ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (221)
  • Fluid Mechanics and Thermodynamics  (221)
  • 2015-2019  (221)
  • 1980-1984
  • 1960-1964
  • 2017  (102)
  • 2016  (119)
  • 1926
  • 1
    Publication Date: 2019-06-15
    Description: A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, and size. Surface pressure measurements and surface oilflow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuators jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets for this ramp configuration. The results also suggest that an actuator with a wider jet spreading (110 vs. 70 degrees) placed closer (2.3 vs. 7 boundary layer thickness upstream) to the flow separation location provides better performance. Different actuator sizes obtained by scaling down the actuator geometry produced different jet spreading. Scaling down the actuator (based on the throat dimensions) from 6.35 3.18 mm to 3.81 1.9 mm resulted in similar flow control performance; however, scaling down the actuator further to 1.9 0.95 mm reduced the actuator efficiency by reducing the jet spreading considerably. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-25705 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 56; 1; 100-110
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-26
    Description: Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the NavierStokes equations for Mach 3.5 flow over a 7 deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results show that no noticeable instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wave number, and they are about 1.5 times for large azimuthal wave numbers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-26447 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 56; 2; 510–523
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-21
    Description: A swept flat plate model with an imposed pressure gradient was experimentally investigated in a low-speed flow to determine the effect of a backward-facing step on transition in a stationary crossflowdominated flow. Detailed hotwire measurements of boundary-layer flow were performed to investigate the upstream shift in transition due to a step height of 49% of the local unperturbed boundary-layer thickness. Increasing the initial stationary crossflow amplitude caused an upstream movement of the transition front for the backward-facing step case. The step caused a local increase in the growth of the stationary crossflow instabilities, but the stationary crossflow amplitude at transition was sufficiently low (〈0.04U(sub e)) so that stationary crossflow was not solely responsible for transition. The unsteady velocity spectra downstream of the step were rich with unsteady disturbances in the 80- to 1500-Hz range. Three distinct families of disturbances were identified based on phase speed and wave angle, namely, a highly oblique disturbance (possibly traveling-crossflow-like), a TollmienSchlichting-wave-like disturbance, and a shear-layer instability. The stationary crossflow disturbances caused a modulation of the unsteady disturbances, resulting in spatially concentrated peaks in unsteady disturbance amplitude. This modulation of the unsteady disturbances is believed to be the reason for the upstream movement of the transition front with increasing stationary crossflow amplitude.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-27017 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 56; 2; 497-509
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-34678 , AIAA Thermophysics Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-34666 , AIAA Thermophysics Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data acquired. It also describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: STO-MP-AVT-246 , ARC-E-DAA-TN35029 , ARC-E-DAA-TN34022 , NATO CSO AVT-246 Specialists Meeting; Sep 26, 2016 - Sep 28, 2016; Avila; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA Glenn Research Center. The TDU consists of three subsystems: the reactor simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the heat exchanger manifold (HXM). An annular linear induction pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now) is referred to as the "RxSim subsystem" and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the computer-aided-design (CAD) model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras (SA) turbulence model) and 2.223 kg/sec (using the k- turbulence model). The computational error of the predictions for the available mass flow is 0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k- turbulence model) when compared to measured data.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2016-218913 , AIAA Paper 2015-3906 , E-19169 , GRC-E-DAA-TN25966 , International Energy Conversion Engineering; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: There are many flows fields that span a wide range of length scales where regions of both rarefied and continuum flow exist and neither direct simulation Monte Carlo (DSMC) nor computational fluid dynamics (CFD) provide the appropriate solution everywhere. Recently, a new viscous collision limited (VCL) DSMC technique was proposed to incorporate effects of physical diffusion into collision limiter calculations to make the low Knudsen number regime normally limited to CFD more tractable for an all-particle technique. This original work had been derived for a single species gas. The current work extends the VCL-DSMC technique to gases with multiple species. Similar derivations were performed to equate numerical and physical transport coefficients. However, a more rigorous treatment of determining the mixture viscosity is applied. In the original work, consideration was given to internal energy non-equilibrium, and this is also extended in the current work to chemical non-equilibrium.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-23668 , International Symposium on Rarified Gas Dynamics; Jul 10, 2016 - Jul 14, 2016; Victoria; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The calculations were carried out using the VULCAN-CFD solver and Reynolds-Averaged Simulations (RAS). The high Mach number flow conditions match those proposed for the planned experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than eight. Because of the high Mach number flow considered, the injectors consist of a fuel placement device, a strut; and a fluidic vortical mixer, a ramp. These devices accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow albeit via different strategies. Both of these devices were previously studied at lower flight Mach numbers where they exhibited promising performance in terms of mixing efficiency and total pressure recovery. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor, however, at high flight Mach number conditions, the dynamic pressure needed to induce sufficient fuel penetration may be difficult to achieve along with other requirements such as achieving desired levels of fuel-to-air mixing at the required equivalence ratio. The three injectors represent the baseline configurations planned for the experiments. The current work discusses the mixing flow field behavior and differences among the three fuel injectors, mixing performance as described by the mixing efficiency and the total pressure recovery, and performance considerations based on the thrust potential.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-23413 , AIAA Propulsion and Energy Forum and Exposition; Jul 25, 2016 - Jul 27, 2016; Salt Lake, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-E-DAA-TN34363 , NASA Thermal Fluids & Analysis Workshop (TFAWS 2016); Aug 01, 2016 - Aug 05, 2016; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: A matrix of simulations of hypersonic flow over blunt entry vehicles with steady and pulsing retropropulsion jets is presented. Retropropulsion in the supersonic domain is primarily designed to reduce vehicle velocity directly with thrust. Retropropulsion in the hypersonic domain may enable significant pressure recovery through unsteady, oblique shocks while providing a buffer of reactant gases with relatively low total temperature. Improved pressure recovery, a function of Mach number squared and oblique shock angle, could potentially serve to increase aerodynamic drag in this domain. Pulsing jets are studied to include an additional degree of freedom to search for resonances in an already unsteady flow domain with an objective to maximize the time-averaged drag coefficient. In this paradigm, small jets with minimal footprints of the nozzle exit on the vehicle forebody may be capable of delivering the requisite perturbations to the flow. Simulations are executed assuming inviscid, symmetric flow of a perfect gas to enable a rapid assessment of the parameter space (nozzle geometry, plenum conditions, jet pulse frequency). The pulsed-jet configuration produces moderately larger drag than the constant jet configuration but smaller drag than the jet-off case in this preliminary examination of a single design point. The fundamentals of a new algorithm for this challenging application with time dependent, interacting discontinuities using the feature detection capabilities of Walsh functions are introduced.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-22796 , AIAA Fluid Dynamics Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-22834 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but dierent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-22842 , 2016 AIAA Aviation Technology, Integration, and Operations Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell radiation at velocities below 10 km/s. The developed model reduces the nonequilibrium NO radiation by 50% relative to the previous model.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-22846 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 J/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-24487 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (〈50 s), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (〈10 m/s) and moderate (〈500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 s), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-22873 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged infrared intensity images were converted to surface temperatures on the Orion capsule's heatshield. Temperature uncertainties will be discussed relative to uncertainties of surface emissivity and atmospheric transmission loss. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-21465 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: The predicted slosh damping values from Loci-Stream-VOF agree with experimental data very well for all fill levels in the vicinity of the baffle. Grid refinement study is conducted and shows that the current predictions are grid independent. The increase of slosh damping due to the baffle is shown to arise from: a) surface breakup; b) cascade of energy from the low order slosh mode to higher modes; and c) recirculation inside liquid phase around baffle. The damping is a function of slosh amplitude, consistent with previous observation. Miles equation under predicts damping in the upper dome section.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M16-5417 , 2016 AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 28, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-21514 , AIAA Aerospace Sciences Meeting; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN27866 , ASCE Earth and Space Conference 2016; Apr 11, 2016 - Apr 15, 2016; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: ISRU is currently base-lined for the production of oxygen on the Martian surface in the Evolvable Mars Campaign Over 50 of return vehicle mass is oxygen for propulsion. There are two key cryogenic fluid-thermal technologies that need to be investigated to enable these architectures. High lift refrigeration systems. Thermal Insulation systems, either lightweight vacuum jackets of soft vacuum insulation systems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN28864 , SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heaters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2015-545-NESC , GSFC-E-DAA-TN29271 , 2016 Spacecraft Thermal Control Workshop; Mar 22, 2016 - Mar 24, 2016; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: In July of 2015 NASA publically released a new set of Technology Area Roadmaps that will be used to help guide future NASA-funded technology development efforts. One of these was the Thermal Management Systems Roadmap, often identified as TA14. This Roadmap identifies the time sequencing and interdependencies of high priority, advanced thermal control technology for the next 5 to 20 years. Available funding limits the development of new technology. The Roadmaps are the first step in the process of prioritizing HQ-supported technology funding. The 2015 Roadmaps are focused on planned mission architectures and needs, as identified in the NRC-led science Decadals and HEOMD's Design Reference Missions. Additionally, the 2015 Roadmaps focus on "applied " R&D as opposed to more basic research. The NASA Mission Directorates were all closely involved in development of 2015 Roadmaps, and an extensive external review was also conducted. This talk will discuss the Technology Roadmaps in general, and then focus on the specific technologies identified for TA 14, Thermal Management Systems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN29995 , Aerospace Thermal Control Workshop; Mar 22, 2016 - Mar 24, 2016; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN30344 , Spacecraft Thermal Control Workshop; Mar 21, 2016 - Mar 24, 2016; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-E-DAA-TN30104 , ISO JWG Meeting; Mar 08, 2016 - Mar 10, 2016; Montargis; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently enacted FY 16 NASA budget, which includes a sizeable increase, will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN30348 , Spacecraft Thermal Control Workshop; Mar 22, 2016 - Mar 24, 2016; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: This is a summary of the 2015 Space Cryogenics Workshop that was held in Phoenix, Arizona, June 24 to 26, 2015. The workshop was organized by David Plachta and Jason Hartwig of the Cryogenics and Fluid Systems Branch at NASA Glenn Research Center, and continued the tradition of bringing together specialists in the field of space cryogenics to discuss upcoming and potential space missions, and the development of technologies that support or-more often-are enabling for the science and exploration goals of the world's space agencies. The workshop consisted of two days of talks and poster sessions, and provided ample opportunity for more informal discussions that foster collaborations and cooperation in the space cryogenics community. Selected papers from the workshop are published in a special issue of Cryogenics, which is expected to be published by the end of 2015.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2016-218920 , E-19177 , GRC-E-DAA-TN27255 , 2015 Space Cryogenics Workshop; Jun 24, 2015 - Jun 26, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Mesh motion is the process by which a computational domain is updated in time to reflect physical changes in the material the domain represents. Such a technique is needed in the study of the thermal response of ablative materials, which erode when strong heating is applied to the boundary. Traditionally, the thermal solver is coupled with a linear elastic or biharmonic system whose sole purpose is to update mesh node locations in response to altering boundary heating. Simple mesh motion algorithms rely on boundary surface normals. In such schemes, evolution in time will eventually cause the mesh to intersect and "tangle" with itself, causing failure. Furthermore, such schemes are greatly limited in the problems geometries on which they will be successful. This paper presents a comprehensive and sophisticated scheme that tailors the directions of motion based on context. By choosing directions for each node smartly, the inevitable tangle can be completely avoided and mesh motion on complex geometries can be modeled accurately.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-34553 , AIAA Thermophysics Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: The abilities of two different Reynolds-Averaged Navier-Stokes codes to predict the effects of an active flow control device are evaluated. The flow control device consists of a blowing slot located on the upper surface of an NACA 0018 airfoil, near the leading edge. A second blowing slot present on the airfoil near mid-chord is not evaluated here. Experimental results from a wind tunnel test show that a slot blowing with high momentum coefficient will increase the lift of the airfoil (compared to no blowing) and delay flow separation. A slot with low momentum coefficient will decrease the lift and induce separation even at low angles of attack. Two codes, CFL3D and FUN3D, are used in two-dimensional computations along with several different turbulence models. Two of these produced reasonable results for this flow, when run fully turbulent. A more advanced transition model failed to predict reasonable results, but warrants further study using different inputs. Including inviscid upper and lower tunnel walls in the simulations was found to be important in obtaining pressure distributions and lift coefficients that best matched experimental data. A limited number of three-dimensional computations were also performed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2017-219602 , L-20799 , NF1676L-26639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: A wind tunnel test program has been conducted to define convective heating environments on the back-face of a Hypersonic Inflatable Aerodynamic Decelerator aeroshell. Wind tunnel testing was conducted at Mach 6 and Mach 10 at unit Reynolds numbers from 0.510(exp 6)/ft to 3.910(exp 6)/ft on a 6.3088 in diameter aeroshell model. Global heating data were obtained through phosphor thermography on the aeroshell back face, as well as on the payload and the aeroshell front face. For all test conditions, laminar flow was produced on the aeroshell front face, while the separated wake shear layer and aeroshell back-face boundary layer were transitional or turbulent. Along the leeward centerline of the aeroshell back face and payload centerbody, heating levels increased with both free stream Reynolds number and angle of attack. The Reynolds number dependency was due to increasing strength of wake turbulence with Reynolds number. The angle-of-attack dependency was due to movement of the wake-vortex reattachment point on the aeroshell back face. The maximum heating levels on the aeroshell back face and payload were approximately 5% to 6%, respectively, of the aeroshell front-face stagnation point. To allow for extrapolation of the ground test data to flight conditions, the back face and payload heating levels were correlated as a function of aeroshell front-face peak momentum thickness Reynolds numbers.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA-TP-2017-219581 , L-20785 , NF1676L-20696
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-12
    Description: Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field. Results were compared and shown to agree with numerical simulations of colleagues from EPFL, Switzerland.In addition, a preliminary study was completed on the effect of a Taylor bubble passing through nucleate flow boiling, showing that the thinning thermal boundary layer within the film suppressed nucleation, thereby decreasing the heat transfer coefficient.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN34030
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-12
    Description: In support of Topic A.2.8 of NASA NRA NNH10ZEA001N, the University of Florida (UF) has investigated the use of flow field optical diagnostic and micromachined sensor-based techniques for assessing the wall shear stress on an acoustic liner. Stereoscopic particle image velocimetry (sPIV) was used to study the velocity field over a liner in the Grazing Flow Impedance Duct (GFID). The results indicate that the use of a control volume based method to determine the wall shear stress is prone to significant error. The skin friction over the liner as measured using velocity curve fitting techniques was shown to be locally reduced behind an orifice, relative to the hard wall case in a streamwise plane centered on the orifice. The capacitive wall shear stress sensor exhibited a linear response for a range of shear stresses over a hard wall. PIV over the liner is consistent with lifting of the near wall turbulent structure as it passes over an orifice, followed by a region of low wall shear stress.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2017-219583 , L-20807 , NF1676L-25511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-12
    Description: Retreating blade stall is a well-known phenomenon that limits rotorcraft speed, maneuverability, and efficiency. Airfoil dynamic stall is a simpler problem, which demonstrates many of the same flow phenomena. Combustion Powered Actuation (COMPACT) is an active flow control technology, which at the outset of this work, had been shown to mitigate static and dynamic stall at low Mach numbers. The attributes of this technology suggested strong potential for success at higher Mach numbers, but such experiments had never been conducted. The work detailed in this report documents a 3-year effort focused on assessing the effectiveness of COMPACT for dynamic stall suppression at freestream conditions up to Mach 0.5. The work done has focused on implementing COMPACT on a high-lift rotorcraft airfoil: the VR-12. This selection was made in order to ensure that any measured benefits are over and above the capabilities of state-of-the-art high-lift rotorcraft airfoils. The detailed Computational Fluid Dynamics (CFD) simulations, wind-tunnel experiments, and system-level modeling conducted have shown the following: (1) COMPACT, in its current state of development, is capable of reducing the adverse effects of deep dynamic stall at Mach numbers up to 0.4; (2) The two-dimensional (2D) CFD results trend well compared to the experiments; and (3) Implementation of the CFD results into a system-level model suggest that significant rotor-level benefits are possible.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2016-219336 , NF1676L-24901
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: Spontaneous rotational Raman scattering spectroscopy is used to acquire the first ever high quality, spatially-resolved measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing nonlinear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2, using a custom in-house code developed specifically for this investigation. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5 percent for temperature, and rms variations in temperature between +/-2.2 percent at 296 K and +/-4.5 percent at 850 K. The results of this and planned follow-on studies will support NASA GRC's development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2017-219504/REV1 , E-19366 , GRC-E-DAA-TN49127 , GRC-E-DAA-TN40888
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-E-DAA-TN32026
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Methods and apparatus for the testing of below-ambient temperature thermal insulation systems have been developed based on boiloff calorimetry. Boiloff calorimetry provides a direct measure of heat flow for below-ambient temperature conditions. The effective thermal conductivity (ke) and heat flux (q) of a test specimen are calculated for a fixed environmental condition (warm boundary temperature; cold boundary temperature; ambient or vacuum pressure). Through its heat of vaporization, liquid nitrogen (LN2) serves as the energy meter. Different apparatus have been built for flat-plate, cylindrical, and pipeline test specimens. Boundary temperatures can range from 353 K down to 77 K (80 C to -196 C). By interposing different insulation layers on the cold boundary, the cryogenic boiloff method is suitable for a wide range of below-ambient temperature applications. A cylindrical apparatus, Cryostat-100, as well as the pipeline test apparatus, Cryostat-P100, are thermally guarded and directly measure absolute thermal performance in watts. Pipe insulation systems can be mechanical, double-walled, or vacuum-jacketed including materials such as foams, cellular glass, aerogel blankets, clam-shell panels, and multilayer insulation. Two test pipelines, 12-meter-long, are mounted between two cold box assemblies. The test pipeline diameter is from 25-mm to 76-mm while the maximum outside diameter including insulation is up to 204-mm. The cold pipe tester design and test methods are discussed, as well as results for select thermal insulation materials. Progress toward a comparative type, bench-top cold pipe tester (Cryostat-P200) is also discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: KSC-E-DAA-TN33264
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-21463 , AIAA Aerospace Sciences Meeting; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-34782 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-20
    Description: Grid convergence studies are performed to establish reference solutions for benchmark three dimensional turbulent flows in support of the ongoing turbulence model verification and validation e ort at the Turbulence Modeling Resource website curated by NASA. The bench- mark cases are a subsonic flow around a hemisphere cylinder and a transonic flow around the ONERA M6 wing with a sharp trailing edge. The study applies widely-used computational fluid dynamics codes developed and supported at the NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions are computed for the Reynolds-Averaged Navier-Stokes equations with the Spalart-Allmaras turbulence model on families of consistently-refined grids composed of different types of cells. Coarse-to- ne and code-to-code solution variation is described in detail.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-27447 , AIAA SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-20
    Description: Recent work has shown that a significant contributor to the afterbody aeroheating during Mars entry is radiation. However, relevant ground test data is not available to help assess the uncertainty associated with prediction of the radiation when designing the thermal protection system for the aeroshell afterbody. The present work is aimed at designing an experiment which allows the study of the afterbody radiation experienced during Mars entry. The X2 expansion tube at the University of Queensland is used to generate the relevant experimental freestream flow conditions. Analysis is carried out to accurately characterize the generated experimental freestream conditions. A two dimensional wedge model is used to produce the expanding flow which simulates aspects of the afterbody flow around Mars entry vehicles. Preliminary analysis of the generated expanding flow shows that it produces significant radiation in the mid-infrared region and has a steady duration of about 50-110 s. This allows emission spectroscopy to be conducted in the future.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN34786 , Australasian Fluid Mechanics Conference (AFMC); Dec 05, 2016 - Dec 08, 2016; Perth, Western Australia; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-24300 , Experiments in Fluids (ISSN 0723-4864) (e-ISSN 1432-1114); 57; 8; 130
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: Hybrid full spectrum solar systems (FSSS) designed to capture and convert the full solar wavelength spectrum use hybrid solar photovoltaic/thermodynamic cycles that require low thermal exergy loss systems capable of transferring high thermal energy rates and fluxes with very low temperature differentials and losses. One approach to achieving this capability are high-heat-flux reflux boiling systems that take advantage of high heat transfer boiling and condensation mechanisms. Advanced solar systems are also intermittent by their nature and their electrical generation is often out-of-phase with electric utility power demand, and their required power system cycling reduces efficiency, performance (dispatch ability), lifetime, and reliability. High temperature thermal energy storage (TES) at 300-600C enables these reflux boiling systems to simultaneously store thermal energy internally to increase the energy dispatch ability of the associated solar system, as this can increase the power generation profile by several hours (up to 6-10 hours) per day. Many TES phase change materials (PCMs) exist including KNO3, NaNO3, LiBr/KBr, MgCl2/NaCl/KCl, Zn/Mg, and CuCl/NaCl, which have various operating melting points and different latent heats of fusion. Common, cost effective TES PCM's are FeCl2/NaCl/KCl mixtures, whose phase change temperature can be varied and controlled by simple composition adjustments. This paper presents and discusses unique "temperature-staged" thermal energy storage configurations using these TES materials and analysis of such systems integrated into high-heat-flux reflux boiling systems. In this specific application, the TES materials are designed to operate at staged temperatures surrounding an operating design point near 350C, while providing 18 kW of source heat transfer to operate a thermoacoustic power system during off-sun conditions (e.g., temporary cloud conditions, after sun-down). This work discusses relevant configurations, and critical thermal and entropy models of the TES configurations, which show the inherent minimization of thermal exergy during critical heat transfers within the configurations and systems envisioned.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: IMECE2016-67013 , JPL-CL-16-3364 , ASME International Mechanical Engineering Congress & Exposition; Nov 11, 2016 - Nov 17, 2016; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: Launch Ascent and Vehicle Aerodynamics (LAVA) (Computational Fluid Dynamics (CFD) solver) contribution to HiLiftPW-3 (3rd AIAA CFD High Lift Prediction Workshop). Including HL-CRM (NASA High Lift Common Research Model) and JSM (Joint Statistical Modeling) case studies.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN43283 , ARC-E-DAA-TN32818 , AIAA High Lift Prediction Workshop (HiLiftPW-3); Jun 03, 2017 - Jun 04, 2017; Denver, CO; United States|AIAA Aviation Forum 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: To investigate air radiation in expanding flows and provide experimental data for validating associated computational models, experiments were conducted in the X2 expansion tunnel facility at the Centre for Hypersonics of the University of Queensland. A 54deg turning angle wedge model was employed to generate steady expanding flows with in flow total enthalpies of 50.7, 63.4 and 75.4 MJ/kg. VUV spectra from 118 to 180 nm were acquired across the wedge at three equispaced distances away from the top of the model, as well as through its top surface. High speed filtered images were also obtained by coupling a Shimadzu 1 MHz high speed camera to a bandpass filter to obtain calibrated images of the 777 nm oxygen triplet. Both the across-wedge VUV spectra and filtered images of the 777 nm atomic oxygen were compared with NEQAIR simulations, which were performed using flow field data from two-dimensional CFD simulations with two-temperature 11-species air chemistry utilising the in-house Navier-Stokes flow solver Eilmer3. Data extracted from consecutive frames of the filtered high speed images confirmed up to 8 s of available test time for the flow conditions tested. For the strongly radiating 149 and 174 nm atomic nitrogen lines, large disagreement between experimental data and NEQAIR predictions can be observed from the start of the expansion fan where the electron-ion recombination process commences. The spatial extent, or spans of the radiance profiles of the 149 and 174 nm N lines are significantly underpredicted by NEQAIR, and are very close to those of N, N+ and electron number density profiles, which follow that of flow density. The electron-ion recombination process is proposed as the main reason for these discrepancies. The comparisons between NEQAIR simulations and filtered images of the 777 nm oxygen triplet show good agreement in the post-shock compression region and the start of the expansion fan for the 63.4 MJ/kg condition, but with up to a factor of three overprediction by NEQAIR further downstream, which is attributed to electron-impact excitation. Similar trends are found with the 75.4 MJ/kg condition, with reduced level of agreement in the compression region, which can be due to uncertainties in inflow condition.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN42397 , AIAA Thermophysics Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: Velocity profiles are measured using molecular tagging velocimetry (MTV) in the high temperature test facility (HTTF) at Oregon State University during a depressurized conduction cooldown (DCC) event. The HTTF is a quarter scale electrically heated nuclear reactor simulator designed to replicate various accident scenarios. During a DCC, a double ended guillotine break results in the reactor pressure vessel (RPV) depressurizing into the reactor cavity and ultimately leading to air ingress in the reactor core (lock-exchange and gas diffusion). It is critical to understand the resulting buoyancy-driven flow to characterize the reactor self-cooling capacity through natural circulation. During tests conducted at ambient pressure and temperature, the RPV containing helium is opened (via the hot and cold legs) to a large vessel filled with nitrogen to simulate the atmosphere. The velocity profile on the hot leg pipe centerline is recorded at 10 Hz with MTV based on NO tracers. The precision of the velocimetry was measured to be 0.02 m/s in quiescent flow prior to the tests. A helium flow from the RPV is initially observed in the top quarter of the pipe. During the first 20 seconds of the event, helium flows out of the RPV with a maximum velocity below 2 m/s. The velocity profile transitions from parabolic to linear in character and decays slowly over the rest of the recording; peak velocities of 0.2 m/s are observed after 30 min. A counter-flow of nitrogen is also observed intermittently, which occurs at lower velocities (〉0.1 m/s).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-26169 , International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17); Sep 03, 2017 - Sep 08, 2017; Xian; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: Water hammer analysis in pipe lines, in particularly during priming into evacuated lines is important for the design of spacecraft and other in-space application. In the current study, a finite volume network flow analysis code is used for modeling three different geometrical configurations: the first two being straight pipe, one with atmospheric air and other with evacuated line, and the third case is a representation of a complex flow network system. The numerical results show very good agreement qualitatively and quantitatively with measured data available in the literature. The peak pressure and impact time in case of straight pipe priming in evacuated line shows excellent agreement.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M17-6106 , AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ICES-2017-256 , M17-6120 , International Conference on Environmental Systems (ICES 2017); Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Multilayer insulation (MLI) is considered the state of the art insulation for cryogenic propellant tanks in the space environment. MLI traditionally consists of multiple layers of metalized films separated by low conductivity spacers. In order to better understand some of the details within MLI design and construction, GRC has been investigating the heat loads caused by multiple types of seams. To date testing has been completed with 20 layer and 50 layer blankets. Although a truly seamless blanket is not practical, a blanket lay-up where each individual layer was overlapped and tapped together was used as a baseline for the other seams tests. Other seams concepts tested included: an overlap where the complete blanket was overlapped on top of itself; a butt joint were the blankets were just trimmed and butted up against each other, and a staggered butt joint where the seam in the out layers is offset from the seam in the inner layers. Measured performance is based on a preliminary analysis of rod calibration tests conducted prior to the start of seams testing. Baseline performance for the 50 layer blanket showed a measured heat load of 0.46 Watts with a degradation to about 0.47 Watts in the seamed blankets. Baseline performance for the 20 layer blanket showed a measured heat load of 0.57 Watts. Heat loads for the seamed tests are still begin analyzed. So far analysis work has suggested the need for corrections due to heat loads from both the heater leads and the instrumentation wires. A careful re-examination of the calibration test results with these factors accounted for is also underway. This presentation will discuss the theory of seams in MLI, our test results to date, and the uncertainties in our measurements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN44512 , Space Cryogenics Workshop; Jul 05, 2017 - Jul 07, 2017; Oak Brook, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN43917 , 2017 Cryogenic Engineering Conference; Jul 09, 2017 - Jul 13, 2017; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN44304 , Space Cryogenics Workshop; Jul 05, 2017 - Jul 07, 2017; Oak Brook, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to each the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fouriers Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at 76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN44332 , GRC-E-DAA-TN44277 , Cryogenic Engineering Conference; Jul 09, 2017 - Jul 13, 2017; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The need to demonstrate and evaluate the effectiveness of heat interception methods for use on a relevant cryogenic propulsion stage at a system level has been identified. Evolvable Cryogenics (eCryo) Structural Heat Intercept, Insulation and Vibration Evaluation Rig (SHIIVER) will be designed with vehicle specific geometries (SLS Exploration Upper Stage (EUS) as guidance) and will be subjected to simulated space environments. One method of reducing structure-born heat leak being investigated utilizes vapor-based heat interception. Vapor-based heat interception could potentially reduce heat leak into liquid hydrogen propulsion tanks, increasing potential mission length or payload capability. Due to the high number of unknowns associated with the heat transfer mechanism and integration of vapor-based heat interception on a realistic large-scale skirt design, a sub-scale investigation was developed. The sub-project effort is known as the Small-scale Laboratory Investigation of Cooling Enhancements (SLICE). The SLICE aims to study, design, and test sub-scale multiple attachments and flow configuration concepts for vapor-based heat interception of structural skirts. SLICE will focus on understanding the efficiency of the heat transfer mechanism to the boil-off hydrogen vapor by varying the fluid network designs and configurations. Various analyses were completed in MATLAB, Excel VBA, and COMSOL Multiphysics to understand the optimum flow pattern for heat transfer and fluid dynamics. Results from these analyses were used to design and fabricate test article subsections of a large forward skirt with vapor cooling applied. The SLICE testing is currently being performed to collect thermal mechanical performance data on multiple skirt heat removal designs while varying inlet vapor conditions necessary to intercept a specified amount of heat for a given system. Initial results suggest that applying vapor-cooling provides a 50 heat reduction in conductive heat transmission along the skirt to the tank. The information obtained by SLICE will be used by the SHIIVER engineering team to design and implement vapor-based heat removal technology into the SHIIVER forward skirt hardware design.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN44185 , Space Cryogenics Workshop; Jul 05, 2017 - Jul 07, 2017; Oak Brook, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Previously we identified the receding flow, where two fluid streams recede from each other, as an open numerical problem, because all well-known numerical fluxes give an anomalous temperature rise, thus called the overheating problem. This phenomenon, although presented in several textbooks, and many previous publications, has scarcely been satisfactorily addressed and the root cause of the overheating problem not well understood. We found that this temperature rise was solely connected to entropy rise and proposed to use the method of characteristics to eradicate the problem. However, the root cause of the entropy production was still unclear. In the present study, we identify the cause of this problem: the entropy rise is rooted in the pressure flux in a finite volume formulation and is implanted at the first time step. It is found theoretically inevitable for all existing numerical flux schemes used in the finite volume setting, as confirmed by numerical tests. This difficulty cannot be eliminated by manipulating time step, grid size, spatial accuracy, etc, although the rate of overheating depends on the flux scheme used. Finally, we incorporate the entropy transport equation, in place of the energy equation, to ensure preservation of entropy, thus correcting this temperature anomaly. Its applicability is demonstrated for some relevant 1D and 2D problems. Thus, the present study validates that the entropy generated ab initio is the genesis of the overheating problem.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN42539 , AIAA Aviation Technology, Integration, and Operations Conference (AVIATION 2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: A computational study of the Adaptive Deployable Entry and Placement Technology (ADEPT) Sounding Rocket (SR-1) Test is presented using the US3D flow solver. ADEPT SR-1 is intended, in part, to assess the dynamic stability of this entry vehicle architecture. Given that no dynamic stability data exists for the ADEPT geometry, a limited ballistic range campaign has been performed to characterize the vehicle's stability characteristics pre-flight for Mach numbers between 1.21 and 2.5. Here, this data is used to assess the accuracy of US3D's free-flight CFD capability. Computed trajectories from US3D and experimental data show that the flow solver compares well in vehicle oscillation frequency, downrange distance, and oscillatory amplitude during high Mach number flight (Mavg = 2.36). For Mach numbers below 1.5, the solver under predicts total angle-of-attack by an average of 16%, but compares well in oscillatory frequency and downrange distance. Additionally, a capability for simulating the trajectory of the flight article through the atmosphere using CFD is presented. This capability couples US3D's free-flight capability to an atmosphere model that accounts for changes in free-stream density and temperature as the vehicle descends. Two simulations for the purpose of demonstrating the capability and viability of this approach are applied to SR-1 flight article, and some unique challenges are discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN56787 , AIAA Aviation Forum; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Abstract: NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into using boil-off to intercept heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a 4 meter diameter test tank and assembly is currently being designed to include skirt structural systems with integral vapor cooling. In order to give a more representative result for actual applications, the technologies will be designed for an 8.4 m and scaled down to a 4 meter tank. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plum Brook Station both before and after being vibration tested at Plum Brooks Space Power Facility.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN44184 , Space Cryogenics Workshop; Jul 05, 2017 - Jul 07, 2017; Oak Brook, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: Abstract: This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN43972 , Cryogenic Engineering Conference; Jul 09, 2017 - Jul 13, 2017; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: High-powered lasers were used to induce ablation and to form fusion crusts in the lab on Tamdakht H5 chondrites and basalt. These ground tests were undertaken to improve our understanding, and ultimately improve our abilty to model and predict, meteoroid ablation during atmospheric entry. The infrared fiber laser at the LHMEL facilty, operated in the continuous wave (i.e. non-pulsed) mode, provided radiation surface heat flux at levels similar to meteor entry for these tests. Results are presented from the first round of testing on samples of Tamdakht H5 ordinary chondrite which were ex-posed to entry-relevant heating rates between 2 and 10 kWcm2.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN45052 , Annual Meeting of The Meteoritical Society; Jul 23, 2017 - Jul 28, 2017; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: The thermal architecture for the Surface Water Ocean Topography mission utilizes loop heat pipes and constant conductance heat pipes to transport waste heat (〉 1000 Watts) from the instrument electronics to the radiator. The main thermal design risk is the ability to maintain a temporal stability of 〈0.05 Celsius per minute in a low earth orbit environment. The stringent thermal requirements are part of the overall error budget needed to meet the primary mission science objectives. A testbed was developed to simulate flight-like loads and environments in order to validate the thermal subsystem can meet the temporal stability requirements. Preliminary testing showed that the thermal control system can meet the stability requirement and that loop heat pipes are actually helping to maintain stability during transient sink temperature changes for this specific flight application and boundary conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ICES-2016-033 , JPL-CL-16-2675 , International Conference on Environmental Systems (ICES); Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: To address the challenges, which are involved with the development of flow control valves that can meet the requirements of deep oil wells such as high pressure, high flow rate, limited power and limited space, the authors have conceived a novel design configuration [1]. This design consists of a digitalized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet. A choke valve controls the total flow rate by digitally opening different paths or different combination of the paths. Each path is controlled by a poppet cap valve basically operated in on-off states. The number of flow states is 2N where N is the number of flow paths. To avoid erosion from sand in the oil and high speed flow, the seal area of the poppet cap valve is located at a distance from the flow inlet away from the high speed flow and the speed is controlled to stay below a predefined erosion safe limit. The path is a multistage structure composed of a set of serial nozzles-expansion chambers that equally distribute the total pressure drop to each stage. The pressure drop of each stage and, therefore, the flow speed at the nozzles and expansion chambers is controlled by the number of stages. The paths have relatively small cross section and could be relatively long for large number of stages and still fit in the strict annular space limit of a typical downhole region of an oil well. The paper will present the design configuration, analysis and preliminary test results.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JPL-CL-16-0783 , SPIE Smart Structures/NDE 2016; Mar 20, 2016 - Mar 24, 2016; Las Vegas, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass..
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN43998 , Cryogenic Engineering Conference; Jul 09, 2017 - Jul 13, 2017; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN44034 , Space Cryogenics Workshop; Jul 05, 2017 - Jul 07, 2017; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN41738 , Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube for conditions relevant to Titan entry, varying atmospheric composition, free-stream density (equivalent to altitude) and shock velocity. Permutations in atmospheric composition include 1.1, 2, 5 and 8.6 CH4 by mole with a balance of N2 and 1.5 CH4 0.5 Ar 98 N2 by mole, which is consistent with the current understanding of Titan's atmosphere. The effect of gas impurities identified in previous shock tube studies were also examined by testing in pure N2 and deliberate addition of air to the CH4N2 mixtures. The test campaign measured radiation at velocities from 4.7 kms to 8 kms and free-stream pressures from 0.1 to 0.47 Torr. These conditions cover a range of potential trajectories for flight missions, including a direct ballistic trajectory, a fly by or an extremely high speed entry. Radiances measured in this work are substantially larger compared to that reported both in past EAST test campaigns and other shock tube facilities. Depending on the metric used for comparison, the discrepancy can be as high as an order of magnitude. Potential causes for the discrepancy, such as the effect of oxygen due to Air leakage, gas composition and purity are discussed. The present work provides a new benchmark set of data to replace those published in previous studies.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN42930 , AIAA Thermophysics Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: To investigate air radiation in expanding flows and provide experimental data for validating associated computational models, experiments were conducted in the X2 expansion tunnel facility at the Centre for Hypersonics of the University of Queensland. A 54 turning angle wedge model was employed to generate steady expanding flows with in flow total enthalpies of 50.7, 63.4 and 75.4 MJkg. VUV spectra from 118 to 180 nm were acquired across the wedge at three equispaced distances away from the top of the model, as well as through its top surface. High speed filtered images were also obtained by coupling a Shimadzu 1 MHz high speed camera to a bandpass filter to obtain calibrated images of the 777 nm oxygen triplet. Both the across-wedge VUV spectra and filtered images of the 777 nm atomic oxygen were compared with NEQAIR simulations, which were performed using flow field data from two-dimensional CFD simulations with two-temperature 11-species air chemistry utilizing the in-house Navier-Stokes flow solver Eilmer3. Data extracted from consecutive frames of the filtered high speed images confirmed up to 8 s of available test time for the flow conditions tested. For the strongly radiating 149 and 174 nm atomic nitrogen lines, large disagreement between experimental data and NEQAIR predictions can be observed from the start of the expansion fan where the electron-ion recombination process commences. The spatial extent, or spans of the radiance profiles of the 149 and 174 nm N lines are significantly under predicted by NEQAIR, and are very close to those of N, N+ and electron number density profiles, which follow that of flow density. The electron-ion recombination process is proposed as the main reason for these discrepancies. The comparisons between NEQAIR simulations and filtered images of the 777 nm oxygen triplet show good agreement in the post-shock compression region and the start of the expansion fan for the 63.4 MJkg condition, but with up to a factor of three over prediction by NEQAIR further downstream, which is attributed to electron-impact excitation. Similar trends are found with the 75.4 MJkg condition, with reduced level of agreement in the compression region, which can be due to uncertainties in inflow condition.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN42931 , AIAA Aviation 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN44025 , Space Cryogenics Workshop; Jul 05, 2017 - Jul 07, 2017; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Large-eddy simulations were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver, WRLES, was used to compute the flow from a 2-inch round nozzle. Several different flow conditions, consisting of different jet Mach numbers and temperature ratios, were examined. Predictions of mean and fluctuating velocities were compared to previously obtained particle image velocimetry data. Predictions of mean and fluctuating temperature were compared to new data obtained using Raman spectroscopy. Based on the good agreement with experimental data for the individual quantities, the combined quantity turbulent heat flux was examined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN43225 , AIAA Aviation; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-30
    Description: The Reynolds-stress and triple product Lag models were created with a normal stress distribution which was defined by the accepted 4:3:2 distribution of streamwise, spanwise and wall normal stresses, and a ratio of (sub w) = 0.3k in the log layer region of high Reynolds number flat plate flow, which implies R11(+) = 4/(9/2).3 2.96. More recent measurements show a more complex picture of the log layer region at high Reynolds numbers. The first cut at improving these models along with the direction for future refinements is described. Comparison with recent high Reynolds number data shows areas where further work is needed, but also shows inclusion of the modeled turbulent transport terms improve the prediction where they influence the solution. Additional work is needed to develop a model that better matches experiments, but there is significant improvement in many of the details of the log layer behavior.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN42785 , AIAA Computational Fluid Dynamics Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-30
    Description: The Reynolds-stress and triple product Lag models were created with a normal stress distribution which was defined by the accepted 4:3:2 distribution of streamwise, spanwise and wall normal stresses, and a ratio of (sub w) = 0.3k in the log layer region of high Reynolds number flat plate flow, which implies R11(+) = 4/(9/2).3 2.96. More recent measurements show a more complex picture of the log layer region at high Reynolds numbers. The first cut at improving these models along with the direction for future refinements is described. Comparison with recent high Reynolds number data shows areas where further work is needed, but also shows inclusion of the modeled turbulent transport terms improve the prediction where they influence the solution. Additional work is needed to develop a model that better matches experiments, but there is significant improvement in many of the details of the log layer behavior.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 2017-3954 , ARC-E-DAA-TN42493 , AIAA Computational Fluid Dynamics Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-30
    Description: Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-24091 , Journal of Fluid Mechanics (ISSN 0022-1120) (e-ISSN 1469-7645); 804; 578-607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-24
    Description: A flow conditioning device for incrementally stepping down pressure within a piping system is presented. The invention includes an outer annular housing, a center element, and at least one intermediate annular element. The outer annular housing includes an inlet end attachable to an inlet pipe and an outlet end attachable to an outlet pipe. The outer annular housing and the intermediate annular element(s) are concentrically disposed about the center element. The intermediate annular element(s) separates an axial flow within the outer annular housing into at least two axial flow paths. Each axial flow path includes at least two annular extensions that alternately and locally direct the axial flow radially outward and inward or radially inward and outward thereby inducing a pressure loss or a pressure gradient within the axial flow. The pressure within the axial flow paths is lower than the pressure at the inlet end and greater than the vapor pressure for the axial flow. The invention minimizes fluidic instabilities, pressure pulses, vortex formation and shedding, and/or cavitation during pressure step down to yield a stabilized flow within a piping system.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-24
    Description: A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JPL-CL-16-1182 , 2016 Spacecraft Thermal Control Workshop; Mar 22, 2016 - Mar 24, 2016; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-13
    Description: The Heatshield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD (Space Technology Mission Directorate) and SMD (Science Mission Directorate) co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASA's high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI (Principal Investigator) managed mission cost (PIMMC) for investigations utilizing the Heatshield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN32543 , New Frontiers Technology Workshop; Jun 01, 2016; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-13
    Description: One of the challenges of designing and flying a scramjet-powered vehicle is the difficulty of preflight testing. Ground tests at realistic flight conditions introduce several sources of uncertainty to the flow that must be addressed. For example, the scales of the available facilities limit the size of vehicles that can be tested and so performance metrics for larger flight vehicles must be extrapolated from ground tests at smaller scales. To create the correct flow enthalpy for higher Mach number flows, most tunnels use a heater that introduces vitiates into the flow. At these conditions, the effects of the vitiates on the combustion process is of particular interest to the engine designer, where the ground test results must be extrapolated to flight conditions. In this paper, the uncertainty of the cracked JP-7 chemical kinetics used in the modeling of a hydrocarbon-fueled scramjet was investigated. The factors that were identified as contributing to uncertainty in the combustion process were the level of flow vitiation, the uncertainty of the kinetic model coefficients and the variation of flow properties between ground testing and flight. The method employed was to run simulations of small, unit problems and identify which variables were the principal sources of uncertainty for the mixture temperature. Then using this resulting subset of all the variables, the effects of the uncertainty caused by the chemical kinetics on a representative scramjet flow-path for both vitiated (ground) and nonvitiated (flight) flows were investigated. The simulations showed that only a few of the kinetic rate equations contribute to the uncertainty in the unit problem results, and when applied to the representative scramjet flowpath, the resulting temperature variability was on the order of 100 K. Both the vitiated and clean air results showed very similar levels of uncertainty, and the difference between the mean properties were generally within the range of uncertainty predicted.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-26322 , 2017 JANNAF - Interagency Propulsion Committee meeting; Dec 04, 2017 - Dec 08, 2017; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-13
    Description: The current work compares experimentally and computationally obtained nitric oxide (NO) planar laser induced fluorescence (PLIF) images of the mixing flowfields for three types of high-speed fuel injectors: a strut, a ramp, and a rectangular flushwall. These injection devices, which exhibited promising mixing performance at lower flight Mach numbers, are currently being studied as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, and improve the understanding of underlying physical processes relevant to flight Mach numbers greater than eight. In the experiments, conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF), the injectors are placed downstream of a Mach 6 facility nozzle, which simulates the high Mach number air flow at the entrance of a scramjet combustor. Helium is used as an inert substitute for hydrogen fuel. Both schlieren and PLIF techniques are applied to obtain mixing flowfield flow visualizations. The experimental PLIF is obtained by using a UV laser sheet to interrogate a plane of the flow by exciting fluorescence from the NO molecules, which are present in the AHSTF air. Consequently, the absence of signal in the resulting PLIF images is an indication of pure helium (fuel). The computational PLIF is obtained by applying a fluorescence model for NO to the results of the Reynolds-averaged simulations (RAS) of the mixing flow field carried out using the VULCAN-CFD solver. This approach is required because the PLIF signal is a nonlinear function of not only NO concentration, but also pressure, temperature, and the flow velocity. This complexity allows additional flow features to be identified and compared with those obtained from the computational fluid dynamics (CFD) simulations, however, such comparisons are only semiquantitative. Three-dimensional image reconstruction, similar to that used in magnetic resonance imaging, is also used to obtain images in the streamwise and spanwise planes from select cross-stream PLIF plane data. Synthetic schlieren is also computed from the RAS data. Good agreement between the experimental and computational results provides increased confidence in the CFD simulations for investigations of injector performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-27198 , Propulsion Systems Hazards (PSHS); 4-7 Dec. 2017; Newport News, VA; United States|Joint Subcommittee Meeting; 4-7 Dec. 2017; Newport News, VA; United States|Exhaust Plume and Signatures (EPSS); 4-7 Dec. 2017; Newport News, VA; United States|Programmatic and Industrial Base Meeting; 4-7 Dec. 2017; Newport News, VA; United States|Combustion (CS); 4-7 Dec. 2017; Newport News, VA; United States|Air Breathing Propulsion (APS); 4-7 Dec. 2017; Newport News, VA; United States|Joint Army-Navy-NASA-Air Force (JANNAF) Meeting; 4-7 Dec. 2017; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-13
    Description: NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN42876 , Hypersonic Vehicle Flight Prediction Workshop; Jun 20, 2017 - Jun 22, 2017; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-13
    Description: This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN44281 , 2017 Cryogenic Engineering Conference; Jul 10, 2017 - Jul 13, 2017; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M17-6194 , Thermal & Fluids Analysis Workshop (TFAWS 2017); Aug 21, 2017 - Aug 25, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-13
    Description: We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GSFC-E-DAA-TN43944 , Space Cryogenics Workshop; Jul 05, 2017 - Jul 07, 2017; Oak Brook, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-13
    Description: To meet the flight control damping requirement, baffles of various configurations have been devised to increase the natural viscous damping and decrease the magnitude of the slosh forces and torques. In the design of slosh baffles, the most widely used damping equation is the one derived by Miles, which is based on the experiments of Keulegan and Carpenter. This equation has been used in predicting damping of the baffled tanks in different diameters ranging from 12 to 112 inches. The analytical expression of Miles equation is easy to use, especially in the design of complex baffle system. Previous investigations revealed that some experiments had shown good agreements with the prediction method of Miles, whereas other experiments have shown significant deviations. For example, damping from Miles equation differs from experimental measurements by as much as 100 percent over a range of tank diameters from 12 to 112 inches, oscillation amplitudes from 0.1 to 1.5 baffle widths, and baffle depths of 0.3 to 0.5 tank radius. Previously, much of this difference has been attributed to experimental scatter. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between Miles equation and experimental measurement, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use CFD technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. A well validated CFD solver, developed at NASA MSFC, Loci-STREAM-VOF, is applied to study vorticity field around the baffle and around the fluid interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data are then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (h/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M16-5409 , JANNAF Joint Subcommittee Meeting; Dec 05, 2016 - Dec 09, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-13
    Description: The Miles equation has long been used to predict slosh damping in liquid propellant tanks due to ring baffles. The original work by Miles identifies defined limits to its range of application. Recent evaluations of the Space Launch System identified that the Core Stage baffle designs resulted in violating the limits of the application of the Miles equation. This paper describes the work conducted by NASA/MSFC to develop methods to predict slosh damping from ring baffles for conditions for which Miles equation is not applicable. For asymptotically small slosh amplitudes or conversely large baffle widths, an asymptotic expression for slosh damping was developed and calibrated using historical experimental sub-scale slosh damping data. For the parameter space that lies between region of applicability of the asymptotic expression and the Miles equation, Computational Fluid Dynamics simulations of slosh damping were used to develop an expression for slosh damping. The combined multi-regime slosh prediction methodology is shown to be smooth at regime boundaries and consistent with both sub-scale experimental slosh damping data and the results of validated Computational Fluid Dynamics predictions of slosh damping due to ring baffles.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M16-5411 , JANNAF Modeling and Simulation (MSS) Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-13
    Description: NASA Marshall Space Flight Center (MSFC) has embarked upon a joint project with the Air Force to improve the state-of-the-art of space application combustion device design and operational understanding. One goal of the project is to design, build and hot-fire test a 40,000 pound-thrust Oxygen/Rocket Propellant-2 (RP-2) Oxygen-Rich staged engine at MSFC. The overall project goals afford the opportunity to test multiple different injector designs and experimentally evaluate the any effect on the engine performance and combustion dynamics. To maximize the available test resources and benefits, pre-test, combusting flow, Computational Fluid Dynamics (CFD) analysis was performed on the individual injectors to guide the design. The results of the CFD analysis were used to design the injectors for specific, targeted fluid dynamic features and the analysis results also provided some predictive input for acoustic and thermal analysis of the main Thrust Chamber Assembly (TCA). MSFC has developed and demonstrated the ability to utilize a computationally efficient, flamelet-based combustion model to guide the pre-test design of single-element Gas Centered Swirl Coaxial (GCSC) injectors. Previous, Oxygen/RP-2 simulation models utilizing the Loci-STREAM flow solver, were validated using single injector test data from the EC-1 Air Force test facility. The simulation effort herein is an extension of the validated, CFD driven, single-injector design approach applied to single injectors which will be part of a larger engine array. Time-accurate, Three-Dimensional, CFD simulations were performed for five different classes of injector geometries. Simulations were performed to guide the design of the injector to achieve a variety of intended performance goals. For example, two GCSC injectors were designed to achieve stable hydrodynamic behavior of the propellant circuits while providing the largest thermal margin possible within the design envelope. While another injector was designed to purposefully create a hydrodynamic instability in the fuel supply circuit as predicted by the CFD analysis. Future multi-injector analysis and testing will indicate what if any changes occur in the predicted behavior for the single-element injector when the same injector geometry is placed in a multi-element array.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M16-5453 , JANNAF LPS Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-13
    Description: In this poster we summarize the science and hardware of the Packed Bed Reactor Experiment, which starts operating in the ISS on June 1, 2016.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN32696 , Annual ISS Research and Development Conference; Jul 12, 2016 - Jul 14, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-13
    Description: Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: DFRC-E-DAA-TN36057 , Ablation Workshop; Oct 05, 2016 - Oct 06, 2016; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-13
    Description: Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JANNAF Paper No. 4894 , M17-5650 , Liquid Propulsion (LPS) Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States|Spacecraft Propulsion (SPD) Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States|JANNAF Programmatic Industrial Base (PIB) Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States|Modeling and Simulation (MSS) Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN28967 , Joint CSA/ESA/JAXA/NASA Increments 47 and 48 Science Symposium; Jan 19, 2016 - Jan 21, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: Presentation to cover how to use and understand the NEQAIR code. The avenues to obtain the code will also be discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN33800 , Thermal & Fluids Analysis Workshop; Aug 01, 2016 - Aug 05, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-28
    Description: A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-28
    Description: One or more embodiments of techniques or systems for shaped recess flow control are provided herein. A shaped recess or cavity can be formed on a surface associated with fluid flow. The shaped recess can be configured to create or induce fluid effects, temperature effects, or shedding effects that interact with a free stream or other structures. The shaped recess can be formed at an angle to a free stream flow and may be substantially "V" shaped. The shaped recess can be coupled with a cooling channel, for example. The shaped recess can be upstream or downstream from a cooling channel and aligned in a variety of manners. Due to the fluid effects, shedding effects, and temperature effects created by a shaped recess, lift-off or separation of cooling jets of cooling channels can be mitigated, thereby enhancing film cooling effectiveness.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-28
    Description: The present invention is a system and method of visualizing fluid flow around an object, such as an aircraft or wind turbine, by aligning the object between an imaging system and a celestial object having a speckled background, taking images, and comparing those images to obtain fluid flow visualization.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-28
    Description: Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-28
    Description: A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-13
    Description: Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: M16-5415 , JANNAF Modeling and Simulation (MSS) Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States|JANNAF Spacecraft Propulsion (SPD) Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States|JANNAF Programmatic Industrial Base (PIB) Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-13
    Description: The high total temperatures or total enthalpies required to duplicate the high-speed flight conditions in ground experiments often place stringent requirements on the material selection and cooling needs for the test articles and intrusive flow diagnostic equipment. Furthermore, for internal flows, these conditions often complicate the use of nonintrusive diagnostics that need optical access to the test section and interior portions of the flowpath. Because of the technical challenges and increased costs associated with experimentation at high values of total enthalpy, an attempt is often made to reduce it. This is the case for the Enhanced Injection and Mixing Project (EIMP) currently underway in the Arc-Heated Scramjet Test Facility at the NASA Langley Research Center. The EIMP aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships between mixing performance and losses relevant to flight Mach numbers greater than 8. The experiments will consider a "direct-connect" approach and utilize a Mach 6 nozzle to simulate the combustor entrance flow of a scramjet engine. However, while the value of the Mach number is matched to that expected at the combustor entrance in flight, the maximum value of the total enthalpy for these experiments is limited by the thermal-structural limits of the uncooled experimental hardware. Furthermore, the fuel simulant is helium, not hydrogen. The use of "cold" flows and non-reacting mixtures of fuel simulants for mixing experiments is not new and has been extensively utilized as a screening technique for scramjet fuel injectors. In this study, Reynolds-averaged simulations are utilized (RAS) to systematically verify the implicit assumptions used by the EIMP. This is accomplished by first performing RAS of mixing for two injector configurations at planned nominal experimental conditions. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared to the values obtained from RAS under the true enthalpy conditions and using helium and hydrogen. Finally, the impact of combustion on mixing, often deemed small enough to neglect at hypervelocity conditions, is assessed by comparing the results obtained from the hydrogen-fueled reacting and non-reacting RAS. For reacting flows, in addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also considered. In all of the simulations, the incoming air Mach number and the fuel-to-air ratio are the same, while the total pressure, total enthalpy, and the fuel simulant vary depending on the case considered. It is found that under some conditions the "cold" flow experiments are a good approximation of the flight.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-23113 , JANNAF Propulsion Meeting (JPM); May 16, 2016 - May 20, 2016; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-01-14
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JPL-CL-16-3997 , (e-ISSN 2214-7853)|European Conference on Thermoelectrics; Sep 20, 2016 - Sep 23, 2016; Lisbon; Portugal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-01-07
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JPL-CL-16-2792 , International Conference on Environmental Systems (ICES); Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-01-07
    Description: Cost is just as important as power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG). Prior work [1] has shown that the system design that minimizes cost (e.g., the $/W value) can be close to the designs that maximize the systems efficiency or power density, however, it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent work [1, 2, 3] the impact of heat exchanger conditions on the optimum TEG fill factors and cost scaling of a waste heat recovery thermoelectric generator with a detailed treatment of the hot side exhaust heat exchanger has been investigated further. The effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances [4] that maximize power output are considered. The optimum fill factor to minimize TEG energy recovery system costs is strongly dependent on the heat leakage fraction, , the mass flow rate of the exhaust, the hot-side heat exchanger effectiveness, heat exchanger UAh, and heat flux. These relationships are explored and characterized for typical exhaust gas-flow conditions to show the inherent design complexities. The heat exchanger costs often dominate the TEG cost equation and it is critical to fully understand the tradeoff between heat exchanger performance, optimum TEG fill factors, and cost to establish potentially optimum design points within the cost-performance design space. This work will explore the design tradeoffs and relationships within the cost-efficiency-power density design space for a typical thermoelectric energy recovery system application. The interplay between optimum TEG fill factors and heat exchanger design can impact system footprint, volume, and mass in weight-sensitive applications. Less-effective, low-cost heat exchangers may outperform higher cost alternatives from a market adoption perspective. This shift of emphasis acknowledging the interdependence of optimum TEG fill factors and heat exchanger performance has significant implications on thermoelectric waste heat recovery systems designs and their operation. In addition, preferred TEG design regimes exist that accommodate reasonable compromises in TE performance and cost. This effort highlights how the optimum fill factorheat exchanger performance relations couple to these optimum TEG performance-cost domains based on TEG-system-level analyses and provides a focus for future system research and development efforts.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JPL-CL-CL#17-4458 , Materials Today: Proceedings (e-ISSN 2214-7853); 5; 4; 10357-10370|European Conference on Thermoelectrics; Sep 20, 2016 - Sep 23, 2016; Lisbon; Portugal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JSC-CN-37574 , ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS); Sep 28, 2016 - Sep 30, 2016; Stowe, VT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN28096 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...