ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (73)
  • Rats  (73)
  • American Association for the Advancement of Science (AAAS)  (73)
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer Nature
  • 2010-2014
  • 2000-2004
  • 1995-1999
  • 1985-1989  (73)
  • 1980-1984
  • 1960-1964
  • 1955-1959
  • 1935-1939
  • 1930-1934
  • 1989  (73)
  • 1960
  • 1939
  • 1933
  • Natural Sciences in General  (73)
  • Chemistry and Pharmacology  (73)
  • Geosciences
Collection
  • Articles  (73)
Publisher
  • American Association for the Advancement of Science (AAAS)  (73)
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer Nature
Years
  • 2010-2014
  • 2000-2004
  • 1995-1999
  • 1985-1989  (73)
  • 1980-1984
  • +
Year
Topic
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-24
    Description: Cruciform DNA, a non-double helix form of DNA, can be generated as an intermediate in genetic recombination as well as from palindromic sequences under the effect of supercoiling. Eukaryotic cells are equipped with a DNA-binding protein that selectively recognizes cruciform DNA. Biochemical and immunological data showed that this protein is HMG1, an evolutionarily conserved, essential, and abundant component of the nucleus. The interaction with a ubiquitous protein points to a critical role for cruciform DNA conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bianchi, M E -- Beltrame, M -- Paonessa, G -- New York, N.Y. -- Science. 1989 Feb 24;243(4894 Pt 1):1056-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Heidleberg, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2922595" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cloning, Molecular ; DNA/genetics/*metabolism ; Electrophoresis, Polyacrylamide Gel ; High Mobility Group Proteins/genetics/isolation & purification/*metabolism ; Immunoassay ; Immunoblotting ; Liver/analysis ; Molecular Sequence Data ; Molecular Weight ; *Nucleic Acid Conformation ; Peptide Fragments/genetics/isolation & purification ; Protein Biosynthesis ; Rats ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-01-20
    Description: Nerve growth factor (NGF) interacts with both high affinity (Kd = 10(-10)-10(-11)M) and low affinity (Kd = 10(-8)-10(-9)M) receptors; the binding of NGF to the high affinity receptor is correlated with biological actions of NGF. To determine whether a single NGF binding protein is common to both forms of the receptor, a full-length receptor cDNA was introduced in the NR18 cell line, an NGF receptor-deficient variant of the PC12 pheochromocytoma cell line. The transformant displayed (i) both high and low affinity receptors detectable by receptor binding; (ii) an affinity cross-linking pattern with 125I-labeled NGF similar to that of the parent PC12 cell line; and (iii) biological responsiveness to NGF as assayed by induction of c-fos transcription. These findings support the hypothesis that a single binding protein is common to both forms of the NGF receptor and suggest that an additional protein is required to produce the high affinity form of the NGF receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hempstead, B L -- Schleifer, L S -- Chao, M V -- HD23315/HD/NICHD NIH HHS/ -- NS-21072/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 20;243(4889):373-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2536190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blotting, Northern ; Cloning, Molecular ; Gene Expression Regulation ; Nerve Growth Factors/pharmacology ; Pheochromocytoma ; Proto-Oncogene Proteins/genetics ; Proto-Oncogene Proteins c-fos ; Rats ; Receptors, Cell Surface/*genetics/metabolism ; Receptors, Nerve Growth Factor ; Transformation, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-24
    Description: The N-methyl-D-aspartate (NMDA) class of excitatory amino acid receptors regulates the strength and stability of excitatory synapses and appears to play a major role in excitotoxic neuronal death associated with stroke and epilepsy. The conductance increase gated by NMDA is potentiated by the amino acid glycine, which acts at an allosteric site tightly coupled to the NMDA receptor. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current. In solutions containing low levels of glycine, I2CA completely blocks the response to NMDA, suggesting that NMDA alone is not sufficient for channel activation. I2CA will be useful for defining the interaction of glycine with NMDA receptors and for determining the in vivo role of glycine in excitotoxicity and synapse stabilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huettner, J E -- HL-35034/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 24;243(4898):1611-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2467381" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/*analogs & derivatives/physiology ; Cells, Cultured ; Electric Conductivity ; Glycine/*antagonists & inhibitors ; In Vitro Techniques ; Indoles/*pharmacology ; Ion Channels/drug effects ; N-Methylaspartate ; Neural Inhibition ; Rats ; Receptors, N-Methyl-D-Aspartate ; Receptors, Neurotransmitter/*drug effects ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-09-29
    Description: The CA1 pyramidal neurons in the hippocampus contain a high density of adrenal corticosteroid receptors. By intracellular recording, CA1 neurons in slices from adrenalectomized rats have been found to display a markedly reduced afterhyperpolarization (that is, the hyperpolarizing phase after a brief depolarizing current pulse) when compared with their sham controls. No differences were found for other tested membrane properties. Brief exposure of hippocampal slices from adrenalectomized rats to glucocorticoid agonists, 30 to 90 minutes before recording, greatly enhanced the afterhyperpolarization. In addition, glucocorticoids attenuated the norepinephrine-induced blockade of action potential accommodation in CA1 neurons. The findings indicate that glucocorticoids can reduce transmitter-evoked excitability in the hippocampus, presumably via a receptor-mediated genomic action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joels, M -- de Kloet, E R -- New York, N.Y. -- Science. 1989 Sep 29;245(4925):1502-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Neurobiology, University of Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2781292" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Adrenalectomy ; Animals ; Glucocorticoids/*pharmacology ; Hippocampus/cytology/*drug effects ; In Vitro Techniques ; Membrane Potentials/drug effects ; Neurons/cytology/drug effects ; Norepinephrine/*pharmacology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-10-06
    Description: The tyrosine kinase pp60v-src, encoded by the v-src oncogene, seems to regulate phosphatidylinositol metabolism. The effect of pp60v-src on control points in inositol phosphate production was examined by measuring the amounts of inositol polyphosphates in Rat-1 cells expressing wild-type or mutant forms of the protein. Expression of v-src-resulted in a five- to sevenfold elevation in the steady-state amount of an isomer of inositol tetrakisphosphate, whereas the concentrations of inositol trisphosphates or other inositol tetrakisphosphates were not affected. The activity of a key enzyme in the formation of inositol tetrakisphosphates, inositol (1,4,5)-trisphosphate 3-kinase, was increased six- to eightfold in cytosolic extracts prepared from the v-src-transformed cells, suggesting that this enzyme may be one target for the pp60v-src kinase and that it may participate in the synthesis of novel, higher order inositol phosphates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, R M -- Wasilenko, W J -- Mattingly, R R -- Weber, M J -- Garrison, J C -- CA-39076/CA/NCI NIH HHS/ -- CA-40042/CA/NCI NIH HHS/ -- DK-19952/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Oct 6;246(4926):121-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2506643" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Transformed ; Fibroblasts/metabolism ; Inositol Phosphates/*metabolism ; Isomerism ; Oncogene Protein pp60(v-src) ; Protein-Tyrosine Kinases/metabolism ; Rats ; Retroviridae Proteins/*physiology ; Sugar Phosphates/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-05-19
    Description: Biochemical and electrophysiological studies suggest that odorants induce responses in olfactory sensory neurons via an adenylate cyclase cascade mediated by a G protein. An olfactory-specific guanosine triphosphate (GTP)-binding protein alpha subunit has now been characterized and evidence is presented suggesting that this G protein, termed Golf, mediates olfaction. Messenger RNA that encodes Golf alpha is expressed in olfactory neuroephithelium but not in six other tissues tested. Moreover, within the olfactory epithelium, Golf alpha appears to be expressed only by the sensory neurons. Specific antisera were used to localize Golf alpha protein to the sensory apparatus of the receptor neurons. Golf alpha shares extensive amino acid identity (88 percent) with the stimulatory G protein, Gs alpha. The expression of Golf alpha in S49 cyc- kin- cells, a line deficient in endogenous stimulatory G proteins, demonstrates its capacity to stimulate adenylate cyclase in a heterologous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, D T -- Reed, R R -- New York, N.Y. -- Science. 1989 May 19;244(4906):790-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetic Johns Hopkins School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2499043" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; GTP-Binding Proteins/analysis/genetics/*physiology ; Gene Expression Regulation ; Immunoblotting ; Immunohistochemistry ; Molecular Sequence Data ; Neurons, Afferent/analysis/*physiology ; *Odors ; Olfactory Bulb/physiology ; Olfactory Mucosa/analysis/*innervation ; RNA, Messenger/analysis/genetics ; Rats ; Sequence Homology, Nucleic Acid ; *Signal Transduction ; Tissue Distribution ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-01-20
    Description: DNA and nuclear proteins were transferred into cells simultaneously at more than 95% efficiency by means of vesicle complexes. The DNA was rapidly transported into the nuclei of cultured cells, and its expression reached a maximum within 6 to 8 hours after its introduction. Moreover, when the plasmid DNA and nuclear protein were cointroduced into nondividing cells in rat liver by injection into the portal veins of adult rats, the plasmid DNA was carried into liver cell nuclei efficiently by nuclear protein. The expression of the DNA in adult rat liver, on introduction of the DNA with nuclear protein, was more than five times as great as with nonnuclear protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaneda, Y -- Iwai, K -- Uchida, T -- New York, N.Y. -- Science. 1989 Jan 20;243(4889):375-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular and Cellular Biology, Osaka University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2911748" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blotting, Northern ; Cell Compartmentation ; Cell Nucleus/metabolism ; Cells, Cultured ; DNA/*metabolism/pharmacokinetics ; High Mobility Group Proteins/*metabolism ; Liver/*metabolism ; Mice ; Rats ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1989-09-29
    Description: Adrenal steroids bind specifically to hippocampal neurons under normal conditions and may contribute to hippocampal cell loss during aging, but little is known about the neurophysiological mechanisms by which they may change hippocampal cell functions. In the present studies, adrenal steroids have been shown to modulate a well-defined membrane conductance in hippocampal pyramidal cells. The calcium-dependent slow afterhyperpolarization is reduced in hippocampal slices from adrenalectomized rats, and it is increased after in vivo or in vitro administration of the adrenal steroid, corticosterone. Calcium action potentials are also reduced in adrenalectomized animals, indicating that the primary effect of corticosteroids may be on calcium conductance. The afterhyperpolarization component reduced by adrenalectomy is greater in aged rats than in young rats, suggesting that, with aging, there is an increased effect of corticosteroids on some calcium-mediated brain processes. Because elevated concentrations of intracellular calcium can be cytotoxic, these observations may increase the understanding of glucocorticoid involvement in brain aging as well as of the normal functions of these steroids in the brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kerr, D S -- Campbell, L W -- Hao, S Y -- Landfield, P W -- AG04542/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 29;245(4925):1505-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Winston-Salem, NC 27103.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2781293" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Adrenal Cortex Hormones/*pharmacology ; Adrenalectomy ; Aging/*physiology ; Animals ; Calcium/metabolism ; Hippocampus/*drug effects ; In Vitro Techniques ; Male ; Neurons/drug effects ; Rats ; Rats, Inbred F344 ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-06-09
    Description: Two types of potassium-selective channels activated by intracellular arachidonic acid or phosphatidylcholine have been found in neonatal rat atrial cells. In inside-out patches, arachidonic acid and phosphatidylcholine each opened outwardly rectifying potassium-selective channels with conductances of 160 picosiemens (IK.AA) and 68 picosiemens (IK.PC), respectively. These potassium channels were not sensitive to internally applied adenosine triphosphate (ATP), magnesium, or calcium. Lowering the intracellular pH from 7.2 to 6.8 or 6.4 reversibly increased IK.AA channel activity three- or tenfold, respectively. A number of fatty acid derivatives were tested for their ability to activate IK.AA. These potassium-selective channels may help explain the increase in potassium conductance observed in ischemic cells and raise the possibility that fatty acid derivatives act as second messengers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, D -- Clapham, D E -- HL 34873/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jun 9;244(4909):1174-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mayo Foundation, Rochester, MN 55905.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2727703" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Arachidonic Acids/*pharmacology ; Atrial Function ; Heart/*physiology ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Kinetics ; Membrane Potentials ; Phosphatidylcholines/*pharmacology ; Potassium Channels/drug effects/*physiology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: C/EBP is a rat liver nuclear protein capable of sequence-specific interaction with DNA. The DNA sequences to which C/EBP binds in vitro have been implicated in the control of messenger RNA synthesis. It has therefore been predicted that C/EBP will play a role in regulating gene expression in mammalian cells. The region of the C/EBP polypeptide required for direct interaction with DNA has been identified and shown to bear amino acid sequence relatedness with the product of the myc, fos, and jun proto-oncogenes. The arrangement of these related amino acid sequences led to the prediction of a new structural motif, termed the "leucine zipper," that plays a role in facilitating sequence-specific interaction between protein and DNA. Experimental tests now provide support for the leucine zipper hypothesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landschulz, W H -- Johnson, P F -- McKnight, S L -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1681-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494700" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Cross-Linking Reagents ; DNA/*metabolism ; Glutaral ; Leucine ; Liver/*analysis ; Macromolecular Substances ; Molecular Weight ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Protein Conformation ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...