ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (119)
  • Aeronautics (General)
  • 2015-2019  (118)
  • 1980-1984
  • 1960-1964
  • 1925-1929  (1)
  • 2017  (75)
  • 2016  (43)
  • 1926  (1)
  • 1
    Publication Date: 2016-07-14
    Description: This is a 20 minute presentation discussing the DELIVER vision. DELIVER is part of the ARMD Transformative Aeronautics Concepts Program, particularly the Convergent Aeronautics Solutions Project. The presentation covers the DELIVER vision, transforming markets, conceptual design process, challenges addressed, technical content, and FY2016 key activities.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN30303 , On-Demand Mobility and Follow Up Workshop; 8-9 Mar. 2016; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on the publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated. Besides the production of satellites, a widespread ongoing effort to enhance orbital injection capabilities will allow delivery of more spacecraft more accurately into Earth orbits. A long list of companies such as Microcosm, Rocket Lab, Firefly Space Systems, Sierra Nevada Corporation and Arca Space Corporation are developing new launch vehicles dedicated for small satellites. There are other projects which intend to develop interstages with propulsive capabilities which will allow the deployment of satellites into their desired orbits beyond the restrictions of the launch vehicle used. These near future orbital injection technologies are also covered in the developed scenario. Using the above-mentioned background information, this study aims to examine how the orbital debris environment will be affected from the new dynamics of the emerging space markets. We developed a simulation tool that is capable of propagating the objects in a given deployment scenario with variable-sized time-steps as small as one second. Over the course of the run, the software also detects collisions; additional debris objects are then created according to the NASA breakup model and are fed back into the simulation framework. Examining the simulation results, the total number of particles to accumulate in different orbits can be monitored and the number of conjunctions can be tracked to assess the collision risks. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation on the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is authors hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN28564 , IAASS Space Safety; May 18, 2016 - May 20, 2016; Melbourne, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: Abstract:We exercise the computational fluid dynamics code OVERFLOW on sixteen turbulence model validation cases from the NASALangley Turbulence Model Resource web site. We give some information about the OVERFLOW options used to run these cases, and compare OVERFLOW results with results from other codes and with experiment. The goal is turbulence model validation for OVERFLOW.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN35216
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The current NAS relies on pilot's vigilance and judgement to remain Well Clear (CFR 14 91.113) of other aircraft. RTCA SC-228 has defined DAA Well Clear (DAAWC) to provide a quantified Well Clear volume to allow systems to be designed and measured against. Extended research efforts have been conducted to understand and quantify system requirements needed to support a UAS pilot's ability to remain well clear of other aircraft. The efforts have included developing and testing sensor, algorithm, alerting, and display requirements. More recently, sensor uncertainty and uncertainty mitigation strategies have been evaluated. This paper discusses results and lessons learned from an End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS). NASA Langley Research Center (LaRC) was called upon to develop a system that evaluates a specific set of encounters, in a variety of geometries, with end-to-end DAA functionality including the use of sensor and tracker models, a sensor uncertainty mitigation model, DAA algorithmic guidance in both vertical and horizontal maneuvering, and a pilot model which maneuvers the ownship aircraft to remain well clear from intruder aircraft, having received collective input from the previous modules of the system. LaRC developed a functioning batch simulation and added a sensor/tracker model from the Federal Aviation Administration (FAA) William J. Hughes Technical Center, an in-house developed sensor uncertainty mitigation strategy, and implemented a pilot model similar to one from the Massachusetts Institute of Technology's Lincoln Laboratory (MIT/LL). The resulting simulation provides the following key parameters, among others, to evaluate the effectiveness of the MOPS DAA system: severity of loss of well clear (SLoWC), alert scoring, and number of increasing alerts (alert jitter). The technique, results, and lessons learned from a detailed examination of DAA system performance over specific test vectors and encounter cases during the simulation experiment will be presented in this paper.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2017-219598 , L-20780 , NF1676L-26279
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.
    Keywords: Aeronautics (General)
    Type: DFRC-E-DAA-TN39175
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.
    Keywords: Aeronautics (General)
    Type: NF1676L-22765
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Multicopters are becoming one of the more common and popular type of unmanned aircraft systems (UAS) which have both civilian and military applications. One example being the concept of drone deliveries proposed by the distribution company Amazon [1]. The electrical propulsion is considered to have both faster and easier deliveries and also environmental benefits compared to other vehicles that still use fossil fuel. Other examples include surveillance and just simple entertainment. The reason behind their success is often said to be due to their small size, relatively low cost, simple structure and finally simple usage. With an increase in the UAS market comes challenges in terms of security, as both people and other aircrafts could be harmed if not used correctly. Therefore further studies and regulations are needed to ensure that future use of drones, especially in the civilian and public sectors, are safe and efficient. Thorough research has been done on full scale, man or cargo transporting, helicopters so that most parts of flight and performance are fairly well understood. Yet not much of it have been verified for small multicopters. Until today many studies and research projects have been done on the control systems, navigation and aerodynamics of multicopters. Many of the methods used today for building multicopters involve a process of trial an error of what will work well together, and once that is accomplished some structural analysis of the multicopter bodies might be done to verify that the product will be strong enough and have a decent aerodynamic performance. However, not much has been done on the research of the rotor blades, especially in terms of structural stress analyses and ways to ensure that the commonly used parts are indeed safe and follow safety measures. Some producers claim that their propellers indeed have been tested, but again that usually tends towards simple fluid dynamic analyses and even simpler stress analyses. There is no real deflection measurement of said blades and all theory is today based on the theory developed for full scale helicopters. This report thus intends to highlight the problems that come with blade deflection theory and measurements for multicopters. This thesis starts with the introduction and problem formulation where the grounds for what the report contains are laid out. Then a literature review of the research within the area follows where previous and current research and methods are presented. In the background information and theory relevant to the area are presented. After that the methods and set up of the different experimental and computer simulation approaches are depicted. In the results section the obtained results are presented and compared. Lastly there is a discussion where the results and methods are evaluated and analyzed, followed by the most important conclusions.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2016-219428 , ARC-E-DAA-TN31730
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: I am honored to endorse the 2015 Neil A. Armstrong Flight Research Centers Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Centers agility to develop technologies supporting each of NASAs core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASAs mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Dont hesitate to contact them for more information or for collaboration ideas.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2016-219097 , AFRC-E-DAA-TN30762
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-20
    Description: As a precursor to studying the acoustics of a coaxial rotor system, the aerodynamics and flow field of a coaxial rotor were simulated to better understand the interaction between the two rotors. RotUNS, an unsteady Navier-Stokes solver that uses a simplified blade aerodynamics model, was used to predict coaxial rotor performance in hover and forward flight. RotUNS steady hover calculations showed improved performance compared to blade element momentum theory. Prior to examining the complex 3D flow field of a coaxial rotor in detail, two airfoils traveling in opposite directions with a vertical separation distance equivalent to the separation between the upper and lower rotor of the coaxial system were simulated. The pressure field generated by the two airfoils aided our interpretation of the more complex coaxial rotor system flow field. The pressure fields above, between, and below the coaxial rotor system were then examined for different azimuth positions of the upper and lower rotor blades.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN28910 , AHS Technical Meeting on Aeromechanics Design for Vertical Lift; Jan 20, 2016 - Jan 22, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: The blades of coaxial, contra-rotating rotor systems cross each other in close proximity and at high relative speeds. This crossing event is a potential source of noise and severe blade loads. Effects of compressibility can aggravate the interaction and significantly alter the pressure field signature and phase relationships. A 2-D analysis of this phenomenon is performed by simulating two airfoils passing each other at specified speeds and vertical separation distances. Several test cases spanning a relevant range of Reynolds numbers, angles of attack, and relative Mach number are considered. The Mach number is varied to simulate the radial variation of velocity from the root to tip of a rotor blade to capture the pressure signature, lift, and drag of the airfoils. The velocity and pressure distributions on the airfoils, and in the space between the airfoils are computed before, at, and after airfoil crossing. The variations of lift and drag coefficients through the interaction are captured. The upper airfoil experiences an increase in lift followed by a very sharp drop in lift during the interaction. When relative Mach numbers are transonic, the region of interaction is greatly extended, with shock interactions occurring. The results show the complex nature of the aerodynamic and fluid dynamic impulses generated by blade-blade interactions, with implications to aeroelastic loads and aeroacoustic sources.
    Keywords: Aeronautics (General)
    Type: IMECE2016-67449 , ARC-E-DAA-TN31802 , ASME 2016 International Mechanical Engineering Congress and Exposition (IMECE); Nov 11, 2016 - Nov 17, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-20
    Description: Ground based experiments are often used to understand and measure rotor and airframe aerodynamic performance; however, these experiments have certain limitations. The effects of these limitations are evaluated here using computational fluid dynamic (CFD) modeling techniques. Through this study, data from the 7- by 10-Foot Wind Tunnel experiments of the Large Civil Tilt Rotor (LCTR) at NASA Ames Research Center is validated using CFD. The Reynolds Averages Navier-Stokes solver, RotCFD, is used for the computations. In particular, the effect of the blockage generated by the test hardware on the walls is investigated. To study this problem, simplified geometries such as a flat plate, cube and cylinder are also investigated for blockage effects. This is done to explore if these different geometries can represent the LCTR as a simplified case to reduce computational time and get a quick first understanding of tunnel blockage effects. The focus of this research is to understand the limitations and accuracy of the recent small-scale Large Civil Tilt Rotor wind tunnel test campaigns.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN29296 , AHS Technical Meeting on Aeromechanics Design for Vertical Lift; Jan 20, 2016 - Jan 22, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-25
    Description: An overview of the NASA Advanced Air Transport Technology (AATT) Project and interest inboundary layer transition modeling for future aircraft and propulsion systems is presented.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN46604 , Transition Modeling Workshop; Sep 13, 2017; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: Previous research and experimentation on the use of a non-linear programming constrained optimisation technique to define an optimal control vector for rotorcraft applications indicated that use of this methodology was feasible and desirable in many cases. In particular, use of non-linear programming methods that solve a sequence of related quadratic-programming sub-problems were used successfully to solve these problems. Accordingly, a licence for one of the latest versions of Professor Klaus Schittkowskis very successful Sequential Quadratic Programming NLPQLP software was obtained and used to experiment with and analyse typical optimisation problems of the type encountered in various rotorcraft wind tunnel and flight tests. This research resulted in the development of the general NLPQLP Computation System that could be used to solve problems of the type encountered in various rotorcraft applications where there is a linear dependence of the measurement vector on the control vector, and where equality andor inequality constraints might be imposed. This development was accomplished on a mainframe computer not part of actual wind tunnel andor flight-test experiment, but in a format which was transferable to wind tunnel lap-top computers. Emphasis was directed toward obtaining efficiency, robustness and speed in computation.The System was developed in support of the five-bladed SMART Rotor Active Flap Rotor Hub Loads analytical minimisation research. The design and development of the Computation System was tailored to address the particular requirements of the problem to minimise a performance metric function of measured hub load harmonic angular couple components by optimising the control vector harmonic flap angular couple components subject to constraints on the amplitudes of these control vector harmonic flap angular couple components. In addition, to facilitate real time wind tunnel experimentation, the ability to rapidly selectchange the particular hub load harmonic angular couple components andor the particular control vector harmonic angular couple components to be considered in the optimisation procedure was provided in the System. This capability allows the singling out of particular hub load frequencies andor particular flap angle frequencies to be analysed during testing operations. The System was used very successfully for the SMART Active Flap Rotor Hub minimisation problems considered in the study, the results of which were presented at the American Helicopter Society Fifth Decennial Aeromechanics Specialist Conference in January 2014. Excellent agreement between cases initiated with best guess starting estimates for the control vector elements and cases initiated with zero control vector starting element estimates resulted, indicating the robustness of the NLP10x10 algorithm.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2016?219104 , ARC-E-DAA-TN31693
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN43293 , Altair PBS Works User Group; May 22, 2017 - May 25, 2017; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: Performing impact risk assessment for the 2017 Planetary Defense Conference (PDC17) hypothetical impact exercise, to take place at the PDC17 conference, May 15-20, 2017. Impact scenarios and trajectories are developed and provided by NASA's Near Earth Objects Office at JPL (Paul Chodas). These results represent purely hypothetical impact scenarios, and do not reflect any known asteroid threat. Risk assessment was performed using the Probabilistic Asteroid Impact Risk (PAIR) model developed by the Asteroid Threat Assessment Project (ATAP) at NASA Ames Research Center. This presentation includes sample results that may be presented or used in discussions during the various stages of the impact exercisecenter dot Some cases represent alternate scenario options that may not be used during the actual impact exercise at the PDC17 conference. Updates to these initial assessments and/or additional scenario assessments may be performed throughout the impact exercise as different scenario options unfold.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN43479 , 2017 IAA Planetary Defense Conference; May 15, 2017 - May 19, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: A study into the effects of altitude on an aircraft thermal Ice Protection System (IPS) performance has been conducted by the National Research Council Canada (NRC) in collaboration with the NASA Glenn Icing Branch. The study included tests of an airfoil model, with a heated-air IPS, installed in the NRCs Altitude Icing Wind Tunnel (AIWT) at altitude and ground level conditions.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN42559 , American Institute of Aeronautics and Astronautics (AIAA) Aviation Aviation Technology, Integration, and Operations Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: The NATO HFM-247 Working Group is creating a summary report of the group's activities on human-autonomy teaming. This chapter is a summary of our at NASA Ames work toward developing a framework for human-autonomy teaming (HAT) in aviation. The purpose of this project was to demonstrate and evaluate proposed tenets of HAT. The HAT features were derived from three tenets and were built into an automated recommender system on a ground station. These tenets include bi-directional communication, automation transparency, and operator directed interface. This study focused primarily on interactions with one piece of automation, the Autonomous Constrained Flight Planner (ACFP). The ACFP is designed to support rapid diversion decisions for commercial pilots in off-nominal situations. Much effort has gone into enhancing this tool not only in capability but also in transparency. In this study, participants used the ACFP at a ground station designed to aid dispatchers in a flight following role to reroute aircraft in situations such as inclement weather, system failures and medical emergencies. Participants performed this task both with HAT features enabled and without and provided feedback. We examined subjective and behavioral indicators of HAT collaborations using a proof-of-concept demonstration of HAT tenets. The data collected suggest potential advantages and disadvantages of HAT.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN47711 , NATO HFM-247; Oct 23, 2017 - Oct 27, 2017; Leiden; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A research team of U.S. Government agencies and engine manufacturers conducted an experiment to test volcanic-ash ingestion by a NASA owned engine in the same family as the PW 2000 that was donated by the U.S. Air Force. The experiment, called Vehicle Integrated Propulsions Research (VIPR) test, was conducted under the auspices of NASAs Convergent Aeronautics Solutions (CAS) Program and took place in summer of 2015 at Edwards AFB in California as an on-ground, on-wing test. The primary objectives of the volcanic ash test were to determine the effect on the engine of several hours of exposure to low to moderate ash concentrations and to evaluate the capability of engine health management technologies for detecting these effects. The target concentrations of volcanic ash tested were at 1 and 10 mgm3. A natural volcanic ash was used that is representative of distal ash clouds many 100s to 1000 km from a volcanic source. The glassy ash particles were expected to soften and become less viscous when exposed to the high temperatures of the combustion chamber, then stick to the nozzle guide vanes of the high-pressure turbine and this was observed. Numerous observations and measurements of the engines performance and degradation were made during the course of the experiment, including borescope inspections after each test run. The engine has been disassembled so that detailed inspections of the engine effects have been made. A summary of the test methodology and execution will be made along with results from the test. While not intended to be sufficient for rigorous certification of engine performance when ash is ingested, the experiment should provide useful information to aircraft manufacturers, airline operators, and military and civil regulators in their efforts to evaluate the range of risks that ash hazards pose to aviation.
    Keywords: Aeronautics (General)
    Type: 88ABW-2017-1462 , GRC-E-DAA-TN39768 , Meeting at Central Aerohydrodynamic Institute; Apr 05, 2017 - Apr 07, 2017; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN41790 , 2017 American Control Conference (ACC); May 24, 2017 - May 26, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Several multimodel ensemble methods are selected and further developed to improve the deterministic and probabilistic prediction skills of individual wake-vortex transport and decay models. The different multimodel ensemble methods are introduced, and their suitability for wake applications is demonstrated. The selected methods include direct ensemble averaging, Bayesian model averaging, and Monte Carlo simulation. The different methodologies are evaluated employing data from wake-vortex field measurement campaigns conducted in the United States and Germany.
    Keywords: Aeronautics (General)
    Type: NF1676L-23873 , Journal of Aircraft (ISSN 0021-8669) (e-ISSN 1533-3868); 54; 5; 1849-1859
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN41797 , AIAA SciTech 2016; Jan 04, 2016 - Jan 06, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: This paper summarizes the development of lean direct injection (LDI) combustor technology at, or in collaboration with, the NASA Glenn Research Center. These configurations differ mainly in fuel-air mixing strategy. The paper reviews the NOx performance and operability characteristics of multiple LDI configurations tested at NASA Glenn.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN46107 , International Society of Air Breathing Engines (ISABE) Conference 2017; Sep 03, 2017 - Sep 08, 2017; Manchester, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: This paper summarizes the development of lean direct injection (LDI) combustor technology at, or in collaboration with, the NASA Glenn Research Center. These configurations differ mainly in fuel-air mixing strategy. The paper reviews the NOx performance and operability characteristics of multiple LDI configurations tested at NASA Glenn.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN44327 , International Society of Air Breathing Engines (ISABE) Conference 2017; Sep 03, 2017 - Sep 08, 2017; Manchester, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN42132 , AIAA Aviation Forum 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: The Elytron 2S is a prototype aircraft concept to allow VTOL capabilities together with fixed wing aircraft performance. It has a box wing design with a centrally mounted tilt-wing supporting two rotors. This paper explores the aerodynamic characteristics of the aircraft using computational fluid dynamics in hover and low speed forward flight, as well as analyzing the unique control system in place for hover. The results are then used to build an input set for NASA Design and Analysis if Rotorcraft software allowing trim and flight stability and control estimations to be made with SIMPLIFLYD.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN31314 , Aerospace Systems and Technology Conference (SAE 2016); Sep 27, 2016 - Sep 29, 2016; Hartford, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: Rotor wake dispersion in a low-speed, one and half stage axial compressor is investigated in detail with a Large Eddy Simulation (LES). The primary focus is to quantify the total pressure recovery due to wake stretching and the total pressure loss from the rotor wake interaction with the stator blade boundary layer. The relative magnitude of the aerodynamic loss due to these two effects is examined at several radial locations. The spacing between the rotor and the stator was varied from 29% to 112% of the rotor axial chord at the mid span to investigate the effects of rotor wake decay before entering the stator passage. The current analysis indicates that the efficiency through the compressor stage is increased about 0.5% when the spacing between the rotor and the stator is decreased from 112% to 29% of the rotor axial chord at mid-span. 22% of the efficiency gain from the narrower axial gap is due to the wake recovery and 63% is due to the stronger unsteady pressure field at the exit of the rotor due to stage interaction. Total pressure loss/recovery across the stator varies significantly in the radial direction for the current compressor, which has a much lower aspect ratio. The total pressure recovery due to wake stretching is larger than the total pressure loss due to the unsteady boundary layer development on the stator blade from 20% to 35% of the span from the hub for 29% spacing and from 35% to 55% of the span for 112% spacing. Above 50% of the span, rotor tip clearance flow affects wake dispersion and the overall wake recovery is less than expected.
    Keywords: Aeronautics (General)
    Type: GT2017-63020 , GRC-E-DAA-TN56655 , Turbo Expo: Turbomachinery Technical Conference & Exposition; Jun 26, 2018 - Jun 30, 2018; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN39690 , Society for Industrial and Applied Mathematics (SIAM) Conference on Computational Science and Engineering; Feb 27, 2017 - Mar 03, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: This presentation provides an overview of the Aeronautics Research Mission Directorate and SBIRSTTR topics for ARMD's programs and project.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN43871 , NASA SBIR/STTR Industry Day; Jun 25, 2017 - Jun 27, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: Air-launch is defined as two or more air-vehicles joined and working together, that eventually separate in flight, and that have a combined performance greater than the sum of the individual parts. The use of the air-launch concept has taken many forms across civil, commercial, and military contexts throughout the history of aviation. Air-launch techniques have been applied for entertainment, movement of materiel and personnel, efficient execution of aeronautical research, increasing aircraft range, and enabling flexible and efficient launch of space vehicles. For each air-launch application identified in the paper, the motivation for that application is discussed.
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN46518 , AIAA Space Forum 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: This paper examines the fundamentals of fuel-air mixing in a lean direct injection concept. Results are presented to investigate the effects of air swirler angle, element spacing, and center element offset on recirculation zone formation, flame stability and gaseous emissions.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN46004 , International Society of Air-breathing Engines (ISABE) Conference; Sep 03, 2017 - Sep 08, 2017; Manchester; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: Air-launch is defined as two or more air-vehicles joined and working together, that eventually separate in flight, and that have a combined performance greater than the sum of the individual parts. The use of the air-launch concept has taken many forms across civil, commercial, and military contexts throughout the history of aviation. Air-launch techniques have been applied for entertainment, movement of materiel and personnel, efficient execution of aeronautical research, increasing aircraft range, and enabling flexible and efficient launch of space vehicles. For each air-launch application identified in the paper, the motivation for that application is discussed.
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN44165 , AIAA Space Forum 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: An initial ice shape database has been created to document ice accretions on a 21-inch chord NACA 0012 airfoil model resulting from an exposure to a Supercooled Large Droplet (SLD) icing cloud with a bimodal droplet distribution. The ice shapes created were documented with photographs, laser scanned surface measurements over a section of the model span, and measurement of the ice mass over the same section of each accretion. The icing conditions used in the test matrix were based upon previously measured ice shapes on the same model to connect the current database to previously measured information. Ice shapes resulting from the bimodal distribution as well as from equivalent standard droplet distributions were obtained and compared. Results indicate that the ice shapes resulting from the bimodal droplet distributions had higher mass and volume values than their standard distribution equivalents as well as having icing limits that extended further back on the chord of the model.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN42614 , 2017 AIAA AVIATION Forum; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: This document defines the procedure to disconnect TBFM IDAC's connection with ATD-2's STBO System at the Washington Air Route Traffic Center. This is part of the ATD-2 ZDC training package that was presented in September 2017.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN61009 , Release to website NASA Ames Research Center; Sep 14, 2018; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: This is the ATD-2 training presentation for ZDC. The original presentation was completed September 2017.The metering modes are described above. These will be updated depending on Modeset by the Ramp Manager, STBO Client will also display the Metering Mode Icon onthe right hand corner of the Toolbar.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN61005 , Website release NASA ARC; Sep 19, 2017 - Sep 20, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: Over the past 5 years, the UAS integration into the NAS project has worked to reduce technical barriers to integration. A major focus of this work has been in support of RTCA SC-228. This committee has recently published the first UAS integration minimum performance standards (MOPS). This work has spanned detect and avoid (DAA) as well as command and control comm datalinks. I will discuss DAA efforts with focus on the human systems work. I will discuss how automation was discussed and addressed within this context. ICAO stood up a remotely piloted aircraft systems (RPAS) panel in 2014. They have developed an RPAS manual and are now working to revise existing annexes and standards and recommended practices. The Human In The System (HITS) has worked to infuse human factors guidelines into those documents. I will discuss that effort as well as how ICAO has defined and address autonomy. There is a great deal of interest in the control of multiple vehicles by a single operator. The UAS EXCOM Science and Research Panel (SARP) is holding a workshop on this topic in late June. I will discuss research performed on this topic when I worked for the Army and on-going work within the division and a NATO working group on Human-Autonomy Teaming.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN43628 , NASA Ames Autonomy Tech Talk; Jun 13, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN40180 , Advanced Modeling & Simulation (AMS) Seminar Series; Mar 09, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN39772 , AIAA International Spaceplane and Hypersonic Systems and Technologies Conference: Panel on Fuel Choice for Hypersonic Civil Transportation; Mar 06, 2017 - Mar 09, 2017; Xiamen; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) has identified Multifunctional Structures for High Efficiency Lightweight Load-bearing Storage (M-SHELLS) as critical to development of hybrid gas-electric propulsion for commercial aeronautical transport in the N+3 timeframe. The established goals include reducing emissions by 80 and fuel consumption by 60 from todays state of the art. The advancement will enable technology for NASA Aeronautics Research Mission Directorates (ARMD) Strategic Thrust 3 to pioneer big leaps in efficiency and environmental performance for ultra-efficient commercial transports, as well as Strategic Thrust 4 to pioneer low-carbon propulsion technology in the transition to that scheme. The M-SHELLS concept addresses the hybrid gas-electric highest risk with its primary objective: to save structures energy storage system weight for future commercial hybrid electric propulsion aircraft by melding the load-carrying structure with energy storage in a single material. NASA's multifunctional approach also combines supercapacitor and battery chemistries in a synergistic energy storage arrangement in tandem with supporting good mechanical properties. The arrangement provides an advantageous combination of specific power, energy, and strength.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN43229 , AIAA Aviation 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-24
    Description: Description of a tool for portfolio analysis of NASA's Aeronautics research progress toward planned community strategic Outcomes is presented. The strategic planning process for determining the community Outcomes is also briefly described. Stakeholder buy-in, partnership performance, progress of supporting Technical Challenges, and enablement forecast are used as the criteria for evaluating progress toward Outcomes. A few illustrative examples are also presented.
    Keywords: Aeronautics (General)
    Type: HQ-E-DAA-TN27301 , INCOSE International Symposium (IS2016); Jul 18, 2016 - Jul 21, 2016; Edinburgh, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-14
    Description: This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS FY16 progress and future directions.
    Keywords: Aeronautics (General)
    Type: DFRC-E-DAA-TN38587
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-13
    Description: This presentation will be given as part of the UAS EXCOM Science and Research Panel's (SARP) workshop on multiple UAS controlled by a single operator. Participants were asked to identify public use cases for multiple UAS control and identify research, policy and technical gaps in those operations. The purpose of this workshop is to brainstorm, categorize and prioritize those use canses and gaps. Here, I will discuss research performed on this topic when I worked for the Army and on-going work within the division and a NATO working group on Human-Autonomy Teaming.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN43849 , UAS EXCOM Science and Research Panel (SARP) Multi-UAS Workshop; Jun 27, 2017; McLean, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-13
    Description: This presentation will be given as part of the UAS EXCOM Science and Research Panel's (SARP) workshop on multiple UAS controlled by a single operator. Participants were asked to identify public use cases for multiple Unmanned Aircraft Systems (UAS) control and identify research, policy, and technical gaps in those operations. The purpose of this workshop is to brainstorm, categorize, and prioritize those use cases and gaps. Here, I will discuss research performed on this topic when I worked for the Army and on-going work within the division and a NATO working group on Human-Autonomy Teaming.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN43818 , UAS EXCOM Science and Research Panel (SARP) Multi-UAS Workshop; Jun 27, 2017; McLean, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-13
    Description: NASA RPAS Operational and Research Activities presentation discusses the UAS flight operations. UAS vehicles are discussed along with the missions they supported. This is a high level overview of UAS operations at NASA being presented to the RPAS (Remotely Piloted Aircraft Systems) Symposium.
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN46312 , Global RPAS Symposium 2017; Sep 19, 2017 - Sep 21, 2017; Montral; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-13
    Description: Reduce the total pressure distortion at the engine-fan face due to low-momentum flow caused by the interaction of an external terminal shock at the turbulent boundary layer along a streamline-traced external-compression (STEX) inlet for Mach 1.6.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN32506 , Shock Wave Boundary Layer Interaction Workshop; May 24, 2016 - May 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-13
    Description: This is a presentation to be given at the MOWG to discuss Aura mission summary, subsystems summary, recent and planned activities, propellant usage and lifetime estimates and overall summary.
    Keywords: Aeronautics (General)
    Type: GSFC-E-DAA-TN35290 , Earth Science Constellation MOWG Meeting; Sep 27, 2016 - Sep 29, 2016; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-07
    Description: Solar activity is a manifestation of magnetic self-organization processes that involve complex dynamical coupling of various layers of the Sun acting over a broad range of spatial and temporal scales. Synergy of observational, theoretical, and modeling efforts is key to understanding solar activity variation, dynamics, and evolution and to developing reliable physics-based forecasts of long-term solar cycles and short-term activity manifestations, seasons of solar activity, such as periods of enhanced flaring and CME activity. The session welcomes observers, modelers, and theoreticians to share their results and ideas and to discuss current challenges, development of emerging fields (such as data assimilation), and the analysis of historical and modern observational data using theoretical modeling, interpretations, and predictions.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN44696 , AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN30402 , Green Aviation Technical Interchange Meeting (TIM); Mar 29, 2016; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-01-04
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: JPL-CL-16-2886 , Coherent Laser Radar Conference; Jun 27, 2016 - Jul 01, 2016; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2016-4229 , NF1676L-22916 , AIAA Aviation Technology, Integration, and Operations Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN28421 , AIAA SciTech Conference; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.
    Keywords: Aeronautics (General)
    Type: NF1676L-22696 , 2016 AIAA Aviation Technology, Integration, and Operations Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
    Keywords: Aeronautics (General)
    Type: NF1676L-21990 , AHS International Annual Forum and Technology Display; May 17, 2016 - May 19, 2016; West Palm Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.
    Keywords: Aeronautics (General)
    Type: AAS Paper 16-217 , NF1676L-22612 , AAS/AIAA Space Flight Mechanics Meeting; Feb 14, 2016 - Feb 18, 2016; Napa, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN28308 , AIAA Aerospace Sciences Meeting (SciTech 2016); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: This presentation describes the results of ice accretion measurements on a NACA 0012 airfoil model, from the NASA Icing Research Tunnel, using an icing cloud composed of a bimodal distribution of Supercooled Large Droplets. The data consists of photographs, laser scans of the ice surface, and measurements of the mass of ice for each icing condition. The results of ice shapes accumulated as a result of exposure to an icing cloud with a bimodal droplet distribution were compared to the ice shapes resulting from an equivalent cloud composed of a droplet distribution with a standard bell curve shape.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN43197 , AIAA Atmospheric and Space Environments Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Preliminary evaluation of altitude scaling for turbofan engine ice crystal icing simulation was conducted during the 2015 LF11 engine icing test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine ice growth feature and associated icing effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine icing simulation.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN42592 , 2017 Aviation Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: The combustion dynamics of multiple 7-point lean direct injection (LDI) combustor configurations are compared. LDI is a fuel-lean combustor concept for aero gas turbine engines in which multiple small fuel-air mixers replace one traditionally-sized fuel-air mixer. This 7-point LDI configuration has a circular cross section, with a center (pilot) fuel-air mixer surrounded by six outer (main) fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle, which varies with the configuration. Testing was done in a 5-atm flame tube with inlet air temperatures from 600 to 800 F and equivalence ratios from 0.4 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN42100 , US National Combustion Meeting; Apr 23, 2017 - Apr 26, 2017; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: This briefing is an overview of the Global Hawk Program, focusing on UAS operations for the ICAO visit to AFRC.
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN43497 , ICAO visit; Jun 29, 2017; Edwards, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Ikhana demonstrates capabilities of UAS to overfly and collect sensor data on widespread fires throughout Western US and also demonstrate long-endurance mission capabilities (20-hours+). Ikhana images multiple fires (greater than 4 fires per mission), to showcase extendable mission configuration and ability to either linger over key fires or station over disparate regional fires. Ikhana also demonstrates new UAV-compatible, autonomous sensor for improved thermal characterization of fires. Also it provides automated, on-board, terrain and geo-rectified sensor imagery over the horizon SATCOM links to national fire personnel and Incident commanders.
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN43070 , ICAO visit; Jun 29, 2017; Edwards, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: The combustion dynamics of two 7-point lean direct injection (LDI) combustor configurations are compared. This 7-point LDI configuration has a circular cross section, with a center ("pilot") fuel-air mixer surrounded by six outer ("main") fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle. In the 'all-60' configuration, the swirler blade angle was 60 deg for all fuel-air mixers. In the '45-60' configuration, the swirler blade angle was 60 deg on the center and 45 deg on the outer fuel-air mixers. Testing was done in a 5-atm flame tube with inlet air temperatures from 630 to 830 F and equivalence ratios from 0.2 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section. Both configurations had large pressure fluctuations (greater than 2 psi peak-peak) near 730 Hz, the quarter-wave frequency. The all-60 configuration also had large pressure fluctuations near 1170 Hz; the 45-60 configuration did not. The 45-60 configuration had large pressure fluctuations near 480 Hz; the all-60 configuration did not.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN39664 , U.S National Combustion Meeting; Apr 23, 2017 - Apr 26, 2017; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Two parachute fabrics, described by Parachute Industry Specifications PIA-C-7020D Type I and PIA-C-44378D Type I, were tested to obtain their permeabilities in air (i.e., flow-through volume of air per area per time) over the range of differential pressures from 0.146 psf (7 Pa) to 25 psf (1197 Pa). Both fabrics met their specification permeabilities at the standard differential pressure of 0.5 inch of water (2.60 psf, 124 Pa). The permeability results were transformed into an effective porosity for use in calculations related to parachutes. Models were created that related the effective porosity to the unit Reynolds number for each of the fabrics. As an application example, these models were used to calculate the total porosities for two geometrically-equivalent subscale Disk-Gap-Band (DGB) parachutes fabricated from each of the two fabrics, and tested at the same operating conditions in a wind tunnel. Using the calculated total porosities and the results of the wind tunnel tests, the drag coefficient of a geometrically-equivalent full-scale DGB operating on Mars was estimated.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2017-3725 , NF1676L-25637 , AIAA Aerodynamic Decelerator Systems Technology Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN42789 , AIAA Aviation 2017 Forum; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two scaling methods based on Weber number were compared against a method based on the Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel. The Weber number based scaling methods resulted in smaller runback ice mass than the Reynolds number based scaling method. The ice accretions from the Weber number based scaling method also formed farther upstream. However there were large differences in the accreted ice mass between the two Weber number based scaling methods. The difference became greater when the speed was increased. This indicated that there may be some Reynolds number effects that isnt fully accounted for and warrants further study.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN43105 , AIAA Aviation 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: LTNInlets and Nozzles Branch Overview to be presented to GE during method review meeting. Presentation outlines the capabilities, facilities and tools used by the LTN Branch to conduct its mission of developing design and analysis tools and technologies for inlets and nozzles used on advanced vehicle concepts ranging from subsonic to hypersonic speeds.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN43195 , NASA/GE- Methods Development Review; Jun 01, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: A feasibility study is in progress at NASA Glenn Research Center to implement a magnetic suspension and balance system in the 225 sq cm Supersonic Wind Tunnel for the purpose of testing the dynamic stability of blunt bodies. An important area of investigation in this study was determining the optimum size of the model and the iron spherical core inside of it. In order to minimize the required magnetic field and thus the size of the magnetic suspension system, it was determined that the test model should be as large as possible. Blockage tests were conducted to determine the largest possible model that would allow for tunnel start at Mach 2, 2.5, and 3. Three different forebody model geometries were tested at different Mach numbers, axial locations in the tunnel, and in both a square and axisymmetric test section. Experimental results showed that different model geometries produced more varied results at higher Mach Numbers. It was also shown that testing closer to the nozzle allowed larger models to start compared with testing near the end of the test section. Finally, allowable model blockage was larger in the axisymmetric test section compared with the square test section at the same Mach number. This testing answered key questions posed by the feasibility study and will be used in the future to dictate model size and performance required from the magnetic suspension system.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN38534 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A significant level of debate and confusion has surrounded the meaning of the terms autonomy and automation. Automation is a multi-dimensional concept, and we propose that Remotely Piloted Aircraft Systems (RPAS) automation should be described with reference to the specific system and task that has been automated, the context in which the automation functions, and other relevant dimensions. In this paper, we present definitions of automation, pilot in the loop, pilot on the loop and pilot out of the loop. We further propose that in future, the International Civil Aviation Organization (ICAO) RPAS Panel avoids the use of the terms autonomy and autonomous when referring to automated systems on board RPA. Work Group 7 proposes to develop, in consultation with other workgroups, a taxonomy of Levels of Automation for RPAS.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN39628 , Remotely Piloted Aircraft Systems Panel (RPASP) Meeting; Mar 13, 2017 - Mar 17, 2017; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: This presentation educates public and stakeholders on NASA organization, ARMD programs and projects, and top-level future plans.
    Keywords: Aeronautics (General)
    Type: DFRC-E-DAA-TN33145 , California Space Grant; Jun 25, 2016; Virtual; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This is a high level overview of the VIP day regarding the planned flight testing. It mentions the collaboration between GA and NASA as well as some elements that Ikhana is involved.
    Keywords: Aeronautics (General)
    Type: PS-02266-0717 , AFRC-E-DAA-TN44833 , ACAS Xu VIP Day; Jul 28, 2017; Edwards AFB, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Four samples of natural reeds, Phragmites australis, were tested in the NASA Langley and Glenn Normal Incidence Impedance Tubes in order to experimentally determine the acoustic absorption coefficients as a function of frequency from 400 to 3000 Hz. Six samples that mimicked the geometry of the assemblies of natural reeds were also designed and additively manufactured from ASA thermoplastic and tested. Results indicate that structures can be manufactured of synthetic materials that mimic the geometry and the low frequency acoustic absorption of natural reeds. This accomplishment demonstrates that a new class of structures can now be considered for a wide range of industrial products that need thin, lightweight, broadband acoustic absorption effective at frequencies below 1000 Hz. Aircraft engine acoustic liners and aircraft cabin acoustic liners, in particular, are two aviation applications that might benefit from further development of this concept.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN41029 , Acoustics Technical Working Group (ATWG); Apr 11, 2017 - Apr 12, 2017; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: A spatial resolution study of flap tip flow and the effects on the farfield noise signature for an 18%-scale, semispan Gulfstream aircraft model are presented. The NASA FUN3D unstructured, compressible Navier-Stokes solver was used to perform the highly resolved, time-dependent, detached eddy simulations of the flow field associated with the flap for this high-fidelity aircraft model. Following our previous work on the same model, the latest computations were undertaken to determine the causes of deficiencies observed in our earlier predictions of the steady and unsteady surface pressures and off-surface flow field at the flap tip regions, in particular the outboard tip area, where the presence of a cavity at the side-edge produces very complex flow features and interactions. The present results show gradual improvement in steady loading at the outboard flap edge region with increasing spatial resolution, yielding more accurate fluctuating surface pressures, off-surface flow field, and farfield noise with improved high-frequency content when compared with wind tunnel measurements. The spatial resolution trends observed in the present study demonstrate that the deficiencies reported in our previous computations are mostly caused by inadequate spatial resolution and are not related to the turbulence model.
    Keywords: Aeronautics (General)
    Type: NF1676L-25821 , AIAA/CEAS Aeroacoustic conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: The objective of this work was to identify and estimate complexity and risks associated with the development and testing of new low-cost medium-scale X-plane aircraft primarily focused on air transport operations. Piloting modes that were evaluated for this task were manned, remotely piloted, and unmanned flight research programs. This analysis was conducted early in the data collection period for X-plane concept vehicles before preliminary designs were complete. Over 50 different aircraft and system topics were used to evaluate the three piloting control modes. Expert group evaluations from a diverse set of pilots, engineers, and other experts at Aeronautics Research Mission Directorate centers within the National Aeronautics and Space Administration provided qualitative reasoning on the many issues surrounding the decisions regarding piloting modes. The group evaluations were numerically rated to evaluate each topic quantitatively and were used to provide independent criteria for vehicle complexity and risk. An Edwards Air Force Base instruction document was identified that emerged as a source of the effects found in our qualitative and quantitative data. The study showed that a manned aircraft was the best choice to align with test activities for transport aircraft flight research from a low-complexity and low-risk perspective. The study concluded that a manned aircraft option would minimize the risk and complexity to improve flight-test efficiency and bound the cost of the flight-test portion of the program. Several key findings and discriminators between the three modes are discussed in detail.
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN41196 , Aviation 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: NASA's research into distributed electric propulsion (DEP) includes the design and development of the X-57 Maxwell aircraft. This aircraft has two distinct types of DEP: wingtip propellers and high-lift propellers. This paper focuses on the unique opportunities and challenges that the high-lift propellers--i.e., the small diameter propellers distributed upstream of the wing leading edge to augment lift at low speeds--bring to the aircraft performance in approach conditions. Recent changes to the regulations related to certifying small aircraft (14 CFR x23) and these new regulations' implications on the certification of aircraft with high-lift propellers are discussed. Recommendations about control systems for high-lift propeller systems are made, and performance estimates for the X-57 aircraft with high-lift propellers operating are presented.
    Keywords: Aeronautics (General)
    Type: NF1676L-25757 , AIAA Aviation Technology, Integration, and Operations Conference (AVIATION 2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: The presentation will focus on the importance of interdisciplinary research for addressing future aerospace challenges. Examples of current research activities at NASA's Glenn Research Center will be provided to illustrate the importance of interdisciplinary research. Challenges with conducting interdisciplinary research will be discussed.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN43116 , Polish-American Conference on Science and Technology; May 30, 2017 - May 31, 2017; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: To aid in the design of surfaces that prevent icing, a model and computational simulation of impact ice formation at the single droplet scale was implemented. The nucleation of a single supercooled droplet impacting on a substrate, in rime ice conditions, was simulated. Open source computational fluid dynamics (CFD) software was used for the simulation. To aid in the design of surfaces that prevent icing, a model of impact ice formation at the single droplet scale was proposedNo existing model simulates simultaneous impact and freezing of a single super-cooled water dropletFor the 10-week project, a low-fidelity feasibility study was the goal.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN38804 , Annual Meeting of the Adhesion Society; Feb 26, 2017 - Mar 01, 2017; St. Petersburg, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN38535 , SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Overview of airframe and propulsion technology development activities in the Environmentally Responsible Aviation Project.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN35219 , Turbine Engine Technology Symposium (TETS); Sep 12, 2016 - Sep 15, 2016; Dayton, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The topic of these slides is a general understanding of NASA aeronautics activities. Advancing Technology and Science Through Flight
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN42651 , Women in Aviation Meeting; May 20, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Flow and noise fields are explored for the concept of distributed propulsion. A model-scale experiment is performed with an 8:1 aspect ratio rectangular nozzle that is divided into six passages by five septa. The septa geometries are created by placing plastic inserts within the nozzle. It is found that the noise radiation from the septa nozzle can be significantly lower than that from the baseline rectangular nozzle. The reduction of noise is inferred to be due to the introduction of streamwise vortices in the flow. The streamwise vortices are produced by secondary flow within each passage. Thus, the geometry of the internal passages of the septa nozzle can have a large influence. The flow evolution is profoundly affected by slight changes in the geometry. These conclusions are reached by mostly experimental results of the flowfield aided by brief numerical simulations.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN37556 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: We present results of thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators. We have used a test setup, measurement, and data processing methodology that we developed in prior work. The tests were conducted with High Density Polyethylene (HDPE) actuators of three thicknesses. The applied voltage driving the actuators was a pure sinusoidal waveform. The test setup was suspended actuators with a partial liquid interface. The tests were conducted at low ambient humidity. The thrust was measured with an analytical balance and the results were corrected for anti-thrust to isolate the plasma generated thrust. Applying this approach resulted in smooth and repeatable data. It also enabled curve fitting that yielded quadratic relations between the plasma thrust and voltage in log-log space at constant frequencies. The results contrast power law relationships developed in literature that appear to be a rough approximation over a limited voltage range.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN32757 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASAs Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN48066 , American Geophysical Union (AGU) Fall Meeting 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: The American Institute of Aeronautics and Astronautics (AIAA) High Lift Prediction Workshop series is described. Two workshops have been held to date. Major conclusions are summarized, and plans for future workshops are outlined. A compilation of lessons learned from the first two workshops is provided. This compilation includes a summary of needs for future high-lift experiments that are intended for computational fluid dynamics (CFD) validation.
    Keywords: Aeronautics (General)
    Type: STO-MP-AVT-211 , NF1676L-22507 , Specialists Meeting on Progress and Challenges in Validation Testing for Computational Fluid Dynamics (AVT-246); Sep 26, 2016 - Sep 28, 2016; Avila; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: This presentation provides an overview of experiments conducted at NASA GRC to provide turbulent flow measurements needed for new turbulence model development and validation. The experiments include particle image velocimetry (PIV) and hot-wire measurements of mean flow velocity and temperature fields, as well as fluctuating components.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN30467 , Experimental Overview to Boeing; Mar 10, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN36260 , Symposium on Overset Composite Grids and Solution Technology; Oct 17, 2016 - Oct 20, 2016; Mukilteo, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The overall objective of the NUSTAR Capability is to offer standardized tests and scenario conditions to assess performance of the UAS. The following are goals of the NU-STAR: 1. Create a prototype standardized tests and scenarios that vehicles can be tested against. 2. Identify key performance parameters of all UAS and their standardized measurement strategy. 3. Develop standardized performance reporting method (e.g., consumer report style) to assist prospective buyers. 4. Identify key performance metrics that could be used by judged towards overall safety of the UAS and operations. 5. If vehicle certification standard is made by a regulatory agency, the performance of individual UAS could be compared against the minimum requirement (e.g., sense and avoid detection time, stopping distance, kinetic energy, etc.).
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN30984 , Technology and Standards Forum; Apr 05, 2016 - Apr 07, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (〉80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (〈250MT) asteroids in these simulations where they impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (200 - 800m).
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN35604 , International Workshop on Asteroid Threat Assessment: Asteroid Generated Tsunami and Risk Assessment; Aug 23, 2016 - Aug 24, 2016; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The exploration of Mars has long been a theme in science fiction entertainment. However, with successful NASA Mars rover missions such as Curiosity and Opportunity, this fiction has become a reality. As NASA prepares additional rovers to explore the Red Planet, the agency is looking for ways to make exploration more efficient. One solution is to use a small, lightweight, co-axial rotor helicopter to scout geographical conditions on the Martian surface. This type of flight is unprecedented, as no vehicle has flown in the Martian atmosphere. With that said, extensive experimentation is needed to develop such a vehicle. Initial testing has been completed on what has been dubbed the Mars Scout Helicopter (MSH), and the next phase of testing will include wind tunnel testing of the rotor in forward flight in a reduced pressure environment, simulating the atmosphere of Mars.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN31973
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-14
    Description: This presentation is an overview of future emerging aviation markets.
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN42222
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-26
    Description: A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-14
    Description: This is a benefit to NASA because of all the networking opportunities as well as sharing information about UAS-NAS within the UAS community. NASA has developed, and is executing, a Cohesive Strategy for UAS Integration
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN47003 , UAS Integration in the NAS; Sep 26, 2017 - Sep 28, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-14
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN44613 , ACAS Xu VIP Day; Jul 13, 2017; Edwards, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2017-219580 , L-20796 , NF1676L-26507
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: In order to validate the Unmanned Aerial System (UAS) Detect-and-Avoid (DAA) solution proposed by standards body RTCA Inc., the National Aeronautics and Space Administration (NASA) UAS Integration in the NAS project, alongside industry members General Atomics and Honeywell, conducted the fourth flight test in a series at Armstrong Flight Research Center in Edwards, California. Flight Test 4 (FT4) investigated problems of interoperability with the TCAS collision avoidance system with a DAA system as well as problems associated with sensor uncertainty. A series of scripted flight encounters between the NASA Ikhana UAS and various "intruder" aircraft were flown while alerting and guidance from the DAA algorithm were recorded to investigate the timeliness of the alerts and correctness of the guidance triggered by the DAA system. The results found that alerts were triggered in a timely manner in most instances. Cases where the alerting and guidance was incorrect were investigated further.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2016-219366 , L-20773 , NF1676L-26126
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: Results of an experimental study with a large aspect ratio rectangular nozzle, divided into multiple compartments or septa, as pertinent to distributed propulsion, are presented. Noise measurements at high-subsonic conditions show that the nozzle with the septa is quieter than the corresponding baseline nozzle without the septa. At relatively lower Mach numbers a high-frequency tone is heard. This is shown to be due to Karmann vortex shedding from the trailing edge of the partitions that separate a septum from the adjacent ones. Flowfield measurements for a six septa case show that the cellular flow structure, issuing from the nozzle, goes through a curious coalescence with increasing downstream distance (x) from the nozzle. Adjacent cells pair to yield a three-cell structure by x/D =2, where D is the equivalent diameter of the baseline nozzle. By about x/D =16, both the septa case and the baseline case evolve to yield axisymmetric flowfields.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN30991 , AIAA/CEAS Aeroacoustics Conference; Lyon; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: A rotor hover test was performed inside the JPL 25-foot-diameter Space Simulator. The 40-inch-diameter rotor was tested at two locations in the chamber-on the chamber centerline and 2m off-axis. The rotor was tested in both upright and inverted configurations for 500 〈 RPM 〈 2000. Fluorescent tufts were used to identify regions of recirculation. Velocities on the entrainment side of the rotor were measured. Tabulated values for the mean entrainment velocity components and the corresponding root mean square velocity fluctuations are provided. Unsteady velocity measurements provide a description of the turbulence ingested into the rotor plane and quantify the unsteady velocity field that the Mars Scout Helicopter can expect to encounter during free flight inside the Space Simulator.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2016-219162 , ARC-E-DAA-TN35203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: This report is the documentation of the work performed under the Hypersonic Project of the NASA's Fundamental Aeronautics Program. It was funded through Task Number NNC10E444T under GESS-2 Contract NNC06BA07B. The objective of the task is to develop advanced computational tools for the simulation of multi-stage turbomachinery in support of aeropropulsion. This includes work elements in extending the TURBO code and validating the multi-stage URANS (Unsteady Reynolds Averaged Navier Stokes) simulation results with the experimental data. The unsteady CFD (Computation Fluid Dynamics) calculations were performed in full wheel mode with and without screen generated total pressure distortion at the computational inflow boundary, as well as in single passage phase lag mode for uniform inflow. The experimental data were provided by NASA from the single stage RTA (Revolutionary Turbine Accelerator) fan test program.Significant non-uniform flow condition at the fan-face of the aeropropulsion system is frequentlyencountered in many of the advanced aerospace vehicles. These propulsion systems can be eithera podded or an embedded design employed in HWB (Hybrid Wing Body) airframe concept. It isalso a topic of interest in military applications, in which advanced air vehicles have already deployedsome form of embedded propulsion systems in their design because of the requirementsof compact and low observable inlets. Even in the conventional airframe/engine design, the fancould operate under such condition when the air vehicle is undergoing rapid maneuvering action.It is believed that a better understanding of the fans aerodynamic and aeromechanical responseto this type of operating condition or off design operation would be beneficial to designing distortiontolerant blades for improved engine operability.The objective for this research is to assess the capability of turbomachinery code as an analysistool in understanding the effects and evaluating the impact of flow distortion on the aerodynamicand aeromechanical performance of the fan in advanced propulsion systems. Results from thetesting of an advanced fan stage released by NASA are available and will be used here for CFDcode validation. The experiment was performed at NASAs high speed compressor facility aspart of the RTA (Revolutionary Turbine Accelerator) demonstration project, a joint effort ofNASA Glenn Research Center and GE Aircraft Engines in developing an advanced Mach 4TBCC (Turbine Based Combined Cycle) turbofan/ramjet engine for access to space. Part of thetest was to assess the aerodynamic performance and operability of the fan stage under nonuniforminflow condition. Various flow distortion patterns were created at the fan-face by manipulatingsets of screens placed upstream of the wind tunnel. Measurements at the fan-face willprovide the necessary distortion flow information as the inflow boundary condition for the CFDin a full wheel simulation. Therefore the purpose of this work is to demonstrate the NASA supportedmulti-stage turbomachinery code, TURBO [1-5], in the aerodynamic performance analysisof a modern fan design operating under off design condition, and in particular to validate theCFD results with the RTA fan test data.A brief description of the RTA fan rig configuration is given in the next section, explaining onhow flow distortion were measured in the test and constructed for the CFD at the fan-face. It isfollowed by a section summarizing previous CFD work performed at NASA relevant to the currentfan configuration. A short description of the TURBO code is given next, followed by detailsin the computational model of the fan rig, the required computing resources, and the numericalprocedure for the simulations. The CFD results are presented in the discussion section and finallyconcluding remarks are summarized.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2017-219698 , E-19429 , GRC-E-DAA-TN46069
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: The objective of this work was to identify and estimate complexity and risks associated with the development and testing of new low-cost medium-scale X-plane aircraft primarily focused on air transport operations. Piloting modes that were evaluated for this task were manned, remotely piloted, and unmanned flight research programs. This analysis was conducted early in the data collection period for X-plane concept vehicles before preliminary designs were complete. Over 50 different aircraft and system topics were used to evaluate the three piloting control modes. Expert group evaluations from a diverse set of pilots, engineers, and other experts at Aeronautics Research Mission Directorate centers within the National Aeronautics and Space Administration provided qualitative reasoning on the many issues surrounding the decisions regarding piloting modes. The group evaluations were numerically rated to evaluate each topic quantitatively and were used to provide independent criteria for vehicle complexity and risk. An Edwards Air Force Base instruction document was identified that emerged as a source of the effects found in our qualitative and quantitative data. The study showed that a manned aircraft was the best choice to align with test activities for transport aircraft flight research from a low-complexity and low-risk perspective. The study concluded that a manned aircraft option would minimize the risk and complexity to improve flight-test efficiency and bound the cost of the flight-test portion of the program. Several key findings and discriminators between the three modes are discussed in detail.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2017-219541 , AFRC-E-DAA-TN44856
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: Overview of code LM materials and structures research relevant to student design challenge.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN39911
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9 percent-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 by 10 ft Beech wind tunnel from Reynolds numbers of 0.810(exp 6) to 2.410(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, threedimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future data analysis. This research also confirmed that artificial ice roughness created with rapid-prototype manufacturing methods can generate aerodynamic performance effects comparable to grit roughness of equivalent size when proper care is exercised in design and installation. The conclusions of this combined experimental and computational study contributed directly to the successful implementation of follow-on test campaigns with numerous artificial ice-shape configurations for this 8.9 percent scale model.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2017-219533 , AIAA Paper 3017-4327 , E-19389 , GRC-E-DAA-TN44091
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: The goal of this work is to quantify and characterize the potential system-wide reduction of fuel consumption and corresponding CO2 emissions, resulting from the introduction of N+2 aircraft technologies and concepts into the fleet. Although NASA goals for this timeframe are referenced against a large twin aisle aircraft we consider their application across all vehicle classes of the commercial aircraft fleet, from regional jets to very large aircraft. In this work the authors describe and discuss the formulation and implementation of the fleet assessment by addressing the main analytical components: forecasting, operations allocation, fleet retirement, fleet replacement, and environmental performance modeling.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2016-219200 , NF1676L-23801
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: During the reporting period June 23, 2011 to August 31, 2013, CAER researchers carried out research in two areas of fundamental importance to the topic of cobalt-based Fischer-Tropsch Synthesis (FTS): promoters and stability. The first area was research into possible substitute promoters that might be used to replace the expensive promoters (e.g., Pt, Re, and Ru) that are commonly used. To that end, three separate investigations were carried out. Due to the strong support interaction of -Al2O3 with cobalt, metal promoters are commonly added to commercial FTS catalysts to facilitate the reduction of cobalt oxides and thereby boost active surface cobalt metal sites. To date, the metal promoters examined have been those up to and including Group 11. Because two Group 11 promoters (i.e., Ag and Au) were identified to exhibit positive impacts on conversion, selectivity, or both, research was undertaken to explore metals in Groups 12 - 14. The three metals selected for this purpose were Cd, In, and Sn. At a higher loading of 25%Co on alumina, 1% addition of Cd, In, or Sn was found to-on average-facilitate reduction by promoting a heterogeneous distribution of cobalt consisting of larger lesser interacting cobalt clusters and smaller strongly interacting cobalt species. The lesser interacting species were identified in TPR profiles, where a sharp low temperature peak occurred for the reduction of larger, weakly interacting, CoO species. In XANES, the Cd, In, and Sn promoters were found to exist as oxides, whereas typical promoters (e.g., Re, Ru, Pt) were previously determined to exist in an metallic state in atomic coordination with cobalt. The larger cobalt clusters significantly decreased the active site density relative to the unpromoted 25%Co/Al2O3 catalyst. Decreasing the cobalt loading to 15%Co eliminated the large non-interacting species. The TPR peak for reduction of strongly interacting CoO in the Cd promoted catalyst occurred at a measurably lower temperature than in the unpromoted catalyst. Nevertheless, the Co clusters remained slightly larger, on average, in comparison with the unpromoted 15%Co/Al2O3 reference catalyst. None of the promoted catalysts (i.e., with Cd, In, or Sn) exhibited surface Co0 site densities higher than that of the unpromoted catalyst. In activity testing, the activities were even much lower than what was expected from the H2-TPD results. Two possible explanations were proposed: (1) the promoters may be located on the surfaces of cobalt particles, blocking surface Co0 but being able to desorb hydrogen or (2) the promoters may facilitate Co oxidation during FTS, as previously observed by Huffman and coworkers when K was added to cobalt catalysts.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2016-218485 , E-19036 , GRC-E-DAA-TN19171
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...