ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 43 (1995), S. 1157-1162 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 57 (1992), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An ultrafiltration reactor was developed for the continuous saccharification of liquefied corn starch using glucoamylase. At an enzyme concentration of 1 g/L and a substrate concentration of 300 g/L, maltose and maltotriose were still detected in the reactor permeate after 4 hr of operation. At higher enzyme concentrations (6 and 12 g/L), the reactor achieved steady-state operation within 1–3 hr at all substrate concentrations studied. At an enzyme concentration of 12 g/L, residence time did not affect the final conversion of liquefied starch to glucose. The ultrafiltration reactor produced glucose syrups at residence times of 2–3 hr and substrate concentrations up to 30% w/v.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 960-967 
    ISSN: 0006-3592
    Keywords: membrane reactor ; starch hydrolysis ; corn syrup ; glucoamylase ; enzymatic hydrolysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objective of this study was to develop a continuous hydrolysis process for the enzymatic saccharification of liquefied corn starch using a membrane reactor. A residence time distribution study confirmed that the membrane reactor could be modeled as a simple continuous stirred tank reactor (CSTR). Kinetic studies indicated that the continuous reactor operated in the first-order region with respect to substrate concentration at substrate concentrations greater than 200 g/L. At a residence time of 1 h and an enzyme concentration of 1 g/L, the maximum reaction velocity (Vm) was 3.86 g glucose/L min and the apparent Michaelis constant (Km′) was 562 g/L. The Km′ value for the continuous reactor was 2-7 times greater than that obtained in a batch reactor.Kinetic data were fit to a model based on the Michaelis-Menten rate expression and the design equation for a CSTR. Application of the model at low reactor space times was successful. At space times of 6 min or less, the model predicted the reactor's performance reasonably well. Additional work on the detection and quantitation of reversion products formed by glucoamylase is required. Isolation, detection, and quantitation of reversion products by HPLC was difficult. Detailed analysis on the formation of these reversion products could lead to better reactor designs in the future.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 325-332 
    ISSN: 0006-3592
    Keywords: cell recycle ; fed-batch ; oxygen uptake ; dissolved oxygen ; Candida lipolytica ; citric acid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of dissolved oxygen on citric acid production and oxygen uptake by Candida lipolytica Y 1095 was evaluated in cell recycle and fed-batch fermentation systems. The maximum observed volumetric productivity, which occurred at a dilution rate of 0.06 h-1, a dissolved oxygen concentration of 80%, and a biomass concentration of 5% w/v, in the cell recycle system, was 1.32 g citric acid/L · h. At these same conditions, the citric acid yield was 0.65 g/g and the specific citric acid productivity was 24.9 mg citric acid/g cell · h. In the cell recycle system, citric acid yields ranged from 0.45 to 0.72 g/g. Both the volumetric and specific citric acid productivities were dependent on the dilution rate and the concentration of dissolved oxygen in the fermentor. Similar productivities (1.29 g citric acid/L · h) were obtained in the fed-batch system operated at a cycle time of 36 h, a dissolved oxygen concentration of 80%, and 60 g total biomass. Citric acid yields in the fed-batch fermentor were consistently lower than those obtained in the cell recycle system and ranged from 0.40 to 0.59 g/g. Although citric acid yields in the fed-batch fermentor were lower than those obtained in the cell recycle system, higher citric:isocitric acid ratios were obtained in the fed-batch fermentor. As in the cell recycle system, both the volumetric and specific citric acid productivities in the fed-batch fermentor were dependent on the cycle time and dissolved oxygen concentration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 131-137 
    ISSN: 0006-3592
    Keywords: oxygen uptake ; oxygen transfer ; Candida lipolytica ; citric acid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The rates of oxygen uptake and oxygen transfer during cell growth and citric acid production by Candida lipolytica Y 1095 were determined. The maximum cell growth rate, 1.43 g cell/L · h, and volumetric oxygen uptake rate, 343 mg O2/L · h, occurred approximately 21 to 22 h after inoculation. At the time of maximum oxygen uptake, the biomass concentration was 1.3% w/v and the specific oxygen uptake rate was slightly greater than 26 mg O2/g cell · h. The specific oxygen uptake rate decreased to approximately 3 mg O2/g cell · h by the end of the growth phase.During citric acid production, as the concentration of dissolved oxygen was increased from 20% to 80% saturation, the specific oxygen uptake and specific citric acid productivity (mg citric acid/g cell · h) increased by 160% and 71%, respectively, at a biomass concentration of 3% w/v. At a biomass concentration of 5% w/v, the specific oxygen uptake and specific citric acid productivity increased by 230% and 82%, respectively, over the same range of dissolved oxygen concentrations.The effect of dissolved oxygen on citric acid yields and productivities was also determined. Citric acid yields appeared to be independent of dissolved oxygen concentration during the initial production phase; however, volumetric productivity (g citric acid/L · h) increased sharply with an increase in dissolved oxygen. During the second or subsequent production phase, citric acid yields increased by approximately 50%, but productivities decreased by roughly the same percentage due to a loss of cell viability under prolonged nitrogen-deficient conditions. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-03-01
    Print ISSN: 0723-2020
    Electronic ISSN: 1618-0984
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-08-01
    Print ISSN: 0141-0229
    Electronic ISSN: 1879-0909
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This payload overview presentation will be presented at the POIWG on October 17th, 2017. It provides a high-level overview of Cell Science-02 operations.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47551 , Payload Operations Integration Working Group (POIWG); Oct 17, 2017 - Oct 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This payload overview presentation will be presented at the Payload Operations Integration Working Group (POIWG) on October 25th, 2018. It provides a high-level overview of Cell Science-03 operations.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN62292 , Payload Operations Integration Working Group (POIWG); Oct 23, 2018 - Oct 25, 2018; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This payload overview presentation will be presented at the Payload Operations Integration Working Group (POIWG) on October 23-25th, 2018. It provides a high-level overview of BioNutrients-1 operations.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN61801 , Payload Operations Integration Working Group (POIWG); Oct 23, 2018 - Oct 25, 2018; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...