ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (216)
  • Solar Physics  (132)
  • Engineering (General)  (84)
  • 2015-2019  (216)
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2017  (216)
  • 1926
  • 1
    Publication Date: 2019-07-12
    Description: Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.
    Keywords: Engineering (General)
    Type: NASA/TM-2017-219461 , E-19339 , GRC-E-DAA-TN38019
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The ADEPT architecture represents a completely new approach for entry vehicle design using a high-performance carbon fabric to serve as the primary drag surface of the mechanically deployed decelerator and to protect the payload from hypersonic aerothermal heating during entry. The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7-m deployed diameter ADEPT sounding rocket flight experiment. The SR-1 sounding rocket flight experiment is a critical milestone in the technology maturation plan for ADEPT and will generate performance data on in-space deployment and aerodynamic stability.
    Keywords: Engineering (General)
    Type: NASA FS-2017-02-01-ARC , ARC-E-DAA-TN39114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: As the present solar cycle passes into its minimum phase, the Hinode mission marks its tenth year of investigating solar activity. Hinode's decade of successful observations have provided us with immeasurable insight into the solar processes that invoke space weather and thereby affect the interplanetary environment in which we reside. The mission's complementary suite of instruments allows us to probe transient, high energy events alongside long-term, cycle-dependent phenomena from magnetic fields at the Sun's surface out to highly thermalized coronal plasma enveloping active regions (ARs). These rich data sets have already changed the face of solar physics and will continue to provoke exciting research as new observational paradigms are pursued. Hinode was launched as part of the Science Mission Directorate's (SMD) Solar Terrestrial Probes Program in 2006. It is a sophisticated spacecraft equipped with a Solar Optical Telescope (SOT), an Extreme-ultraviolet Imaging Spectrometer (EIS), and an X-Ray Telescope (XRT) (see x 4). With high resolution and sensitivity, Hinode serves as a microscope for the Sun, providing us with unique capabilities for observing magnetic fields near the smallest scales achievable, while also rendering full-Sun coronal context in the highest thermal regimes. The 2014 NASA SMD strategic goals objective to "Understand the Sun and its interactions with the Earth and the solar system, including space weather" forms the basis of three underlying Heliophysics Science Goals. While Hinode relates to all three, the observatory primarily addresses: Explore the physical processes in the space environment from the Sun to the Earth and through the solar system. Within the NASA National Research Council (NRC) Decadal Survey Priorities, Hinode targets: (a) Determine the origins of the Sun's activity and predict the variations of the space environment and (d) Discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. In response to the 2012 NRC Decadal Survey Science Challenges and 2014 Heliophysics Roadmap Research Focus Areas, the Hinode mission has set forth four Prioritized Science Goals (PSGs): (a) Study the sources and evolution of highly energetic dynamic events; (b) Characterize cross-scale magnetic field topology and stability; (c) Trace mass and energy flow from the photosphere to the corona; and (d) Continue long term synoptic support to quantify cycle variability.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN40198
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.
    Keywords: Engineering (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN51857
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M17-6434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-20
    Description: Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage technology at NASA Kennedy Space Center led to the production of large quantities of densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. Overall densification performance of the system is explored, and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing, and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. The phenomenon, observed at two fill levels, is detailed herein. The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.
    Keywords: Engineering (General)
    Type: KSC-E-DAA-TN43516 , Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC/ICMC 2017); Jul 09, 2017 - Jul 13, 2017; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Prediction of solar magnetic activity on various temporal scales is a fundamental element of space weather, which requires a wide range of theoretical and observational expertise in solar phenomena from the deep interior to the corona. Historical observations have revealed many features of cyclic variations of the solar activity; but these data are dramatically insufficient to draw a physical picture of global magnetic field evolution. New observational data, currently available from space missions and ground-based observatories, provide us with detailed information about solar dynamics and magnetism. However, because of the relatively short duration of data series and the great variety of data types and quality, it is challenging to assimilate these data in theoretical models and make reliable forecasts. The recent unexpectedly weak solar activity cycles, as well as observations of rotational and magnetic topology transitions in solar-type stars, suggest that the Sun and its magnetic dynamo are currently in a very interesting evolutionary stage. This could relate to the difficulty in getting a model of the Sun to produce solar-like rather than anti-solar-like differential rotation, to reproduce the rotation profile obtained from helioseismology, and to predict solar activity cycles.
    Keywords: Solar Physics
    Type: ARC-E-DAA-TN44458 , SHINE Conference 2017; Jul 24, 2017 - Jul 28, 2017; Saint-Sauveur; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (CalVal) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.
    Keywords: Engineering (General)
    Type: IN23B-0086 , GSFC-E-DAA-TN49851 , AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We present the current state of development in passive gas-gap heat switches. This type of switch does not require a separate heater to activate heat transfer but, instead, relies upon the warming of one end due to an intrinsic step in a thermodynamic cycle to raise a getter above a threshold temperature. Above this temperature sequestered gas is released to couple both sides of the switch. This enhances the thermodynamic efficiency of the system and reduces the complexity of the control system. Various gas mixtures and getter configurations will be presented.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN57172 , CRYOGENIC Engineering Conference/ International Cryogenic MATERIALS Conference (CEC/ICMC 2017); Jul 09, 2017 - Jul 13, 2017; Madison WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: The recent prolonged activity minimum has led to the question of whether there is a base level of the solar magnetic field evolution that yields a ''floor'' in activity levels and also in the solar wind magnetic field strength. Recently, a flux transport model coupled with magneto-frictional simulations has been used to simulate the continuous magnetic field evolution in the global solar corona for over 15 years, from 1996 to 2012. Flux rope eruptions in the simulations are estimated (Yeates), and the results are in remarkable agreement with the shape of the SOlar Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment coronal mass ejection (CME) rate distribution. The eruption rates at the two recent minima approximate the observed-corrected CME rates, supporting the idea of a base level of solar magnetic activity. In this paper, we address this issue by comparing annual averages of the CME occurrence rates during the last four solar cycle minima with several tracers of the global solar magnetic field. We conclude that CME activity never ceases during a cycle, but maintains a base level of 1 CME every 1.5 to approx. 3 days during minima. We discuss the sources of these CMEs.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN53060 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 851; 2; 142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: The underlying origin of solar eruptive events (SEEs), ranging from giant coronal mass ejections to small coronalhole jets, is that the lowest-lying magnetic flux in the Sun's corona undergoes continual buildup of stress and free energy. This magnetic stress has long been observed as the phenomenon of "filament channels:" strongly sheared magnetic field localized around photospheric polarity inversion lines. However, the mechanism for the stress buildup-formation of filament channels-is still debated. We present magnetohydrodynamic simulations of a coronal volume that is driven by transient, cellular boundary flows designed to model the processes by which the photosphere drives the corona. The key feature of our simulations is that they accurately preserve magnetic helicity, the topological quantity that is conserved even in the presence of ubiquitous magnetic reconnection. Although small-scale random stress is injected everywhere at the photosphere, driving stochastic reconnection throughout the corona, the net result of the magnetic evolution is a coherent shearing of the lowest-lying field lines. This highly counterintuitive result-magnetic stress builds up locally rather than spreading out to attain a minimum energy state-explains the formation of filament channels and is the fundamental mechanism underlying SEEs. Furthermore, this process is likely to be relevant to other astrophysical and laboratory plasmas.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN51341 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 851; 1; L17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: We report on a study comparing coronal flux ropes inferred from eruption data with their interplanetary counterparts constructed from in situ data. The eruption data include the source region magnetic field, post-eruption arcades, and coronal mass ejections (CMEs). Flux ropes were fit to the interplanetary CMEs (ICMEs) considered for the 2011 and 2012 Coordinated Data Analysis Workshops (CDAWs). We computed the total reconnected flux involved in each of the associated solar eruptions and found it to be closely related to flare properties, CME kinematics, and ICME properties. By fitting flux ropes to the white-light coronagraph data, we obtained the geometric properties of the flux ropes and added magnetic properties derived from the reconnected flux. We found that the CME magnetic field in the corona is significantly higher than the ambient magnetic field at a given heliocentric distance. The radial dependence of the flux rope magnetic field strength is faster than that of the ambient magnetic field. The magnetic field strength of the coronal flux rope is also correlated with that in interplanetary flux ropes constructed from in situ data, and with the observed peak magnetic field strength in ICMEs. The physical reason for the observed correlation between the peak field strength in MCs is the higher magnetic field content in faster coronal flux ropes and ultimately the higher reconnected flux in the eruption region. The magnetic flux ropes constructed from the eruption data and coronagraph observations provide a realistic input that can be used by various models to predict the magnetic properties of ICMEs at Earth and other destination in the heliosphere.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN50080 , Journal of Atmospheric and Solar-Terrestrial Physics (ISSN 1364-6826)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: We studied three solar energetic particle (SEP) events observed on 14 August 2010, 3 November 2011, and 5 March 2013 by Solar Terrestrial Relations Observatory (STEREO) A, B, and near-Earth (L1) spacecraft with a longitudinal distribution of particles greater than 90 degrees. Using a forward modeling method combined with extreme ultraviolet and white-light images, we determined the angular extent of the shock, the time and location (cobpoint) of the shock intersection with the magnetic field line connecting to each spacecraft, and compute the shock speed at the cobpoint of each spacecraft. We then examine whether the observations of SEPs at each spacecraft were accelerated and injected by the spatially extended shocks or whether another mechanism such as cross-field transport is required for an alternative explanation. Our analyses results indicate that the SEPs observed at the three spacecraft on 3 November, STEREO B (STB) and L1 on 14 August, and the 5 March SEP event at STEREO A (STA) can be explained by the direct shock acceleration. This is consistent with the observed significant anisotropies, short time delays between particle release times and magnetic connection times, and sharp rises in the SEP time profiles. Cross-field diffusion is the likely cause for the 14 August SEP event observed by STA and the 5 March SEPs observed by STB and L1 spacecraft, as particle observations featured weak electron anisotropies and slow rising intensity profiles. Otherwise, the wide longitudinal spread of these SEP increases would require an existence of a circumsolar shock, which may not be a correct assumption in the corona and heliosphere.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN50953 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 122; 7; 7021–7041
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: We report on further evidence that solar energetic particles are organized by the kinematic properties of coronal mass ejections (CMEs). In particular, we focus on the starting frequency of type II bursts, which is related to the distance from the Sun where the radio emission starts. We find that the three groups of solar energetic particle (SEP) events known to have distinct values of CME initial acceleration, also have distinct average starting frequencies of the associated type II bursts. SEP events with ground level enhancement (GLE) have the highest starting frequency (107 MHz), while those associated with filament eruption (FE) in quiescent regions have the lowest starting frequency (22 MHz); regular SEP events have intermediate starting frequency (81 MHz). Taking the onset time of type II bursts as the time of shock formation, we determine the shock formation heights measured from the Sun center. We find that the shocks form on average closest to the Sun (1.51 Rs) in GLE events, farthest from the Sun in FE SEP events (5.38 Rs), and at intermediate distances in regular SEP events (1.72 Rs). Finally, we present the results of a case study of a CME with high initial acceleration (approx.3 km s-2) and a type II radio burst with high starting frequency (approx. 200 MHz) but associated with a minor SEP event. We find that the relation between the fluence spectral index and CME initial acceleration continues to hold even for this minor SEP event.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN50955 , Journal of Physics: Conference Series (ISSN 1742-6588) (e-ISSN 1742-6596); 900; 1; 012009
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: A molecular formulation of the onset of plasticity is proposed to assess temperature and strain rate effects in anisotropic semi-crystalline rubbery films. The presented plane stress criterion is based on the strain rate-temperature superposition principle and the cooperative theory of yielding, where some parameters are assumed to be material constants, while others are considered to depend on specific modes of deformation. An orthotropic yield function is developed for a linear low density polyethylene thin film. Uniaxial and biaxial inflation experiments were carried out to determine the yield stress of the membrane via a strain recovery method. It is shown that the 3% offset method predicts the uniaxial elastoplastic transition with good accuracy. Both the tensile yield points along the two principal directions of the film and the biaxial yield stresses are found to obey the superposition principle. The proposed yield criterion is compared against experimental measurements, showing excellent agreement over a wide range of deformation rates and temperatures.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN46409 , Polymer (ISSN 0032-3861); 125; 144-153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Stirling Radioisotope Power Systems (RPS) are being developed by NASA's RPS Program in collaboration with the U.S. Department of Energy (DOE). Efforts ranging from 2001 to 2015 enabled development of the Technology Demonstration Convertor (TDC) for use in the 110-watt Stirling Radioisotope Generator (SRG-110) and the Advanced Stirling Convertor (ASC) for use in the Advanced Stirling Radioisotope Generator (ASRG). The DOE selected Lockheed Martin Space Systems Company (LMSSC) as the system integration contractor for both flight development efforts. The SRG-110 housed two TDCs fabricated by Infinia and resulted in the production of 16x demonstration units and 2x engineering units. The project was redirected in 2006 to make use of a more efficient and lower mass ASCs under development by Sunpower Inc. The DOE managed the flight contract with LMSSC and subcontractor Sunpower Inc. from 2007 to 2013 to build the ASRG, with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce ASCs, one with Lockheed Martin to produce ASC-F flight units and one with GRC for the production of ASC-E3 engineering unit pathfinders that were used to refine the flight design and production processes. The DOE initiated termination of the ASRG contract in late 2013. After ASRG had ended, GRC completed characterization testing of the ASRG Engineering Unit #2 (EU2) and the GRC contract with Sunpower was also completed. The NASA RPS Program Office has recently initiated a new Dynamic Power Conversion development effort which includes the potential maturation of Stirling, Brayton, and Rankine power convertors for the next generation of RPS. The effort started with the request for proposal and review of submits. Contracts are anticipated for release in 2017 and will initially focus on a design phase prior to fabrication and testing. This new effort will focus on robustness in addition to high efficiency, specific power, and reliability. Also, some requirements introduced during the ASRG contract have also been included in the new effort, such as constant lateral loading. Due to the focus on robustness and new requirements relative to the older TDC design, the Stirling Cycle Development Project has initiated an assessment of government owned hardware to help inform requirements evolution and evaluation of future designs. While lessons learned from the ASRG flight development project have been taken into consideration, the evaluation of the TDC design had not been completed for some existing environments or relatively new requirements. To further assess the TDC design, a series of tasks were initiated to evaluate degradation for units that have operated unattended for over 105,000 hours, demonstrate robustness to a random vibration environment, characterize and evaluate performance for varying lateral load profiles. The status for each task are described.
    Keywords: Engineering (General)
    Type: GRC-E-DAA-TN43782 , International Energy Conversion Engineering Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M17-6129 , 2017 Contamination, Coatings, Materials, and Planetary Protection Workshop; Jul 18, 2017 - Jul 20, 2017; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: This paper describes how the Orion program is implementing new and innovative test approaches and strategies in an evolving development environment. The early flight test spacecraft are evolving in design maturity and complexity requiring significant changes in the ground test operations for each mission. The testing approach for EM-2 is planned to validate innovative Orion production acceptance testing methods to support human exploration missions in the future. Manufacturing and testing at Kennedy Space Center in the Neil Armstrong Operations and Checkout facility will provide a seamless transition directly to the launch site avoiding transportation and checkout of the spacecraft from other locations.
    Keywords: Engineering (General)
    Type: KSC-E-DAA-TN45646 , AIAA Space 2017 Conference; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: JSC-CN-40403 , Space Environment Engineering and Science Applications Workshop; Sep 05, 2017 - Sep 09, 2017; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45991 , European Solar Physics Meeting; Sep 04, 2017 - Sep 08, 2017; Budapest; Hungary
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45616 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 122; 2; 1437–1438|Conference on Measurement Techniques for Solar and Space Physics; Apr 20, 2017 - Apr 24, 2017; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN46006 , Presentation at Alabama A&M University; Aug 16, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45400 , Learning Quest Class- Huntsville Library; Aug 11, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: The Atmospheric Processing Module (APM) is a Mars In-Situ Resource Utilization (ISRU) technology designed to demonstrate conversion of the Martian atmosphere into methane and water. The Martian atmosphere consists of approximately 95 carbon dioxide (CO2) and residual argon and nitrogen. APM utilizes cryocoolers for CO2 acquisition from a simulated Martian atmosphere and pressure. The captured CO2 is sublimated and pressurized as a feedstock into the Sabatier reactor, which converts CO2 and hydrogen to methane and water. The Sabatier reaction occurs over a packed bed reactor filled with Ru/Al2O3 pellets. The long duration use of the APM system and catalyst was investigated for future scaling and failure limits. Failure of the catalyst was detected by gas chromatography and temperature sensors on the system. Following this, characterization and experimentation with the catalyst was carried out with analysis including x-ray photoelectron spectroscopy and scanning electron microscopy with elemental dispersive spectroscopy. This paper will discuss results of the catalyst performance, the overall APM Sabatier approach, as well as intrinsic catalyst considerations of the Sabatier reactor performance incorporated into a chemical model.
    Keywords: Engineering (General)
    Type: ICES-2017-161 , KSC-E-DAA-TN39776 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45601 , Solar Eclipse Training Session; Aug 10, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45804 , US Space & Rocket Center Counselor Training; Aug 08, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitivity semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in Summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons that can limit the sensitivity of the observation of faint focused X-rays. Understanding and cutting down the singly reflected rays on the FOXSI optics will maximize the instrument's sensitivity of the faintest solar sources for future flights. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45609 , SPIE Optics + Photonics; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: Radiated emissions measurements as specified by MIL-STD-461 are performed in the frequency domain, which is best suited to continuous wave (CW) types of signals. However, many platforms implement signals that are single event pulses or transients. Such signals can potentially generate momentary radiated emissions that can cause interference in the system, but they may be missed with traditional measurement techniques. This demonstration provides measurement and analysis techniques that effectively evaluate the potential emissions from such signals in order to evaluate their potential impacts to system performance.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN45424 , 2017 IEEE International Symposium on Electromagnetic Compatibility, Signal and Power Integrity; Aug 07, 2017 - Aug 11, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN46189 , 2017-IAPSO-IAMAS-IAGA Joint Assembly; Aug 27, 2017 - Sep 01, 2017; Cape Town; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45212 , Pre-Eclipse Talks at Magnolia Trace; Aug 27, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: The LUVOIR team is conducting two full architecture studies Architecture A 15 meter telescope that folds up in an 8.4m SLS Block 2 shroud is nearly complete. Architecture B 9.2 meter that uses an existing fairing size will begin study this Fall. This talk will summarize the ultra-stable architecture of the 15m segmented telescope including the basic requirements, the basic rationale for the architecture, the technologies employed, and the expected performance. This work builds on several dynamics and thermal studies performed for ATLAST segmented telescope configurations. The most important new element was an approach to actively control segments for segment to segment motions which will be discussed later.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN45198 , SPIE Optics & Photonics; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag-free control systems for passive satellites. In both cases, the test mass position, GPS tracking data, and commanded actuation, either thrust or suspension system, can be analyzed to estimate the 3-axis drag forces acting on the satellite. The data produces the most precise maps of upper atmospheric drag forces and with additional information, detailed models that describe the dynamics of the upper atmosphere and its impact on all satellites that orbit the Earth. This paper highlights the history, applications, design, laboratory technology development and highly detailed simulation results of each control system.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN39312 , Annual AIAA/USU Conference on Small Satellites; Aug 04, 2017 - Aug 09, 2017; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Based on the Microshutter Array (MSA) subsystems developed at NASA Goddard Space Flight Center (GSFC) for the James Webb Space Telescope (JWST), Next Generation Microshutter Array (NGMSA) has been developed to be used as multi-object selectors for future telescopes in space applications. Microshutter arrays function as transmission devices. Selected shutters fully open at 90 degrees permitting income light going through, while the rest of shutters keep closed. The programmable microshutter open and close make the device perform as a multi object selector that can be used on space telescopes. Utilizing a multi object selector, the telescope efficiency can be increased to 100 times or more. Like JWST MSAs, NGMSA features torsion hinges, light shields, front and back electrodes for shutter actuation, latch, and closing. The difference is that JWST MSA utilized the magnetic actuation while NGMSA the electrostatic actuation.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN57247 , International Conference on Solid-State Sensors, Actuators and Microsystems; Jun 18, 2017 - Jun 22, 2017; Kaohsiung; Taiwan, Province of China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: There is a high need for 2 THz room temperaturedirect-detectorsharmonic-mixers to characterize THz opticalsources, phase lock THz-QCLs as LO sources for multi-pixelreceivers, and realize absolute frequency calibration sources forapplications in astrophysics, earth science, and remote sensing.Thus, we have developed a WM-52 (WR0.22) harmonic mixerfor the 3-5 THz operation. The design, fabrication and assemblyof the THz mixer are discussed.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN46340 , Annual International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THZ) 2017; Aug 27, 2017 - Sep 01, 2017; Cancun; Mexico|(e-ISSN 2162-2035)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Particle radiation has significant effects for astronauts, satellites and planetary bodies throughout the Solar System. Acute space radiation hazards pose risks to human and robotic exploration. This radiation also naturally weathers the exposed surface regolith of the Moon, the two moons of Mars, and other airless bodies, and contributes to chemical evolution of planetary atmospheres at Earth, Mars, Venus, Titan, and Pluto. We provide a select review of recent areas of research covering the origin of SEPs from coronal mass ejections low in the corona, propagation of events through the solar system during the anomalously weak solar cycle 24 and important examples of radiation interactions for Earth, other planets and airless bodies such as the Moon.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN51144 , Space Science Review (ISSN 0038-6308) (e-ISSN 1572-9672); 212; 4-Mar; 1069-1106
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M17-6300 , Penn State University Graduate Seminar; Oct 05, 2017; Philadelphia, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M17-6393 , Additive Manufacturing For Reactor Materials and Components Public Meeting; Nov 28, 2017 - Nov 29, 2017; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: Recent studies indicate that solar coronal jets result from eruption of small-scale filaments, or "minifilaments" (Sterling et al. 2015, Nature, 523, 437; Panesar et al. ApJL, 832L, 7). In many aspects, these coronal jets appear to be small-scale versions of long-recognized large-scale solar eruptions that are often accompanied by eruption of a large-scale filament and that produce solar flares and coronal mass ejections (CMEs). In coronal jets, a jet-base bright point (JBP) that is often observed to accompany the jet and that sits on the magnetic neutral line from which the minifilament erupts, corresponds to the solar flare of larger-scale eruptions that occurs at the neutral line from which the large-scale filament erupts. Large-scale eruptions are relatively uncommon (approximately 1 per day) and occur with relatively large-scale erupting filaments (approximately 10 (sup 5) kilometers long). Coronal jets are more common (approximately 100s per day), but occur from erupting minifilaments of smaller size (approximately 10 (sup 4) kilometers long). It is known that solar spicules are much more frequent (many millions per day) than coronal jets. Just as coronal jets are small-scale versions of large-scale eruptions, here we suggest that solar spicules might in turn be small-scale versions of coronal jets; we postulate that the spicules are produced by eruptions of "microfilaments" of length comparable to the width of observed spicules (approximately 300 kilometers). A plot of the estimated number of the three respective phenomena (flares/CMEs, coronal jets, and spicules) occurring on the Sun at a given time, against the average sizes of erupting filaments, minifilaments, and the putative microfilaments, results in a size distribution that can be fitted with a power-law within the estimated uncertainties. The counterparts of the flares of large-scale eruptions and the JBPs of jets might be weak, pervasive, transient brightenings observed in Hinode/CaII images, and the production of spicules by microfilament eruptions might explain why spicules spin, as do coronal jets. The expected small-scale neutral lines from which the microfilaments would be expected to erupt would be difficult to detect reliably with current instrumentation, but might be apparent with instrumentation of the near future. A full report on this work appears in Sterling and Moore 2016, ApJL, 829, L9.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN50200 , AGU Fall Meeting 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M17-6152 , Eastern Kentucky University College of Arts and Sciences Invited Lecture; Sep 11, 2017; Richmond, KY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. It is common for NASA engineers to propose new candidate materials which have not been totally characterized at cryogenic temperatures. In many cases a material's cryogenic thermal conductivity must be known before selecting it for a specific space-flight application. We developed a test facility in 2004 at NASA's Goddard Space Flight Center to measure the longitudinal thermal conductivity of materials at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for ten engineered materials, including alloys, polymers, composites, and a ceramic.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN47031 , Cryogenics (ISSN 0011-2275) (e-ISSN 1879-2235); 88; 36-43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scare filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDO/AIA (Solar Dynamics Observatory / Atmospheric Imaging Assembly) and SDO/HIM (Solar Dynamics Observatory / Helioseismic and Magnetic Imager) data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV (Extreme Ultra-Violet) images of coronal and transition-region emission, we find clear evidence that flux cancelation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scare filament eruptions that make flares and CMEs (Coronal Mass Ejections). We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancelation is the fundamental process from the buildup and triggering of solar eruptions of all sizes.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN46932 , Stanford University Presentation; Oct 18, 2017; Stanford, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN48725 , The National Society of Black Physicists Meeting (NSBP); Nov 03, 2017 - Nov 05, 2017; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: This paper is for the AIAA Space Conference. The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.
    Keywords: Engineering (General)
    Type: GRC-E-DAA-TN45058 , AIAA Space 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: The First Flight of NASA's Space Launch System will feature 13 CubeSats that will launch into cis-lunar space. Three of these CubeSats are winners of the CubeQuest Challenge, part of NASA's Space Technology Mission Directorate (STMD) Centennial Challenge Program. In order to qualify for launch on EM-1, the winning teams needed to win a series of Ground Tournaments, periodically held since 2015. The final Ground Tournament, GT-4, was held in May 2017, and resulted in the Top 3 selection for the EM-1 launch opportunity. The Challenge now proceeds to the in-space Derbies, where teams must build and test their spacecraft before launch on EM-1. Once in space, they will compete for a variety of Communications and Propulsion-based challenges. This is the first Centennial Challenge to compete in space and is a springboard for future in-space Challenges. In addition, the technologies gained from this challenge will also propel development of deep space CubeSats.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN46030 , AIAA Space 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN42044 , Interplanetary Small Satellite Conference; May 01, 2017 - May 02, 2017; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the users movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the complexity of the underlying human body. In this paper, we present a compliant, robotic exosuit for upper-extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible design for portability. We also show how CRUX maintains full flexibility of the upper-extremities for its users while providing multi- DoF augmentative strength to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN39556 , IEEE International Conference on Rehabilitation Robotics (ICORR 2017); Jul 17, 2017 - Jul 20, 2017; London; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: This is the presentation for the AIAA Space conference in September 2017. It highlights key information from Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews paper.
    Keywords: Engineering (General)
    Type: GRC-E-DAA-TN46434 , AIAA Space 2017 Conference; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45727 , Meeting of the AAS Solar Physics Division; Aug 21, 2017 - Aug 25, 2017; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Sequential chromospheric brightenings (SCBs) are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. Since their initial discovery in 2005, there have been several subsequent investigations of SCBs. These studies have used differing detection and analysis techniques, making it difficult to compare results between studies. This work employs the automated detection algorithm of Kirk et al. (Solar Phys. 283, 97, 2013) to extract the physical characteristics of SCBs in 11 flares of varying size and intensity. We demonstrate that the magnetic substructure within the SCB appears to have a significantly smaller area than the corresponding H(alpha) emission. We conclude that SCBs originate in the lower corona around 0.1 R above the photosphere, propagate away from the flare center at speeds of 35-85 km/s, and have peak photosphere magnetic intensities of 148+/- 2.9 G. In light of these measurements, we infer SCBs to be distinctive chromospheric signatures of erupting coronal mass ejections.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN45650 , Solar Physics (ISSN 0038-0938) (e-ISSN 1573-093X); 292; 72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: One of the sources of potential interference on spacecraft primary power lines is that of conducted transients resulting from equipment being switched on and off of the bus. Susceptibility to such transients is addressed by some version of the CS06 requirement of MIL-STD-461462. This presentation provides a summary of the history of the CS06 requirement and test method, a basis for understanding of the sources of these transients, analysis techniques for determining their worst-case characteristics, and guidelines for minimizing their magnitudes and applying the requirement appropriately.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN45439 , 2017 IEEE International Symposium on Electromagnetic Compatibility; Aug 07, 2017 - Aug 11, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: We report on a new method to compute the flare reconnection (RC) flux from post-eruption arcades (PEAs) and the underlying photospheric magnetic fields. In previous works, the RC flux has been computed using the cumulative flare ribbon area. Here we obtain the RC flux as the flux in half of the area underlying the PEA in EUV imaged after the flare maximum. We apply this method to a set of 21 eruptions that originated near the solar disk center in Solar Cycle 23. We find that the RC flux from the arcade method ((Phi)rA) has excellent agreement with the flux from the flare-ribbon method ((Phi)rR) according to (Phi)rA = 1.24((Phi)rR)(sup 0.99). We also find (Phi)rA to be correlated with the poloidal flux ((Phi)P) of the associated magnetic cloud at 1 AU: (Phi)P = 1.20((Phi)rA)(sup 0.85). This relation is nearly identical to that obtained by Qiu et al. (Astrophys. J. 659, 758, 2007) using a set of only 9 eruptions. Our result supports the idea that flare reconnection results in the formation of the flux rope and PEA as a common process.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN45734 , Solar Physics (ISSN 0038-0938) (e-ISSN 1573-093X); o 292; 65
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45694 , High-Resolution Solar Physics: Past, Present, Future NSO Workshop#30; Aug 07, 2017 - Aug 11, 2017; Sunspot, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: A major remaining challenge for heliophysicsis to decipher the magnetic structure of the chromosphere, due to its "large role in defining how energy is transported into the corona and solar wind" (NASA's Heliophysics Roadmap). Recent observational advances enabled by the Interface Region Imaging Spectrometer (IRIS) have revolutionized our view of the critical role this highly dynamic interface between the photosphere and corona plays in energizing and structuring the outer solar atmosphere. Despite these advances, a major impediment to better understanding the solar atmosphere is our lack of empirical knowledge regarding the direction and strength of the magnetic field in the upper chromosphere. Such measurements are crucial to address several major unresolved issues in solar physics: for example, to constrain the energy flux carried by the Alfven waves propagating through the chromosphere (De Pontieuet al., 2014), and to determine the height at which the plasma Beta = 1 transition occurs, which has important consequences for the braiding of magnetic fields (Cirtainet al., 2013; Guerreiroet al., 2014), for propagation and mode conversion of waves (Tian et al., 2014a; Straus et al., 2008) and for non-linear force-free extrapolation methods that are key to determining what drives instabilities such as flares or coronal mass ejections (e.g.,De Rosa et al., 2009). The most reliable method used to determine the solar magnetic field vector is the observation and interpretation of polarization signals in spectral lines, associated with the Zeeman and Hanle effects. Magnetically sensitive ultraviolet spectral lines formed in the upper chromosphere and transition region provide a powerful tool with which to probe this key boundary region (e.g., Trujillo Bueno, 2014). Probing the magnetic nature of the chromosphere requires measurement of the Stokes I, Q, U and V profiles of the relevant spectral lines (of which Q, U and V encode the magnetic field information).
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN44623 , Solar Heliospheric and Interplanetary Environment (SHINE) Conference 2017; Jul 24, 2017 - Jul 28, 2017; Saint-Sauveur, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The four Magnetospheric Multiscale (MMS) spacecraft observed a 1 min burst of energetic ions (501000 keV) in the region upstream from the subsolar quasi-perpendicular bow shock on 6 December 2015. The composition, flux levels, and spectral indices of these energetic protons, helium, and oxygen ions greatly resemble those seen in the outer magnetosphere earlier while MMS crossed the magnetopause and differ significantly from those simultaneously observed far upstream by Advanced Composition Explorer (ACE). However, the event cannot be explained solely in terms of leakage from the magnetosphere. The strongly southward orientation of the interplanetary magnetic field (IMF) lines at the time of the event precludes any connection to the magnetosphere. This point is confirmed by the presence of energetic electrons, known to occur on magnetic field lines that graze the bow shock rather than connect to the magnetosphere. We suggest that the ions gradient drifted out of the nearby quasi-parallel foreshock and into the quasi-perpendicular bow shock. Each of the ion species exhibited an inverse energy dispersion. As predicted by models for shock drift acceleration, the energies of the ions increased as (sub Bn), the angle between the IMF and the shock normal, increased. Finally, we note that a similar event was observed a few minutes later in the subsolar magnetosheath, indicating that such events can be swept downstream of the bow shock.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN64900 , GSFC-E-DAA-TN63349 , Journal of Geophysical Research: Space Physics (ISSN 2169-9402) (e-ISSN 2169-9380); 122; 3; 3232-3246
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: This work presents the design recipe, fabrication process and characterization of tissue-simulating materials, configured as a physical model to mimic the electrical and some physical properties of an abdominal cavity. The complete three layer design is called the human core model (HCM). To our knowledge, presented is the first hybrid skin-muscle phantom developed to mimic the electrical properties of the intervening tissue layers of an abdominal cavity within the frequency band of 1 GHz 2 GHz, a band of interest for human body sensing due to its deep detection depth. To complete the model, a liquid blood phantom was also developed and characterized in this frequency band. The phantoms were characterized with respect to complex dielectric constant using the Agilent 85070E dielectric probe kit, and the results compared to the Gabriel model, which is used as the standard for human tissue characterization. Since the tissue impedance is an important parameter for characterizing on-body sensors and near field antenna performance, the impedance of the phantoms were also calculated and presented in the analysis.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN47686 , International Conference on Microwaves, Communications, Antennas and Electronic Systems; Nov 13, 2017 - Nov 15, 2017; Tel Aviv; Israel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M18-6474 , International Council on Systems Engineering (INCOSE) International Workshop 2018; Jan 20, 2018 - Jan 23, 2018; Jacksonville, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: ARC-E-DAA-TN48791 , Radiation Characterization from Earth to Moon, Mars, and Beyond; Nov 06, 2017 - Nov 08, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: Hard X-ray (HXR) spectral breaks are explained in terms of a one-dimensional model with a cospatial return current. We study 19 flares observed by the Ramaty High Energy Solar Spectroscopic Imager with strong spectral breaks at energies around a few deka-keV, which cannot be explained by isotropic albedo or non-uniform ionization alone. We identify these breaks at the HXR peak time, but we obtain 8 s cadence spectra of the entire impulsive phase. Electrons with an initially power-law distribution and a sharp low-energy cutoff lose energy through return-current losses until they reach the thick target, where they lose their remaining energy through collisions. Our main results are as follows. (1) The return-current collisional thick-target model provides acceptable fits for spectra with strong breaks. (2) Limits on the plasma resistivity are derived from the fitted potential drop and deduced electron-beam flux density, assuming the return current is a drift current in the ambient plasma. These resistivities are typically 2-3 orders of magnitude higher than the Spitzer resistivity at the fitted temperature, and provide a test for the adequacy of classical resistivity and the stability of the return current. (3) Using the upper limit of the low-energy cutoff, the return current is always stable to the generation of ion-acoustic and electrostatic ion-cyclotron instabilities when the electron temperature is nine times lower than the ion temperature. (4) In most cases, the return current is most likely primarily carried by runaway electrons from the tail of the thermal distribution rather than by the bulk drifting thermal electrons. For these cases, anomalous resistivity is not required.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN51690 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 851; 2; 78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scale filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDO/AIA and SDO/HMI data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV images of coronal and transition-region emission, we find clear evidence that flux cancellation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scale filament eruptions that make flares and CMEs. We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancellation is the fundamental process for the buildup and triggering of solar eruptions of all sizes.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN47730 , Seminar at University of California Berkeley; Oct 17, 2017; Berkeley, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: MSFC-E-DAA-TN47176 , G.I.R.L. 2017; Oct 06, 2017; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN47229 , Parker Solar Probe SWG Meeting; Oct 02, 2017 - Oct 06, 2017; Laurel, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45970 , Solar ECLIPSE Talk; Aug 19, 2017; Tullahoma, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Magnetically driven eruptions on the Sun, from stellar-scale coronal mass ejections1 to small-scale coronal X-ray and extreme-ultraviolet jets, have frequently been observed to involve the ejection of the highly stressed magnetic flux of a filament. Theoretically, these two phenomena have been thought to arise through very different mechanisms: coronal mass ejections from an ideal (non-dissipative) process, whereby the energy release does not require a change in the magnetic topology, as in the kink or torus instability; and coronal jets from a resistive process, involving magnetic reconnection. However, it was recently concluded from new observations that all coronal jets are driven by filament ejection, just like large mass ejections. This suggests that the two phenomena have physically identical origin and hence that a single mechanism may be responsible, that is, either mass ejections arise from reconnection, or jets arise from an ideal instability. Here we report simulations of a coronal jet driven by filament ejection, whereby a region of highly sheared magnetic field near the solar surface becomes unstable and erupts. The results show that magnetic reconnection causes the energy release via 'magnetic breakout', a positive feedback mechanism between filament ejection and reconnection. We conclude that if coronal mass ejections and jets are indeed of physically identical origin (although on different spatial scales) then magnetic reconnection (rather than an ideal process) must also underlie mass ejections, and that magnetic breakout is a universal model for solar eruptions.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN45550 , Nature International Weekly Journal of Science (ISSN 0028-0836) (e-ISSN 1476-4687); 544; 7651; 452-455
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45482 , Rotary Club of Tullahoma; Aug 04, 2017; Tullahoma, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-Arcade Downflows (SADs) and Supra-Arcade Downflowing Loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been faintly observed up to 18 hours beyond the passage of corona mass ejections through the SOHO/LASCO field of view, but a recent event from 2014 October 14 associated with giant arches provides very clear observations of these downflows for days after the initial eruption. We report on this unique event and compare these findings with observational signatures of magnetic reconnection in the extended corona for more typical eruptions.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN42749 , SHINE Conference 2017; Jul 24, 2017 - Jul 28, 2017; Saint-Sauveur, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: COSIE is a solar-observing instrument (currently proposed for mounting onto the ISS) which obtains wide field images of the corona and full Sun spectral images with high sensitivity and rapid cadence. The primary purpose of the instrument is to constrain the global field topology and to track coronal mass ejections from the disk through the inner heliosphere.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN44792 , IAU 335: Space Weather of the Heliosphere: Processes and Forecasts; Jul 17, 2017 - Jul 21, 2017; Exeter; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Recent investigations show that coronal jets are driven by the eruption of a small-scale filament (10,000 - 20,000 km long, called a minifilament) following magnetic flux cancelation at the neutral line underneath the minifilament. Minifilament eruptions appear to be analogous to larger-scale solar filament eruptions: they both reside, before the eruption, in the highly sheared field between the adjacent opposite-polarity magnetic flux patches (neutral line); jet-producing minifilament and larger-scale solar filament first show a slow-rise, followed by a fast-rise as they erupt; during the jet-producing minifilament eruption a jet bright point (JBP) appears at the location where the minifilament was rooted before the eruption, analogous to the situation with CME-producing larger-scale filament eruptions where a solar flare arcade forms during the filament eruption along the neutral line along which the filament resided prior to its eruption. In the present study we investigate the triggering mechanism of CME-producing large solar filament eruptions, and find that enduring flux cancelation at the neutral line of the filaments often triggers their eruptions. This corresponds to the finding that persistent flux cancelation at the neutral is the cause of jet-producing minifilament eruptions. Thus our observations support coronal jets being miniature version of CMEs.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN44663 , SHINE Conference 2017; Jul 24, 2017 - Jul 28, 2017; Saint-Sauveur, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN40440 , University Colloquium and Public Talk; 21/Mar. 2017; Oxford, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-24
    Description: The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.
    Keywords: Engineering (General)
    Type: NASA/SP-2016-6105 Rev 2 , HQ-E-DAA-TN38707
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-13
    Description: We report on further evidence that solar energetic particles are organized by the kinematic properties of coronal mass ejections (CMEs). In particular, we focus on the starting frequency of type II bursts, which is related to the distance from the Sun where the radio emission starts. We find that the three groups of solar energetic particle (SEP) events known to have distinct values of CME initial acceleration, also have distinct average starting frequencies of the associated type II bursts. SEP events with ground level enhancement (GLE) have the highest starting frequency (107 MHz), while those associated with filament eruption (FE) in quiescent regions have the lowest starting frequency (22 MHz); regular SEP events have intermediate starting frequency (81 MHz). Taking the onset time of type II bursts as the time of shock formation, we determine the shock formation heights measured from the Sun center. We find that the shocks form on average closest to the Sun (1.51 Rs) in GLE events, farthest from the Sun in FE SEP events (5.38 Rs), and at intermediate distances in regular SEP events (1.72 Rs). Finally, we present the results of a case study of a CME with high initial acceleration (approx. 3 km s-2) and a type II radio burst with high starting frequency (~200 MHz) but associated with a minor SEP event. We find that the relation between the fluence spectral index and CME initial acceleration continues to hold even for this minor SEP event.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN51106 , Annual International Astrophysics Conference; Mar 06, 2017 - Mar 10, 2017; Santa Fe, NM; United States|Journal of Physics: Conference Series (ISSN 1742-6588) (e-ISSN 1742-6596); 900; 1; 012009
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: M17-6388 , Symposium on Fatigue and Fracture of Additive Manufactured Materials and Components; Nov 15, 2017 - Nov 16, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-13
    Description: High voltage solar array interactions with the space environment can have a significant impact on array performance and spacecraft charging. Over the past 10 years, data from the International Space Station has allowed for detailed observations of these interactions over long periods of time. Some of the surprising observations have been floating potential transients, which were not expected and are not reproduced by existing models. In order to understand the underlying processes producing these transients, the temporal evolution of the plasma sheath surrounding the solar cells in low Earth orbit is being investigated. This study includes lumped element modeling and particle-in-cell simulation methods. This presentation will focus on recent results from the on-going investigations.
    Keywords: Solar Physics
    Type: M17-5871 , Applied Space Environments Conference 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-13
    Description: The Natural Environments Branch of the Engineering Directorate at Marshall Space Flight Center (MSFC) provides solar cycle forecasts for NASA space flight programs and the aerospace community. These forecasts provide future statistical estimates of sunspot number, solar radio 10.7 cm flux (F10.7), and the geomagnetic planetary index, Ap, for input to various space environment models. For example, many thermosphere density computer models used in spacecraft operations, orbital lifetime analysis, and the planning of future spacecraft missions require as inputs the F10.7 and Ap. The solar forecast is updated each month by executing MSAFE using historical and the latest month's observed solar indices to provide estimates for the balance of the current solar cycle. The forecasted solar indices represent the 13-month smoothed values consisting of a best estimate value stated as a 50 percentile value along with approximate +/- 2 sigma values stated as 95 and 5 percentile statistical values. This presentation will give an overview of the MSAFE model and the forecast for the current solar cycle.
    Keywords: Solar Physics
    Type: M17-5882 , Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-13
    Description: A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model predicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q 〉 or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Qs, above an AR dependent threshold value of Q, where 0.3952 〈 or = s 〈 or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released 〉 or = E obeys the same type of distribution, N(E) / ES, above an AR dependent threshold value of E, with 0.38 〈 or approx. S 〈 or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.
    Keywords: Solar Physics
    Type: M17-5865 , Applied Space Environments Conference 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-13
    Description: The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle. During this event, ionospheric F-region density measurements from the Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS) show dramatic depletions in the post-sunset (nighttime) local time sector at equatorial latitudes starting in the main phase of the storm and persisting on several subsequent orbits into the next day. Putting these low-latitude measurements in context with the global dynamics of the storm, we will present results from simulations and observations in our efforts to better understand the effects of this storm on the different regions of the coupled ionosphere-magnetosphere. The consequences of the magnetospheric penetration electric field and their role in the occurrence of these equatorial spread F observations will be investigated through the results of the SAMI3-RCM numerical model, a coupled ionosphere-magnetosphere model with self-consistent large-scale electrodynamics. Specifically, we will investigate the transient signatures of the interplanetary magnetic field component, Bz, and its role in driving the global convection electric field and ionospheric density redistribution. Lastly, measurements from the AMPERE Birkeland currents, DMSP drift velocities and the particle flux dropouts observed from the Magnetospheric Multiscale Mission (MMS) will be correlated with the FPMU density depletions and each other. Together these observations and simulation results will be assembled to provide each region's context to the global dynamics and time evolution of the storm.
    Keywords: Solar Physics
    Type: M17-5905 , Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-13
    Description: The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to 〉2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.
    Keywords: Solar Physics
    Type: M17-5996 , Applied Space Environments Conference 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45940 , MSFC-E-DAA-TN45941 , MSFC-E-DAA-TN45996 , MSFC-E-DAA-TN45997 , Presentation at Blossomwood Middle School; Aug 15, 2017; Huntsville, AL; United States|Presentation at Holy Family Catholic School; Aug 15, 2017; Huntsville, AL; United States|Country Day School Presentation; Aug 15, 2017; Huntsville, AL; United States|Presentation at Academy for Academics and Art; Aug 15, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-13
    Description: The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the leading-edge shock wave and a sheath carrying a large and highly variable interplanetary magnetic field (IMF) Bz with values ranging from +25 to -40 nT. During the subsequent interval from 0000 to 0800 UT, there was a second intensification of the geomagnetic storm resulting from the impact of the CME. We present dramatic responses of simultaneous particle measurements from the high-altitude Magnetospheric Multiscale Mission (MMS) at high altitudes in the magnetosphere (approx. 9-12 Re) and from the low-altitude (F-region) Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS). We analyze potential causes of these dramatic particle flux dropouts by putting them in the context of storm-time electrodynamics, and support our results with numerical simulations of the global magnetosphere and ionosphere. During the sheath phase of the storm, the MMS spacecraft in the near-earth equatorial plane observed a rapid reconfiguration of the magnetic field near 1923 UT. Initially in the warm plasma sheet, particle flux dropouts were observed as they tracked the plasma-sheet to lobe transitions with the stretching and thinning of the plasma sheet. Anti-sunward flowing O+ ions of ionospheric origin were also measured during this period, confirming that the MMS spacecraft temporarily was in a lobe.
    Keywords: Solar Physics
    Type: M17-6049 , Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45208 , Pre-Eclipse Talks at the USSRC; Jul 27, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: These presentation slides present the current status of the Terra spacecraft and the future maneuver plans for the rest of Terra's mission life.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN42639 , Mission Operations Working Group meeting; Jun 13, 2017 - Jun 15, 2017; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-13
    Description: The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection afforded by typical thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 500, and 750 keV energy protons, and a fourth set were exposed to 〉2,000 hours of ultraviolet radiation. A final set was rapidly thermal cycled between -50 and +120 C. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.
    Keywords: Solar Physics
    Type: M17-5853 , Applied Space Environments Conference 2017; May 15, 2017 - May 17, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-13
    Description: High voltage solar array interactions with the space environment can have a significant impact on array performance and spacecraft charging. Over the past 10 years, data from the International Space Station has allowed for detailed observations of these interactions over long periods of time. Some of the surprising observations have been floating potential transients, which were not expected and are not reproduced by existing models. In order to understand the underlying processes producing these transients, the temporal evolution of the plasma sheath surrounding the solar cells in low Earth orbit is being investigated. This study includes lumped element modeling and particle-in-cell simulation methods. This presentation will focus on recent results from the on-going investigations.
    Keywords: Solar Physics
    Type: M17-5871 , Applied Space Environments Conference 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-13
    Description: The Natural Environments Branch of the Engineering Directorate at Marshall Space Flight Center (MSFC) provides solar cycle forecasts for NASA space flight programs and the aerospace community. These forecasts provide future statistical estimates of sunspot number, solar radio 10.7 cm flux (F10.7), and the geomagnetic planetary index, Ap, for input to various space environment models. For example, many thermosphere density computer models used in spacecraft operations, orbital lifetime analysis, and the planning of future spacecraft missions require as inputs the F10.7 and Ap. The solar forecast is updated each month by executing MSAFE using historical and the latest month's observed solar indices to provide estimates for the balance of the current solar cycle. The forecasted solar indices represent the 13-month smoothed values consisting of a best estimate value stated as a 50 percentile value along with approximate +/- 2 sigma values stated as 95 and 5 percentile statistical values. This presentation will give an overview of the MSAFE model and the forecast for the current solar cycle.
    Keywords: Solar Physics
    Type: M17-5882 , Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: M17-5980 , Applied Space Environments Conference; 15-19 May 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-13
    Description: The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle. During this event, ionospheric F-region density measurements from the Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS) show dramatic depletions in the post-sunset (nighttime) local time sector at equatorial latitudes starting in the main phase of the storm and persisting on several subsequent orbits into the next day. Putting these low-latitude measurements in context with the global dynamics of the storm, we will present results from simulations and observations in our efforts to better understand the effects of this storm on the different regions of the coupled ionosphere-magnetosphere. The consequences of the magnetospheric penetration electric field and their role in the occurrence of these equatorial spread F observations will be investigated through the results of the SAMI3-RCM numerical model, a coupled ionosphere-magnetosphere model with self-consistent large-scale electrodynamics. Specifically, we will investigate the transient signatures of the interplanetary magnetic field component, Bz, and its role in driving the global convection electric field and ionospheric density redistribution. Lastly, measurements from the AMPERE Birkeland currents, DMSP drift velocities and the particle flux dropouts observed from the Magnetospheric Multiscale Mission (MMS) will be correlated with the FPMU density depletions and each other. Together these observations and simulation results will be assembled to provide each regions context to the global dynamics and time evolution of the storm.
    Keywords: Solar Physics
    Type: M17-5905 , Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-13
    Description: At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.
    Keywords: Engineering (General)
    Type: M17-5993 , Science in the Age of Experience Conference; May 15, 2017 - May 18, 2017; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: M17-6001 , Applied Space Environments Conference (ASEC); May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-13
    Description: The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to 〉2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125 C. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.
    Keywords: Solar Physics
    Type: M17-5996 , Applied Space Environments Conference 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-13
    Description: Initial results from the PIC simulation and the LEM simulation have been presented. The PIC simulation results show that more detailed study is required to refine the ISS solar array current collection model and to understand the development of the current collection in time. The initial results from the LEM demonstrate that is it possible the transients are caused by solar array interaction with the environment, but there are presently too many assumptions in the model to be certain. Continued work on the PIC simulation will provide valuable information on the development of the barrier potential, which will allow refinement the LEM simulation and a better understanding of the causes and effects of the transients.
    Keywords: Solar Physics
    Type: M17-6018 , Applied Space Environments Conference; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-13
    Description: The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to many space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar webpage and are updated as new monthly observations come available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to predict the deviation from the mean cycle of the solar index at the next future time interval. The prediction algorithm is applied recursively to produce monthly smoothed solar index values for the remaining of the cycle. The forecasts are initiated for a given cycle after about 8 to 12 months of observations are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.
    Keywords: Solar Physics
    Type: M17-6038 , The Applied Space Environments Conference; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-13
    Description: The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar web page and are updated as new monthly observations become available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to calculate the deviation from the mean cycle of the solar index at the next future time interval. The forecasts are initiated for a given cycle after about 8 to 9 monthly observations from the start of the cycle are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.
    Keywords: Solar Physics
    Type: M17-6043 , The Applied Space Environments Conference; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN42701 , Applied Space Environments Conference 2017; May 15, 2017 - May 19, 2017; Huntsville AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN39381 , Teacher Workshop at The Canyon Center; Feb 17, 2017; Fort Payne, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-17
    Description: This presentation address the issues and how to involve students in the process of develping, building and certifying flight hardware for ISS and development of Mars missions.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN52142 , Presentation to Code R and Norwegian Univeristy; Oct 23, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-13
    Description: NASA's Marshall Space Flight Center (MSFC) is partnering with the U.S. Space and Rocket Center (USSRC), and Austin Peay State University (APSU) to engage citizen scientists, engineers, and students in science investigations during the 2017 American Solar Eclipse. Investigations will support the Citizen Continental America Telescopic Eclipse (CATE), Ham Radio Science Citizen Investigation(HamSCI), and Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE). All planned activities will engage Space Campers and local high school students in the application of the scientific method as they seek to explore a wide range of observations during the eclipse. Where planned experiments touch on current scientific questions, the camper/students will be acting as citizen scientists, participating with researchers from APSU and MSFC. Participants will test their expectations and after the eclipse, share their results, experiences, and conclusions to younger Space Campers at the US Space & Rocket Center.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN42296 , Space Weather Workshop 2017; May 01, 2017 - May 05, 2017; Broomfield, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-13
    Description: The magnetic storm that commenced on June 22-23, 2015 was one of the largest storms in our current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the shock wave on the magnetosphere. Observations from several spacecraft observed the dynamic response of the magnetosphere and ionosphere. MMS observatories in the near earth tail These low altitude measurements are correlated in the magnetosphere with particle flux dropouts measured by MMS We follow the timing of this storm in the ionosphere with the density depletions throughout the ISS orbits, DMSP drift velocities, and enhanced AMPERE Birkland currents. Together these observations and simulation results will be assembled to provide each region's context to the global dynamics and time evolution of the storm. The models during these event support and flesh out the puzzle of the global dynamics.
    Keywords: Solar Physics
    Type: M17-6048 , Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-13
    Description: The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle, resulting from an active region on the Sun that produced numerous coronal mass ejections (CMEs) and associated interplanetary shock waves. On June 22 at 18:36 UT the magnetosphere was impacted by the leading-edge shock wave and a sheath carrying a large and highly variable interplanetary magnetic field (IMF) Bz with values ranging from +25 to -40 nT. During the subsequent interval from 0000 to 0800 UT, there was a second intensification of the geomagnetic storm resulting from the impact of the CME. We present dramatic responses of simultaneous particle measurements from the high-altitude Magnetospheric Multiscale Mission (MMS) at high altitudes in the magnetosphere (approx. 9-12 Re) and from the low-altitude (F-region) Floating Potential Measurement Unit (FPMU) on board the International Space Station (ISS). We analyze potential causes of these dramatic particle flux dropouts by putting them in the context of storm-time electrodynamics, and support our results with numerical simulations of the global magnetosphere and ionosphere. During the sheath phase of the storm, the MMS spacecraft in the near-earth equatorial plane observed a rapid reconfiguration of the magnetic field near 1923 UT. Initially in the warm plasmasheet, particle flux dropouts were observed as they tracked the plasma-sheet to lobe transitions with the stretching and thinning of the plasmasheet. Anti-sunward flowing O+ ions of ionospheric origin were also measured during this period, confirming that the MMS spacecraft temporarily was in a lobe.
    Keywords: Solar Physics
    Type: M17-6049 , Applied Space Environments Conference (ASEC) 2017; May 15, 2017 - May 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-26
    Description: Digital model-based engineering (DMbE) is the use of digital artifacts, digital environments, and digital tools in the performance of engineering functions. DMbE is intended to allow an organization to progress from documentation-based engineering methods to digital methods that may provide greater flexibility, agility, and efficiency. The term 'DMbE' was developed as part of an effort by the Model-Based Systems Engineering (MBSE) Infusion Task team to identify what government organizations might expect in the course of moving to or infusing MBSE into their organizations. The Task team was established by the Interagency Working Group on Engineering Complex Systems, an informal collaboration among government systems engineering organizations. This Technical Memorandum (TM) discusses the work of the MBSE Infusion Task team to date. The Task team identified prerequisites, expectations, initial challenges, and recommendations for areas of study to pursue, as well as examples of efforts already in progress. The team identified the following five expectations associated with DMbE infusion, discussed further in this TM: (1) Informed decision making through increased transparency, and greater insight. (2) Enhanced communication. (3) Increased understanding for greater flexibility/adaptability in design. (4) Increased confidence that the capability will perform as expected. (5) Increased efficiency. The team identified the following seven challenges an organization might encounter when looking to infuse DMbE: (1) Assessing value added to the organization. Not all DMbE practices will be applicable to every situation in every organization, and not all implementations will have positive results. (2) Overcoming organizational and cultural hurdles. (3) Adopting contractual practices and technical data management. (4) Redefining configuration management. The DMbE environment changes the range of configuration information to be managed to include performance and design models, database objects, as well as more traditional book-form objects and formats. (5) Developing information technology (IT) infrastructure. Approaches to implementing critical, enabling IT infrastructure capabilities must be flexible, reconfigurable, and updatable. (6) Ensuring security of the single source of truth (7) Potential overreliance on quantitative data over qualitative data. Executable/ computational models and simulations generally incorporate and generate quantitative vice qualitative data. The Task team also developed several recommendations for government, academia, and industry, as discussed in this TM. The Task team recommends continuing beyond this initial work to further develop the means of implementing DMbE and to look for opportunities to collaborate and share best practices.
    Keywords: Engineering (General)
    Type: NASA/TM-2017-219633 , M-1435
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-28
    Description: A debris exclusion and removal apparatus for connectors which have a dual-poppet value configuration containing a pressurized substance. Coupling of the female and male connectors causes the poppet valve to eject a cleaning substance which will eliminate debris from the male connector prior to mating with the female connector.
    Keywords: Engineering (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...