ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (343)
  • Aerospace Medicine  (139)
  • Space Sciences (General)  (124)
  • Life Sciences (General)  (80)
  • 2015-2019  (343)
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2017  (343)
  • 1926
Collection
  • Other Sources  (343)
Years
  • 2015-2019  (343)
  • 1980-1984
  • 1960-1964
  • 1925-1929
Year
  • 1
    Publication Date: 2017-08-25
    Description: Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38038 , NASA Human Research Program Investigators' Workshop (HRP IWS 2017); 23-26 Jan. 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-07
    Description: Responses of animals exposed to microgravity during in-space experiments were observed via available video recording stored in the NASA Ames Life Sciences Data Archive. These documented observations of animal behavior, as well as the range and level of activities during spaceflight, demonstrate that weightlessness conditions and the extreme novelty of the surroundings may exert damaging psychological stresses on the inhabitants. In response to a recognized need for in-flight animals to improve their wellbeing we propose to reduce such stresses by shaping and interrelating structures and surroundings to satisfying vital physiological needs of inhabitants. A Rodent Habitat Hardware System (RHHS) based housing facility incorporating a tubing network system, to maintain and monitor rodent health environment with advanced accessories has been proposed. Placing mice in a tubing-configured environment creates more natural space-restricted nesting environment for rodents, thereby facilitating a more comfortable transition to living in microgravity. A sectional tubing structure of the RHHS environment will be more beneficial under microgravity conditions than the provision of a larger space area that is currently utilized. The new tubing configuration was found suitable for further incorporation of innovative monitoring technology and accessories in the animal holding habitat unit which allow to monitor in real-time monitoring of valuable health related biological parameters under weightlessness environment of spaceflight.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN50007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-08
    Description: A coupling between geomagnetic activity and the human nervous system's function was identified by virtue of continuous monitoring of heart rate variability (HRV) and the time-varying geomagnetic field over a 31-day period in a group of 10 individuals who went about their normal day-to-day lives. A time series correlation analysis identified a response of the group's autonomic nervous systems to various dynamic changes in the solar, cosmic ray, and ambient magnetic field. Correlation coefficients and p values were calculated between the HRV variables and environmental measures during three distinct time periods of environmental activity. There were significant correlations between the group's HRV and solar wind speed, Kp, Ap, solar radio flux, cosmic ray counts, Schumann resonance power, and the total variations in the magnetic field. In addition, the time series data were time synchronized and normalized, after which all circadian rhythms were removed. It was found that the participants' HRV rhythms synchronized across the 31-day period at a period of approximately 2.5 days, even though all participants were in separate locations. Overall, this suggests that daily autonomic nervous system activity not only responds to changes in solar and geomagnetic activity, but is synchronized with the time-varying magnetic fields associated with geomagnetic field-line resonances and Schumann resonances.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN56494 , International Journal of Environmental Research and Public Health (ISSN 1661-7827) (e-ISSN 1660-4601); 14; 7; 770
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-26
    Description: The detrimental effects of mechanical unloading in microgravity, including the musculo-skeletal system, are well documented. However, the effects of mechanical unloading on joint health and the interaction between bone and cartilage specifically, are less well known. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. Furthermore, we have identified the cell cycle arrest molecule, CDKN1ap21, as specifically up-regulated during spaceflight exposure and localized to osteoprecursors on the bone surface and chondroprogenitors in articular cartilage that are both required for normal tissue regeneration. The 30-day BionM1 and 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight resulting in significant tissue alterations and we specifically studied the hip joint (pelvis and proximal femur) to elucidate these effects. To test this hypothesis we analyzed bone and bone marrow stem cells using techniques including high-resolution Microcomputed Tomography (MicroCT), in-vivo differentiation and migration assays, and whole transcriptome expression profiling. We found that exposure to spaceflight for 30 days results in a significant decrease in bone volume fraction (-31), trabecular thickness (-14) and trabecular number (-20). Similar decrements in bone volume fraction (-27), trabecular number (-13) and trabecular thickness (-17) were found in female mice exposed to 37 days spaceflight. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. Microarray analysis also revealed that the top pathways altered during spaceflight include activation of matrix metalloproteinases, oxidative stress signaling and inflammation in both whole bone tissue and isolated bone marrow stem cells. In conclusion, the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight mice exhibit disruption of the epiphyseal boundary and endochondral ossification of the femoral head, and an inhibition of stem cell based tissue regeneration, which, taken together, may indicate onset of an accelerated aging phenotype with signs of osteoarthritic disease.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43927 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-26
    Description: Broad tissue degeneration and the failure of normal tissue regenerative processes in microgravity because of mechanical unloading are increasing concerns for sustaining life in space as the duration of future flight missions increases. Work in our laboratory has identified normal adult stem cell-based tissue regenerative processes, such as the formation of new bone, cartilage, and immune cells, as being particularly sensitive to the stresses of mechanical unloading in microgravity. Our studies have also identified the inhibition of differentiation of marrow mesenchymal stem cells and activation of CDKN1ap21-mediated cell cycle arrest in proliferative osteoprecursor cells on the bone surface as potential mechanisms for spaceflight-induced skeletal changes. This finding, in combination with the role of CDKN1ap21 as a suppressor of mammalian tissue regeneration, suggests that this gene could be responsible for suppressing stem cell-based tissue regeneration in response to disuse. In this work, we hypothesized that CDKN1ap21 regulates regenerative bone formation in response to alterations in mechanical load and tested this hypothesis by studying the skeletal phenotype and stem cell regenerative ability of juvenile (4-11 weeks old) and adult (18 weeks-12 months old) p21 (--) knockout (KO) mice. Additionally, we analyzed bone micro-architectural properties, bone formation rates and differentiation capacity of bone marrow stem cells (BMSCs) from male and female KO mice exposed to hindlimb unloading (HU) for 15-30 days. We found that juvenile KO mice exhibited increased femoral trabecular and cortical bone formation, whilst three-point bending of the tibias from KO mice showed decreased bone stiffness. Conversely, adult KO mice exhibited no significant differences in micro-architectural properties compared to WT (wild-type) but woven bone structure was indicative of rapid bone remodeling. Furthermore, cortical bone properties showed similar characteristics to aged bone, including increased cross-sectional area and perimeter, whilst three-point bending showed increased stiffness and toughness. Interestingly, in-vitro, KO mice exhibited increased differentiation and mineralized nodule formation in osteoblastogenesis assays compared to WT. Preliminary results from CDKN1ap21 KO mice subjected to HU suggest altered sensitivity to mechanical unloading resulting in decreased cortical thickness compared to WT mice. However, KO mice subjected to short and long-duration HU show increased in-vitro differentiation potential of BMSCs to from form mature, mineral-forming osteoblasts, indicating maintenance of regenerative potential. Analysis of bone formation rates, cell proliferation rates and key genes of interest are currently underway. These results indicate a novel role for CDKN1ap21 in load-dependent osteoprogenitor proliferation and differentiation and that deletion of CDKN1ap21 results in an age-dependent release of osteoblast proliferation inhibition and increased bone formation and turnover.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43922 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37894 , Human Research Program Investigators'' Workshop (HRP IWS 2017 ); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Congestion is commonly reported during spaceflight, and most crewmembers have reported using medications for congestion during International Space Station (ISS) missions. Although congestion has been attributed to fluid shifts during spaceflight, fluid status reaches equilibrium during the first week after launch while congestion continues to be reported throughout long duration missions. Congestion complaints have anecdotally been reported in relation to ISS CO2 levels; this evaluation was undertaken to determine whether or not an association exists. METHODS: Reported headaches, congestion symptoms, and CO2 levels were obtained for ISS expeditions 2-31, and time-weighted means and single-point maxima were determined for 24-hour (24hr) and 7-day (7d) periods prior to each weekly private medical conference. Multiple imputation addressed missing data, and logistic regression modeled the relationship between probability of reported event of congestion or headache and CO2 levels, adjusted for possible confounding covariates. The first seven days of spaceflight were not included to control for fluid shifts. Data were evaluated to determine the concentration of CO2 required to maintain the risk of congestion below 1% to allow for direct comparison with a previously published evaluation of CO2 concentrations and headache. RESULTS: This study confirmed a previously identified significant association between CO2 and headache and also found a significant association between CO2 and congestion. For each 1-mm Hg increase in CO2, the odds of a crew member reporting congestion doubled. The average 7-day CO2 would need to be maintained below 1.5 mmHg to keep the risk of congestion below 1%. The predicted probability curves of ISS headache and congestion curves appear parallel when plotted against ppCO2 levels with congestion occurring at approximately 1mmHg lower than a headache would be reported. DISCUSSION: While the cause of congestion is multifactorial, this study showed congestion is associated with CO2 levels on ISS. Data from additional expeditions could be incorporated to further assess this finding. CO2 levels are also associated with reports of headaches on ISS. While it may be expected for astronauts with congestion to also complain of headaches, these two symptoms are commonly mutually exclusive. Furthermore, it is unknown if a temporal CO2 relationship exists between congestion and headache on ISS. CO2 levels were time-weighted for 24hr and 7d, and thus the time course of congestion leading to headache was not assessed; however, congestion could be an early CO2-related symptom when compared to headache. Future studies evaluating the association of CO2-related congestion leading to headache would be difficult due to the relatively stable daily CO2 levels on ISS currently, but a systematic study could be implemented on-orbit if desired.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37736 , Aerospace Medical Association Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: This panel presents recent updates to and a comprehensive overview of the operational medical support provided to ISS crewmembers in Star City, Russia and Kazakhstan as part of UTMB/KBRwyle's Human Health & Performance contract. With the current Soyuz training flow, physician support is required for nominal training evolutions involving pressure changes or other potential physical risks detailed in this presentation. In addition, full-time physician presence in Star City helps to address the disparity in access to health care in these relatively remote practice areas, while also developing and maintaining relationships with host nation resources. A unique part of standard training in Russia also involves survival training in both winter and water environments; logistic details and medical impacts of each of these training scenarios will be discussed. Following support of a successful training flow, UTMB/KBRwyle's Star City Medical Support Group (SCMSG) is also responsible for configuring medical packs in support of Soyuz launches and landings; we will present the rationale for current pack contents within the context of specific operational needs. With respect to contingency events, the group will describe their preparedness to respond appropriately by activating both local and global resources as necessary, detailing a specialized subset of the group who continually work and update these assets, given changes in international infrastructure and other impacts.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37623 , AsMA Annual Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denvor, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37560 , Aerospace Medical Association Scientific Meeting (AsMA); Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and limb unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6 deg HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n=12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging, derived from diffusion MRI, was used to quantify the distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreased in the post-central gyrus and precuneus. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38506 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: PURPOSE: Exploration space missions pose several challenges to providing a comprehensive medication formulary designed to accommodate the size and space limitations of the spacecraft; while addressing the individual medications needs and preferences of the Crew; the negative outcome of a degrading inventory over time, the inability to resupply before expiration dates; and the need to properly forecast the best possible medication candidates to treat conditions that will occur in the future. METHODS: The Pharmacotherapeutics Discipline has partnered with the Exploration Medical Capabilities (ExMC) Element to develop and propose a research pathway that is comprehensively focused on evidence-based models and theories, as well as on new diagnostic tools and treatments or preventive measures aimed at closure of the Med02 Pharmacy Gap; defined in the Human Research Programs (HRP) risk-based research strategy. The Med02 Gap promotes the challenge to identify a strategy to ensure that medications used to treat medical conditions during exploration space missions are available, safe, and effective. It is abundantly clear that pharmaceutical intervention is an essential component of risk management planning for astronaut healthcare during exploration space. However, the quandary still remains of how to assemble a formulary that is comprehensive enough to prevent or treat anticipated medical events; and is also chemically stable, safe, and robust enough to have sufficient potency to last for the duration of an exploration space mission. In cases where that is not possible, addressing this Gap requires exploration of novel drug development techniques, dosage forms, and dosage delivery platforms that enhance chemical stability as well as therapeutic effectiveness. RESULTS: The proposed research pathway outlines the steps, processes, procedures, and a research portfolio aimed at identifying a capability that will provide a safe and effective pharmacy for any specific exploration Design Reference Mission (DRM). The proposed approach to building this research portfolio is to seek research projects that concentrate on four major focus areas; (1) Formulary selection, (2) Formulary potency and shelf life, (3) Formulary safety and toxicity, and (4) Novel technology and innovation such as portable real-time chemical analysis innovative drug therapies and dosage and delivery platforms. CONCLUSION: The research pathway has been completed and presented to the HRP. In spring 2017, it is scheduled to be reviewed by a panel of pharmaceutical and clinical experts that will evaluate the scientific merit and operational feasibility of the research pathway, as well as make suggestions for any warranted additions or improvements. Once finalized, the ExMC Element will proceed with the execution of this research pathway with the goal of gathering as much data, and learning as much as possible, to provide a safe and effective pharmaceutical formulary for use during exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37907 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: INTRODUCTION: Among otherwise healthy astronauts undertaking deep space missions, the risks for acute appendicitis (AA) and cholecystitis (AC) are not zero. If these conditions were to occur during spaceflight they may require surgery for definitive care. The proposed study quantifies and compares the risks of developing de novo AA and AC in-flight to the surgical risks of prophylactic laparoscopic appendectomy (LA) and cholecystectomy (LC) using NASA's Integrated Medical Model (IMM). METHODS: The IMM is a Monte Carlo simulation that forecasts medical events during spaceflight missions and estimates the impact of these medical events on crew health. In this study, four Design Reference Missions (DRMs) were created to assess the probability of an astronaut developing in-flight small-bowel obstruction (SBO) following prophylactic 1) LA, 2) LC, 3) LA and LC, or 4) neither surgery (SR# S-20160407-351). Model inputs were drawn from a large, population-based 2011 Swedish study that examined the incidence and risks of post-operative SBO over a 5-year follow-up period. The study group included 1,152 patients who underwent LA, and 16,371 who underwent LC. RESULTS: Preliminary results indicate that prophylactic LA may yield higher mission risks than the control DRM. Complete analyses are pending and will be subsequently available. DISCUSSION: The risk versus benefits of prophylactic surgery in astronauts to decrease the probability of acute surgical events during spaceflight has only been qualitatively examined in prior studies. Within the assumptions and limitations of the IMM, this work provides the first quantitative guidance that has previously been lacking to this important question for future deep space exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37914 , Annual Scientific Meeting of the Aerospace Medical Association; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: Background: Carotid Intima Media Thickness (CIMT) has been demonstrated to be predictive of future cardiovascular events. Within various populations, radiation exposure, stress, and physical confinement have all been linked to an increased CIMT. Recent research discovered CIMT was significantly increased in ten long duration astronauts from pre-flight to four days post flight. The relationship between spaceflight and CIMT is not understood and trends in CIMT within the larger astronaut population are unknown. Methods: In 2010, CIMT was offered as part of the astronaut annual exam at the JSC Flight Medicine Clinic using a standardized CIMT screening protocol and professional sonographers. Between 2010 and 2016, CIMT measurements were collected on 213 NASA astronauts and payload specialists. The values used in this retrospective chart review are the mean of the CIMT from the right and left. Spaceflight exposure was categorized based on the total number of days spent in space at the time of the ground-based ultrasound (0, 1-29, 30-100, 101-200, 200). Linear regression with generalized estimating equations were used to estimate the association between spaceflight exposures and CIMT. Results: 530 studies were completed among 213 astronauts with a mean of 2.5 studies (range 1-6) per astronaut over the six year period. As in other populations, CIMT was significantly associated with age; however, gender was not. While there was no significant direct correlation between total spaceflight exposure and CIMT found, astronauts with 30-100 spaceflight days and astronauts with greater than 100 spaceflight days had significantly increased CIMT over astronauts who had never flown (p=0.002 and p=〈0.0001 respectively) after adjustment for age. Conclusion: Further work is needed to fully understand CIMT and its association to spaceflight. Current occupational surveillance activities are under way to study CIMT values in conjunction with other cardiovascular risk factors among astronauts as compared to the general population.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37929 , Annual Scientific Meeting of the Aerospace Medical Association; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: Introduction. This joint European Space Agency/NASA pre- and post-flight study investigates the influence of exposure to microgravity on the subjective straight ahead (SSA) in crewmembers returning from long-duration expeditions to the International Space Station (ISS). The SSA is a measure of the internal representation of body orientation and to be influenced by stimulation of sensory systems involved in postural control. The use of a vibrotactile sensory aid to correct the representation of body tilted relative to gravity is also tested as a countermeasure. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing." Research Plans. The ISS study will involve eight crewmembers who will participate in three pre-flight sessions (between 120 and 60 days before launch) and then three post-flight sessions on R plus 0/1 day, R plus 4 days, and R plus 8 days. Sixteen control subjects were also tested during three sessions to evaluate the effects of repeated testing and to establish normative values. The experimental protocol includes measurements of gaze and arm movements during the following tasks: (1) Near & Far Fixation: The subject is asked to look at actual targets in the true straight-ahead direction or to imagine these targets in the dark. Targets are located at near distance (arm's length) and far distance (beyond 2 meters). This task is successively performed with the subject's body aligned with the gravitational vertical, and with the subject's body tilted in pitch relative to the gravitational vertical using a tilt chair. Measures are then compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the vertical; (2) Eye and Arm Movements: The subject is asked to look and point in the SSA direction in darkness and then make horizontal and vertical eye or arm movements, relative to Earth coordinates (allocentric) and to the subject's head/body reference (egocentric). This task is successively performed with the subject's body aligned with the gravitational vertical, and with subject's body tilted in roll using a tilt chair; (3) Linear Vestibulo-Ocular Reflex: The subject is asked to fixate actual visual targets at near and far distances in the true straight-ahead direction, and to evaluate the distance of these targets. The subject is asked to continue fixating the same imagined targets in darkness while he/she is passively accelerated up and down on a spring-loaded vertical linear accelerator. Results. In the control subject population, the perceived tilt angles, translations, and distances were remarkably close to the actual values. The pointing tasks indicated that the orientation of arm saccades was influenced by both the gravitational vertical and the body idiotropic vector. Repeating the testing did not reveal any significant changes. Preliminary results obtained in three crewmembers before and after flight will also be presented. Applications. A change in an individual's egocentric reference might have negative consequences on evaluating the direction of an approaching object or on the accuracy of reaching movements or locomotion. Consequently, investigating how microgravity affects the target location will have theoretical, operational, and even clinical implications for future space exploration missions. The use of vibrotactile feedback as a sensorimotor countermeasure is applicable to balance therapy applications for patients with vestibular loss and the elderly to mitigate risks due to loss of spatial orientation.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37991 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: Upon return from spaceflight, a majority of crewmembers experience motion sickness (MS) symptoms. The interactions between crewmembers' adaptation to a gravitational transition, the performance decrements resulting from MS and/or use of promethazine (PMZ), and the constraints imposed by mission task demands could significantly challenge and limit an astronaut's ability to perform functional tasks during gravitational transitions. No operational countermeasure currently exists to mitigate the risks associated with these sensorimotor disturbances. Stochastic resonance (SR) can be thought of simply as "noise benefit" or an increase in information transfer by a system when in the presence of a non-zero level of noise. We have shown that low levels of stochastic vestibular stimulation (SVS) improve balance and locomotor performance due to SR (Goel et al. 2015, Mulavara et al. 2011, 2015). Additionally, a study in a 6-hydroxydopamine (6-OHDA) hemi-lesioned rat model of Parkinson's disease demonstrated improvements in locomotor activity after low-level SVS delivery possibly due to an increase in nigral gamma-aminobutyric acid (GABA) release in a dopamine independent way (Samoudi et al. 2012). SVS specifically increased GABA release on the lesioned, but not the intact side. These results suggest that SVS can cause targeted alterations of GABA release to affect performance of functional tasks. Activation of the GABA pathway is important in modulating MS and promoting adaptability (Cohen 2008). Magnusson et al. (2000) supported this finding by showing that the administration of a GABAB agonist caused a reversal of the symptoms that is normally seen after unilateral labyrinthectomy. Thus, GABA could play a significant role in reducing MS and promoting adaptability. We have taken advantage of the SR mechanism as a modulator of neurotransmitters to develop a unique SVS countermeasure system to mitigate MS symptoms and improve functional performance after landing. Healthy subjects (n=20) participated in two test sessions, one in which they received +/-400 microA of SVS and one where they received no stimulation (0 microA); the study design was counterbalanced. Subjects began by performing a series of four functional tasks 3-5 times as baseline measurements of task performance. Then, to induce MS, subjects walked an obstacle course with up-down reversing prisms. If they completed the course before achieving our pre-determined level of MS, they were asked to read a poster while making large up-down head movements to a metronome while still wearing the reversing prism goggles. Subjects were stopped every two minutes and asked to report their MS symptoms. Using the Pensacola Scale for motion sickness, test operators evaluated the level of MS of each subject. Once a subject reached an 8 on this scale, which is equivalent to mild malaise, or 30 minutes had passed since the start of the MS induction, this protocol was stopped. Finally, immediately after MS induction, subjects were asked to complete the four functional tasks again. Although, 100% of our subjects experienced at least one MS symptom, only 55% of our subjects experienced stomach awareness to any degree. Without SVS, only 40% of subjects lasted the full 30-minute MS induction protocol, while 65% of subjects lasted the full 30 minutes with SVS, which is nearly a significant increase (p=0.056). In addition, subjects showed significant improvement from baseline when performing a tandem walk and a prone-to-stand test immediately after the MS induction protocol was stopped but the stimulation level was continued. The results are promising and future work includes comparing MS progression between PMZ and SVS directly in subjects that are provoked to a minimum of nausea. Low levels of SVS stimulation may serve as a non-pharmacological countermeasure to replace or reduce the PMZ dosage requirements and concurrently improve functional performance during transitions to new gravitational environments after spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37996 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-19
    Description: Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography; intraocular pressure; 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness; Doppler ultrasound of ophthalmic and retinal arteries and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight, acute head-down tilt will induce cephalad fluid shifts, whereas lower body negative pressure will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. Discussion. Ten subjects have consented to participate in this experiment, including the recent One-Year Mission crewmembers, who have recently completed R plus180 testing; all other subjects have completed pre-flight testing. Preliminary results from the One-Year Mission crewmembers will be presented, including measures of ocular structure and function, vascular dimensions, fluid distribution, and non-invasive estimates of intracranial pressure.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37997 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various sorbents to complement structural strength tests from Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13x, Honeywell UOP APG III, VSA-10, BASF 13x, and Grace Davison Grade 522 5A. Each sorbents CO2 capacity was measured using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These datasets were then extrapolated using Langmuir 3-Site and Toth isotherm models to compare with previously measured capacity data from MSFC using a thermogravimetric analysis approach. The modeling and extrapolation from ARC data correlated well with data measured at MSFC.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37094 , International Conference for Environmental Systems (ICES); Jul 16, 2016 - Jul 20, 2016; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-12
    Description: Given that spaceflight may induce adverse changes in bone ultimate strength with respect to mechanical loads during and post-mission, there is a possibility a fracture may occur for activities otherwise unlikely to induce fracture prior to initiating spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-39591
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-39157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: As spaceflight durations have increased over the last four decades, the effects of weightlessness on the human body are far better understood, as are the countermeasures. A combination of aerobic and resistive exercise devices contribute to countering the losses in muscle strength, aerobic fitness, and bone strength of today's astronauts and cosmonauts that occur during their missions on the International Space Station. Creation of these systems has been a dynamically educational experience for designers and engineers. The ropes and cables in particular have experienced a wide range of challenges, providing a full set of lessons learned that have already enabled improvements in on-orbit reliability by initiating system design improvements. This paper examines the on-orbit experience of ropes and cables in several exercise devices and discusses the lessons learned from these hardware items, with the goal of informing future system design.
    Keywords: Aerospace Medicine
    Type: JETS-JE11-15-SAIP-DOC-0080 , JSC-CN-37635
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-12
    Description: NASA has identified a potential risk of spatial disorientation to future astronauts during re-entry of the proposed Orion spacecraft. The purpose of this study was to determine if a 6-hour physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these effects. Twenty subjects were assigned to two groups (AFTE and Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures to a simulated Orion re-entry test in the rotating chair. Treatment subjects were given two hours of AFTE training before each Orion test. A diagnostic scale was used to evaluate motion sickness symptom severity. Results showed that 2 hours of AFTE significantly reduced motion sickness symptoms during the second Orion test. AFTE subjects were able to maintain lower heart rates and skin conductance levels and other responses than the control group subjects during subsequent tests. Trends show that performance was less degraded for AFTE subjects. The results of this study indicate that astronauts could benefit from receiving at least 2 hours of preflight AFTE. In addition, flight crews could benefit further by practicing physiologic self-regulation using mobile devices.
    Keywords: Aerospace Medicine
    Type: NASA/TM-2017-219511 , ARC-E-DAA-TN41100
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-12
    Description: Limits and guidelines are set on microbial counts in produce to protect the consumer. Different agencies make specifications, which constitute when a product becomes unsafe for human consumption. Producers design their procedures to comply with the limits, but they are responsible creating their own internal standards. The limits and guidelines are summarized here to be applied to assess the microbial safety of the NASA Veggie Program.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN42115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: NASA/TM-2017-219290 , JSC-E-DAA-TN60454 , JSC-CN-39515
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN40559
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-12
    Description: As the world's space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organism's self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as "pathfinders," which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes. In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN39143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-12
    Description: The present invention includes compositions and methods for the use of an encapsulation additive having between about 0.1 to about 30 percent isolated and purified vitelline protein B to provide for mixed and extended release formulations.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: NASA has concerns regarding the incidence and clinical significance of cardiac arrhythmias that could occur during long-term exposure to the spaceflight environment, such as on the International Space Station (ISS) or during a prolonged (e.g., up to 3 years) sojourn to Mars or on the Moon. There have been some anecdotal reports and a few documented cases of cardiac arrhythmias in space, including one documented episode of non-sustained ventricular tachycardia. The potential catastrophic nature of a sudden cardiac death in the remote space environment has led to concerns from the early days of the space program that spaceflight might be arrhythmogenic. Indeed, there are known and well-defined changes in the cardiovascular system with spaceflight: a) plasma volume is reduced, b) left ventricular mass is decreased, and c) the autonomic nervous system adapts to the weightless environment. Combined, these physiologic adaptations suggest that changes in cardiac structure and neuro-humoral environment during spaceflight could alter electrical conduction, although the evidence supporting this contention consists mostly of minor changes in QT interval (the time between the start of the Q wave and the end of the T wave on an electrocardiogram tracing) in a small number of astronauts after long-duration spaceflight. Concurrent with efforts by NASA Medical Operations to refine and improve screening techniques relevant to arrhythmias and cardiovascular disease, as NASA enters the era of exploration-class missions it will be critical to determine with the highest degree of certainty whether spaceflight by itself alters cardiac structure and function sufficiently to increase the risk of arrhythmias.
    Keywords: Aerospace Medicine
    Type: JSC-CN-39745
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-12
    Description: A subset of astronauts develop neuro-ocular structural and functional changes during prolonged periods of spaceflight that may lead to additional neurologic and ocular consequences upon return to Earth.
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN49801
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN46034
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: NASA medical care standards establish requirements for providing health and medical programs for crewmembers during all phases of a mission. These requirements are intended to prevent or mitigate negative health consequences of long-duration spaceflight, thereby optimizing crew health and performance over the course of the mission. Current standards are documented in the two volumes of the NASA-STD-3001 Space Flight Human-System Standard document, established by the Office of the Chief Health and Medical Officer. Its purpose is to provide uniform technical standards for the design, selection, and application of medical hardware, software, processes, procedures, practices, and methods for human-rated systems. NASA-STD-3001 Vol. 1 identifies five levels of care for human spaceflight. These levels of care are accompanied by several components that illustrate the type of medical care expected for each. The Exploration Medical Capability (ExMC) of the Human Research Program has expanded the context of these provided levels of care and components. This supplemental information includes definitions for each component of care and example actions that describe the type of capabilities that coincide with the definition. This interpretation is necessary in order to fully and systematically define the capabilities required for each level of care in order to define the medical requirements and plan for infrastructure needed for medical systems of future exploration missions, such as one to Mars.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37868 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: Ultrasound (US) specifically looking for asymptomatic renal calcifications that may be renal stones is typically not done in the terrestrial setting. Standard abdominal US without a renal focus may discover incidental, mineralized renal material (MRM); however punctate solid areas of MRM is less than 3 mm are usually considered subclinical. Detecting these early calcifications before they become symptomatic renal stones is critical to prevent adverse medical and mission outcomes during spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37661 , Aerospace Medical Association Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: While Ocular Coherence Tomography (OCT) is not a first-line modality to evaluate anterior eye structures terrestrially, it is a resource already available on the International Space Station (ISS) that can be used in medical contingencies that involve the anterior eye. With remote guidance and subject matter expert (SME) support from the ground, a minimally trained crewmember can now use OCT to evaluate anterior eye pathologies on orbit. OCT utilizes low-coherence interferometry to produce detailed cross-sectional and 3D images of the eye in real time. Terrestrially, it has been used to evaluate macular pathologies and glaucoma. Since 2013, OCT has been used onboard the ISS as one part of a suite of hardware to evaluate the Visual Impairment/Intracranial Pressure risk faced by astronauts, specifically assessing changes in the retina and choroid during space flight. The Anterior Segment Module (ASM), an add-on lens, was also flown for research studies, providing an opportunity to evaluate the anterior eye in real time if clinically indicated. Anterior eye pathologies that could be evaluated using OCT were identified. These included corneal abrasions and ulcers, scleritis, and acute angle closure glaucoma. A remote guider script was written to provide ground specialists with step-by-step instructions to guide ISS crewmembers, who do not get trained on the ASM, to evaluate the anterior eye. The instructions were tested on novice subjects and/or operators, whose feedback was incorporated iteratively. The final remote guider script was reviewed by SME optometrists and NASA flight surgeons. The novel application of OCT technology to space flight allows for the acquisition of objective data to diagnose anterior eye pathologies when other modalities are not available. This demonstrates the versatility of OCT and highlights the advantages of using existing hardware and remote guidance skills to expand clinical capabilities in space flight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37608 , Aerospace Medical Association Scientific Meeting (AsMA); Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: Long duration spaceflight has a negative effect on the human body, and exercise countermeasures are used on-board the International Space Station (ISS) to minimize bone and muscle loss, combatting these effects. Given the importance of these hardware systems to the health of the crew, this equipment must continue to be readily available. Designing spaceflight exercise hardware to meet high reliability and availability standards has proven to be challenging throughout the time the crewmembers have been living on ISS beginning in 2000. Furthermore, restoring operational capability after a failure is clearly time-critical, but can be problematic given the challenges of troubleshooting the problem from 220 miles away. Several best-practices have been leveraged in seeking to maximize availability of these exercise systems, including designing for robustness, implementing diagnostic instrumentation, relying on user feedback, and providing ample maintenance and sparing. These factors have enhanced the reliability of hardware systems, and therefore have contributed to keeping the crewmembers healthy upon return to Earth. This paper will review the failure history for three spaceflight exercise countermeasure systems identifying lessons learned that can help improve future systems. Specifically, the Treadmill with Vibration Isolation and Stabilization System (TVIS), Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), and the Advanced Resistive Exercise Device (ARED) will be reviewed, analyzed, and conclusions identified so as to provide guidance for improving future exercise hardware designs. These lessons learned, paired with thorough testing, offer a path towards reduced system down-time.
    Keywords: Aerospace Medicine
    Type: JSC-CN-36579 , 2017 IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative biological effectiveness (RBE) of radiation are different for different radiation sources, for different cell types, and for the same cell type with different genetic background at different times after radiation exposure. Caution must be taken in using RBE value to estimate biological effects from radiation exposure.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38026 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: Introduction: Microgravity exposure may alter the likelihood that astronauts will experience renal stones. The potential risk includes both acute and chronic health issues, with the potential for significant impact on mission objectives. Methods: To understand the role of the NASA's Human Research Program (HRP) research agenda in both preventing and addressing renal stones in spaceflight, current astronaut epidemiologic data and a summary of programmatic considerations are reviewed. Results: Although there has never been a symptomatic renal stone event in a U.S. crewmember during spaceflight, urine chemistry has been altered - likely due to induced changes in renal physiology as a result of exposure to microgravity. This may predispose astronauts to stone formation, leading the HRP to conduct and sponsor research to: 1) understand the risk of stone formation in space; 2) prevent stones from forming; and 3) address stones that may form by providing novel diagnostic and therapeutic approaches. Discussion: The development of a renal stone during spaceflight is a significant medical concern that requires the HRP to minimize this risk by providing the ability to prevent, diagnose, monitor and treat the condition during spaceflight. A discussion of the risk as NASA understands it is followed by an overview of the multiple mitigations currently under study, including novel ultrasound techniques for stone detection and manipulation, and how they may function as part of a larger exploration medical system.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37866 , Aerospace Medical Association (AsMA) Annual Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: The Exploration Medical Capability (ExMC) Element systems engineering goals include defining the technical system needed to implement exploration medical capabilities for Mars. This past year, scenarios captured in the medical system concept of operations laid the foundation for systems engineering technical development work. The systems engineering team analyzed scenario content to identify interactions between the medical system, crewmembers, the exploration vehicle, and the ground system. This enabled the definition of functions the medical system must provide and interfaces to crewmembers and other systems. These analyses additionally lead to the development of a conceptual medical system architecture. The work supports the ExMC community-wide understanding of the functional exploration needs to be met by the medical system, the subsequent development of medical system requirements, and the system verification and validation approach utilizing terrestrial analogs and precursor exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37826 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: Medical support of spaceflight training operations across international lines is a unique circumstance with potential applications to other aerospace medicine support scenarios. KBRwyle's Star City Medical Support Group (SCMSG) has fulfilled this role since the Mir-Shuttle era, with extensive experience and updates to share with the greater AsMA community. OVERVIEW: The current Soyuz training flow for assigned ISS crewmembers takes place in Star City, Russia. Soyuz training flow involves numerous activities that pose potential physical and occupational risks to crewmembers, including centrifuge runs and pressurized suit simulations at ambient and hypobaric pressures. In addition, Star City is a relatively remote location in a host nation with variable access to reliable, Western-standard medical care. For these reasons, NASA's Human Health & Performance contract allocates full-time physician support to assigned ISS crewmembers training in Star City. The Star City physician also treats minor injuries and illnesses as needed for both long- and short-term NASA support personnel traveling in the area, while working to develop and maintain relationships with local health care resources in the event of more serious medical issues that cannot be treated on-site. The specifics of this unique scope of practice will be discussed. SIGNIFICANCE: ISS crewmembers training in Star City are at potential physical and occupational risk of trauma or dysbarism during nominal Soyuz training flow, requiring medical support from an on-duty aerospace medicine specialist. This support maintains human health and performance by preserving crewmember safety and well-being for mission success; sharing information regarding this operational model may contribute to advances in other areas of international, military, and civilian operational aerospace medicine.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37626 , Aerospace Medical Association (AsMA) Annual Scientific Meeting 2017; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: INTRODUCTION: NASA's Space Medicine community knowledge regarding the "Vision Impairment Intracranial Pressure", or VIIP.has been evolving over time.. Various measures of occupational health related to this condition had to be determined and then plans/processes put into place. The most robust of these processes were inititated in 2010. This presentation will provide a clinic update of the astronaut occupational health data related to VIIP. METHODS: NASA and its international partners require its astronauts to undergo routine health measures deemed important to monitoring VIIP. The concern is that the spaceflight environment aboard ISS could cause some astronauts to have physiologic changes detrimental to either ongoing mission operations or long-term health related to the ocular system and possibly the CNS. Specific medical tests include but are not limited to brain/orbit MRI (NASA unique protocol), OCT, fundoscopy and ocular ultrasound. Measures are taken prior to spaceflight, in-flight and post-flight. Measures to be reported include incidence of disc edema, globe flattening, choroidal folds, ONSD and change in refractive error. RESULTS: 73 ISS astronauts have been evaluated at least partially for VIIP related measures. Of these individuals, approximately 1 in 7 have experienced disc edema. The prevalence of the other findings is more complicated as the medical testing has changed over time. Overall, 26 separate individuals have experienced at least one of the findings NASA has associated with VIIP Another confounding factor is most of the astronauts have prior spaceflight experience at the time of the "pre-flight" testing. DISCUSSION: In 2010 NASA and its US operating segment (USOS) partners (CSA, ESA and JAXA) began routine occupational monitoring and data collection for most VIIP related changes. Interpretation of that data is extremely challenging for several reasons. For example, the determination of disc edema is the most complete finding as we have had highly qualified optometrists routinely and competently performing post-flight funduscopic exams for the entirety of the ISS program. Yet in 2013 NASA added OCT to our in-flight suite of eye exams. Shortly after routine screening with the OCT, a new term appeared within VIIP vernacular - "subclinical disc edema". OCT has much greater ability to measure change within the retina and provides significantly more data to analyze, understand and communicate out. Communicating VIIP data clearly adds even more challenge. Historically we've reported data per eye and not necessarily per person. This has led to difficulty in understanding how many individuals have experienced "VIIP" within the aerospace medicine community. The presenter will attempt to provide clear and concise communication of VIIP findings.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37889 , AsMA Annual Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: So you want to conduct human spaceflight research aboard the International Space Station (ISS)? Once your spaceflight research aboard the ISS is proposal is funded.... the real work begins. Because resources are so limited for ISS research, it is necessary to maximize the work being done, while at the same time, minimizing the resources spent. Astronauts may be presented with over 30 human research experiments and select, on average approximately 15 in which to participate. In order to conduct this many studies, ISSMP uses the study requirements provided by the principle investigator to integrate all of this work into the astronauts' complement. The most important thing for investigators to convey to the ISSMP team is their RESEARCH REQUIREMENTS. Requirements are captured in the Experiment document. This document is the official record of how, what, where and when data will be collected. One common mistake that investigators make is not taking this document seriously, but when push comes to shove, if a research requirement is not in this document....it will not get done. The research requirements are then integrated to form a complement of research for each astronaut. What do we mean by integration? Many experiments have overlapping requirements; blood draws, behavioral surveys, heart rate measurement. Where possible, these measures are combined to reduce redundancy and save crew time. Investigators can access these data via data sharing agreements. More examples of how ISS research is integrated will be presented. There are additional limitations commonly associated with human spaceflight research that will also be discussed. Large/heavy hardware, invasive procedures, and toxic reagents are extremely difficult to implement on the ISS. There are strict limits placed on the amount of blood that can be drawn from crew members during (and immediately after) spaceflight. These limits are based on 30-day rolling accumulations. We have recently had to start restricting studies due to this limit. The NASA Human Research Program (HRP) provides extensive support, via ISSMP, to help investigators cope with all of the intricacies of conducting human spaceflight research. This presentation will help you take the best advantage of that support.
    Keywords: Life Sciences (General)
    Type: JSC-CN-38021 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.
    Keywords: Space Sciences (General)
    Type: JSC-CN-38191 , European Conference on Space Debris; Apr 18, 2017 - Apr 21, 2017; Darmstadt; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: It is known that spaceflight adversely affects human sensorimotor function. With interests in longer duration deep space missions it is important to understand microgravity dose-response relationships. NASA's One Year Mission project allows for comparison of the effects of one year in space with those seen in more typical six month missions to the International Space Station. In the Neuromapping project we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre- to post-spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad-ranging battery of sensory, motor, and cognitive assessments that are conducted pre-flight, during flight, and post-flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. With the one year mission we had one crewmember participate in all of the same measures pre-, per- and post-flight as in our ongoing study. During this presentation we will provide an overview of the magnitude of changes observed with our brain and behavioral assessments for the one year crewmember in comparison to participants that have completed our six month study to date.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38008 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: Astronauts and cosmonauts may experience symptoms of orthostatic intolerance during re-entry, landing, and for several days post-landing following short- and long-duration spaceflight. Presyncopal symptoms have been documented in approximately 20% of short-duration and greater than 60% of long-duration flyers on landing day specifically during 5-10 min of controlled (no countermeasures employed at the time of testing) stand tests or 80 deg head-up tilt tests. Current operational countermeasures to orthostatic intolerance include fluid loading prior to and whole body cooling during re-entry as well as compression garments that are worn during and for up to several days after landing. While both NASA and the Russian space program have utilized compression garments to protect astronauts and cosmonauts traveling on their respective vehicles, a "next-generation" gradient compression garment (GCG) has been developed and tested in collaboration with a commercial partner to support future space flight missions. Unlike previous compression garments used operationally by NASA that provide a single level of compression across only the calves, thighs, and lower abdomen, the GCG provides continuous coverage from the feet to below the pectoral muscles in a gradient fashion (from approximately 55 mm Hg at the feet to approximately 16 mmHg across the abdomen). The efficacy of the GCG has been demonstrated previously after a 14-d bed rest study without other countermeasures and after short-duration Space Shuttle missions. Currently the GCG is being tested during a stand test following long-duration missions (~6 months) to the International Space Station. While results to date have been promising, interactions of the GCG with other space suit components have not been examined. Specifically, it is unknown whether wearing the GCG over NASA's Maximum Absorbency Garment (MAG; absorbent briefs worn for the collection of urine and feces while suited during re-entry and landing) will interfere with the effectiveness of the GCG or conversely whether the GCG will reduce the fluid absorption capabilities of the MAG. Methods: This operational, directed study, will (1) determine whether the effectiveness of the GCG is affected by the MAG with regard to cardiovascular responses to head-up tilt, the standard orthostatic intolerance test employed for astronauts and bed rest subjects; (2) determine whether the effectiveness of the MAG is compromised by the GCG tested by injecting a standard fluid volume (950 ml in 3 separate simulated "urine voids") at a standardized rate (30 ml/sec); and (3) determine whether comfort is affected by wearing the MAG under the GCG using a standardized questionnaire. Results from this study will guide future development and operational use of the GCG and MAG to maximize crew health, safety, and comfort.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38003 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Spectrum is a multispectral fluorescence imager designed for capturing in vivo genetic expression in a variety of biological organisms, providing a capability that does not currently exist on the International Space Station (ISS). Researching organisms that have been transformed with in vivo reporter genes ligated with fluorescent proteins allows the scientific community to further understand the fundamental biological responses of these organisms when subjected to space environments. Model organisms that may utilize multispectral imaging on the ISS include unicellular organisms (e.g. Saccharomyces cerevisiae), plants (e.g. Arabidopsis thaliana), and invertebrates (e.g. Caenorhabditis elegans).
    Keywords: Life Sciences (General)
    Type: NASA/SP-2017-10-1095-KSC , KSC-E-DAA-TN53022
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-20
    Description: Continued space bioscience research onboard the International Space Station (ISS) and future long-duration flight missions to the Moon or Mars will require the ability to conduct on-orbit molecular analysis of biological samples independently from Earth. In the last year two new molecular analytic technologies have been installed and the technologies demonstrated onboard the ISS: The Sample Prep Module (SPM) WetLab-2 (WL2) qRT-PCR toolbox and the Oxford Nanopore MinIon Biomolecule Sequencer. Here we describe protocol development and integration into existing ISS technology for end-to-end on-orbit biological sample processing and molecular analysis with real time results generated utilizing only field offline analytic software. For this experiment we isolated primary cells from bone marrow flushes of wild type B6129SF2 mice (Jackson Labs) long bones. The cell isolate was then processed using the SPM to produce total 147nanograms of RNA. The total RNA was purified to only messenger RNA (mRNA) and transferred to Smartcycler Thermocycle ISS kit consumable tube using Eppendorf gel loading pipette tips for further processing. Complementary first strand cDNA was synthesized using OLIGO dT priming followed by addition of SuperScript II Reverse Transcriptase and thermal cycling as per manufacturers instruction. All thermal cycling was conducted using the ISS WetLab-2 Cephid Smarcycler real time thermal cycler. Our protocol takes advantage of mRNAs native poly(A) tail, synthesized in vivo to protect the mRNA from degradation by endonucleases, to eliminate end-prep for adapter ligation. The adapted library is purified using MyOne C1 Streptavidin beads before elution in buffer. The pre-sequencing library is diluted in the loading buffer and injected into the MinIon sample port, drawn into the nanopore window by capillary action, and sequenced using the MinKnown software with local basecalling. The sequencing read produced 34.5 million events and local basecalling produced 117,301 successful reads. NCBI Blast of the data for the mouse genome resulted in 2,462 successful nucleotide collection matches (gene sequences) exceeding 70 homology. These results demonstrate the viability of this novel flight ready end-to-end sample analytic methodology and provide a real time homolog for flight experimentation utilizing supply kits and technologies that have already been demonstrated on ISS.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43951 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-20
    Description: System testing of the Carbon Dioxide Removal and Compression System (CRCS) has revealed that sufficient CO2 removal capability was not achieved with the designed system. Subsystem component analysis of the zeolite bed revealed that the sorbent material suffered significant degradation and CO2 loading capacity loss. In an effort to find the root cause of this degradation, various factors were investigated to try to reproduce the observed performance loss. These factors included contamination by vacuum pump oil, o-ring vacuum grease, loadingunloading procedures, and operations. This paper details the experiments that were performed and their results.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37174 , International Conference for Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-26
    Description: Spaceflight environments and their associated conditions, such as microgravity and space radiation, cause many biological functions formerly considered to be standard to behave in nonstandard ways. Exposure to microgravity has shown to induce deleterious effects in stem cell-based tissue regeneration, leading to immune system and healing response impairments as well as muscle and bone density loss. Such risks must be mitigated in order for long-term human space exploration to proceed. Thus, our work seeks to explore mechanisms of stem cell-based tissue regeneration that experience changes in spaceflight environments. Cellular senescence is a process of inducing cell cycle arrest that can be initiated by various stimuli. This function is influenced by two major pathways, controlled by p53 and pRB tumor suppressor proteins. p53 activity targets the cyclin-dependent kinase inhibitor gene p21Cdkn1a in osteogenic cell cycle arrest. Under conditions of mechanical unloading, stem cell-based tissue regeneration has shown to be decreased in both proliferation and differentiation, as many cells are arrested in progenitor states. p21 has shown upregulation in expression under conditions of microgravity, suggesting its role in regenerative bone formation arrest in space. p21 levels are found to be elevated independent of p53, suggesting a decrease in proliferation and regeneration without apoptosis, but rather through cell cycle arrest alone. Thus, we hypothesize that p21 is a mediator of cellular senescence in bone marrow stem cells. Culturing of bone marrow stem cells from wild type and p21 knockout mice under osteoblastogenic conditions will be completed to explore the role of p21Cdkn1a in stem cell proliferation and maturation. We believe that decreases in somatic stem cell differentiation may occur after spaceflight due to signal pathway alterations that result in downstream inhibition of genes involved in differentiation, preventing tissue from repairing and regenerating normally.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43925 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The ends of human chromosomes contain telomeres, or tandem arrays of repeating DNA sequences capped by multiple associated proteins that protect chromosomal ends from degradation. Telomeres function to preserve genomic stability by preventing natural chromosomal ends from being recognized as broken DNA double-strand breaks and triggering inappropriate DNA damage responses. Mounting evidence shows telomere length is an inherited trait that decreases with cellular division and normal aging. In addition, telomere length also appears to be influenced by other factors such as cellular oxidative stress, radiation and mechanical unloading of tissues as in microgravity. To measure these potential effects of the space environment on telomere lengths and cellular aging and regenerative potential we developed a novel telomere measurement approach based on nanopore sequencing of PCR amplified bar-coded chromosome termini. Specifically, telomeres can be directly enriched using barcode sequences ligated to the end of a free end- repaired telomere using the WetLab-2 facility SmartCycler on ISS. Prior to the ligation and amplification protocol a proteinase K digestion of capping proteins followed by a single 95-degree C heat denaturation of the protease is included. After digestion and bar-code ligation, PCR amplification will initiate with the ligated barcoded sequence, suppressing amplification of intra-genomic fragments and resulting in long read barcoded telomere amplicons including the nanopore motor protein sequences. Purified PCR amplicons are then used for nanopore sequencing library generation by simple addition of motor proteins and sequencing library is loaded into the MinION nanopore DNA-sequencer. Amplicon sequence reads from the nanopore device can be base-called quickly on ISS due to barcoding ligation and subsequent PCR amplification enhancing the telomere sequence resolution. If successfully implemented on ISS this technique will provide a novel means of measuring regenerative ability of somatic stem cells in astronauts, and of determining whether spaceflight in microgravity alters their telomere lengths and causes premature cellular aging.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN44002 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: A laboratory investigation of acetone, an interstellar and cometary molecule, has produced new results concerning its decomposition in a radiation environment. Mid-infrared spectroscopy has been used to follow amorphous acetone's destruction by ionizing radiation (1 MeV protons) at 20 K. Radiation products identified are the CH4, CO, and CO2 usually made in such experiments, along with ketene, allene, and the acetonyl radical, all identified here for the first time in irradiated solid acetone. Evidence for the reduction product 2-propanol was suggestive, but a firm identification could not be made either for it or for the C2 hydrocarbons (i.e., C2H6, C2H4, C2H2). The acetyl radical was not observed as a radiation product. Isotopically labeled reagents were used to demonstrate ketene formation and to emphasize that multiple approaches are needed for robust assignments of infrared spectral features of irradiated icy solids. Results from a supporting radiation experiment with isotopically labeled acetic acid are described. Comparisons are made to a previous study of acetone's stability in extraterrestrial radiation environments, and caution is urged in measuring and interpreting CO abundances in irradiated icy solids.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN56719 , Physical Chemistry Chemical Physics (ISSN 1463-9076) (e-ISSN 1463-9084); 8; 8; 5389-5398
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by an early episode of thermally-driven hydrodynamic escape when host stars have saturated XUV fluxes.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN42111 , Astrobiology Science Conference (AbSciCon 2017); Apr 24, 2017 - Apr 28, 2017; Mesa, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48058 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Damaging effects due to spaceflight and long-duration weightlessness are seen in the musculoskeletal system, specifically with regards to bone loss, bone resorption, and changes in overall bone structure. These adverse effects are all seen with indicators of oxidative stress and a variation in the levels of oxidative gene expression. Once gravity is restored, however, the recovery is slow and incomplete. Despite this, few reports have investigated the correlation between oxidative damage and general modifications within the bone. In this project, we will make use of a ground-based model of simulated weightlessness (hindlimb unloading, HU) in order to observe skeletal changes in response to induced microgravity due to changes in oxidative pressures. With this model we will analyze samples at 14-day and 90-day time points following HU for the determination of acute and chronic effects, each with corresponding controls. We hypothesize that simulated microgravity will lead to skeletal adaptations including time-dependent activation of pro-oxidative processes and pro-osteoclastogenic signals related to the progression, plateau, and recovery of the bone. Microcomputed tomography techniques will be utilized to measure skeletal changes in response to HU. With the results of this study, we hope to further the understanding of skeletal affects as a result of long-duration weightlessness and develop countermeasures to combat bone loss in spaceflight and osteoporosis on Earth.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN48023 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: Spaceflight imposes multiple stresses on biological systems resulting in genome-scale adaptations. Understanding these adaptations and their underlying molecular mechanisms is important to clarifying and reducing the risks associated with spaceflight. One such risk is infection by microbes present in spacecraft and their associated systems and inhabitants. This risk is compounded by results suggesting that some microbes may exhibit increased virulence after exposure to spaceflight conditions. The yeast, S. cerevisiae, is a powerful microbial model system, and it's response to spaceflight has been studied for decades. However, to date, these studies have utilized common lab strains. Yet studies on trait variation in S. cerevisiae demonstrate that these lab strains are not representative of wild yeast and instead respond to environmental stimuli in an atypical manner. Thus, it is not clear how transferable these results are to the wild S. cerevisiae strains likely to be encountered during spaceflight. To determine if diverse S. cerevisiae strains exhibit a conserved response to simulated microgravity, we will utilize a collection of 100 S. cerevisiae strains isolated from clinical, environmental and industrial settings. We will place selected S. cerevisiae strains in simulated microgravity using a high-aspect rotating vessel (HARV) and document their transcriptional response by RNA-sequencing and quantify similarities and differences between strains. Our research will have a strong impact on the understanding of how genetic diversity of microorganisms effects their response to spaceflight, and will serve as a platform for further studies.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48315 , Annual Meeting of the American Society for Gravitational and Space Research - ASGSR; Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and anM4Vdwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30x the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1x the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1x the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 approx. 0.2, but at 30x the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/ CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R 〉 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 microns, likely the most accessible CO2 feature on an Archean-like exoplanet.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN50416 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 18; 4; 1666
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: We present a path forward on a long-standing issue concerning the flux of small and slow meteoroids, which are believed to be the dominant portion of the incoming meteoric mass flux into the Earth's atmosphere. Such a flux, which is predicted by dynamical dust models of the Zodiacal Cloud, is not evident in ground-based radar observations. For decades this was attributed to the fact that the radars used for meteor observations lack the sensitivity to detect this population, due to the small amount of ionization produced by slow-velocity meteors. Such a hypothesis has been challenged by the introduction of meteor head echo (HE) observations with High Power and Large Aperture radars, in particular the Arecibo 430 MHz radar. Janches et al. developed a probabilistic approach to estimate the detectability of meteors by these radars and initially showed that, with the current knowledge of ablation and ionization, such particles should dominate the detected rates by one to two orders of magnitude compared to the actual observations. In this paper, we include results in our model from recently published laboratory measurements, which showed that (1) the ablation of Na is less intense covering a wider altitude range; and (2) the ionization probability, Beta ip, for Na atoms in the air is up to two orders of magnitude smaller for low speeds than originally believed. By applying these results and using a somewhat smaller size of the HE radar target we offer a solution that reconciles these observations with model predictions.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN50883 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 843; 1; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: Electrochemical detection of biological molecules is a pertinent topic and application in many fields such as medicine, environmental spills, and life detection in space. Proteases, a class of molecules of interest in the search for life, catalyze the hydrolysis of peptides. Trypsin, a specific protease, was chosen to investigate an optimized enzyme detection system using electrochemistry. This study aims at providing the ideal functionalization of an electrode that can reliably detect a signal indicative of an enzymatic reaction from an Enceladus sample.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47161 , Ames Research and Technology Showcase; Sep 28, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Challenges in retrieving D- and E-region Ne from GPS-RO, New algorithm, Initial results, Implications for energetic electron precipitation (EEP).
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN47635 , COSMIC Data Users'' Workshop; Sep 21, 2017 - Sep 25, 2017; Estes Park, CO; United States|Workshop of the International Radio Occultation Working Group (IROWG); Sep 21, 2017 - Sep 25, 2017; Estes Park, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Presentation on New Space development paradigm.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN42624 , Asian Space Technology Summit 2017; May 11, 2017; Kuala Lumpur; Malaysia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: Future space exploration and long duration space flight will pose an array of challenges to the health and wellbeing of astronauts. Since 2015, Fairchild Tropical Botanic Garden (FTBG), in partnership with NASA's Veggie team, has been testing edible crops for space flight potential through a series of citizen science experiments. FTBG's interest in classroom-based science projects, along with NASA's successful operation of the Veggie system aboard the International Space Station (ISS), led to a NASA-FTBG partnership that gave rise to the Growing Beyond Earth STEM Initiative (GBE). Established in 2015, GBE now involves 131 middle and high school classrooms in South Florida, all conducting simultaneous plant science experiments. The results of those experiments (both numeric and visual) are directly shared with the space food production researchers at KSC. Through this session, we will explore the successful classroom implementation and integration into the curriculum, how the data is being used and the impact of the project on participating researchers, teachers, and students. Participating schools were supplied with specialized LED-lit growth chambers, mimicking the Veggie system on ISS, for growing edible plants under similar physical and environmental constraints. Research protocols were provided by KSC scientists, while edible plant varieties were selected mainly by the botanists at FTBG. In a jointly-led professional development workshop, participating teachers were trained to conduct GBE experiments in their classrooms. Teachers were instructed to not only teach basic botany concepts, but to also demonstrate practical applications of math, physics and chemistry. As experiments were underway, students shared data on plant germination, growth, and health in an online spreadsheet. Results from the students research show a promising selection of new plant candidates for possible further testing. Over a two year period, more than 5000 South Florida students, ages 11 to 18, participated in GBE. Evaluation of the program shows an increased knowledge of and interest in science and science careers among students. The program has also boosted the demand for summer high school internships at FTBG, further developing expertise in plant research and science related to space exploration. Supported by a grant from NASA (NNX16AM32G) to Fairchild Tropical Botanic Garden.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN47796 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JSC-CN-40547 , Ohio State University 2017 Optometry Homecoming; Oct 06, 2017; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: The International Planetary Probe Workshop (IPPW) is a forum for exchanging information and encourage collaboration. The IPPW-14 (2017) in its 14th year and attracts participants mainly from US and Europe. The authors of this proposed talk are exploring and have established international collaboration in multiple areas of interest to IPPW community. The authors will present examples that illustrate the motivations for the partnership, the unique capabilities and the potential benefits of international collaboration and how to approach the collaboration in order to overcome the challenges.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN43025 , International Planetary Probe Workshop; Jun 12, 2017 - Jun 16, 2017; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-6200 , Huntsville Hamfest 2017; Aug 19, 2017 - Aug 20, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: The US Antarctic Meteorite Program has visited the Dominion Range in the Transantarctic Mountains during several different seasons, including the 1985, 2003, 2008, 2010, and 2014 seasons. Total recovered meteorites from this region is over 2000. The 1985 (11 samples), 2003 (141 samples), 2008 (521) and 2010 (901 samples) seasons have been fully classified, and the 2014 samples (562) are in the process of being classified and characterized. Given that close to 1500 samples have been classified so far, it seems like a good opportunity to summarize the state of the collection. Here we describe the significant samples documented from this area, as well as a large meteorite shower that dominates the statistics of the region.
    Keywords: Space Sciences (General)
    Type: JSC-CN-40505 , 2017 Hayabusa Symposium of the Solar System Materials; Dec 04, 2017 - Dec 07, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: We describe an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA)-class SmallSat spinning lander concept for the exploration of Europa or other Ocean World surfaces to ascertain the potential for life. The spinning lander will be ejected from an ESPA ring from an orbiting or flyby spacecraft and will carry on-board a standoff remote Spatial Heterodyne Raman spectrometer (SHRS) and a time resolved laser induced fluorescence spectrograph (TR-LIFS), and once landed and stationary the instruments will make surface chemical measurements. The SHRS and TR-LIFS have no moving parts have minimal mass and power requirements and will be able to characterize the surface and near-surface chemistry, including complex organic chemistry to constrain the ocean composition.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN42646 , European Planetary Science Congress 2017 Meeting; Sep 17, 2017 - Sep 22, 2017; Riga; Latvia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: MSFC-E-DAA-TN40056 , COSPAR Small Satellite Symposium; Sep 18, 2017 - Sep 22, 2017; Jeju; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: A recent improvement to the long-term estimation of ground casualties from reentering space debris is the further refinement and update to the human population distribution. Previous human population distributions were based on global totals with simple scaling factors for future years, or a coarse grid of population counts in a subset of the world's countries, each cell having its own projected growth rate. The newest population model includes a 5-fold refinement in both latitude and longitude resolution. All areas along a single latitude are combined to form a global population distribution as a function of latitude, creating a more accurate population estimation based on non-uniform growth at the country and area levels. Previous risk probability calculations used simplifying assumptions that did not account for the ellipsoidal nature of the Earth. The new method uses first, a simple analytical method to estimate the amount of time spent above each latitude band for a debris object with a given orbit inclination and second, a more complex numerical method that incorporates the effects of a non-spherical Earth. These new results are compared with the prior models to assess the magnitude of the effects on reentry casualty risk.
    Keywords: Space Sciences (General)
    Type: JSC-CN-40468 , International Association for the Advancement of Space Safety (IAASS) Conference; Oct 18, 2017 - Oct 20, 2017; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Mid- and far-infrared spectra of condensed ethanol (CH3CH2OH) at 10-160 K are presented, with a special focus on amorphous ethanol, the form of greatest astrochemical interest, and with special attention given to changes at 155-160 K. Infrared spectra of amorphous and crystalline forms are shown. The refractive index at 670 nm of amorphous ethanol at 16 K is reported, along with three IR band strengths and a density. A comparison is made to recent work on the isoelectronic compound ethanethiol (CH3CH2SH), and several astrochemical applications are suggested for future study.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45485 , Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (ISSN 1386-1425); 187; 82-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: The NASA Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT's known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment. A simulated GEO debris population is created and sampled at various cadences and run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT's ability to determine accurately the orbits of debris at various sample rates. Additionally, estimates of the rate at which MCAT will be able produce a complete GEO survey are presented using collected weather data and the proposed observation data collection cadence. The specific methods and results are presented here.
    Keywords: Space Sciences (General)
    Type: JSC-CN-40380 , Advanced Maui Optical and Space Surveillance Conference; Sep 19, 2017 - Sep 22, 2017; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C- ring, leading to field-aligned plasma transport to Saturns ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma fountains. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend 〉10(exp 9) years, and that there is limited evidence for prompt destruction (loss in 〈100 Myrs).
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45495 , Icarus (ISSN 0019-1035); 292; 48-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.
    Keywords: Space Sciences (General)
    Type: JSC-CN-40073 , Simulation Innovation Workshop (SIW) Simulation Interoperability Standards Organization (SISO); Sep 10, 2017 - Sep 15, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.
    Keywords: Aerospace Medicine
    Type: JSC-CN-40281 , AIAA SPACE and Astronautics Forum and Exposition (AIAA SPACE 2017); Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: Over a million individually measured meteoroid orbits were collected with the Southern Argentina Agile MEteor Radar (SAAMER) between 2012-2015. This provides a robust statistical database to perform an initial orbital survey of meteor showers in the Southern Hemisphere via the application of a 3D wavelet transform. The method results in a composite year from all 4 years of data, enabling us to obtain an undisturbed year of meteor activity with more than one thousand meteors per day. Our automated meteor shower search methodology identified 58 showers. Of these showers, 24 were associated with previously reported showers from the IAU catalogue while 34 showers are new and not listed in the catalogue. Our searching method combined with our large data sample provides unprecedented accuracy in measuring meteor shower activity and description of shower characteristics in the Southern Hemisphere. Using simple modeling and clustering methods we also propose potential parent bodies for the newly discovered showers.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN45798 , ICARUS (ISSN 0019-1035) (e-ISSN 1090-2643); 290; 162–182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Burns et al. (1979) use the parameter beta to describe the ratio of radiation pressure to gravity for a particle in the Solar System. The central potential that these particles experience is effectively reduced by a factor of (1- beta ), which in turn lowers the escape velocity. Burns et al. (1979) derived a simple expression for the value of beta at which particles ejected from a comet follow parabolic orbits and thus leave the Solar System; we expand on this to derive an expression for critical beta values that takes ejection velocity into account, assuming geometric optics. We use our expression to compute the critical value and corresponding mass for cometary ejecta leading, trailing, and following the parent comet's nucleus for 10 major meteor showers. Finally, we numerically solve for critical beta values in the case of non-geometric optics. These values determine the mass regimes within which meteoroids are ejected from the Solar System and therefore cannot contribute to meteor showers.
    Keywords: Space Sciences (General)
    Type: M17-6070 , Division for Planetary Sciences (DPS) 2017 Annual Meeting; Oct 15, 2017 - Oct 20, 2017; Provo, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: Biological risks associated with microgravity is a major concern for space travel. Although determination of risk has been a focus for NASA research, data examining systemic (i.e., multi- or pan-tissue) responses to space flight are sparse. The overall goal of our work is to identify potential master regulators responsible for such responses to microgravity conditions. To do this we utilized the NASA GeneLab database which contains a wide array of omics experiments, including data from: 1) different flight conditions (space shuttle (STS) missions vs. International Space Station (ISS); 2) different tissues; and 3) different types of assays that measure epigenetic, transcriptional, and protein expression changes. We have performed meta-analysis identifying potential master regulators involved with systemic responses to microgravity. The analysis used 7 different murine and rat data sets, examining the following tissues: liver, kidney, adrenal gland, thymus, mammary gland, skin, and skeletal muscle (soleus, extensor digitorum longus, tibialis anterior, quadriceps, and gastrocnemius). Using a systems biology approach, we were able to determine that p53 and immune related pathways appear central to pan-tissue microgravity responses. Evidence for a universal response in the form of consistency of change across tissues in regulatory pathways was observed in both STS and ISS experiments with varying durations; while degree of change in expression of these master regulators varied across species and strain, some change in these master regulators was universally observed. Interestingly, certain skeletal muscle (gastrocnemius and soleus) show an overall down-regulation in these genes, while in other types (extensor digitorum longus, tibialis anterior and quadriceps) they are up-regulated, suggesting certain muscle tissues may be compensating for atrophy responses caused by microgravity. Studying these organtissue-specific perturbations in molecular signaling networks, we demonstrate the value of GeneLab in characterizing potential master regulators associated with biological risks for spaceflight.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN43907 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: NASA invests in professional coaching as a way to accelerate the development of its staff. The speaker shares one foundational human development model in coaching - the Six Streams - and applies it to the challenges that new scientists face. The speaker also describes how a new scientist can develop greater capabilities in the Six Streams so that they can become a more effective scientist and feel more satisfaction with their work.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN46151 , NASA ARC Night of Science; Aug 10, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: A review will be presented on the progress made under STMDGame Changing Development Program Funding towards the development of a Medical Decision Support System for augmenting crew capabilities during long-duration missions, such as Mars Transit. To create an MDSS, initial work requires acquiring images and developing models that analyze and assess the features in such medical biosensor images that support medical assessment of pathologies. For FY17, the project has focused on ultrasound images towards cardiac pathologies: namely, evaluation and assessment of pericardial effusion identification and discrimination from related pneumothorax and even bladder-induced infections that cause inflammation around the heart. This identification is substantially changed due to uncertainty due to conditions of fluid behavior under space-microgravity. This talk will present and discuss the work-to-date in this Project, recognizing conditions under which various machine learning technologies, deep-learning via convolutional neural nets, and statistical learning methods for feature identification and classification can be employed and conditioned to graphical format in preparation for attachment to an inference engine that eventually creates decision support recommendations to remote crew in a triage setting.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN46021 , Machine Learning Workshop 2017; Aug 29, 2017 - Aug 31, 2017; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and quantified the expression levels of the genes of interest relative to the GAPDH housekeeping gene, using RT-qPCR and gene-specific cDNA probes. Elucidation of glucocorticoid transfer and synthesis in the placenta can provide new insights into the unique dynamics of mammalian development in microgravity and guide future multi-generational studies in space.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN44642 , American Society for Gravitational and Space Research; Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: We hypothesize that DNA damage induced by high local energy deposition, occurring when cells are traversed by high-LET (Linear Energy Transfer) particles, can be experimentally modeled by exposing cells to high doses of low-LET. In this work, we validate such hypothesis by characterizing and correlating the time dependence of 53BP1 radiation-induced foci (RIF) for various doses and LET across 72 primary skin fibroblast from mice. This genetically diverse population allows us to understand how genetic may modulate the dose and LET relationship. The cohort was made on average from 3 males and 3 females belonging to 15 different strains of mice with various genetic backgrounds, including the collaborative cross (CC) genetic model (10 strains) and 5 reference mice strains. Cells were exposed to two fluences of three HZE (High Atomic Energy) particles (Si 350 megaelectronvolts per nucleon, Ar 350 megaelectronvolts per nucleon and Fe 600 megaelectronvolts per nucleon) and to 0.1, 1 and 4 grays from a 160 kilovolt X-ray. Individual radiation sensitivity was investigated by high throughput measurements of DNA repair kinetics for different doses of each radiation type. The 53BP1 RIF dose response to high-LET particles showed a linear dependency that matched the expected number of tracks per cell, clearly illustrating the fact that close-by DNA double strand breaks along tracks cluster within one single RIF. By comparing the slope of the high-LET dose curve to the expected number of tracks per cell we computed the number of remaining unrepaired tracks as a function of time post-irradiation. Results show that the percentage of unrepaired track over a 48 hours follow-up is higher as the LET increases across all strains. We also observe a strong correlation between the high dose repair kinetics following exposure to 160 kilovolts X-ray and the repair kinetics of high-LET tracks, with higher correlation with higher LET. At the in-vivo level for the 10-CC strains, we observe that drops in the number of T-cells and B-cells found in the blood of mice 24 hours after exposure to 0.1 gray of 320 kilovolts X-ray correlate well with slower DNA repair kinetics in skin cells exposed to X-ray. Overall, our results suggest that repair kinetics found in skin is a surrogate marker for in-vivo radiation sensitivity in other tissue, such as blood cells, and that such response is modulated by genetic variability.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN42188 , Annual International Meeting of the Radiation Research Society (RRS); Oct 15, 2017 - Oct 18, 2017; Cancun; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47267 , Ames Research and Technology Showcase (ARTS) Event; Sep 28, 2017; Moffatt Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nanometer auroral emissions. We report on a single event of nightside aurora (at approximately 22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 minutes duration, images at 3.31 hertz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN51702 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 122; 2; 2455-2466
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: BioSentinel is one of 13 secondary payloads to be deployed on Exploration Mission 1 (EM-1) in 2019. We will use the budding yeast Saccharomyces cerevisiae as a biosensor to determine how deep-space radiation affects living organisms and to potentially quantify radiation levels through radiation damage analysis. Radiation can damage DNA through double strand breaks (DSBs), which can normally be repaired by homologous recombination. Two yeast strains will be air-dried and stored in microfluidic cards within the payload: a wild-type control strain and a radiation sensitive rad51 mutant that is deficient in DSB repairs. Throughout the mission, the microfluidic cards will be rehydrated with growth medium and an indicator dye. Growth rates of each strain will be measured through LED detection of the reduction of the indicator dye, which correlates with DNA repair and the amount of radiation damage accumulated. Results from BioSentinel will be compared to analog experiments on the ISS and on Earth. It is well known that desiccation can damage yeast cells and decrease viability over time. We performed a screen for desiccation-tolerant rad51 strains. We selected 20 re-isolates of rad51 and ran a weekly screen for desiccation-tolerant mutants for five weeks. Our data shows that viability decreases over time, confirming previous research findings. Isolates L2, L5 and L14 indicate desiccation tolerance and are candidates for whole-genome sequencing. More time is needed to determine whether a specific strain is truly desiccation tolerant. Furthermore, we conducted an intracellular trehalose assay to test how intracellular trehalose concentrations affect or protect the mutant strains against desiccation stress. S. cerevisiae cell and reagent concentrations from a previously established intracellular trehalose protocol did not yield significant absorbance measurements, so we tested varying cell and reagent concentrations and determined proper concentrations for successful protocol use.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47978 , Annual Meeting American Society for Gravitational and Space Research; Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN42113 , Astrobiology Science Conference (AbSciCon 2017); Apr 24, 2017 - Apr 28, 2017; Mesa, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: Pre-flight groundbased testing done to prepare for the first Rodent Research mission validation flight, RR1 (Choi et al, 2016 PlosOne). We purified RNA and measured RIN values to assess quality of the samples. For protein, we measured liver enzyme activities. We tested protocol and methods of preservation to date. Here we present an overview of results related to tissue preservation from the RR1 validation mission and a summary of findings to date from investigators who received RR1 teissues various Biospecimen Sharing Program.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48608 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-6411 , American Geophysical Union (AGU) Fall 2017 Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The extreme surface environment (462 C, 93 bars pressure) of Venus makes subsurface measurements of its bulk elemental composition extremely challenging. Instruments landed on the surface of Venus must be enclosed in a pressure vessel. The high surface temperatures also require a thermal control system to keep the instrumentation temperatures within their operational range for as long as possible. Since Venus surface probes can currently operate for only a few hours, it is crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x.9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN51094 , Conference on the Application of Accelerators in Research and Industry (CAARI 2016); Oct 30, 2016 - Nov 04, 2016; Ft. Worth, TX; United States|Physics Procedia (ISSN 1875-3892); 90; 180-186
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Spaceflight imposes multiple stresses on biological systems resulting in genome-scale adaptations. Understanding these adaptations and their underlying molecular mechanisms is important to clarifying and reducing the risks associated with spaceflight. One such risk is infection by microbes present in spacecraft and their associated systems and inhabitants. This risk is compounded by results suggesting that some microbes may exhibit increased virulence after exposure to spaceflight conditions. The yeast, S. cerevisiae, is a powerful microbial model system, and its response to spaceflight has been studied for decades. However, to date, these studies have utilized common lab strains. Yet studies on trait variation in S. cerevisiae demonstrate that these lab strains are not representative of wild yeast and instead respond to environmental stimuli in an atypical manner. Thus, it is not clear how transferable these results are to the wild S. cerevisiae strains likely to be encountered during spaceflight. To determine if diverse S. cerevisiae strains exhibit a conserved response to simulated microgravity, we will utilize a collection of 100 S. cerevisiae strains isolated from clinical, environmental and industrial settings. We will place selected S. cerevisiae strains in simulated microgravity using a high-aspect rotating vessel (HARV) and document their transcriptional response by RNA-sequencing and quantify similarities and differences between strains. Our research will have a strong impact on the understanding of how genetic diversity of microorganisms effects their response to spaceflight, and will serve as a platform for further studies.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47871 , ARC-E-DAA-TN43859 , Annual Meeting of the American Society for Gravitational and Space Research - ASGSR; Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in relation to magnetotail reconnection and dipolarization events, focusing on distributions at and near the plasma sheet boundary layer (PSBL). Simulated distributions right at the boundary are characterized by a single earthward beam, as discussed earlier. However, farther inside, the distributions consist of multiple beams parallel and antiparallel to the magnetic field, remarkably similar to recent Magnetospheric Multiscale observations. The simulations provide insight into the mechanisms: the lowest earthward beam results from direct acceleration at an earthward propagating dipolarization front (DF), with a return beam at somewhat higher energy. A higher-energy earthward beam results from dual acceleration, first near the reconnection site and then at the DF, again with a corresponding return beam resulting from mirroring closer to Earth. Multiple acceleration at the X line or the propagating DF with intermediate bounces may produce even higher-energy beams. Particles contributing to the lower energy beams are found to originate from the PSBL with thermal source energies, increasing with increasing beam energy. In contrast, the highest-energy beams consist mostly of particles that have entered the acceleration region via cross-tail drift with source energies in the suprathermal range.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN50960 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); o 122; 8; 8026–8036
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000 by 36 megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million square kilometers. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN48160 , AGU Fall Meeing 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This payload overview presentation will be presented at the POIWG on October 17th, 2017. It provides a high-level overview of Cell Science-02 operations.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47551 , Payload Operations Integration Working Group (POIWG); Oct 17, 2017 - Oct 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Wavelike perturbations in the Martian upper thermosphere observed by the Neutral Gas Ion Mass Spectrometer (NGIMS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft have been analyzed. The amplitudes of small-scale perturbations with apparent wavelengths between approx. 100 and approx. 500 km in the Ar density around the exobase show a clear dependence on temperature (T(sub 0)) of the upper thermosphere. The average amplitude of the perturbations is approx. 10% on the dayside and approx. 20% on the nightside, which is about 2 and 10 times larger than those observed in the Venusian upper thermosphere and in the low-latitude region of Earths upper thermosphere, respectively. The amplitudes are inversely proportional to T(sub 0), suggesting saturation due to convective instability in the Martian upper thermosphere. After removing the dependence on T(sub 0), dependences of the average amplitude on the geographic latitude and longitude and solar wind parameters are found to be not larger than a few percent. These results suggest that the amplitudes of small-scale perturbations are mainly determined by convective breaking saturation in the upper thermosphere on Mars, unlike those on Venus and Earth.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN42421 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 122; 2; 2374–2397
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN43781 , Summer Camp; Jun 19, 2017; Santa Clara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: System testing of the Carbon Dioxide Removal and Compression System (CRCS) has revealed that sufficient CO2 removal capability was not achieved with the designed system. Subsystem component analysis of the zeolite bed revealed that the sorbent material suffered significant degradation and CO2 loading capacity loss. In an effort to find the root cause of this degradation, various factors were investigated to try to reproduce the observed performance loss. These factors included contamination by vacuum pump oil, o-ring vacuum grease, loading/unloading procedures, and operations. This paper details the experiments that were performed and their results.
    Keywords: Life Sciences (General)
    Type: ICES-2017-117 , ARC-E-DAA-TN40177 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-40571 , 2017 TCC EVA Technology Workshop; Oct 17, 2017 - Oct 19, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: We are interested in illumination conditions and the temperature distribution within the upper two meters of regolith near the lunar poles. Here, areas exist receiving almost constant illumination near areas in permanent shadow, which were identified as potential exploration sites for future missions. For our study a numerical simulation of the illumination and thermal environment for lunar near-polar regions is needed. Our study is based on high-resolution, twenty meters per pixel and 400 x 400 km large polar Digital Terrain Models (DTMs), which were derived from Lunar Orbiter Laser Altimeter (LOLA) data. Illumination conditions were simulated by synthetically illuminating the LOLA DTMs using the horizon method considering the Sun as an extended source. We model polar illumination for the central 50 x 50 km subset and use it as an input at each time-step (2 h) to evaluate the heating of the lunar surface and subsequent conduction in the sub-surface. At surface level we balance the incoming insolation with the subsurface conduction and radiation into space, whereas in the sub-surface we consider conduction with an additional constant radiogenic heat source at the bottom of our two-meter layer. Density is modeled as depth-dependent, the specific heat parameter as temperature-dependent and the thermal conductivity as depth- and temperature-dependent. We implemented a fully implicit finite-volume method in space and backward Euler scheme in time to solve the one-dimensional heat equation at each pixel in our 50 x 50 km DTM. Due to the non-linear dependencies of the parameters mentioned above, Newton's method is employed as the non-linear solver together with the Gauss-Seidel method as the iterative linear solver in each Newton iteration. The software is written in OpenCL and runs in parallel on the GPU cores, which allows for fast computation of large areas and long time scales.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN46777 , European Planetary Science Congress 2017; Sep 17, 2017 - Sep 22, 2017; Riga; Latvia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN42139 , Congress and General Assembly of the International Union of the Crystallography Society (IUCR-2017); Aug 21, 2017 - Aug 28, 2017; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: M17-6058 , Meteor Physics Group Meeting; Jun 06, 2017 - Jun 08, 2017; London, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. Here we present the detection of the complex organic molecules (COMs) acetaldehyde (CH3CHO) and methyl formate (CH3OCHO), as well as formic acid (HCOOH) and ketene (CH2CO), and the tentative detection of di-methyl ether (CH3OCH3) towards the ''methanol hotspot'' of Barnard 5 located between two dense cores using the single dish OSO 20 m, IRAM 30 m, and NRO 45 m telescopes. The high energy cis-conformer of formic acid is detected, suggesting that formic acid is mostly formed at the surface of interstellar grains and then evaporated. The detection of multiple transitions for each species allows us to constrain their abundances through LTE and non-LTE methods. All the considered COMs show similar abundances between approx. 1 and approx. 10% relative to methanol depending on the assumed excitation temperature. The non-detection of glycolaldehyde, an isomer of methyl formate, with a [glycolaldehyde]/[methyl formate] abundance ratio lower than 6%, favours gas phase formation pathways triggered by methanol evaporation. According to their excitation temperatures derived in massive hot cores, formic acid, ketene, and acetaldehyde have been designated as ''lukewarm'' COMs whereas methyl formate and di-methyl ether were defined as ''warm'' species. Comparison with previous observations of other types of sources confirms that lukewarm and warm COMs show similar abundances in low-density cold gas whereas the warm COMs tend to be more abundant than the lukewarm species in warm protostellar cores. This abundance evolution suggests either that warm COMs are indeed mostly formed in protostellar environments and/or that lukewarm COMs are efficiently depleted by increased hydrogenation efficiency around protostars.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN53275 , Astronomy and Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 607; A20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: This paper presents a method for taking into account changes of solar wind parameters in the foreshock using global MHD simulations. We simulate four events with very distant subsolar magnetopause crossings that occurred during quasi-radial interplanetary magnetic field (IMF) intervals lasting from one to several hours. Using previous statistical results, we suggest that the density and velocity in the foreshock cavity decrease to approx. 60% and approx. 94% of the ambient solar wind values when the IMF cone angle falls below 50 deg. This diminishes the solar wind dynamic pressure to 53% and causes a corresponding magnetospheric expansion. We change the upstream solar wind parameters in a global MHD model to take these foreshock effects into account. We demonstrate that the modified model predicts magnetopause distances during radial IMF intervals close to those observed by THEMIS. The strong total pressure decrease in the data seems to be a local, rather than a global, phenomenon. Although the simulations with decreased solar wind pressure generally reproduce the observed total pressure in the magnetosheath well, the total pressure in the magnetosphere often agrees better with results for nonmodified boundary conditions. The last result reveals a limitation of our method: we changed the boundary conditions along the whole inflow boundary, although a more correct approach would be to vary parameters only in the foreshock. A model with the suggested global modification of the boundary conditions better predicts the location of part of the magnetopause behind the foreshock but may fail in predicting the rest of the magnetopause.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN51479 , Journal of Geophysical Research: Space Physics (ISSN 2169-9402) (e-ISSN 2169-9402); 122; 3; 3110-3126
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN48498 , Mountain View High School''s STEM Week; Oct 27, 2017; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels 〈1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47874 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2017); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity-induced oxidative stress damages the dopaminergic neuronal system, as well as examining possible chemical countermeasures to the hypergravity-induced oxidative stress response in dopaminergic neurons in order to combat cell death and consequent mental and behavioral deficits.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN48060 , American Society for Gravitational and Space Research Meeting (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...