fungal pathogen into three distinct varieties or species. C. neoformans shares features with both model ascomycetous yeasts (Saccharomyces cerevisiae, Schizosaccharomyces pombe) and basidiomycetous pathogens and mushrooms (Ustilago maydis, Coprinus cinereus, Schizophyllum commune), yet ongoing studies reveal unique features associated with virulence and the arrangement of the mating type locus. These advances have catapulted C. neoformans to center stage as a model of both fungal pathogenesis and the interesting approaches to life that the kingdom of fungi has adopted.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 203-232 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Completion of the cell cycle requires the temporal and spatial coordination of chromosome segregation with mitotic spindle disassembly and cytokinesis. In budding yeast, the protein phosphatase Cdc14 is a key regulator of these late mitotic events. Here, we review the functions of Cdc14 and how this phosphatase is regulated to accomplish the coupling of mitotic processes. We also discuss the function and regulation of Cdc14 in other eukaryotes, emphasizing conserved features.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 771-791 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Recent advances in DNA-sequencing technologies have made available an enormous resource of data for the study of bacterial genomes. The broad sample of complete genomes currently available allows us to look at variation in the gross features and characteristics of genomes while the detail of the sequences reveal some of the mechanisms by which these genomes evolve. This review aims to describe bacterial genome structures according to current knowledge and proposed hypotheses. We also describe examples where mechanisms of genome evolution have acted in the adaptation of bacterial species to particular niches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 749-770 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Ribosomal RNA transcription is the rate-limiting step in ribosome synthesis in bacteria and has been investigated intensely for over half a century. Multiple mechanisms ensure that rRNA synthesis rates are appropriate for the cell's particular growth condition. Recently, important advances have been made in our understanding of rRNA transcription initiation in Escherichia coli. These include (a) a model at the atomic level of the network of protein-DNA and protein-protein interactions that recruit RNA polymerase to rRNA promoters, accounting for their extraordinary strength; (b) discovery of the nonredundant roles of two small molecule effectors, ppGpp and the initiating NTP, in regulation of rRNA transcription initiation; and (c) identification of a new component of the transcription machinery, DksA, that is absolutely required for regulation of rRNA promoter activity. Together, these advances provide clues important for our molecular understanding not only of rRNA transcription, but also of transcription in general.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 521-556 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract An unusual feature of the Diptera is that homologous chromosomes are intimately synapsed in somatic cells. At a number of loci in Drosophila, this pairing can significantly influence gene expression. Such influences were first detected within the bithorax complex (BX-C) by E.B. Lewis, who coined the term transvection to describe them. Most cases of transvection involve the action of enhancers in trans. At several loci deletion of the promoter greatly increases this action in trans, suggesting that enhancers are normally tethered in cis by the promoter region. Transvection can also occur by the action of silencers in trans or by the spreading of position effect variegation from rearrangements having heterochromatic breakpoints to paired unrearranged chromosomes. Although not demonstrated, other cases of transvection may involve the production of joint RNAs by trans-splicing. Several cases of transvection require Zeste, a DNA-binding protein that is thought to facilitate homolog interactions by self-aggregation. Genes showing transvection can differ greatly in their response to pairing disruption. In several cases, transvection appears to require intimate synapsis of homologs. However, in at least one case (transvection of the iab-5,6,7 region of the BX-C), transvection is independent of synapsis within and surrounding the interacting gene. The latter example suggests that transvection could well occur in organisms that lack somatic pairing. In support of this, transvection-like phenomena have been described in a number of different organisms, including plants, fungi, and mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 617-656 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 587-614 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Many of the patterning mechanisms in plants were discovered while studying postembryonic processes and resemble mechanisms operating during animal development. The emergent role of the plant hormone auxin, however, seems to represent a plant-specific solution to multicellular patterning. This review summarizes our knowledge on how diverse mechanisms that were first dissected at the postembryonic level are now beginning to provide an understanding of plant embryogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 687-720 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Long-term potentiation (LTP) is the predominant experimental model for the synaptic plasticity mechanisms thought to underlie learning and memory. This review is focused on the contributions of genetics to the understanding of the role of LTP in learning and memory. These studies have used a combination of genetics, molecular biology, neurophysiology, and psychology to demonstrate that molecular mechanisms of synaptic plasticity are critical for learning and memory. Because of the large scope of this literature, we focus primarily on genetic studies of hippocampal-dependent learning. Altogether, these findings not only demonstrate a role for plasticity in learning, they also lay down the foundations for the new field of molecular and cellular cognition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 657-686 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The compilation of a dense gene map and eventually a whole genome sequence (WGS) of the domestic cat holds considerable value for human genome annotation, for veterinary medicine, and for insight into the evolution of genome organization among mammals. Human association and veterinary studies of the cat, its domestic breeds, and its charismatic wild relatives of the family Felidae have rendered the species a powerful model for human hereditary diseases, for infectious disease agents, for adaptive evolutionary divergence, for conservation genetics, and for forensic applications. Here we review the advantages, rationale, and present strategy of a feline genome project, and we describe the disease models, comparative genomics, and biological applications posed by the full resolution of the cat's genome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 721-750 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract A moment estimator of theta, the coancestry coefficient for alleles within a population, was described by Weir & Cockerham in 1984 (100) and is still widely cited. The estimate is used by population geneticists to characterize population structure, by ecologists to estimate migration rates, by animal breeders to describe genetic variation, and by forensic scientists to quantify the strength of matching DNA profiles. This review extends the work of Weir & Cockerham by allowing different levels of coancestry for different populations, and by allowing non-zero coancestries between pairs of populations. All estimates are relative to the average value of theta between pairs of populations. Moment estimates for within- and between-population theta values are likely to have large sampling variances, although these may be reduced by combining information over loci. Variances also decrease with the numbers of alleles at a locus, and with the numbers of populations sampled. This review also extends the work of Weir & Cockerham by employing maximum likelihood methods under the assumption that allele frequencies follow the normal distribution over populations. For the case of equal theta values within populations and zero theta values between populations, the maximum likelihood estimate is the same as that given by Robertson & Hill in 1984 (70). The review concludes by relating functions of theta values to times of population divergence under a pure drift model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 553-585 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: The kinship theory of genomic imprinting proposes that parent-specific gene expression evolves at a locus because a gene's level of expression in one individual has fitness effects on other individuals who have different probabilities of carrying the maternal and paternal alleles of the individual in which the gene is expressed. Therefore, natural selection favors different levels of expression depending on an allele's sex-of-origin in the previous generation. This review considers the strength of evidence in support of this hypothesis for imprinted genes in four "clusters," associated with the imprinted loci Igf2, Igf2r, callipyge, and Gnas. The clusters associated with Igf2 and Igf2r both contain paternally expressed transcripts that act as enhancers of prenatal growth and maternally expressed transcripts that act as inhibitors of prenatal growth. This is consistent with predictions of the kinship theory. However, the clusters also contain imprinted genes whose phenotypes as yet remain unexplained by the theory. The principal effects of imprinted genes in the callipyge and Gnas clusters appear to involve lipid and energy metabolism. The kinship theory predicts that maternally expressed transcripts will favor higher levels of nonshivering thermogenesis (NST) in brown adipose tissue (BAT) of animals that huddle for warmth as offspring. The phenotypes of reciprocal heterozygotes for Gnas knockouts provide provisional support for this hypothesis, as does some evidence from other imprinted genes (albeit more tentatively). The diverse effects of imprinted genes on the development of white adipose tissue (WAT) have so far defied a unifying hypothesis in terms of the kinship theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 793-818 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: For pollination to succeed, pollen must carry sperm through a variety of different floral tissues to access the ovules within the pistil. The pistil provides everything the pollen requires for success in this endeavor including distinct guidance cues and essential nutrients that allow the pollen tube to traverse enormous distances along a complex path to the unfertilized ovule. Although the pistil is a great facilitator of pollen function, it can also be viewed as an elaborate barrier that shields ovules from access from inappropriate pollen, such as pollen from other species. Each discrete step taken by pollen tubes en route to the ovules is a potential barrier point to ovule access and waste by inappropriate mates. In this review, we survey the current molecular understanding of how pollination proceeds, and ask to what extent is each step important for mate discrimination. As this field progresses, this synthesis of functional biology and evolutionary studies will provide insight into the molecular basis of the species barriers that maintain the enormous diversity seen in flowering plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 819-845 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: The driving interest in adeno-associated virus (AAV) has been its potential as a gene delivery vector. The early observation that AAV can establish a latent infection by integrating into the host chromosome has been central to this interest. However, chromosomal integration is a two-edged sword, imparting on one hand the ability to maintain the therapeutic gene in progeny cells, and on the other hand, the risk of mutations that are deleterious to the host. A clearer understanding of the mechanism and efficiency of AAV integration, in terms of contributing viral and host-cell factors and circumstances, will provide a context in which to evaluate these potential benefits and risks. Research to date suggests that AAV integration in any context is inefficient, and that the persistence of AAV gene delivery vectors in tissues is largely attributable to episomal genomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 87-117 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Plants utilize several families of photoreceptors to fine-tune growth and development over a large range of environmental conditions. The UV-A/blue light sensing phototropins mediate several light responses enabling optimization of photosynthetic yields. The initial event occurring upon photon capture is a conformational change of the photoreceptor that activates its protein kinase activity. The UV-A/blue light sensing cryptochromes and the red/far-red sensing phytochromes coordinately control seedling establishment, entrainment of the circadian clock, and the transition from vegetative to reproductive growth. In addition, the phytochromes control seed germination and shade-avoidance responses. The molecular mechanisms involved include light-regulated subcellular localization of the photoreceptors, a large reorganization of the transcriptional program, and light-regulated proteolytic degradation of several photoreceptors and signaling components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 257-273 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract We determined the high-resolution structures of large and small ribosomal subunits from mesophilic and thermophilic bacteria and compared them with those of the thermophilic ribosome and the halophilic large subunit. We confirmed that the elements involved in intersubunit contacts and in substrate binding are inherently flexible and that a common ribosomal strategy is to utilize this conformational variability for optimizing its functional efficiency and minimizing nonproductive interactions. Under close-to-physiological conditions, these elements maintain well-ordered characteristic conformations. In unbound subunits, the features creating intersubunit bridges within associated ribosomes lie on the interface surface, and the features that bind factors and substrates reach toward the binding site only when conditions are ripe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 361-392 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Chromatin fibers are dynamic macromolecular assemblages that are intimately involved in nuclear function. This review focuses on recent advances centered on the molecular mechanisms and determinants of chromatin fiber dynamics in solution. Major points of emphasis are the functions of the core histone tail domains, linker histones, and a new class of proteins that assemble supramolecular chromatin structures. The discussion of important structural issues is set against a background of possible functional significance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 393-422 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The review deals with recent advances in magnetic resonance spectroscopy (hf EPR and NMR) of paramagnetic metal centers in biological macromolecules. In the first half of our chapter, we present an overview of recent technical developments in the NMR of paramagnetic bio-macromolecules. These are illustrated by a variety of examples deriving mainly from the spectroscopy of metalloproteins and their complexes. The second half focuses on recent developments in high-frequency EPR spectroscopy and the application of the technique to copper, iron, and manganese proteins. Special attention is given to the work on single crystals of copper proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 321-341 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Fungal pathogens of plants or animals invade their hosts either by secretion of lytic enzymes, exerting force, or by a combination of both. Although many fungi are thought to rely mostly on lysis of the host tissue, some plant pathogenic fungi differentiate complex infection cells that develop enormous turgor pressure, which in turn is translated into force used for invasion. In order to understand mechanisms of fungal infection in detail, methods have been developed that indirectly or directly measure turgor pressure and force. In this article, these methods are described and critically discussed, and their importance in analysis of fungal infection are outlined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 423-441 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The field of computational cell biology has emerged within the past 5 years because of the need to apply disciplined computational approaches to build and test complex hypotheses on the interacting structural, physical, and chemical features that underlie intracellular processes. To meet this need, newly developed software tools allow cell biologists and biophysicists to build models and generate simulations from them. The construction of general-purpose computational approaches is especially challenging if the spatial complexity of cellular systems is to be explicitly treated. This review surveys some of the existing efforts in this field with special emphasis on a system being developed in the authors' laboratory, Virtual Cell. The theories behind both stochastic and deterministic simulations are discussed. Examples of respective applications to cell biological problems in RNA trafficking and neuronal calcium dynamics are provided to illustrate these ideas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 183-206 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Cyclooxygenases-1 and -2 (COX-1 and COX-2, also known as prostaglandin H2 synthases-1 and -2) catalyze the committed step in prostaglandin synthesis. COX-1 and -2 are of particular interest because they are the major targets of nonsteroidal antiinflammatory drugs (NSAIDs) including aspirin, ibuprofen, and the new COX-2-selective inhibitors. Inhibition of the COXs with NSAIDs acutely reduces inflammation, pain, and fever, and long-term use of these drugs reduces the incidence of fatal thrombotic events, as well as the development of colon cancer and Alzheimer's disease. In this review, we examine how the structures of COXs relate mechanistically to cyclooxygenase and peroxidase catalysis and how alternative fatty acid substrates bind within the COX active site. We further examine how NSAIDs interact with COXs and how differences in the structure of COX-2 result in enhanced selectivity toward COX-2 inhibitors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 425-443 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Understanding the action of enzymes on an atomistic level is one of the important aims of modern biophysics. This review describes the state of the art in addressing this challenge by simulating enzymatic reactions. It considers different modeling methods including the empirical valence bond (EVB) and more standard molecular orbital quantum mechanics/molecular mechanics (QM/MM) methods. The importance of proper configurational averaging of QM/MM energies is emphasized, pointing out that at present such averages are performed most effectively by the EVB method. It is clarified that all properly conducted simulation studies have identified electrostatic preorganization effects as the source of enzyme catalysis. It is argued that the ability to simulate enzymatic reactions also provides the chance to examine the importance of nonelectrostatic contributions and the validity of the corresponding proposals. In fact, simulation studies have indicated that prominent proposals such as desolvation, steric strain, near attack conformation, entropy traps, and coherent dynamics do not account for a major part of the catalytic power of enzymes. Finally, it is pointed out that although some of the issues are likely to remain controversial for some time, computer modeling approaches can provide a powerful tool for understanding enzyme catalysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 363-385 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: The effect of force on the thermodynamics and kinetics of reactions is described. The key parameters are the difference in end-to-end distance between reactant and product for thermodynamics, and the distance to the transition state for kinetics. I focus the review on experimental results on force unfolding of RNA. Methods to measure Gibbs free energies and kinetics for reversible and irreversible reactions are described. The use of the worm-like-chain model to calculate the effects of force on thermodynamics and kinetics is illustrated with simple models. The main purpose of the review is to describe the simple experiments that have been done so far, and to encourage more people to enter a field that is new and full of opportunities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 177-198 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin homologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplasmic cell wall-synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell. It is anticipated that MreB-interacting proteins exist in analogy to the large number of actin binding proteins in eukaryotes. ParM (a plasmid-borne actin homolog) is directly involved in pushing certain single-copy plasmids to the opposite poles by ParR/parC-assisted polymerization into double-helical filaments, much like the filaments formed by actin, F-actin. Mollicutes seem to have developed special systems for cell shape determination and motility, such as the fibril protein in Spiroplasma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 119-140 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability of a large amount of structural and mechanistic data that provides a detailed context within which the motions can be interpreted. Changes in protein dynamics in response to ligand binding, conformational change, and mutagenesis have been probed using numerous experimental and theoretical approaches, including X-ray crystallography, fluorescence, nuclear magnetic resonance (NMR), molecular dynamics simulations, and hybrid quantum/classical dynamics methods. These studies provide a detailed map of changes in conformation and dynamics throughout the catalytic cycle of DHFR and give new insights into the role of protein motions in the catalytic activity of this enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 199-223 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: The genomics revolution has provided a deluge of new targets for drug discovery. To facilitate the drug discovery process, many researchers are turning to fragment-based approaches to find lead molecules more efficiently. One such method, Tethering1, allows for the identification of small-molecule fragments that bind to specific regions of a protein target. These fragments can then be elaborated, combined with other molecules, or combined with one another to provide high-affinity drug leads. In this review we describe the background and theory behind Tethering and discuss its use in identifying novel inhibitors for protein targets including interleukin-2 (IL-2), thymidylate synthase (TS), protein tyrosine phosphatase 1B (PTP-1B), and caspases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 157-176 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Recent work is extending the methodology of X-ray crystallography to the structure determination of noncrystalline specimens. The phase problem is solved using the oversampling method, which takes advantage of "continuous" diffraction patterns from noncrystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging nonperiodic objects, such as cells and cellular structures, using coherent and bright X rays produced by third-generation synchrotron sources. In the longer run, the technique may be applicable to image single biomolecules using anticipated X-ray free electron lasers. Here, computer simulations have so far demonstrated two important steps: (a) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself; and (b) the phase information can be retrieved in an ab initio fashion from a set of calculated noisy diffraction patterns of single protein molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 95-118 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Topoisomerases are enzymes that use DNA strand scission, manipulation, and rejoining activities to directly modulate DNA topology. These actions provide a powerful means to effect changes in DNA supercoiling levels, and allow some topoisomerases to both unknot and decatenate chromosomes. Since their initial discovery over three decades ago, researchers have amassed a rich store of information on the cellular roles and regulation of topoisomerases, and have delineated general models for their chemical and physical mechanisms. Topoisomerases are now known to be necessary for the survival of cellular organisms and many viruses and are rich clinical targets for anticancer and antimicrobial treatments. In recent years, crystal structures have been obtained for each of the four types of topoisomerases in a number of distinct conformational and substrate-bound states. In addition, sophisticated biophysical methods have been utilized to study details of topoisomerase reaction dynamics and enzymology. A synthesis of these approaches has provided researchers with new physical insights into how topoisomerases employ chemistry and allostery to direct the large-scale molecular motions needed to pass DNA strands through each other.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 141-155 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Emerging methods in cryo-electron microscopy allow determination of the three-dimensional architectures of objects ranging in size from small proteins to large eukaryotic cells, spanning a size range of more than 12 orders of magnitude. Advances in determining structures by "single particle" microscopy and by "electron tomography" provide exciting opportunities to describe the structures of subcellular assemblies that are either too large or too heterogeneous to be investigated by conventional crystallographic methods. Here, we review selected aspects of progress in structure determination by cryo-electron microscopy at molecular resolution, with a particular emphasis on topics at the interface of single particle and tomographic approaches. The rapid pace of development in this field suggests that comprehensive descriptions of the structures of whole cells and organelles in terms of the spatial arrangements of their molecular components may soon become routine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...