ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (436)
  • Mice  (436)
  • American Association for the Advancement of Science (AAAS)  (436)
  • American Association for the Advancement of Science
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer Nature
  • 2010-2014  (169)
  • 2000-2004
  • 1995-1999  (152)
  • 1985-1989  (115)
  • 1960-1964
  • 1955-1959
  • 1935-1939
  • 1930-1934
  • 2011  (169)
  • 1995  (152)
  • 1985  (115)
  • 1935
  • Natural Sciences in General  (436)
  • Geosciences
Collection
  • Articles  (436)
Publisher
  • American Association for the Advancement of Science (AAAS)  (436)
  • American Association for the Advancement of Science
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • +
Years
  • 2010-2014  (169)
  • 2000-2004
  • 1995-1999  (152)
  • 1985-1989  (115)
  • 1960-1964
  • +
Year
Topic
  • 1
    Publication Date: 2011-05-21
    Description: The interrelationships between our diets and the structure and operations of our gut microbial communities are poorly understood. A model community of 10 sequenced human gut bacteria was introduced into gnotobiotic mice, and changes in species abundance and microbial gene expression were measured in response to randomized perturbations of four defined ingredients in the host diet. From the responses, we developed a statistical model that predicted over 60% of the variation in species abundance evoked by diet perturbations, and we were able to identify which factors in the diet best explained changes seen for each community member. The approach is generally applicable, as shown by a follow-up study involving diets containing various mixtures of pureed human baby foods.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303606/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303606/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faith, Jeremiah J -- McNulty, Nathan P -- Rey, Federico E -- Gordon, Jeffrey I -- DK30292/DK/NIDDK NIH HHS/ -- DK70977/DK/NIDDK NIH HHS/ -- R01 DK070977/DK/NIDDK NIH HHS/ -- R01 DK070977-08/DK/NIDDK NIH HHS/ -- R37 DK030292/DK/NIDDK NIH HHS/ -- R37 DK030292-31/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):101-4. doi: 10.1126/science.1206025. Epub 2011 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteroides/genetics/physiology ; Biomass ; Caseins/administration & dosage ; Desulfovibrio/genetics/physiology ; *Diet ; Dietary Carbohydrates/administration & dosage ; Dietary Fats, Unsaturated/administration & dosage ; Dietary Proteins/administration & dosage ; Dietary Sucrose/administration & dosage ; Escherichia coli/genetics/physiology ; Feces/*microbiology ; Gastrointestinal Tract/*microbiology ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; *Germ-Free Life ; Gram-Negative Bacteria/*physiology ; Gram-Positive Bacteria/genetics/*physiology ; Humans ; Infant ; Infant Food ; Linear Models ; Male ; *Metagenome ; Mice ; Mice, Inbred C57BL ; Models, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-15
    Description: Intestinal epithelial stem cell identity and location have been the subject of substantial research. Cells in the +4 niche are slow-cycling and label-retaining, whereas a different stem cell niche located at the crypt base is occupied by crypt base columnar (CBC) cells. CBCs are distinct from +4 cells, and the relationship between them is unknown, though both give rise to all intestinal epithelial lineages. We demonstrate that Hopx, an atypical homeobox protein, is a specific marker of +4 cells. Hopx-expressing cells give rise to CBCs and all mature intestinal epithelial lineages. Conversely, CBCs can give rise to +4 Hopx-positive cells. These findings demonstrate a bidirectional lineage relationship between active and quiescent stem cells in their niches.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, Norifumi -- Jain, Rajan -- LeBoeuf, Matthew R -- Wang, Qiaohong -- Lu, Min Min -- Epstein, Jonathan A -- R01 HL071546/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1420-4. doi: 10.1126/science.1213214. Epub 2011 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22075725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epithelial Cells/*cytology ; Homeodomain Proteins/analysis/genetics ; Intestinal Mucosa/*cytology/drug effects ; Intestine, Small/*cytology/drug effects ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/physiology ; Paneth Cells/cytology ; *Stem Cell Niche ; Tamoxifen/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-25
    Description: Spatial representation is an active process that requires complex multimodal integration from a large interacting network of cortical and subcortical structures. We sought to determine the role of cerebellar protein kinase C (PKC)-dependent plasticity in spatial navigation by recording the activity of hippocampal place cells in transgenic L7PKCI mice with selective disruption of PKC-dependent plasticity at parallel fiber-Purkinje cell synapses. Place cell properties were exclusively impaired when L7PKCI mice had to rely on self-motion cues. The behavioral consequence of such a deficit is evidenced here by selectively impaired navigation capabilities during a path integration task. Together, these results suggest that cerebellar PKC-dependent mechanisms are involved in processing self-motion signals essential to the shaping of hippocampal spatial representation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rochefort, Christelle -- Arabo, Arnaud -- Andre, Marion -- Poucet, Bruno -- Save, Etienne -- Rondi-Reig, Laure -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):385-9. doi: 10.1126/science.1207403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiologie des Processus Adaptatifs (UMR 7102), Navigation, Memory, and Aging (ENMVI) Team, Universite Pierre et Marie Curie-Centre National de la Recherche Scientifique (CNRS), F-75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA1 Region, Hippocampal/cytology/*physiology ; Cerebellum/enzymology/*physiology ; Cues ; Darkness ; *Long-Term Synaptic Depression ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; *Motor Activity ; *Orientation ; Protein Kinase C/antagonists & inhibitors/metabolism ; Purkinje Cells/physiology ; Pyramidal Cells/*physiology ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-09-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nabel, Christopher S -- Kohli, Rahul M -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1229-30. doi: 10.1126/science.1211917.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885763" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells/metabolism ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; Thymine DNA Glycosylase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-02-12
    Description: The identities of the digits of the avian forelimb are disputed. Whereas paleontological findings support the position that the digits correspond to digits one, two, and three, embryological evidence points to digit two, three, and four identities. By using transplantation and cell-labeling experiments, we found that the posteriormost digit in the wing does not correspond to digit four in the hindlimb; its progenitor segregates early from the zone of polarizing activity, placing it in the domain of digit three specification. We suggest that an avian-specific shift uncouples the digit anlagen from the molecular mechanisms that pattern them, resulting in the imposition of digit one, two, and three identities on the second, third, and fourth anlagens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamura, Koji -- Nomura, Naoki -- Seki, Ryohei -- Yonei-Tamura, Sayuri -- Yokoyama, Hitoshi -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):753-7. doi: 10.1126/science.1198229.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan. tam@m.tohoku.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311019" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Chick Embryo/*embryology ; Coturnix/*embryology ; Forelimb/embryology/transplantation ; Hedgehog Proteins/metabolism ; Hindlimb/embryology/transplantation ; Limb Buds/embryology ; Mice ; Signal Transduction ; Toes/embryology ; Wings, Animal/*embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-16
    Description: Transforming growth factor-beta (TGFbeta) signaling drives aneurysm progression in multiple disorders, including Marfan syndrome (MFS), and therapies that inhibit this signaling cascade are in clinical trials. TGFbeta can stimulate multiple intracellular signaling pathways, but it is unclear which of these pathways drives aortic disease and, when inhibited, which result in disease amelioration. Here we show that extracellular signal-regulated kinase (ERK) 1 and 2 and Smad2 are activated in a mouse model of MFS, and both are inhibited by therapies directed against TGFbeta. Whereas selective inhibition of ERK1/2 activation ameliorated aortic growth, Smad4 deficiency exacerbated aortic disease and caused premature death in MFS mice. Smad4-deficient MFS mice uniquely showed activation of Jun N-terminal kinase-1 (JNK1), and a JNK antagonist ameliorated aortic growth in MFS mice that lacked or retained full Smad4 expression. Thus, noncanonical (Smad-independent) TGFbeta signaling is a prominent driver of aortic disease in MFS mice, and inhibition of the ERK1/2 or JNK1 pathways is a potential therapeutic strategy for the disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holm, Tammy M -- Habashi, Jennifer P -- Doyle, Jefferson J -- Bedja, Djahida -- Chen, YiChun -- van Erp, Christel -- Lindsay, Mark E -- Kim, David -- Schoenhoff, Florian -- Cohn, Ronald D -- Loeys, Bart L -- Thomas, Craig J -- Patnaik, Samarjit -- Marugan, Juan J -- Judge, Daniel P -- Dietz, Harry C -- P01 AR049698/AR/NIAMS NIH HHS/ -- P01 AR049698-07/AR/NIAMS NIH HHS/ -- R01 AR041135/AR/NIAMS NIH HHS/ -- R01 AR041135-12/AR/NIAMS NIH HHS/ -- R01 AR041135-17/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):358-61. doi: 10.1126/science.1192149.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493862" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthracenes/pharmacology/therapeutic use ; Aorta/pathology ; Aortic Aneurysm/*metabolism/pathology/physiopathology/prevention & control ; Diphenylamine/analogs & derivatives/pharmacology/therapeutic use ; Disease Models, Animal ; Disease Progression ; Enzyme Activation ; Losartan/pharmacology/therapeutic use ; *MAP Kinase Signaling System ; Marfan Syndrome/drug therapy/*metabolism/pathology ; Mice ; Mitogen-Activated Protein Kinase 1/antagonists & inhibitors/*metabolism ; Mitogen-Activated Protein Kinase 3/antagonists & inhibitors/*metabolism ; Mitogen-Activated Protein Kinase 8/antagonists & inhibitors/metabolism ; Protein Kinase Inhibitors/pharmacology/therapeutic use ; Smad2 Protein/metabolism ; Smad4 Protein/deficiency/genetics ; Sulfonamides/pharmacology/therapeutic use ; Transforming Growth Factor beta/antagonists & inhibitors/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nair, Gautham -- Raj, Arjun -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):431-2. doi: 10.1126/science.1205995.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512026" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Directed RNA Polymerases/metabolism ; Fibroblasts ; *Gene Expression ; *Gene Silencing ; Genes, Fungal ; Kinetics ; Mice ; Models, Genetic ; RNA, Messenger/*genetics/metabolism ; Signal Processing, Computer-Assisted ; Stochastic Processes ; *Transcription, Genetic ; *Transcriptional Activation ; Yeasts/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-12
    Description: The growth factor progranulin (PGRN) has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation, but its receptors remain unidentified. We report that PGRN bound directly to tumor necrosis factor receptors (TNFRs) and disturbed the TNFalpha-TNFR interaction. PGRN-deficient mice were susceptible to collagen-induced arthritis, and administration of PGRN reversed inflammatory arthritis. Atsttrin, an engineered protein composed of three PGRN fragments, exhibited selective TNFR binding. PGRN and Atsttrin prevented inflammation in multiple arthritis mouse models and inhibited TNFalpha-activated intracellular signaling. Collectively, these findings demonstrate that PGRN is a ligand of TNFR, an antagonist of TNFalpha signaling, and plays a critical role in the pathogenesis of inflammatory arthritis in mice. They also suggest new potential therapeutic interventions for various TNFalpha-mediated pathologies and conditions, including rheumatoid arthritis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Wei -- Lu, Yi -- Tian, Qing-Yun -- Zhang, Yan -- Guo, Feng-Jin -- Liu, Guang-Yi -- Syed, Nabeel Muzaffar -- Lai, Yongjie -- Lin, Edward Alan -- Kong, Li -- Su, Jeffrey -- Yin, Fangfang -- Ding, Ai-Hao -- Zanin-Zhorov, Alexandra -- Dustin, Michael L -- Tao, Jian -- Craft, Joseph -- Yin, Zhinan -- Feng, Jian Q -- Abramson, Steven B -- Yu, Xiu-Ping -- Liu, Chuan-ju -- AI43542/AI/NIAID NIH HHS/ -- AR040072/AR/NIAMS NIH HHS/ -- AR050620/AR/NIAMS NIH HHS/ -- AR053210/AR/NIAMS NIH HHS/ -- GM061710/GM/NIGMS NIH HHS/ -- R01 AI030165/AI/NIAID NIH HHS/ -- R01 AI030165-20/AI/NIAID NIH HHS/ -- R01 GM061710/GM/NIGMS NIH HHS/ -- R01 GM061710-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):478-84. doi: 10.1126/science.1199214. Epub 2011 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Orthopaedic Surgery, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, NY 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393509" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/metabolism/pharmacology/therapeutic use ; Arthritis, Experimental/*drug therapy/*immunology/pathology/physiopathology ; Cartilage, Articular/metabolism/pathology ; Female ; Humans ; Intercellular Signaling Peptides and ; Proteins/chemistry/genetics/*metabolism/therapeutic use ; Ligands ; Male ; Mice ; Mice, Inbred Strains ; Mice, Knockout ; Mice, Transgenic ; Middle Aged ; Protein Interaction Domains and Motifs ; Receptors, Tumor Necrosis Factor, Type I/genetics/*metabolism ; Receptors, Tumor Necrosis Factor, Type II/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism/pharmacology/therapeutic use ; Recombinant Proteins/therapeutic use ; Signal Transduction ; T-Lymphocytes, Regulatory/immunology/physiology ; Tumor Necrosis Factor-alpha/*metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-03-12
    Description: Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbalpha. Rev-erbalpha colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbalpha in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbalpha directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Dan -- Liu, Tao -- Sun, Zheng -- Bugge, Anne -- Mullican, Shannon E -- Alenghat, Theresa -- Liu, X Shirley -- Lazar, Mitchell A -- DK19525/DK/NIDDK NIH HHS/ -- DK43806/DK/NIDDK NIH HHS/ -- DK45586/DK/NIDDK NIH HHS/ -- DK49210/DK/NIDDK NIH HHS/ -- HG4069/HG/NHGRI NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- R37 DK043806-20/DK/NIDDK NIH HHS/ -- RC1 DK086239/DK/NIDDK NIH HHS/ -- RC1DK08623/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1315-9. doi: 10.1126/science.1198125.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393543" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Chromatin Immunoprecipitation ; Chronobiology Disorders/genetics/metabolism ; *Circadian Clocks ; *Circadian Rhythm ; DNA/metabolism ; Epigenesis, Genetic ; Fatty Liver/*metabolism ; Gene Expression Regulation ; *Genome ; Histone Deacetylases/*metabolism ; Histones/metabolism ; Homeostasis ; *Lipid Metabolism ; Lipogenesis/genetics ; Liver/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Nuclear Receptor Co-Repressor 1/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/metabolism ; RNA Polymerase II/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-09-17
    Description: Neural circuits regulate cytokine production to prevent potentially damaging inflammation. A prototypical vagus nerve circuit, the inflammatory reflex, inhibits tumor necrosis factor-alpha production in spleen by a mechanism requiring acetylcholine signaling through the alpha7 nicotinic acetylcholine receptor expressed on cytokine-producing macrophages. Nerve fibers in spleen lack the enzymatic machinery necessary for acetylcholine production; therefore, how does this neural circuit terminate in cholinergic signaling? We identified an acetylcholine-producing, memory phenotype T cell population in mice that is integral to the inflammatory reflex. These acetylcholine-producing T cells are required for inhibition of cytokine production by vagus nerve stimulation. Thus, action potentials originating in the vagus nerve regulate T cells, which in turn produce the neurotransmitter, acetylcholine, required to control innate immune responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosas-Ballina, Mauricio -- Olofsson, Peder S -- Ochani, Mahendar -- Valdes-Ferrer, Sergio I -- Levine, Yaakov A -- Reardon, Colin -- Tusche, Michael W -- Pavlov, Valentin A -- Andersson, Ulf -- Chavan, Sangeeta -- Mak, Tak W -- Tracey, Kevin J -- R01 GM057226/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 7;334(6052):98-101. doi: 10.1126/science.1209985. Epub 2011 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921156" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/*biosynthesis ; Action Potentials ; Animals ; CD4-Positive T-Lymphocytes/*immunology/*metabolism ; Choline O-Acetyltransferase/metabolism ; Cholinergic Agents/metabolism ; Female ; *Immunity, Innate ; Immunologic Memory ; Inflammation ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; *Neuroimmunomodulation ; Norepinephrine/pharmacology ; Receptors, Nicotinic/metabolism ; Signal Transduction ; Spleen/immunology/innervation/metabolism ; T-Lymphocyte Subsets/immunology/metabolism ; Tumor Necrosis Factor-alpha/blood ; Vagus Nerve/*physiology ; Vagus Nerve Stimulation ; alpha7 Nicotinic Acetylcholine Receptor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...