ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (89)
  • Rats  (89)
  • American Association for the Advancement of Science (AAAS)  (89)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • Oxford University Press
  • Public Library of Science
  • 2005-2009  (29)
  • 1995-1999  (60)
  • 1980-1984
  • 1935-1939
  • 2008  (29)
  • 1995  (60)
  • 1937
  • Natural Sciences in General  (89)
  • Economics
  • Geography
Collection
  • Articles  (89)
Publisher
  • American Association for the Advancement of Science (AAAS)  (89)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • Oxford University Press
  • +
Years
  • 2005-2009  (29)
  • 1995-1999  (60)
  • 1980-1984
  • 1935-1939
Year
Topic
  • 1
    Publication Date: 2008-03-01
    Description: Long-term potentiation (LTP) at glutamatergic synapses is considered to underlie learning and memory and is associated with the enlargement of dendritic spines. Because the consolidation of memory and LTP require protein synthesis, it is important to clarify how protein synthesis affects spine enlargement. In rat brain slices, the repetitive pairing of postsynaptic spikes and two-photon uncaging of glutamate at single spines (a spike-timing protocol) produced both immediate and gradual phases of spine enlargement in CA1 pyramidal neurons. The gradual enlargement was strongly dependent on protein synthesis and brain-derived neurotrophic factor (BDNF) action, often associated with spine twitching, and was induced specifically at the spines that were immediately enlarged by the synaptic stimulation. Thus, this spike-timing protocol is an efficient trigger for BDNF secretion and induces protein synthesis-dependent long-term enlargement at the level of single spines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218863/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4218863/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, Jun-Ichi -- Horiike, Yoshihiro -- Matsuzaki, Masanori -- Miyazaki, Takashi -- Ellis-Davies, Graham C R -- Kasai, Haruo -- R01 GM053395/GM/NIGMS NIH HHS/ -- R01 GM053395-12/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 21;319(5870):1683-7. doi: 10.1126/science.1152864. Epub 2008 Feb 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18309046" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain-Derived Neurotrophic Factor/*metabolism/pharmacology ; Cells, Cultured ; Dendritic Spines/*physiology/*ultrastructure ; Glutamic Acid/metabolism ; *Neuronal Plasticity ; Patch-Clamp Techniques ; *Protein Biosynthesis ; Protein Synthesis Inhibitors/pharmacology ; Pyramidal Cells/physiology/ultrastructure ; Rats ; Rats, Sprague-Dawley ; Receptor, trkB/metabolism ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-20
    Description: Cannabinoid receptor 1 (CB1R) regulates neuronal differentiation. To understand the logic underlying decision-making in the signaling network controlling CB1R-induced neurite outgrowth, we profiled the activation of several hundred transcription factors after cell stimulation. We assembled an in silico signaling network by connecting CB1R to 23 activated transcription factors. Statistical analyses of this network predicted a role for the breast cancer 1 protein BRCA1 in neuronal differentiation and a new pathway from CB1R through phosphoinositol 3-kinase to the transcription factor paired box 6 (PAX6). Both predictions were experimentally confirmed. Results of transcription factor activation experiments that used pharmacological inhibitors of kinases revealed a network organization of partial OR gates regulating kinases stacked above AND gates that control transcription factors, which together allow for distributed decision-making in CB1R-induced neurite outgrowth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bromberg, Kenneth D -- Ma'ayan, Avi -- Neves, Susana R -- Iyengar, Ravi -- 1 S10 RR0 9145-01/RR/NCRR NIH HHS/ -- 5R24 CA095823-04/CA/NCI NIH HHS/ -- GM072853/GM/NIGMS NIH HHS/ -- GM54508/GM/NIGMS NIH HHS/ -- P50 GM071558/GM/NIGMS NIH HHS/ -- P50 GM071558-01A2/GM/NIGMS NIH HHS/ -- P50 GM071558-01A20007/GM/NIGMS NIH HHS/ -- P50 GM071558-02/GM/NIGMS NIH HHS/ -- P50 GM071558-020007/GM/NIGMS NIH HHS/ -- P50 GM071558-030007/GM/NIGMS NIH HHS/ -- P50-071558/PHS HHS/ -- R01 GM054508/GM/NIGMS NIH HHS/ -- R01 GM054508-21/GM/NIGMS NIH HHS/ -- R01 GM072853/GM/NIGMS NIH HHS/ -- R01 GM072853-04/GM/NIGMS NIH HHS/ -- T32 CA88796/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 May 16;320(5878):903-9. doi: 10.1126/science.1152662.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18487186" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; Cell Differentiation ; Cell Line, Tumor ; Cells, Cultured ; Computational Biology ; Computer Simulation ; Eye Proteins/metabolism ; Hippocampus/cytology ; Homeodomain Proteins/metabolism ; Metabolic Networks and Pathways ; Mice ; Neurites/*physiology ; Neurons/*cytology/metabolism ; Paired Box Transcription Factors/metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Interaction Mapping ; Rats ; Receptor, Cannabinoid, CB1/*metabolism ; Repressor Proteins/metabolism ; *Signal Transduction ; Transcription Factors/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-03-08
    Description: We report that developmental competition between sympathetic neurons for survival is critically dependent on a sensitization process initiated by target innervation and mediated by a series of feedback loops. Target-derived nerve growth factor (NGF) promoted expression of its own receptor TrkA in mouse and rat neurons and prolonged TrkA-mediated signals. NGF also controlled expression of brain-derived neurotrophic factor and neurotrophin-4, which, through the receptor p75, can kill neighboring neurons with low retrograde NGF-TrkA signaling whereas neurons with high NGF-TrkA signaling are protected. Perturbation of any of these feedback loops disrupts the dynamics of competition. We suggest that three target-initiated events are essential for rapid and robust competition between neurons: sensitization, paracrine apoptotic signaling, and protection from such effects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deppmann, Christopher D -- Mihalas, Stefan -- Sharma, Nikhil -- Lonze, Bonnie E -- Niebur, Ernst -- Ginty, David D -- EY016281/EY/NEI NIH HHS/ -- F32 NS053187/NS/NINDS NIH HHS/ -- NS053187/NS/NINDS NIH HHS/ -- NS34814/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Apr 18;320(5874):369-73. doi: 10.1126/science.1152677. Epub 2008 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323418" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Apoptosis ; Brain-Derived Neurotrophic Factor/metabolism ; Cell Survival ; Cells, Cultured ; Computer Simulation ; Feedback, Physiological ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Mathematics ; Mice ; *Models, Neurological ; Nerve Growth Factor/*metabolism ; Nerve Growth Factors/metabolism ; Neurons/cytology/*physiology ; Oligonucleotide Array Sequence Analysis ; Rats ; Receptor, trkA/genetics/*metabolism ; Receptors, Nerve Growth Factor/genetics/metabolism ; Signal Transduction ; Superior Cervical Ganglion/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-09-06
    Description: A long-standing conjecture in neuroscience is that aspects of cognition depend on the brain's ability to self-generate sequential neuronal activity. We found that reliably and continually changing cell assemblies in the rat hippocampus appeared not only during spatial navigation but also in the absence of changing environmental or body-derived inputs. During the delay period of a memory task, each moment in time was characterized by the activity of a particular assembly of neurons. Identical initial conditions triggered a similar assembly sequence, whereas different conditions gave rise to different sequences, thereby predicting behavioral choices, including errors. Such sequences were not formed in control (nonmemory) tasks. We hypothesize that neuronal representations, evolved for encoding distance in spatial navigation, also support episodic recall and the planning of action sequences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570043/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570043/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pastalkova, Eva -- Itskov, Vladimir -- Amarasingham, Asohan -- Buzsaki, Gyorgy -- MH54671/MH/NIMH NIH HHS/ -- NS34994/NS/NINDS NIH HHS/ -- R01 MH054671/MH/NIMH NIH HHS/ -- R01 MH054671-10/MH/NIMH NIH HHS/ -- R01 NS034994/NS/NINDS NIH HHS/ -- R01 NS034994-11/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1322-7. doi: 10.1126/science.1159775.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers, State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772431" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Behavior, Animal ; Choice Behavior ; Cues ; Hippocampus/*cytology/*physiology ; Interneurons/physiology ; Male ; Maze Learning ; *Memory ; *Mental Recall ; Models, Neurological ; Motor Activity ; Pyramidal Cells/*physiology ; Rats ; Rats, Long-Evans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-07-05
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590634/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590634/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hasselmo, Michael E -- DA16454/DA/NIDA NIH HHS/ -- MH60013/MH/NIMH NIH HHS/ -- MH60450/MH/NIMH NIH HHS/ -- MH61492/MH/NIMH NIH HHS/ -- MH71702/MH/NIMH NIH HHS/ -- P50 MH060450/MH/NIMH NIH HHS/ -- P50 MH060450-069002/MH/NIMH NIH HHS/ -- P50 MH060450-099002/MH/NIMH NIH HHS/ -- P50 MH071702/MH/NIMH NIH HHS/ -- P50 MH071702-030004/MH/NIMH NIH HHS/ -- R01 DA016454/DA/NIDA NIH HHS/ -- R01 DA016454-05/DA/NIDA NIH HHS/ -- R01 MH060013/MH/NIMH NIH HHS/ -- R01 MH060013-09/MH/NIMH NIH HHS/ -- R01 MH061492/MH/NIMH NIH HHS/ -- R01 MH061492-06A2/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2008 Jul 4;321(5885):46-7. doi: 10.1126/science.1160121.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, Boston, MA 02215, USA. hasselmo@bu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599761" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Entorhinal Cortex/physiology ; Hippocampus/*cytology/*physiology ; Learning ; Membrane Potentials ; Models, Neurological ; Neurons/*physiology ; Rats ; *Space Perception ; Spatial Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silver, R Angus -- Kanichay, Roby T -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):183-4. doi: 10.1126/science.1157589.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK. a.silver@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403696" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Diffusion ; *Excitatory Postsynaptic Potentials ; Glutamic Acid/*metabolism ; *Neuronal Plasticity ; Rats ; Receptors, AMPA/*metabolism ; Synapses/*physiology ; *Synaptic Transmission ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krieg, Arthur M -- Lipford, Grayson B -- New York, N.Y. -- Science. 2008 Feb 1;319(5863):576-7. doi: 10.1126/science.1154207.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Coley Pharmaceutical Group, 93 Worcester Street, Wellesley, MA 02481, USA. akrieg@coleypharma.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239112" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmune Diseases/*immunology/metabolism ; Cathepsin K ; Cathepsins/antagonists & inhibitors/deficiency/*metabolism ; Cytokines/secretion ; DNA, Bacterial/metabolism ; DNA, Viral/metabolism ; Dendritic Cells/immunology ; Dinucleoside Phosphates/immunology/metabolism ; Endoplasmic Reticulum/metabolism ; Endosomes/metabolism ; Humans ; *Immunity, Innate ; Inflammation/*immunology/metabolism ; Lysosomes/metabolism ; Mice ; Protease Inhibitors/pharmacology ; Rats ; Signal Transduction ; Toll-Like Receptor 9/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-04-12
    Description: Initiation of actin polymerization in cells requires nucleation factors. Here we describe an actin-binding protein, leiomodin, that acted as a strong filament nucleator in muscle cells. Leiomodin shared two actin-binding sites with the filament pointed end-capping protein tropomodulin: a flexible N-terminal region and a leucine-rich repeat domain. Leiomodin also contained a C-terminal extension of 150 residues. The smallest fragment with strong nucleation activity included the leucine-rich repeat and C-terminal extension. The N-terminal region enhanced the nucleation activity threefold and recruited tropomyosin, which weakly stimulated nucleation and mediated localization of leiomodin to the middle of muscle sarcomeres. Knocking down leiomodin severely compromised sarcomere assembly in cultured muscle cells, which suggests a role for leiomodin in the nucleation of tropomyosin-decorated filaments in muscles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845909/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845909/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chereau, David -- Boczkowska, Malgorzata -- Skwarek-Maruszewska, Aneta -- Fujiwara, Ikuko -- Hayes, David B -- Rebowski, Grzegorz -- Lappalainen, Pekka -- Pollard, Thomas D -- Dominguez, Roberto -- GM026338/GM/NIGMS NIH HHS/ -- GM073791/GM/NIGMS NIH HHS/ -- HL086655/HL/NHLBI NIH HHS/ -- P01 HL086655/HL/NHLBI NIH HHS/ -- P01 HL086655-01A10004/HL/NHLBI NIH HHS/ -- R01 GM073791/GM/NIGMS NIH HHS/ -- R01 GM073791-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):239-43. doi: 10.1126/science.1155313.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403713" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actins/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Cells, Cultured ; Cytoskeletal Proteins/chemistry/*metabolism ; Humans ; Microfilament Proteins/chemistry/*metabolism ; Molecular Sequence Data ; Muscle Proteins/chemistry/*metabolism ; Myocytes, Cardiac/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Rabbits ; Rats ; Sarcomeres/*metabolism ; Tropomodulin/chemistry ; Tropomyosin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-11-08
    Description: Disposable plasticware such as test tubes, pipette tips, and multiwell assay or culture plates are used routinely in most biological research laboratories. Manufacturing of plastics requires the inclusion of numerous chemicals to enhance stability, durability, and performance. Some lubricating (slip) agents, exemplified by oleamide, also occur endogenously in humans and are biologically active, and cationic biocides are included to prevent bacterial colonization of the plastic surface. We demonstrate that these manufacturing agents leach from laboratory plasticware into a standard aqueous buffer, dimethyl sulfoxide, and methanol and can have profound effects on proteins and thus on results from bioassays of protein function. These findings have far-reaching implications for the use of disposable plasticware in biological research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonald, G Reid -- Hudson, Alan L -- Dunn, Susan M J -- You, Haitao -- Baker, Glen B -- Whittal, Randy M -- Martin, Jonathan W -- Jha, Amitabh -- Edmondson, Dale E -- Holt, Andrew -- New York, N.Y. -- Science. 2008 Nov 7;322(5903):917. doi: 10.1126/science.1162395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2B7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18988846" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dimethyl Sulfoxide ; Disinfectants/*analysis/pharmacology ; *Disposable Equipment ; Humans ; *Laboratories ; Monoamine Oxidase/*metabolism ; Monoamine Oxidase Inhibitors/pharmacology ; Oleic Acids/*analysis/pharmacology ; Plastics/*chemistry ; Quaternary Ammonium Compounds/*analysis/pharmacology ; Rats ; Solvents
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-09-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1280-1. doi: 10.1126/science.321.5894.1280b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772404" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electrophysiology ; Epilepsy/*physiopathology/surgery ; Hippocampus/cytology/*physiology ; Humans ; Maze Learning ; Memory ; *Mental Recall ; Neurons/*physiology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...