ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (318)
  • Life Sciences (General)  (161)
  • Space Communications, Spacecraft Communications, Command and Tracking  (157)
  • 2015-2019  (318)
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2017  (132)
  • 2016  (186)
  • 1926
Collection
  • Other Sources  (318)
Years
  • 2015-2019  (318)
  • 1980-1984
  • 1960-1964
  • 1925-1929
Year
  • 1
    Publication Date: 2019-05-07
    Description: Responses of animals exposed to microgravity during in-space experiments were observed via available video recording stored in the NASA Ames Life Sciences Data Archive. These documented observations of animal behavior, as well as the range and level of activities during spaceflight, demonstrate that weightlessness conditions and the extreme novelty of the surroundings may exert damaging psychological stresses on the inhabitants. In response to a recognized need for in-flight animals to improve their wellbeing we propose to reduce such stresses by shaping and interrelating structures and surroundings to satisfying vital physiological needs of inhabitants. A Rodent Habitat Hardware System (RHHS) based housing facility incorporating a tubing network system, to maintain and monitor rodent health environment with advanced accessories has been proposed. Placing mice in a tubing-configured environment creates more natural space-restricted nesting environment for rodents, thereby facilitating a more comfortable transition to living in microgravity. A sectional tubing structure of the RHHS environment will be more beneficial under microgravity conditions than the provision of a larger space area that is currently utilized. The new tubing configuration was found suitable for further incorporation of innovative monitoring technology and accessories in the animal holding habitat unit which allow to monitor in real-time monitoring of valuable health related biological parameters under weightlessness environment of spaceflight.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN50007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-03
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-0850 , IEEE Aerospace Conference ; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-08
    Description: A coupling between geomagnetic activity and the human nervous system's function was identified by virtue of continuous monitoring of heart rate variability (HRV) and the time-varying geomagnetic field over a 31-day period in a group of 10 individuals who went about their normal day-to-day lives. A time series correlation analysis identified a response of the group's autonomic nervous systems to various dynamic changes in the solar, cosmic ray, and ambient magnetic field. Correlation coefficients and p values were calculated between the HRV variables and environmental measures during three distinct time periods of environmental activity. There were significant correlations between the group's HRV and solar wind speed, Kp, Ap, solar radio flux, cosmic ray counts, Schumann resonance power, and the total variations in the magnetic field. In addition, the time series data were time synchronized and normalized, after which all circadian rhythms were removed. It was found that the participants' HRV rhythms synchronized across the 31-day period at a period of approximately 2.5 days, even though all participants were in separate locations. Overall, this suggests that daily autonomic nervous system activity not only responds to changes in solar and geomagnetic activity, but is synchronized with the time-varying magnetic fields associated with geomagnetic field-line resonances and Schumann resonances.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN56494 , International Journal of Environmental Research and Public Health (ISSN 1661-7827) (e-ISSN 1660-4601); 14; 7; 770
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-26
    Description: Future long duration missions outside the protection of the Earth's magnetosphere, or unshielded exposures to solar particle events, achieves total doses capable of causing cancellous bone loss. Cancellous bone loss caused by ionizing radiation occurs quite rapidly in rodents: Initially, radiation increases the number and activity of bone-resorbing osteoclasts, followed by decrease in bone forming osteoblast cells. Here we report that Dried Plum (DP) diet completely prevented cancellous bone loss caused by ionizing radiation (Figure 1). DP attenuated marrow expression of genes related to bone resorption (Figure 2), and protected the bone marrow-derived pre-osteoblasts ex vivo from total body irradiation (Figure 3). DP is known to inhibit resorption in models of aging and ovariectomy-induced osteopenia; this is the first report that dietary DP is radioprotective.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28133 , NASA Human Research Program Investigators’ Workshop (HRP IWS 2016) ; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-26
    Description: The detrimental effects of mechanical unloading in microgravity, including the musculo-skeletal system, are well documented. However, the effects of mechanical unloading on joint health and the interaction between bone and cartilage specifically, are less well known. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. Furthermore, we have identified the cell cycle arrest molecule, CDKN1ap21, as specifically up-regulated during spaceflight exposure and localized to osteoprecursors on the bone surface and chondroprogenitors in articular cartilage that are both required for normal tissue regeneration. The 30-day BionM1 and 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight resulting in significant tissue alterations and we specifically studied the hip joint (pelvis and proximal femur) to elucidate these effects. To test this hypothesis we analyzed bone and bone marrow stem cells using techniques including high-resolution Microcomputed Tomography (MicroCT), in-vivo differentiation and migration assays, and whole transcriptome expression profiling. We found that exposure to spaceflight for 30 days results in a significant decrease in bone volume fraction (-31), trabecular thickness (-14) and trabecular number (-20). Similar decrements in bone volume fraction (-27), trabecular number (-13) and trabecular thickness (-17) were found in female mice exposed to 37 days spaceflight. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. Microarray analysis also revealed that the top pathways altered during spaceflight include activation of matrix metalloproteinases, oxidative stress signaling and inflammation in both whole bone tissue and isolated bone marrow stem cells. In conclusion, the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight mice exhibit disruption of the epiphyseal boundary and endochondral ossification of the femoral head, and an inhibition of stem cell based tissue regeneration, which, taken together, may indicate onset of an accelerated aging phenotype with signs of osteoarthritic disease.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43927 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-26
    Description: Broad tissue degeneration and the failure of normal tissue regenerative processes in microgravity because of mechanical unloading are increasing concerns for sustaining life in space as the duration of future flight missions increases. Work in our laboratory has identified normal adult stem cell-based tissue regenerative processes, such as the formation of new bone, cartilage, and immune cells, as being particularly sensitive to the stresses of mechanical unloading in microgravity. Our studies have also identified the inhibition of differentiation of marrow mesenchymal stem cells and activation of CDKN1ap21-mediated cell cycle arrest in proliferative osteoprecursor cells on the bone surface as potential mechanisms for spaceflight-induced skeletal changes. This finding, in combination with the role of CDKN1ap21 as a suppressor of mammalian tissue regeneration, suggests that this gene could be responsible for suppressing stem cell-based tissue regeneration in response to disuse. In this work, we hypothesized that CDKN1ap21 regulates regenerative bone formation in response to alterations in mechanical load and tested this hypothesis by studying the skeletal phenotype and stem cell regenerative ability of juvenile (4-11 weeks old) and adult (18 weeks-12 months old) p21 (--) knockout (KO) mice. Additionally, we analyzed bone micro-architectural properties, bone formation rates and differentiation capacity of bone marrow stem cells (BMSCs) from male and female KO mice exposed to hindlimb unloading (HU) for 15-30 days. We found that juvenile KO mice exhibited increased femoral trabecular and cortical bone formation, whilst three-point bending of the tibias from KO mice showed decreased bone stiffness. Conversely, adult KO mice exhibited no significant differences in micro-architectural properties compared to WT (wild-type) but woven bone structure was indicative of rapid bone remodeling. Furthermore, cortical bone properties showed similar characteristics to aged bone, including increased cross-sectional area and perimeter, whilst three-point bending showed increased stiffness and toughness. Interestingly, in-vitro, KO mice exhibited increased differentiation and mineralized nodule formation in osteoblastogenesis assays compared to WT. Preliminary results from CDKN1ap21 KO mice subjected to HU suggest altered sensitivity to mechanical unloading resulting in decreased cortical thickness compared to WT mice. However, KO mice subjected to short and long-duration HU show increased in-vitro differentiation potential of BMSCs to from form mature, mineral-forming osteoblasts, indicating maintenance of regenerative potential. Analysis of bone formation rates, cell proliferation rates and key genes of interest are currently underway. These results indicate a novel role for CDKN1ap21 in load-dependent osteoprogenitor proliferation and differentiation and that deletion of CDKN1ap21 results in an age-dependent release of osteoblast proliferation inhibition and increased bone formation and turnover.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43922 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing radiation.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN27437 , Biophysical Society Annual Meeting; Feb 27, 2016 - Mar 02, 2016; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The main task for this project was the development of a prototype for the Space to Space Advanced EMU Radio (SSAER). The SSAER is an updated version of the Space to Space EMU Radio (SSER), which is the current radio used by EMUs (Extravehicular Mobility Unit) for communication between suits and with the ISS. The SSER was developed in 1999, and it was desired to update the design used in the system. Importantly, besides replacing out-of-production parts it was necessary to decrease the size of the radio due to increased volume constraints with the updated Portable Life Support System (PLSS) 2.5, which will be attached on future space suits. In particular, it was desired to fabricate a PCB for the front-end of the prototype SSAER system. Once this board was manufactured and all parts assembled, it could then be tested for quality of operation as well as compliancy with the SSER required specifications. Upon arrival, a small outline of the target system was provided, and it was my responsibility to take that outline to a finished, testable board. This board would include several stages, including frequency mixing, amplification, modulation, demodulation, and handled both the transmit and receive lines of the radio. I developed a new design based on the old SSER system and the outline provided to me, and found parts to fit the tasks in my design. It was also important to consider the specifications of the SSER, which included the system noise figure, gain, and power consumption. Further, all parts needed to be impedance matched, and spurious signals needed to be avoided. In order to fulfill these two requirements, it was necessary to perform some calculations using a Smith Chart and excel analysis. Once all parts were selected, I drew the schematics for the system in Altium Designer. This included developing schematic symbols, as well as layout. Once the schematic was finished, it was then necessary to lay the parts out onto a PCB using Altium. Similar to the schematic design, in order to accomplish this it was necessary to develop component land patterns and add component 3D models. All of this was achieved, and the PCB is currently in review. After it is finished being reviewed, this board will be sent out for manufacture. All electronic components used in the PCB have been acquired, and once the board arrives they will be soldered onto the board using a machine in building 44. Finally, the board will be tested for performance on-site. This will likely be accomplished by the end of the internship.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JSC-CN-37169
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: An optical navigation system is being flown as the backup system to the primary Deep Space Network telemetry for navigation and guidance purposes on Orion. This is required to ensure Orion can recover from a loss of communication, which would simultaneously cause a loss of DSN telemetry. Images taken of the Moon and Earth are used to give range and position information to the navigation computer for trajectory calculations and maneuver execution. To get telemetry data from these images, the size and location of the moon need to be calculated with high accuracy and precision. The reentry envelope for the Orion EM-1 mission requires the centroid and radius of the moon images to be determined within 1/3 of a pixel 3 sigma. In order to ensure this accuracy and precision can be attained, I was tasked with building precise dot grid images for camera calibration as well as building a hardware in the loop test stand for flight software and hardware proofing. To calibrate the Op-Nav camera a dot grid is imaged with the camera, the error between the image dot location and the actual dot location can be used to build a distortion map of the camera and lens system so that images can be fixed to display truth locations. To build the dot grid images I used the Electro Optics Lab optical bench Bright Object Simulator System, and gimbal. The gimbal was slewed to a series of elevations and azimuths. An image of the collimated single point light source was then taken at each position. After a series of 99 images were taken at different locations the single light spots were extracted from each image and added to a composite image containing all 99 points. During the development of these grids it was noticed that an intermittent error in the artificial "star" locations occurred. Prior to the summer this error was attributed to the gimbal having glitches in it's pointing direction and was going to be replaced, however after further examining the issue I determined it to be a software issue. I have since narrowed the likely source of the error down to a Software Development Kit released by the camera supplier PixeLink. I have since developed a workaround in order to build star grids for calibration until the software bug can be isolated and fixed. I was also tasked with building a Hardware in the Loop test stand in order to test the full Op-Nav system. A 4k screen displays simulated Lunar and Terrestrial images from a possible Orion trajectory. These images are then projected through a collimator and then captured with an Op-Nav camera controlled by an Intel NUC computer running flight software. The flight software then analyzes the images to determine attitude and position, this data is then reconstructed into a trajectory and matched to the simulated trajectory in order to determine the accuracy of the attitude and position estimates. In order for the system to work it needs to be precisely and accurately aligned. I developed an alignment procedure that allows the screen, collimator and camera to be squared, centered and collinear with each other within a micron spatially and 5 arcseconds in rotation. I also designed a rigid mount for the screen that was machined on site in Building 10 by another intern. While I was working in the EOL we received a $500k Orion startracker for alignment procedure testing. Due to my prior experience in electronics development, as an ancillary duty, I was tasked with building the cables required to operate and power the startracker. If any errors are made building these cables the startracker would be destroyed, I was honored that the director of the lab entrusted such a critical component with me. This internship has cemented my view on public space exploration. I always preferred public sector to privatization because, as a scientist, the most interesting aspects of space for me are not necessarily the most profitable. I was concerned that the public sector was faltering however, and that in order to improve human space exploration I would be forced into private sector. I now know that, at least at JSC, human spaceflight is still progressing, and exciting work is still being done. I am now actively seeking employment at JSC after I complete my Ph.D and have met with my branch chiefs and mentor to discuss transitioning to a grad Co-op position.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: EG-DIV-16-14 , JSC-CN-37230
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: This status report corresponds to two studies tied to an animal experiment being executed at the University of California Davis (Charles Fuller's laboratory). The animal protocol uses the well-documented rat hindlimb suspension (HLS) model, to examine the relationship between cephalic fluid shifts and the regulation of intracranial (ICP) and intraocular (IOP) pressures as well as visual system structure and function. Long Evans rats are subjected to HLS durations of 7, 14, 28 and 90 days. Subgroups of the 90-day animals are studied for recovery periods of 7, 14, 28 or 90 days. All HLS subjects have age-matched cage controls. Various animal cohorts are planned for this study: young males, young females and old males. In addition to the live measures (ICP by telemetry, IOP and retinal parameters by optical coherence tomography) which are shared with the Fuller study, the specific outcomes for this study include: -Gene expression analysis of the retina -Histologic analysis - Analysis of the microvasculature of retina flat mounts by NASA's VESsel GENeration Analysis (VESGEN) Software. To date, the young male and female cohorts are being completed. Due to the need to keep technical variation to a minimum, the histologic and genomic analyses have been delayed until all samples from each cohort are available and can be processed in a single batch per cohort. The samples received so far correspond to young males sacrificed at 7,14, 28 and 90 days of HLS and at 90 days of recovery; and from young females sacrificed at 7, 14 and 28 of HLS. A complementary study titled: "A gene expression and histologic approach to the study of cerebrospinal fluid (CSF) production and outflow in hindlimb suspended rats" seeks to study the molecular components of CSF production and outflow modulation as a result of HLS, bringing a molecular and histologic approach to investigate genome wide expression changes in the arachnoid villi and choroid plexus of HLS rats compared to rats in normal posture.
    Keywords: Life Sciences (General)
    Type: JSC-CN-34661 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: The translational Vestibulo-Ocular Reflex (tVOR) is an important otolith-mediated response to stabilize gaze during natural locomotion. One goal of this study was to develop a measure of the tVOR using a simple hand-operated chair that provided passive vertical motion. Binocular eye movements were recorded with a tight-fitting video mask in ten healthy subjects. Vertical motion was provided by a modified spring-powered chair (swopper.com) at approximately 2 Hz (+/- 2 cm displacement) to approximate the head motion during walking. Linear acceleration was measured with wireless inertial sensors (Xsens) mounted on the head and torso. Eye movements were recorded while subjects viewed near (0.5m) and far (approximately 4m) targets, and then imagined these targets in darkness. Subjects also provided perceptual estimates of target distances. Consistent with the kinematic properties shown in previous studies, the tVOR gain was greater with near targets, and greater with vision than in darkness. We conclude that this portable chair system can provide a field measure of otolith-ocular function at frequencies sufficient to elicit a robust tVOR.
    Keywords: Life Sciences (General)
    Type: JSC-CN-34422 , Association for Research in Otolaryngology; Feb 20, 2016 - Feb 24, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-20
    Description: Established research has illustrated that moderate exposure to stress in the womb influences both adult phonotype and genotype for several physiological pathways, especially in males. Proposed explanations include adaptions made by the fetus resulting from a limited supply of nutrients, referred to as the thrifty phenotype. In this study, we examine this fetal programming effect on the appetite control and energy expenditure pathways in prenatally stressed adult male offspring. Subjects were male rats born from time-mated female rats exposed to unpredictable, variable prenatal stress (UVPS) throughout gestation. An analysis of the adult male rat offspring genetic expression of epididymal fat pads and the plasma concentrations of hormones involved in appetite control and energy expenditure pathways showed a significantly diminished expression of leptin and adiponectin compared to unstressed controls. Leptin and adiponectin are both major hormones involved in the appetite control and energy expenditure pathways, with leptin regulating energy balance due to its function as an inhibitor of hunger, and adiponectin modulating glucose levels and fatty acid breakdown. We observed higher leptin concentrations within the prenatally stressed male plasma, and lower expression of leptin (OB) and adiponectin (ADIPOQ) genes from the epididymal fat pads. We suggest that elevated leptin in the plasma elicited a negative feedback effect on OB expression levels, decreasing their quantification compared to control animals. Further analysis will include plasma quantification of insulin and glucose, as well as expression of ghrelin, a peptide which acts on the central nervous system and the bodys perception of hunger.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33060 , International Society for Development Psychobiology (ISDP) Annual Meeting; Nov 09, 2016 - Nov 11, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various sorbents to complement structural strength tests from Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13x, Honeywell UOP APG III, VSA-10, BASF 13x, and Grace Davison Grade 522 5A. Each sorbents CO2 capacity was measured using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These datasets were then extrapolated using Langmuir 3-Site and Toth isotherm models to compare with previously measured capacity data from MSFC using a thermogravimetric analysis approach. The modeling and extrapolation from ARC data correlated well with data measured at MSFC.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37094 , International Conference for Environmental Systems (ICES); Jul 16, 2016 - Jul 20, 2016; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: From a micro-biology perspective, directed evolution is a technique that uses controlled environmental pressures to select for a desired phenotype. Directed evolution has the distinct advantage over rational design of not needing extensive knowledge of the genome or pathways associated with a microorganism to induce phenotypes. However, there are currently limitations to the applicability of this technique including being time-consuming, error-prone, and dependent on existing assays that may lack selectivity for the given phenotype. The AADEC (Autonomous Adaptive Directed Evolution Chamber) system is a proof-of-concept instrument to automate and improve the technique such that directed evolution can be used more effectively as a general bioengineering tool. A series of tests using the automated system and comparable by-hand survival assay measurements have been carried out using UV-C radiation and Escherichia coli cultures in order to demonstrate the advantages of the AADEC versus traditional implementations of directed evolution such as random mutagenesis. AADEC uses UV-C exposure as both a source of environmental stress and mutagenesis, so in order to evaluate the UV-C tolerance obtained from the cultures, a manual UV-C exposure survival assay was developed alongside the device to compare the survival fractions at a fixed dosage. This survival assay involves exposing E. coli to UV-C radiation using a custom-designed exposure hood to control the flux and dose. Surviving cells are counted then transferred to the next iteration and so on for several iterations to calculate the survival fractions for each exposure iteration.This survival assay primarily serves as a baseline for the AADEC device, allowing quantification of the differences between the AADEC system over the manual approach. The primary data of comparison is survival fractions; this is obtained by optical density and plate counts in the manual assay and by optical density growth curve fits pre- and post-exposure in the automated case. This data can then be compiled to calculate trends over the iterations to characterize increasing UV-C resistance of the E.coli strains. The observed trends are statistically indistinguishable through several iterations from both sources.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37497 , American Geophysical Union Fall Meeting (AGU 2016); Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hypergravity demonstrated significantly increased (8-15) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported the same outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes using our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats. Time-mated female rats were exposed throughout their 22-day pregnancy to UVPS consisting of white noise, strobe light, and tube restraint individually once per day on an unpredictable schedule for 15, 30 or 60 min. To control for potential changes in postnatal maternal care, newborn pups were fostered to non-manipulated, newly parturient dams. At 90-days of age, we analyzed plasma concentrations of hormones involved in appetite control and energy expenditure (leptin and adiponectin), and quantified expression of key genes in epididymal fat pads harvested from adult male offspring and controls. Leptin regulates energy balance by inhibiting hunger, and adiponectin modulates glucose levels and fatty acid breakdown. Our findings indicate significantly elevated plasma leptin concentrations and reduced expression of epididymal fat leptin (OB) and adiponectin (ADIPOQ) genes compared to controls. Analyses presently underway include quantification of plasma insulin and glucose, and the expression of ghrelin, a peptide that acts on the central nervous system and the body's perception of hunger. Collectively, these findings will further understanding of the consequences of UVPS on body weight regulation and metabolism, and provide further insight into the effect of gravity modulation on mammalian fetal development.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33631 , Annual Meeting American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN35113-1 , Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference; Sep 20, 2016 - Sep 23, 2016; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36807 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JSC-CN-37507 , Nordic Digital Business Summit; Sep 22, 2016; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: In Earth-to-Space communications, well-known propagation effects such as path loss and atmospheric loss can lead to fluctuations in the strength of the communications link between a satellite and its ground station. Additionally, the typically unconsidered effect of shadowing due to the geometry of the satellite and its solar panels can also lead to link degradation. As a result of these anticipated channel impairments, NASA's communication links have been traditionally designed to handle the worst-case impact of these effects through high link margins and static, lower rate, modulation formats. The work presented in this paper aims to relax these constraints by providing an improved trade-off between data rate and link margin through utilizing link adaptation. More specifically, this work provides a simulation study on the propagation effects impacting NASA's SCaN Testbed flight software-defined radio (SDR) as well as proposes a link adaptation algorithm that varies the modulation format of a communications link as its signal-to-noise ratio fluctuates. Ultimately, the models developed in this work will be utilized to conduct real-time flight experiments on-board the NASA SCaN Testbed.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GRC-E-DAA-TN27135 , 2016 IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36744 , Annual Meeting of the American Society of Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36752 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36746 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group phenotype. This analysis contributes to the first NASA long-duration study of rodent behavior, providing evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36632 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36715 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JSC-CN-37455 , International Astronautical Congress (IAC); Sep 26, 2016 - Sep 30, 2016; Guadalajara; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (〉6 dBi) antennas.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN33991 , Aerospace Systems Conference of the National Society of Black Engineers; Aug 24, 2016 - Aug 29, 2016; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JSC-CN-35618-2 , 2016 IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Information on nest temperatures of the American Alligator (Alligator mississippiensis) constructed in the wild is limited. Nesting temperatures during a critical thermal sensitive period determine the sex of alligators and are therefore critical in establishing the sex biases in recruitment efforts of alligators within a given community. Nest components, varying environmental conditions, and global warming could have a significant impact on nest temperatures, thus affecting future generations of a given population. One hundred and seventy four programmable thermistors were inserted into fifty eight nests from 2010 through 2015 nesting cycles. Three thermistors were placed inside each nest cavity (one on top of the eggs, one in the middle of the eggs, and one at the bottom of the clutch of the eggs) to collect temperature profiles in the incubation chamber and throughout the entire incubation period. One thermistor was also placed near or above these nests to obtain an ambient air temperature profile. Once retrieved, data from these thermistors were downloaded to examine temperature profiles throughout the incubation period as well as during the period of sexual determination. These data would help establish survival rates related to nest temperature and predict sex ratio of recruited neonates at the Kennedy Space Center. Over three million temperatures have been recorded since 2010 for the alligator thermistor study giving us insight to the recruitment efforts found here. Precipitation was the largest influence on nesting temperatures outside of daily photoperiod, with immediate changes of up to eight degrees Celsius.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN31423 , Working Meeting of the Crocodile Specialist Group; May 23, 2016 - May 27, 2016; Sakuza; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN30693 , International Symposium on Light in Horticulture; May 22, 2016 - May 26, 2016; East Lansing, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing RF propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. The maturity level of this protocol set is, however, insufficient for mission inclusion at this time. This prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of these protocols..
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JSC-CN-34614 , 2016 IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: AAS 15-076 , GSFC-E-DAA-TN28898 , 2016 AAS GN&C Conference; Feb 05, 2016 - Feb 10, 2016; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: New techniques being employed by Orion guidance, navigation, and control (GN&C) using a reaction control system (RCS) under parachutes are described. Pendulosity refers to a pendulum-oscillatory mode that can occur during descent under main parachutes and that has been observed during Orion parachute drop tests. The pendulum mode reduces the ability of GN&C to maneuver the suspended vehicle resulting in undesirable increases to structural loads at touchdown. Parachute redesign efforts have been unsuccessful in reducing the pendulous behavior necessitating GN&C mitigation options. An observer has been developed to estimate the pendulum motion as well as the underlying wind velocity vector. Using this knowledge, the control system maneuvers the vehicle using two separate strategies determined by wind velocity magnitude and pendulum energy thresholds; at high wind velocities the vehicle is aligned with the wind direction and for cases with lower wind velocities and large pendulum amplitudes the vehicle is aligned such that it is perpendicular to the swing plane. Pendulum damping techniques using RCS thrusters are discussed but have not been selected for use onboard the Orion spacecraft. The techniques discussed in this paper will be flown on Exploration Mission 1 (EM-1).
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: AAS 16-115 , JSC-CN-35024 , Annual AAS Guidance, Navigation and Control Conference; Feb 05, 2016 - Feb 10, 2016; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN29655 , SPIE Photonics West; Feb 13, 2016 - Feb 18, 2016; San Francisco, CA; United States|Free-Space Laser Communication and Atmospheric Propagation; Feb 15, 2016 - Feb 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: M16-5518
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JSC-CN-40225
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: NASA/TM-2016-219143 , E-19266 , GRC-E-DAA-TN34046
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: This document provides guidance to individuals or groups considering proposing an experiment for the Laser Communications Relay Demonstration (LCRD) Experiment Program. For the purposes of this document, the term experiment refers to both experiments and demonstrations. The documents goals are: (1) to introduce potential experimenters to the LCRD mission, its purpose, and its system architecture; (2) to help them understand the types of experiments that are possible using LCRD; and (3) to provide an overview of the experiment proposal process and explain how and where to obtain further information about making a proposal.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN44322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: Limits and guidelines are set on microbial counts in produce to protect the consumer. Different agencies make specifications, which constitute when a product becomes unsafe for human consumption. Producers design their procedures to comply with the limits, but they are responsible creating their own internal standards. The limits and guidelines are summarized here to be applied to assess the microbial safety of the NASA Veggie Program.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN42115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: As the world's space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organism's self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as "pathfinders," which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes. In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN39143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-12
    Description: The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Long duration space exploration will require the capability for crews to grow their own food. Growing food is desirable from a mass-efficiency standpoint, as it is currently not feasible to carry enough prepackaged food on spacecraft to sustain crews for long duration missions. Nutritionally, fresh produce provides key nutrients that are not preserved well in pre-packaged meals (e.g. vitamins C and K) and those that are able to counteract detrimental effects of space flight, such as antioxidants to combat radiation exposure and lutein for decreasing macular degeneration. Additionally, there are significant psychological benefits of maintaining gardens, one being an indicator for the passage of time.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33920
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN46034
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user from the Earth's surface through the Terrestrial Service Volume (TSV) to the edge of the Space Service Volume (SSV), when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative was recently expanded to compare nadir-facing and zenith-facing user hemispherical antenna coverage with omnidirectional antenna coverage at different distances of 8,000 km altitude and 36,000 km altitude. This report summarizes the performance using these antenna coverage techniques at distances ranging from 100 km altitude to 36,000 km to be all encompassing, as well as the volumetrically-derived system availability metrics.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: NASA/TM-2016-219398 , E-19300 , GRC-E-DAA-TN36139
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy capability will allow for optical sectioning of biological tissues to determine microanatomical localization of biomarkers. Furthermore, NASA's geneLAB effort addresses integration of genomic, epigenomic, transcriptomic, proteomic and metabolomic datasets, by applying an innovative open source science platform for multi-investigator high throughput utilization of the ISS. In sum, the expanding ISS capability for analysis of biomolecules is enabling innovative research in a broad spectrum of areas such as cellular and molecular biology, biotechnology, tissue engineering, biomedicine, and Omics, providing manifold benefits for humanity.
    Keywords: Life Sciences (General)
    Type: JSC-CN-36567 , Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN32780 , Life in Space for Life on Earth 2016; Jun 05, 2016 - Jun 10, 2016; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36470 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Ionizing radiation-induced bone loss appears to be a two-stage process: first an early increase in pro-resorption cytokines and increased bone resorption by osteoclasts, followed by a decrease in bone formation by osteoblasts. This results in a net loss of mass in mineralized bone tissue. The molecular mechanisms underlying the imbalance in bone remodeling caused by exposure to radiation are not fully understood. We hypothesized that the radiation-induced rise in reactive oxygen species (ROS) damages osteoblast progenitors, leading to a decrease in number and activity of differentiated progeny. We have shown that a diet high in antioxidant capacity prevents radiation-induced bone loss in adult mice (Schreurs et al. 2016) by reducing the early increase in pro-resotption cytokines. Here, we investigated the damaging effects of radiation exposure on cells in the osteoblast lineage, testing if addition of the exogenous antioxidant enzyme, superoxide dismutase (SOD) can mitigate radiation damage. Osteoprogenitors were grown in vitro from the marrow of 16wk old, male C57Bl/6 mice. Cells were irradiated 3 days after plating (day 0) with either gamma (Cs-137, 0.1-5Gy) or iron (Fe-56, 600 MeV/n, 0.5-2Gy), and then grown until day 10. SOD or vehicle was added 2 hours before irradiation (SOD at 200U/ml), twice a day and up to day 5, for a total of 2 days treatment. Cell behavior was assessed by: (a) colony number (counted on day 7), (b) DNA content (surrogate for cell number) to assess cell growth (percent change between day 3 and day 10) and (c) alkaline phosphatase activity (osteoblast differentiation marker). Results show that SOD protected cells from the adverse effects of low-LET ionizing radiation, but not high-LET radiation. These novel results provide an interesting platform to explore further diverse effects and damages caused by low-LET and high-LET, pointing toward different mechanisms and possible intervention strategies for radiation-induced bone loss.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36265 , American Society for Cell Biology (ASCB) Meeting 2016; Dec 03, 2016 - Dec 07, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: The NASA Decadal Survey (2011), Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, emphasized the importance of expanding NASA life sciences research to long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities supporting mouse studies in space were developed at NASA Ames Research Center. The first flight experiment carrying mice, Rodent Research Hardware and Operations Validation (Rodent Research-1), was launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4, exposing the mice to a total of 37 days in space. Ground control groups were maintained in environmental chambers at Kennedy Space Center. Mouse health and behavior were monitored for the duration of the experiment via video streaming. Here we present behavioral analysis of two groups of five C57BL/6 female adult mice viewed via fixed camera views compared with identically housed Ground Controls. Flight (Flt) and Ground Control (GC) mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another, and they quickly learned to anchor themselves using tails and/or paws. Overall activity was greater in Flt as compared to GC mice, with spontaneous ambulatory behavior including the development of organized circling or race-tracking behavior that emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. We quantified the bout frequency, duration and rate of circling with respect to characteristic behaviors observed in the varying stages of the progressive development of circling: flipping utilizing two sides of the habitat, circling, multi-lap circling and group-circling. Once begun, mice did not regress to flipping behavior or other previous behavioral milestones for the remainder of flight. An overall upward trend in circling frequency, rate, duration, participation, and organization was observed over the course of the 37-day spaceflight experiment. In this presentation, we will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral analyses provide important insights into the overall health and adaptation of mice to the space environment, and identify unique behaviors and social interactions to guide future habitat development and research on rodents in space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28255 , 2016 Human Research Program Investigators Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: Living organisms control their cellular biological clocks to maintain functional oscillation of the redox cycle, also called the "metabolic cycle" or "respiratory cycle". Organization of cellular processes requires parallel processing on a synchronized time-base. These clocks coordinate the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. When this universal time keeping function is perturbed by exogenous induction of reactive oxygen species (ROS), the rate of metabolism changes. This causes oxidative stress, aging and mutations. Therefore, good temporal coordination of the redox cycle not only actively prevents chemical conflict between the reductive and oxidative partial reactions; it also maintains genome integrity and lifespan. Moreover, this universal biochemical rhythm can be disrupted by ROS induction in vivo. This in turn can be achieved by blocking the electron transport chain either endogenously or exogenously by various metabolites, e.g. hydrogen sulfide (H2S), highly diffusible drugs, and carbon monoxide (CO). Alternatively, the electron transport in vivo can be attenuated via a coherent or interfering transfer of energy from exogenous ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) fields, suggesting that-on Earth-such ambient fields are an omnipresent (and probably crucially important) factor for the time-setting basis of universal biochemical reactions in living cells. Our work demonstrated previously un-described evidence for quantum effects in biology by electromagnetic coupling below thermal noise at the universal electron transport chain (ETC) in vivo.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28270 , 2016 Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: So you want to conduct human spaceflight research aboard the International Space Station (ISS)? Once your spaceflight research aboard the ISS is proposal is funded.... the real work begins. Because resources are so limited for ISS research, it is necessary to maximize the work being done, while at the same time, minimizing the resources spent. Astronauts may be presented with over 30 human research experiments and select, on average approximately 15 in which to participate. In order to conduct this many studies, ISSMP uses the study requirements provided by the principle investigator to integrate all of this work into the astronauts' complement. The most important thing for investigators to convey to the ISSMP team is their RESEARCH REQUIREMENTS. Requirements are captured in the Experiment document. This document is the official record of how, what, where and when data will be collected. One common mistake that investigators make is not taking this document seriously, but when push comes to shove, if a research requirement is not in this document....it will not get done. The research requirements are then integrated to form a complement of research for each astronaut. What do we mean by integration? Many experiments have overlapping requirements; blood draws, behavioral surveys, heart rate measurement. Where possible, these measures are combined to reduce redundancy and save crew time. Investigators can access these data via data sharing agreements. More examples of how ISS research is integrated will be presented. There are additional limitations commonly associated with human spaceflight research that will also be discussed. Large/heavy hardware, invasive procedures, and toxic reagents are extremely difficult to implement on the ISS. There are strict limits placed on the amount of blood that can be drawn from crew members during (and immediately after) spaceflight. These limits are based on 30-day rolling accumulations. We have recently had to start restricting studies due to this limit. The NASA Human Research Program (HRP) provides extensive support, via ISSMP, to help investigators cope with all of the intricacies of conducting human spaceflight research. This presentation will help you take the best advantage of that support.
    Keywords: Life Sciences (General)
    Type: JSC-CN-38021 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: Our overarching goal is to discover how the structure of the genotypic space of RNA polymers affects their ability to evolve. Specifically, we will address several fundamental questions that, so far, have remained largely unanswered. Was the genotypic space explored globally or only locally? Was the outcome of early evolution predictable or was it, instead, govern by chance? What was the role of neutral mutations in the evolution of increasing complex systems? As the first step, we study the problem in the example of RNA ligases. We obtain the complete, empirical fitness landscapes for short ligases and examine possible evolutionary paths for RNA molecules that are sufficiently long to preclude exhaustive search of the genotypic space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36547 , NoR HGT & LUCA Conference; Nov 03, 2016 - Nov 04, 2016; Milton, Keynes; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Spectrum is a multispectral fluorescence imager designed for capturing in vivo genetic expression in a variety of biological organisms, providing a capability that does not currently exist on the International Space Station (ISS). Researching organisms that have been transformed with in vivo reporter genes ligated with fluorescent proteins allows the scientific community to further understand the fundamental biological responses of these organisms when subjected to space environments. Model organisms that may utilize multispectral imaging on the ISS include unicellular organisms (e.g. Saccharomyces cerevisiae), plants (e.g. Arabidopsis thaliana), and invertebrates (e.g. Caenorhabditis elegans).
    Keywords: Life Sciences (General)
    Type: NASA/SP-2017-10-1095-KSC , KSC-E-DAA-TN53022
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-20
    Description: The conditions encountered during spaceflight place unique stresses on physiological processes that oftentimes lead to deleterious effects. Identifying these effects and better understanding their molecular mechanisms will be essential in enabling long-duration space travel by humans. Studies in Saccharomyces cerevisiae suggest an aging model that involves the accumulation of toxic components, such as excess extrachromosomal rDNA and damaged mitochondria. This build-up then limits the replicative lifespan (the number of times a mother cell can form a new daughter cell). Remarkably, each new daughter cell emerges completely renewed from the senescing mother cell through an asymmetric distribution of aging determinants via mechanisms that are intricately linked to the budding process. When exposed to simulated microgravity, S. cerevisiae undergoes an altered budding process characterized by a breakdown in bud scar polarity. Because the budding process is critical to replicative aging, we hypothesize that the replicative lifespan may be affected by microgravity as well. To measure relative replicative aging rates, we will construct a strain of yeast in which daughter cells are inviable. In this strain, the Cre recombinase will be expressed under the control of the daughter cell specific promoter, pSCW11, and LoxP sites will be inserted at both flanks of two essential genes involved in the cell cycle, UBC9 and CDC20, using a CRISPRCas9 system. Thus, UBC9 and CDC20 will be excised from daughter cells, leading to cell-cycle arrest and eventual death. To mimic the low shear conditions encountered in microgravity, this strain will be grown in rotating wall vessels. The number of viable mother cells will be monitored over time, and this rate will be compared to cells growing in standard conditions. Because asymmetric division also occurs in mammalian cells (e.g. in neural stem cells), this study will provide insight into how cellular aging rates may change in mammals and will help empower humans to thrive in space for extended and even indefinite periods of time.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN34927 , Yale UnderGrad Research Showcase; 9 Sept. 2016; New Haven, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-20
    Description: Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesionattachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by immunohistological observation. Increased CX43 expression is also observed with the three-dimensional co-cultures with MC3T3-E1 MCS stimulation but the increased gap-junction protein presence was limited to the osteoblast-osteocyte interface region. Previously reported PCR evaluation of osteogenic markers further corroborate that the co-cultured populations communicative networks play a role in translating mechanical signals to molecular messaging. These findings suggests an osteocyte-osteoblast gap-junction signaling feedback mechanism may regulate mechanotransduction of apoptosis initiation and transcription of cytokine signaling proteins responsible for stem cell niche recruitment much more directly than previously believed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36753 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-20
    Description: Spaceflight has deleterious effects on skeletal structure and function, specifically causingprofound loss in bone mass, density, and strength, as well as changes in expression levels of genes related to oxidative stress [Hyeon et al., Smith et al.]. It is known that bone resorption remains elevated after spaceflight and that bone density and strength fail to recover completely even years following spaceflight [Smith et al., Carpenter et al.]. However, our current understanding of the signaling pathways and molecular mechanisms that control bone loss and that link oxidative stress, bone resorption, and mechanical unloading of skeletal tissue is incomplete. Here, we aim to examine skeletal responses to simulated long-duration spaceflight on bone loss using the ground-based hindlimb unloading (HU) model in adult (9 months old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative-defense genes and pro-osteoclastogenic factors, showing progression and eventual plateau during long-term unloading, and that transient changes at early timepoints in these pathways precede skeletal adaptations to long-duration unloading. We will identify oxidativestress and bone resorption-related changes using global gene expression analysis (Affymetrix arrays) for both acute (within 14 days) and long-term timepoints (90 days). We will also use quantitative PCR to examine changes in expression of genes related to oxidative metabolism (e.g. Nrf2, SOD-1), bone turnover (resorption and formation markers, e.g. TRAP, osteocalcin respectively, SOST), and osteoclastogenesis (e.g. RANKL, OPG) at both early and late timepoints. We will then use detailed microarchitectural and structural analysis through microcomputed tomography to relate gene expression changes with structural changes in bone, expecting that plateaus in gene expression correlate with long-term changes in bone microarchitecture.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33598 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-20
    Description: Space radiation and micro-gravity are the two major obstacles impeding human exploration of Mars and beyond. Long-duration space flights expose astronauts to high doses of high linear energy transfer (LET) radiation as well as prolonged periods of skeletal disuse due to weightlessness. One important consequence of both radiation exposure and micro-gravity is acute bone loss. However, biological responses to different radiation types and combined radiation and micro-gravity environments remain unknown. Thus, the purpose of this study is to compare the acute effects of different radiation species and simulated weightlessness on bone degeneration for the purpose of developing accurate risk assessments of prolonged space flight. Mouse models were used to simulate space flight-relevant doses of different radiation types as well as weightlessness via hind-limb unloading. Three groups of mice (n 9) were irradiated with 1 Gy (Gray) H+, 1 Gy 56Fe, and 1 Gy combined H+ and 56Fe (dual ion) respectively and compared to sham irradiated (n 9) and 2 Gy 56Fe irradiated positive controls (n 6). Two groups of mice (n 9) were hind-limb unloaded for three days and then either sham irradiated or dual ion irradiated respectively, followed by subsequent hind-limb unloading for 11 days. Cancellous tissue from tibiae metaphyses were harvested 11 days post-irradiation for ex vivo micro-computed tomography analysis. Microarchitecture parameters including bone volume to total volume ratio (BVTV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular spacing (Tb.S), and connectivity density (Conn.D) will be quantified using a novel automated segmentation procedure developed in our lab. The anticipated results will be instrumental in developing counter-measures against micro-gravity and radiation-induced bone loss. Moreover, possible synergistic effects may provide insight into underlying mechanisms mediating biological response.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN34526 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-20
    Description: Continued space bioscience research onboard the International Space Station (ISS) and future long-duration flight missions to the Moon or Mars will require the ability to conduct on-orbit molecular analysis of biological samples independently from Earth. In the last year two new molecular analytic technologies have been installed and the technologies demonstrated onboard the ISS: The Sample Prep Module (SPM) WetLab-2 (WL2) qRT-PCR toolbox and the Oxford Nanopore MinIon Biomolecule Sequencer. Here we describe protocol development and integration into existing ISS technology for end-to-end on-orbit biological sample processing and molecular analysis with real time results generated utilizing only field offline analytic software. For this experiment we isolated primary cells from bone marrow flushes of wild type B6129SF2 mice (Jackson Labs) long bones. The cell isolate was then processed using the SPM to produce total 147nanograms of RNA. The total RNA was purified to only messenger RNA (mRNA) and transferred to Smartcycler Thermocycle ISS kit consumable tube using Eppendorf gel loading pipette tips for further processing. Complementary first strand cDNA was synthesized using OLIGO dT priming followed by addition of SuperScript II Reverse Transcriptase and thermal cycling as per manufacturers instruction. All thermal cycling was conducted using the ISS WetLab-2 Cephid Smarcycler real time thermal cycler. Our protocol takes advantage of mRNAs native poly(A) tail, synthesized in vivo to protect the mRNA from degradation by endonucleases, to eliminate end-prep for adapter ligation. The adapted library is purified using MyOne C1 Streptavidin beads before elution in buffer. The pre-sequencing library is diluted in the loading buffer and injected into the MinIon sample port, drawn into the nanopore window by capillary action, and sequenced using the MinKnown software with local basecalling. The sequencing read produced 34.5 million events and local basecalling produced 117,301 successful reads. NCBI Blast of the data for the mouse genome resulted in 2,462 successful nucleotide collection matches (gene sequences) exceeding 70 homology. These results demonstrate the viability of this novel flight ready end-to-end sample analytic methodology and provide a real time homolog for flight experimentation utilizing supply kits and technologies that have already been demonstrated on ISS.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43951 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-20
    Description: NASAs PowerCell payload on the DLR (Deutsches Zentrum fur Luft- und Raumfahrt, i.e. German Aerospace Center) Eu:CROPIS satellite will compare the effect of multiple simulated gravity regimes on basic processes required for synthetic biology in space including growth, protein production, and genetic transformation of the bacterium Bacillus subtilis. In addition, it will pioneer the use of a cyanobacterially-produced feedstock for microbial growth in space, a concept we call PowerCell. The PowerCell experiment system will be integrated using the Spaceflight Secondary Payload System with the German Space Agency's (DLR's) Euglena and Combined Regenerative Organic-food Production In Space (Eu:CROPIS) satellite, to be launched during the summer of 2017. In order to simulate the gravitational gradient of different celestial bodies, the Eu:CROPIS satellite will establish artificial microgravity, lunar, and Martian gravity levels prior to conducting each set of biological experiments, with experimental results compared to ground controls. Experiments will be carried out in microfluidics cards with experimental progress measured through absorbance as detected by the LED-based optical system. Here we describe the ground studies that led to these experiments, along with a description of the flight hardware and its performance. The results of this mission will provide foundational data for the use and production of genetically engineered organisms for extraterrestrial missions.
    Keywords: Life Sciences (General)
    Type: SSC-16-XI-04 , ARC-E-DAA-TN32950 , AIAA/USU Conference on Small Satellites; Aug 08, 2016 - Aug 13, 2016; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-20
    Description: The New Horizons spacecraft made it closest approach to Pluto on 14 July 2015. The most significant challenge of this mission was that the Pluto system ephemeris was initially known with a precision of ~1000 km. This needed to be improved significantly on approach in order to meet the science requirements. During the final six months leading to the flyby, a JPL Independent Navigation (INAV) Team was included in the ephemeris knowledge update process as a cross-check on the Project Navigation (PNAV) Team's results. This paper discusses the INAV team's experiences and challenges navigating New Horizons through the Pluto planetary system encounter.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: AAS 16-232 , JPL-CL-16-0473 , AAS/AIAA Space Flight Mechanics Meeting; Feb 14, 2016 - Feb 18, 2016; Napa, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-20
    Description: System testing of the Carbon Dioxide Removal and Compression System (CRCS) has revealed that sufficient CO2 removal capability was not achieved with the designed system. Subsystem component analysis of the zeolite bed revealed that the sorbent material suffered significant degradation and CO2 loading capacity loss. In an effort to find the root cause of this degradation, various factors were investigated to try to reproduce the observed performance loss. These factors included contamination by vacuum pump oil, o-ring vacuum grease, loadingunloading procedures, and operations. This paper details the experiments that were performed and their results.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37174 , International Conference for Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-20
    Description: The Ames Life Science Data Archive (ALSDA) at NASA Ames Research Center is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and biospecimens collected from life science spaceflight experiments and matching ground control experiments. They are stored in the Ames biobank, which is located in the Biospecimen Storage Facility (BSF). The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). The BSF maintains both fixed and frozen spaceflight and ground tissues, collected from recent and past spaceflight missions. Due to the ever increasing demand for space to preserve current and future flight biospecimens, the ALSDA has initiated the development of a culling plan for biospecimens currently stored in the BSF. Culling enables the ALSDA to assess the quality of archived samples, and supports the development of standardized culling procedures that improve the operational efficiency of the BSF. The culling plan focuses on generating disposition recommendations for samples in the BSF, and currently is based on measuring ribonucleic acid (RNA) integrity number (RIN). The culling process includes (1) sorting and identification of candidate samples for RIN analysis, (2) completion of RIN analysis on select samples, and (3) development of disposition recommendations for specimens based on the RIN values. Furthermore, our approach allows for unique scientific opportunities, including development of a RIN-based methodology for culling, and temporal assessment of the quality of the tissues that have been stored in BSF since the 1980s. Results of this work will also support NASA open science initiatives.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37076 , International Society for Biological and Environmental Repositories (ISBER) Regional Meeting; Nov 07, 2016 - Nov 08, 2016; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: Altered gravity conditions, such as experienced by organisms during spaceflight, is known to cause transcriptomic and proteomic changes. We describe the proteomic changes in the whole body of adult Drosophila melanogaster (fruit fly), but focus specifically on the localized changes in the adult head in response to chronic hypergravity (3G) treatment. Canton S adult female flies (2-3 days old) were exposed to chronic hypergravity for 9 days and compared with parallel 1G controls. After hypergravity treatment, whole flies and fly heads were separated, and evaluated for quantitative comparison of the two gravity conditions using an isobaric tagging liquid chromatography-tandem mass spectrometry approach. Data revealed a total of 1948 (whole flies) and 1480 (head) proteins to be differentially present in hypergravity-treated flies. Gene Ontology analysis of head specific proteomics revealed host immune response and humoral stress proteins were significantly upregulated. Proteins related to calcium signaling, ion transport and ATPase were decreased. Enhanced expression of cuticular proteins may suggest an alteration in chitin metabolism and in chitin-based cuticle development. We therefore present a comprehensive quantitative survey of proteomic changes in response to chronic hypergravity in Drosophila, which will help elucidate the underlying molecular mechanisms associated with altered gravity environments.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN31697
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-20
    Description: Evidence from spaceflight and ground-based missions demonstrate that sleep loss and circadian desynchronization occur among astronauts, leading to reduced performance and, increased risk of injuries and accidents. We conducted a comprehensive literature review to determine the optimal sleep environment for lighting, temperature, airflow, humidity, comfort, intermittent and erratic sounds, privacy and security in the sleep environment. We reviewed the design and use of sleep environments in a wide range of cohorts including among aquanauts, expeditioners, pilots, military personnel, and ship operators. We also reviewed the specifications and sleep quality data arising from every NASA spaceflight mission, beginning with Gemini. We found that the optimal sleep environment is cool, dark, quiet, and is perceived as safe and private. There are wide individual differences in the preferred sleep environment; therefore modifiable sleeping compartments are necessary to ensure all crewmembers are able to select personalized configurations for optimal sleep.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN56624 , International Conference on Applied Human Factors; Jul 27, 2016 - Jul 31, 2016; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-20
    Description: Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG) stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG has been shown to differ from MG, we report here preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) on a free flying nanosatellite in low Earth orbit. Within EcAMSats payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes due to cellular metabolism accurately reflect E. coli viability changes: measuring AB absorbance onboard EcAMSat will enable telemetry of spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its delta rpoS strain to Gm. Space MG studies using EcAMSat should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity. Further, if sigma (sup s) plays the same role in space MG as in LSMMG and Earth gravity, EcAMSat results would facilitate utilizing our previously developed terrestrial UTI countermeasures in astronauts.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN35487
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-26
    Description: Spaceflight environments and their associated conditions, such as microgravity and space radiation, cause many biological functions formerly considered to be standard to behave in nonstandard ways. Exposure to microgravity has shown to induce deleterious effects in stem cell-based tissue regeneration, leading to immune system and healing response impairments as well as muscle and bone density loss. Such risks must be mitigated in order for long-term human space exploration to proceed. Thus, our work seeks to explore mechanisms of stem cell-based tissue regeneration that experience changes in spaceflight environments. Cellular senescence is a process of inducing cell cycle arrest that can be initiated by various stimuli. This function is influenced by two major pathways, controlled by p53 and pRB tumor suppressor proteins. p53 activity targets the cyclin-dependent kinase inhibitor gene p21Cdkn1a in osteogenic cell cycle arrest. Under conditions of mechanical unloading, stem cell-based tissue regeneration has shown to be decreased in both proliferation and differentiation, as many cells are arrested in progenitor states. p21 has shown upregulation in expression under conditions of microgravity, suggesting its role in regenerative bone formation arrest in space. p21 levels are found to be elevated independent of p53, suggesting a decrease in proliferation and regeneration without apoptosis, but rather through cell cycle arrest alone. Thus, we hypothesize that p21 is a mediator of cellular senescence in bone marrow stem cells. Culturing of bone marrow stem cells from wild type and p21 knockout mice under osteoblastogenic conditions will be completed to explore the role of p21Cdkn1a in stem cell proliferation and maturation. We believe that decreases in somatic stem cell differentiation may occur after spaceflight due to signal pathway alterations that result in downstream inhibition of genes involved in differentiation, preventing tissue from repairing and regenerating normally.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43925 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: The ends of human chromosomes contain telomeres, or tandem arrays of repeating DNA sequences capped by multiple associated proteins that protect chromosomal ends from degradation. Telomeres function to preserve genomic stability by preventing natural chromosomal ends from being recognized as broken DNA double-strand breaks and triggering inappropriate DNA damage responses. Mounting evidence shows telomere length is an inherited trait that decreases with cellular division and normal aging. In addition, telomere length also appears to be influenced by other factors such as cellular oxidative stress, radiation and mechanical unloading of tissues as in microgravity. To measure these potential effects of the space environment on telomere lengths and cellular aging and regenerative potential we developed a novel telomere measurement approach based on nanopore sequencing of PCR amplified bar-coded chromosome termini. Specifically, telomeres can be directly enriched using barcode sequences ligated to the end of a free end- repaired telomere using the WetLab-2 facility SmartCycler on ISS. Prior to the ligation and amplification protocol a proteinase K digestion of capping proteins followed by a single 95-degree C heat denaturation of the protease is included. After digestion and bar-code ligation, PCR amplification will initiate with the ligated barcoded sequence, suppressing amplification of intra-genomic fragments and resulting in long read barcoded telomere amplicons including the nanopore motor protein sequences. Purified PCR amplicons are then used for nanopore sequencing library generation by simple addition of motor proteins and sequencing library is loaded into the MinION nanopore DNA-sequencer. Amplicon sequence reads from the nanopore device can be base-called quickly on ISS due to barcoding ligation and subsequent PCR amplification enhancing the telomere sequence resolution. If successfully implemented on ISS this technique will provide a novel means of measuring regenerative ability of somatic stem cells in astronauts, and of determining whether spaceflight in microgravity alters their telomere lengths and causes premature cellular aging.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN44002 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-0591 , SPIE Photonics West,; Feb 13, 2016 - Feb 18, 2016; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-0558 , INET Internet of Things Conference; Feb 18, 2016; Mountain View, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: We have the technical capability to model hybrid deep-space RF and Optical communications networks, but we have little guidance on how the missions and ground architectures will be designed and operated. We exposed several issues that must be resolved before an optimal solution can be reached. With future studies, we may be able to determine solutions to these issues, and perform more precise loading performance analyses to arrive at the most optimal RF and optical ground assets combinations for meeting the projected future demand. The results will then help inform NASA as it plans for infrastructure development to prepare for human/robotic missions in the coming decades.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-0533 , SPIE Photonics West 2016; Feb 13, 2016 - Feb 18, 2016; San Fracisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: We introduce a trilateration scheme that evaluates the 3-dimensional (3-D) relative position between a reference spacecraft and a target spacecraft using raw-range measurements from a distance baseline of known locations, which we call anchors. The anchors can be antennas of a ground-based network (e.g., Deep Space Network (DSN) or Near Earth Network (NEN) stations), or satellites of a spacebased network (e.g., global positioning system (GPS) or tracking and data relay satellite (TDRS)). We define raw-range as the range that includes all the systematic errors that occur during range measurements. A unique feature of this approach is that accurate relative position is derived from a differencing function of raw-range measurements of the reference spacecraft and target spacecraft, thereby eliminating most of the systematic errors, such as media effects, ephemeris errors, instrument delays, clock bias, etc. There can be an arbitrary number of target spacecraft, and relative positioning of target spacecraft with respect to the reference spacecraft can be done simultaneously. In this paper, we first assume an idealized system in which clocks on the reference and target spacecraft are synchronized, with clocks of the anchors synchronized as well. We develop a novel iterative algorithm that computes the relative position of the target spacecraft with respect to the reference spacecraft. We illustrate the relative positioning method using the scenario of a network of three ground stations (i.e., the anchors) at Goldstone, California, USA, Madrid, Spain, and Marlargue, Argentina tracking two spacecraft at geosynchronous orbit distance. We demonstrate that the algorithm converges to submeter accuracy in estimating the relative position, in the presence of random errors and systematic errors in raw-range measurements, and in the presence of angular errors in estimating the pointing vectors between the anchors and the reference spacecraft. Next, we relax the requirement of perfect time synchronization between spacecraft, and show that by using an additional anchor, one can estimate and remove the clock biases between the reference and target spacecraft. We add a ground station at Kourou to the above example of three ground stations of Goldstone, Madrid, and Marlargue, and demonstrate that the updated algorithm also converges to meter-level accuracy (submeter in some cases) in the presence of clock biases in addition to the random errors, systematic errors, and angular errors as shown in the above case. We compare this scheme with a similar trilateration scheme for relative positioning scheme first proposed by Montenbruck in 2002.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-5774 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Interplanetary CubeSats and small satellites have potential to provide means to explore space and to perform science in a more affordable way. As the goals for these spacecraft become more ambitious in space exploration, the communication systems currently implemented will need to be improved to support those missions. One of the bottlenecks is the antennas size, due to the close relation between antenna gain and dimensions. Hence, a possible solution is to develop inflatable antennas which can be packaged efficiently, occupying a small amount of space, and they can provide, once deployed, large dish dimension and correspondent gain. A prototype of a 1 m inflatable antenna for X-Band has been developed in a joint effort between JPL and ASU. After initial photogrammetry tests and radiation tests, it was discovered that the design was not able to meet the required gain. As a result, a new design, based on a spherical inflatable membrane, is proposed. This new design will allow reaching a more stable inflatable surface, hence improving the electromagnetic performance. This paper will detail the principle challenges in developing this new antenna focusing on: design, EM analysis, fabrication and tests.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-17-0015 , IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: This paper presents a characterization of performance of 32-GHz Ka-band link in an operational environment. The data come from tracking of Kepler spacecraft by the NASA Deep Space Network (DSN) in the past few years. Ka-band link offers a significant signal-to-noise advantage compared to the more common X- or S-band; however, it is subject to more signal fluctuation caused by the weather. Kepler is the first mission supported by the DSN that solely rely on the higher deep space Ka-band communications link to return its high-rate science data. A well characterization of the operational performance of Kepler would benefit future Ka-band missions, especially for those operating with smaller link margin. The study examines how weather conditions at the DSN facilities (e.g., winds, clouds, rains) affect the received signal, particularly on telemetry data. It addresses questions such as how often the weather affects the link and how much degradation the link could suffer. Among the 22 Ka-band passes in 2012, heavy clouds affected one pass and two passes were impacted by high winds. The adverse weather caused at time as much as 3-dB instantaneous change in the signal to noise ratio (SNR). Estimates of degradation to the SNR as a function of wind speeds are captured based on observations. This study also quantifies the probability distribution of the variation of received signal power. With such information, future missions can better plan their link design. An optimal link design aims for just having enough margin to realize the data return with a targeted probability, with neither having too much margin that it reduces the downlink data rate nor insufficient reserve that causes frequent data outages. The study tries to provide some answers to the questions such as how much does SNR vary from one tracking pass to the next, and what is the cumulative distribution of signal fluctuation. Regarding the signal variation over many tracking passes, we found that the averaged symbol SNR (SSNR) for each pass changed by as much as 4 dB. Some variations were due to geometry such as the changing distance between spacecraft and Earth and different antenna pointing elevations. Other variations seem to be random in nature, reflecting the randomness of operational environments. Some passes were found to be quite stable, with a standard deviation of symbol SNR around 0.25 dB while others had greater variation, up to 1.4 dB. Overall, the cumulative distribution of the symbol SNR reflects that 50% of the fluctuations was less than 0.6 dB, 90% of fluctuation was within 1.6 dB and 95% within 2.2 dB. Some of the challenges in data processing, validation and modeling were captured in this paper. We observed some inconsistent measurements where operational data significantly deviate from a normal expectation. These inconsistent measurements made it hard to develop an accurate and consistent performance model, such as the degradation of signal SNR as a function of high wind. The difficulty was compounded by the fact that there were only a few Ka-band passes observed in high winds.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-3359 , ESA International Workshop on Tracking, Telemetry and Command Systems; Sep 13, 2016 - Sep 16, 2016; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Two Voyager spacecraft were launched in 1977. After the successful flybys of Jupiter and Saturn by both Voyagers and Uranus and Neptune by Voyager 2, the mission has been extended for another 30 years in search of the transition region between the dominance of the solar energy and interstellar energy. The Voyager Interstellar Mission (VIM) started on January 1, 1990. It can be characterized by several factors including extremely long communication distances, aging hardware, reduced staffing levels and difficulty in obtaining Deep Space Network (DSN) resources necessitated by the increasing distance between the spacecraft and Earth. The mission was redesigned to compensate for such factors while maximizing the science return. After 25 years of VIM and several significant science discoveries, both Voyager spacecraft are still functioning well and the Voyager flight team is preparing for an even longer mission - until the year 2025 and beyond. In order to work around the challenges and to continue the mission even further, the team has been implementing numerous changes, mainly through flight software modifications and hardware reconfiguration. The major drivers for the changes are two-fold: resource constraints (such as decreasing power output and difficulty in obtaining the necessary DSN coverage) and anomalies due to the aging hardware. The majority of changes occur through flight software modifications so the state of the on-board responses is appropriate for the changing space environment and mission phase, and the flight software is compatible in allowing the maximum data gathering. The on-board flight software routines such as baseline sequence, fault protection routines, the High Gain Antenna POINTing to Earth (HPOINT) table, and long-term events table need to be maintained through flight software updates. The changes also occur through hardware reconfiguration such as selecting the backup Hybrid Buffer Interface Circuits (HYBIC) or attitude propulsion thrusters. This paper will describe the challenges of VIM and what has been done to overcome or mitigate those challenges. The primary focus will be the major flight software changes made during VIM and the changes that are in store for the near future in preparation for continuing the extended mission, from the originally projected year of 2020 out to the year 2025 and possibly beyond.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-1436 , SpaceOps 2016; May 16, 2016 - May 20, 2016; Daejeon; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In order to maximize the amount of omics data returned from space flight experiments, the GeneLab project can collaborate with Space Biology funded PIs. Here, we outline the process by which these collaborations take place.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36421 , Annual American Society for Gravitational and Space Research (ASGSR); Oct 25, 2016 - Oct 28, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: APEX is Advanced Plant Experiments on Orbit which is a series of investigations which focus on fundamental plant biology.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33927 , MSFC Payload Operations Integration Working Group (POIWG) Meeting; Jan 26, 2016 - Jan 28, 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48058 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Automated guidance and navigation systems are an integral part to successful space missions. Previous researchers created Python tools to receive and parse data from a JAVAD TR-G2 space-capable GPS receiver. I improved the tool by customizing the output for plotting and comparing several simulations. I analyzed position errors, data loss, and signal loss by comparing simulated receiver data from an IFEN GPS simulator to truth data from a proposed trajectory. By adjusting the trajectory simulations gain, attitude, and start time, NASA can assess the best time to launch the SLS, where to position the antennas on the Block 1-B, and which filter to use. Some additional testing has begun with the Novatel SpaceQuestGPS receiver as well as a GNSS SDR receiver.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: M17-6445 , MSFC Fall Intern Poster Expo; Dec 15, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Spaceflight imposes multiple stresses on biological systems resulting in genome-scale adaptations. Understanding these adaptations and their underlying molecular mechanisms is important to clarifying and reducing the risks associated with spaceflight. One such risk is infection by microbes present in spacecraft and their associated systems and inhabitants. This risk is compounded by results suggesting that some microbes may exhibit increased virulence after exposure to spaceflight conditions. The yeast, S. cerevisiae, is a powerful microbial model system, and it's response to spaceflight has been studied for decades. However, to date, these studies have utilized common lab strains. Yet studies on trait variation in S. cerevisiae demonstrate that these lab strains are not representative of wild yeast and instead respond to environmental stimuli in an atypical manner. Thus, it is not clear how transferable these results are to the wild S. cerevisiae strains likely to be encountered during spaceflight. To determine if diverse S. cerevisiae strains exhibit a conserved response to simulated microgravity, we will utilize a collection of 100 S. cerevisiae strains isolated from clinical, environmental and industrial settings. We will place selected S. cerevisiae strains in simulated microgravity using a high-aspect rotating vessel (HARV) and document their transcriptional response by RNA-sequencing and quantify similarities and differences between strains. Our research will have a strong impact on the understanding of how genetic diversity of microorganisms effects their response to spaceflight, and will serve as a platform for further studies.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48315 , Annual Meeting of the American Society for Gravitational and Space Research - ASGSR; Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN50789 , 2017 AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: Electrochemical detection of biological molecules is a pertinent topic and application in many fields such as medicine, environmental spills, and life detection in space. Proteases, a class of molecules of interest in the search for life, catalyze the hydrolysis of peptides. Trypsin, a specific protease, was chosen to investigate an optimized enzyme detection system using electrochemistry. This study aims at providing the ideal functionalization of an electrode that can reliably detect a signal indicative of an enzymatic reaction from an Enceladus sample.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47161 , Ames Research and Technology Showcase; Sep 28, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The first-ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a Super Session at the National Association of Broadcasters (NAB) Show in April 2017. Ultra-High Definition is four times the resolution of full HD or 1080P video. Also referred to as 4K, the Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. A similar demonstration was conducted in 2006 with the Discovery Channel to demonstrate the ability to stream HDTV from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a live event was staged when the UHD video coming from the ISS had a latency of 10+ seconds. In addition, the paper will touch on the unique collaboration between the inherently governmental aspects of the ISS, commercial partners Amazon and Elemental, and the National Association of Broadcasters.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: M17-6283 , Society of Motion Picture and Television Engineers Technical Conference (SMPTE 2017); Oct 23, 2017 - Oct 26, 2017; Hollywood, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN46746 , Annual IEEE International Conference on Wireless for Space and Extreme Environments (WISEE 2017); Oct 10, 2017 - Oct 12, 2017; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Future space exploration and long duration space flight will pose an array of challenges to the health and wellbeing of astronauts. Since 2015, Fairchild Tropical Botanic Garden (FTBG), in partnership with NASA's Veggie team, has been testing edible crops for space flight potential through a series of citizen science experiments. FTBG's interest in classroom-based science projects, along with NASA's successful operation of the Veggie system aboard the International Space Station (ISS), led to a NASA-FTBG partnership that gave rise to the Growing Beyond Earth STEM Initiative (GBE). Established in 2015, GBE now involves 131 middle and high school classrooms in South Florida, all conducting simultaneous plant science experiments. The results of those experiments (both numeric and visual) are directly shared with the space food production researchers at KSC. Through this session, we will explore the successful classroom implementation and integration into the curriculum, how the data is being used and the impact of the project on participating researchers, teachers, and students. Participating schools were supplied with specialized LED-lit growth chambers, mimicking the Veggie system on ISS, for growing edible plants under similar physical and environmental constraints. Research protocols were provided by KSC scientists, while edible plant varieties were selected mainly by the botanists at FTBG. In a jointly-led professional development workshop, participating teachers were trained to conduct GBE experiments in their classrooms. Teachers were instructed to not only teach basic botany concepts, but to also demonstrate practical applications of math, physics and chemistry. As experiments were underway, students shared data on plant germination, growth, and health in an online spreadsheet. Results from the students research show a promising selection of new plant candidates for possible further testing. Over a two year period, more than 5000 South Florida students, ages 11 to 18, participated in GBE. Evaluation of the program shows an increased knowledge of and interest in science and science careers among students. The program has also boosted the demand for summer high school internships at FTBG, further developing expertise in plant research and science related to space exploration. Supported by a grant from NASA (NNX16AM32G) to Fairchild Tropical Botanic Garden.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN47796 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JSC-CN-40547 , Ohio State University 2017 Optometry Homecoming; Oct 06, 2017; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: MSFC-E-DAA-TN45713 , Small Satellite Conference; Aug 05, 2017 - Aug 10, 2017; Logan, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: NASA invests in professional coaching as a way to accelerate the development of its staff. The speaker shares one foundational human development model in coaching - the Six Streams - and applies it to the challenges that new scientists face. The speaker also describes how a new scientist can develop greater capabilities in the Six Streams so that they can become a more effective scientist and feel more satisfaction with their work.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN46151 , NASA ARC Night of Science; Aug 10, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: We hypothesize that DNA damage induced by high local energy deposition, occurring when cells are traversed by high-LET (Linear Energy Transfer) particles, can be experimentally modeled by exposing cells to high doses of low-LET. In this work, we validate such hypothesis by characterizing and correlating the time dependence of 53BP1 radiation-induced foci (RIF) for various doses and LET across 72 primary skin fibroblast from mice. This genetically diverse population allows us to understand how genetic may modulate the dose and LET relationship. The cohort was made on average from 3 males and 3 females belonging to 15 different strains of mice with various genetic backgrounds, including the collaborative cross (CC) genetic model (10 strains) and 5 reference mice strains. Cells were exposed to two fluences of three HZE (High Atomic Energy) particles (Si 350 megaelectronvolts per nucleon, Ar 350 megaelectronvolts per nucleon and Fe 600 megaelectronvolts per nucleon) and to 0.1, 1 and 4 grays from a 160 kilovolt X-ray. Individual radiation sensitivity was investigated by high throughput measurements of DNA repair kinetics for different doses of each radiation type. The 53BP1 RIF dose response to high-LET particles showed a linear dependency that matched the expected number of tracks per cell, clearly illustrating the fact that close-by DNA double strand breaks along tracks cluster within one single RIF. By comparing the slope of the high-LET dose curve to the expected number of tracks per cell we computed the number of remaining unrepaired tracks as a function of time post-irradiation. Results show that the percentage of unrepaired track over a 48 hours follow-up is higher as the LET increases across all strains. We also observe a strong correlation between the high dose repair kinetics following exposure to 160 kilovolts X-ray and the repair kinetics of high-LET tracks, with higher correlation with higher LET. At the in-vivo level for the 10-CC strains, we observe that drops in the number of T-cells and B-cells found in the blood of mice 24 hours after exposure to 0.1 gray of 320 kilovolts X-ray correlate well with slower DNA repair kinetics in skin cells exposed to X-ray. Overall, our results suggest that repair kinetics found in skin is a surrogate marker for in-vivo radiation sensitivity in other tissue, such as blood cells, and that such response is modulated by genetic variability.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN42188 , Annual International Meeting of the Radiation Research Society (RRS); Oct 15, 2017 - Oct 18, 2017; Cancun; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Several techniques have been explored and demonstrated that allow for greater data return on space-to-ground links. Among these techniques, arraying several smaller diameter dish antennas together is one method used in several arenas. These arrays can achieve larger effective area and gain than are available from a single larger antenna. This technique is routinely used by the NASA Deep Space Network (DSN) at 8.4 GHz where the incoming signals are much weaker than those experienced by the near-Earth satellite community. When considering arraying at much higher frequencies such as 32 GHz deep-space Ka-band, the phase alignment of the individual antenna signals is significantly disrupted by atmospheric turbulence. Since 2012, several downlink array demonstrations have been conducted using 32 GHz carrier signals emitted by the deep space probes Cassini and Kepler. Site test interferometers (STIs) that receive signals from geostationary satellites have been deployed at all three DSN tracking complexes for long-term monitoring of atmospheric delay fluctuations. In a previous DSN array demonstration study involving the Cassini spacecraft, it was shown that statistics of the adjusted STI phase fluctuations matched the statistics of concurrent array demonstration phase fluctuations. These adjustments accounted for differences in antenna separation, elevation angle and spacecraft frequencies. The STI antenna separations were about 200 m and the DSN antenna separations were about 300 m. These adjustments made use of the thick-layer turbulence model that was applicable to the Goldstone desert climate during the summer months for which the data were acquired. In this paper, we report on the results of additional array demonstrations involving the Kepler spacecraft and compare the adjusted STI phase fluctuations with those seen by a nearby two-element array of 34 m diameter antennas tracking Keplers 32 GHz signal at the Goldstone, California and Madrid, Spain DSN sites. We also discuss results from a demonstration using an array over a longer 12.5 km baseline. The Cassini and Kepler array demonstrations were found to validate the long term statistics acquired from several years of STI data as well as the models used to adjust the statistics for the conditions of an array. These statistics represent reliable estimates of the phase fluctuations that would be seen by an array tracking a deep space signal after applying appropriate adjustments for a given array configuration, elevation angle profile and observing frequency.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-4008 , Ka and Broadband Communications Conference; Oct 17, 2016 - Oct 20, 2016; Cleveland, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: CubeSats are now providing an innovative way to explore space: they can be built by smaller teams in academic environments, and they generally require smaller budget than traditional missions. For this reason, a new trend has emerged in the last five years: interplanetary CubeSats. Interplanetary CubeSats take advantage of the CubeSat paradigm and of the availability of commercial components developed for Low Earth Orbit (LEO) missions, but they are specifically designed to explore deep space. As a result, interplanetary CubeSats are essentially very different from Low Earth Orbit CubeSats in at least three technological areas: propulsion, radiation tolerance and telecommunication. This paper is focused on telecommunication issues for interplanetary CubeSats which face harsher environments, longer path distances and have more navigation needs than the LEO CubeSats. For this reason, the design of telecommunication systems for interplanetary missions is extremely challenging and significant development is currently ongoing in the areas of radio design, antenna design and the design of ground support architectures. This presentation focuses on the design of the telecommunication and ground support systems for two of the interplanetary CubeSats missions that will be launched on NASAs Space Launch System (SLS) Exploration Mission-1 (EM-1): Lunar IceCube and LunaH-Map. Given the commonalities between these missions, an effort is underway at JPL to develop a common set of telecommunication hardware systems to fit the envelope of the two missions goals. Additionally, Lunar IceCube and LunaH-Map will also share the use of the Deep Space Network antennas and of the Morehead State University 21 m station, which is currently being upgraded especially for this purpose. This presentation will provide a quick overview of the missions (including goals and telecommunication requirements) and it will also focus on the development of the telecommunication systems design with a particular focus on the current upgrades planned to the Morehead State University ground station.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-17-4377 , International Astronautical Congress - IAC; Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47267 , Ames Research and Technology Showcase (ARTS) Event; Sep 28, 2017; Moffatt Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: BioSentinel is one of 13 secondary payloads to be deployed on Exploration Mission 1 (EM-1) in 2019. We will use the budding yeast Saccharomyces cerevisiae as a biosensor to determine how deep-space radiation affects living organisms and to potentially quantify radiation levels through radiation damage analysis. Radiation can damage DNA through double strand breaks (DSBs), which can normally be repaired by homologous recombination. Two yeast strains will be air-dried and stored in microfluidic cards within the payload: a wild-type control strain and a radiation sensitive rad51 mutant that is deficient in DSB repairs. Throughout the mission, the microfluidic cards will be rehydrated with growth medium and an indicator dye. Growth rates of each strain will be measured through LED detection of the reduction of the indicator dye, which correlates with DNA repair and the amount of radiation damage accumulated. Results from BioSentinel will be compared to analog experiments on the ISS and on Earth. It is well known that desiccation can damage yeast cells and decrease viability over time. We performed a screen for desiccation-tolerant rad51 strains. We selected 20 re-isolates of rad51 and ran a weekly screen for desiccation-tolerant mutants for five weeks. Our data shows that viability decreases over time, confirming previous research findings. Isolates L2, L5 and L14 indicate desiccation tolerance and are candidates for whole-genome sequencing. More time is needed to determine whether a specific strain is truly desiccation tolerant. Furthermore, we conducted an intracellular trehalose assay to test how intracellular trehalose concentrations affect or protect the mutant strains against desiccation stress. S. cerevisiae cell and reagent concentrations from a previously established intracellular trehalose protocol did not yield significant absorbance measurements, so we tested varying cell and reagent concentrations and determined proper concentrations for successful protocol use.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47978 , Annual Meeting American Society for Gravitational and Space Research; Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: Pre-flight groundbased testing done to prepare for the first Rodent Research mission validation flight, RR1 (Choi et al, 2016 PlosOne). We purified RNA and measured RIN values to assess quality of the samples. For protein, we measured liver enzyme activities. We tested protocol and methods of preservation to date. Here we present an overview of results related to tissue preservation from the RR1 validation mission and a summary of findings to date from investigators who received RR1 teissues various Biospecimen Sharing Program.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48608 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Spaceflight imposes multiple stresses on biological systems resulting in genome-scale adaptations. Understanding these adaptations and their underlying molecular mechanisms is important to clarifying and reducing the risks associated with spaceflight. One such risk is infection by microbes present in spacecraft and their associated systems and inhabitants. This risk is compounded by results suggesting that some microbes may exhibit increased virulence after exposure to spaceflight conditions. The yeast, S. cerevisiae, is a powerful microbial model system, and its response to spaceflight has been studied for decades. However, to date, these studies have utilized common lab strains. Yet studies on trait variation in S. cerevisiae demonstrate that these lab strains are not representative of wild yeast and instead respond to environmental stimuli in an atypical manner. Thus, it is not clear how transferable these results are to the wild S. cerevisiae strains likely to be encountered during spaceflight. To determine if diverse S. cerevisiae strains exhibit a conserved response to simulated microgravity, we will utilize a collection of 100 S. cerevisiae strains isolated from clinical, environmental and industrial settings. We will place selected S. cerevisiae strains in simulated microgravity using a high-aspect rotating vessel (HARV) and document their transcriptional response by RNA-sequencing and quantify similarities and differences between strains. Our research will have a strong impact on the understanding of how genetic diversity of microorganisms effects their response to spaceflight, and will serve as a platform for further studies.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47871 , ARC-E-DAA-TN43859 , Annual Meeting of the American Society for Gravitational and Space Research - ASGSR; Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: An overview of activities of the CCSDS (Consultative Committee for Space Data Systems) USLP (Unified Space Data Link Protocol) implementation.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: M17-6360 , The Consultative Committee for Space Data Systems (CCSDS) Fall 2017 Meeting; Nov 06, 2017 - Nov 09, 2017; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This payload overview presentation will be presented at the POIWG on October 17th, 2017. It provides a high-level overview of Cell Science-02 operations.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47551 , Payload Operations Integration Working Group (POIWG); Oct 17, 2017 - Oct 19, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: NASA's next generation space communications network will involve dynamic and autonomous services analogous to services provided by current terrestrial wireless networks. This architecture concept, known as the Space Mobile Network (SMN), is enabled by several technologies now in development. A pillar of the SMN architecture is the establishment and utilization of a continuous bidirectional control plane space link channel and a new User Initiated Service (UIS) protocol to enable more dynamic and autonomous mission operations concepts, reduced user space communications planning burden, and more efficient and effective provider network resource utilization. This paper provides preliminary results from the application of model driven architecture methodology to develop UIS. Such an approach is necessary to ensure systematic investigation of several open questions concerning the efficiency, robustness, interoperability, scalability and security of the control plane space link and UIS protocol.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC-E-DAA-TN45845 , 2017 IEEE International Conference on Wireless for Space and Extreme Environments; Oct 10, 2017 - Oct 12, 2017; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: System testing of the Carbon Dioxide Removal and Compression System (CRCS) has revealed that sufficient CO2 removal capability was not achieved with the designed system. Subsystem component analysis of the zeolite bed revealed that the sorbent material suffered significant degradation and CO2 loading capacity loss. In an effort to find the root cause of this degradation, various factors were investigated to try to reproduce the observed performance loss. These factors included contamination by vacuum pump oil, o-ring vacuum grease, loading/unloading procedures, and operations. This paper details the experiments that were performed and their results.
    Keywords: Life Sciences (General)
    Type: ICES-2017-117 , ARC-E-DAA-TN40177 , International Conference on Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The Laser Communication Relay Demonstration is NASAs multi-year demonstration of laser communication to a geosynchronous satellite. We are currently assembling the optical system for the first of the two baseline ground stations. The optical system consists of an adaptive optics system, the transmit system and a camera for target acquisition. The adaptive optics system is responsible for compensating the downlink beam for atmospheric turbulence and coupling it into the modems single mode fiber. The adaptive optics system is a woofer/tweeter design, with one deformable mirror correcting for low spatial frequencies with large amplitude and a second deformable mirror correcting for high spatial frequencies with small amplitude. The system uses a Shack-Hartmann wavefront sensor. The transmit system relays four beacon beams and one communication laser to the telescope for propagation to the space terminal. Both the uplink and downlink beams are centered at 1.55 microns. We present an overview of the design of the system as well as performance predictions including time series of coupling efficiency and expected uplink beam quality.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-3799 , SPIE Optics and Photonics; Aug 28, 2016 - Sep 01, 2016; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds, the bulk atmosphere on Earth, and for modeling the forward contamination of planetary surfaces like Mars. Here we describe experiments on the recovery and identification of 23 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 11 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from soil and non-soil ecosystems. The highest numbers of hypobarophiles were recovered from Arctic soil, Siberian permafrost, and human saliva. Isolates were identified through 16S rRNA sequencing to belong to the genera Carnobacterium, Exiguobacterium, Leuconostoc, Paenibacillus, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 x 104 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to 6 type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28724 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 16; 5; 335-347
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...