ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (575)
  • Earth Resources and Remote Sensing  (463)
  • Aeronautics (General)
  • 2015-2019  (574)
  • 1980-1984
  • 1960-1964
  • 1925-1929  (1)
  • 2017  (372)
  • 2015  (202)
  • 1926  (1)
  • 1
    Publication Date: 2018-03-10
    Description: It is our hope that the "Landsat Legacy" story will appeal to a broader audience than just those who use Landsat data on a regular basis. In an era when ready access to images and data from Earth-observing satellites is routine, it is hard to believe that only a few decades ago this was not the case. As the world's first digital land-observing satellite program, Landsat missions laid the foundation for modern space-based Earth observation and blazed the trail in the new field of quantitative remote sensing.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48821
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-21
    Description: A steep decline in archiving could make large tree-ring datasets irrelevant. But increased spatiotemporal coverage, the addition of novel parameters at sub-annual resolution, and integration with other in situ and remote Earth observations will elevate tree-ring data as an essential component of global-change research.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68143 , Nature Ecology & Evolution (e-ISSN 2397-334X); 1; 8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-21
    Description: Landsat-8 was launched on 11 February 2013 with two new Earth Imaging sensors to provide a continued data record with the previous Landsats. For Landsat-8, pushbroom technology was adopted, and the reflective bands and thermal bands were split into two instruments. The Operational Land Imager (OLI) is the reflective band sensor and the Thermal Infrared Sensor (TIRS), the thermal. In addition to these fundamental changes, bands were added, spectral bandpasses were refined, dynamic range and data quantization were improved, and numerous other enhancements were implemented. As in previous Landsat missions, the National Aeronautics and Space Administration (NASA) and United States Geological Survey (USGS) cooperated in the development, launch and operation of the Landsat- 8 mission. One key aspect of this cooperation was in the characterization and calibration of the instruments and their data. This Special Issue documents the efforts of the joint USGS and NASA calibration team and affiliates to characterize the new sensors and their data for the benefit of the scientific and application users of the Landsat archive. A key scientific use of Landsat data is to assess changes in the land-use and land cover of the Earth's surface over the now 43-year record. In order to perform these analyses and avoid confusing sensor changes with Earth surface changes, a solid understanding of the sensors' performance, consistent geolocation and radiometry are essential. Particularly with the significant changes in the Landsat-8 sensors relative to previous Landsat missions, this characterization becomes all the more important.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN31254 , Remote Sensing (e-ISSN 2072-4292); 7; 3; 2279-2282
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-21
    Description: The Advanced Very High Resolution Radiometer (AVHRR) sensor provides a unique global remote sensing dataset that ranges from the 1980's to the present. Over the years, several efforts have been made on the calibration of the different instruments to establish a consistent land surface reflectance time-series and to augment the AVHRR data record with data from other sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we present a summary of all the corrections applied to the AVHRR Surface Reflectance and NDVI Version 4 Product, developed in the framework of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program. These corrections result from assessment of the geo-location, improvement of the cloud masking and calibration monitoring. Additionally, we evaluate the performance of the surface reflectance over the AERONET sites by a cross-comparison with MODIS, which is an already validated product, and evaluation of a downstream Leaf Area Index (LAI) product. We demonstrate the utility of this long time-series by estimating the winter wheat yield over the USA. The methods developed by [1] and [2] are applied to both the MODIS and AVHRR data. Comparison of the results from both sensors during the MODIS-era shows the consistency of the dataset with similar errors of 10%. When applying the methods to AVHRR historical data from the 1980's, the results have errors equivalent to those derived from MODIS.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN40735 , Remote Sensing (e-ISSN 2072-4292); 9; 3; 296
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-21
    Description: Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas greater than 10 sq m, with height less than 10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6%) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity ((is) approximately 6 m) of existing gaps.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN30440 , PLoS One (e-ISSN 1932-6203); 10; 7; e0132144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-06
    Description: Characterizing the way satellite-based aerosol statistics change near clouds is important for better understanding both aerosol-cloud interactions and aerosol direct radiative forcing. This study focuses on the question of whether the observed near-cloud increases in aerosol optical thickness and particle size may be explained by a combination of two factors: (i) Near-cloud data coming from areas with higher cloud fractions than far-from-cloud data and (ii) Cloud fraction being correlated with aerosol optical thickness and particle size. This question is addressed through a statistical analysis of aerosol parameters included in the MODIS (MODerate resolution Imaging Spectroradiometer) ocean color product. Results from ten Septembers (2002-2011) over part of the northeast Atlantic Ocean confirm that the combination of these two factors working together explains a significant but not dominant part (in our case, 15%-30%) of mean optical thickness changes near clouds. Overall, the findings show that cloud fraction plays a large role in shaping the way aerosol statistics change with distance to clouds. This implies that both cloud fraction and distance to clouds are important to consider when aerosol-cloud interactions or aerosol direct radiative effects are examined in satellite or modeling studies.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN20831 , Remote Sensing (e-ISSN 2072-4292); 7; 5; 5283-5299
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-06
    Description: In terms of the space cities occupy, urbanization appears as a minor land transformation. However, it permanently modifies land's ecological functions, altering its carbon, energy, and water fluxes. It is therefore necessary to develop a land cover characterization at fine spatial and temporal scales to capture urbanization's effects on surface fluxes. We develop a series of biophysical vegetation parameters such as the fraction of photosynthetically active radiation, leaf area index, vegetation greenness fraction, and roughness length over the continental US using MODIS and Landsat products for 2001. A 13-class land cover map was developed at a climate modeling grid (CMG) merging the 500mMODIS land cover and the 30m impervious surface area from the National Land Cover Database. The landscape subgrid heterogeneity was preserved using fractions of each class from the 500 m and 30 m into the CMG. Biophysical parameters were computed using the 8-day composite Normalized Difference Vegetation Index produced by the North American Carbon Program. In addition to urban impact assessments, this dataset is useful for the computation of surface fluxes in land, vegetation, and urban models and is expected to be widely used in different land cover and land use change applications.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN23265 , Dataset Papers in Science (e-ISSN 2314-8497); 2015; 564279
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-02
    Description: The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial carbon dioxide fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem carbon dioxide exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated carbon dioxide fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r (exp 2) =0.73 and 0.42 for 8 day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r (exp 2)=1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land carbon dioxide fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land carbon dioxide fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land carbon dioxide fluxes. These data-driven estimates can provide a new opportunity to assess carbon dioxide fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51478 , Journal of Geophysical Research Biogeoscience (ISSN 2169-8953) (e-ISSN 2169-8961); 122; 4; 767-795
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-14
    Description: On 27 August 2013, during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys field mission, NASA's ER2 research aircraft encountered a region of enhanced water vapor, extending over a depth of approximately 2 km and a minimum areal extent of 20,000 km(exp 2) in the stratosphere (375 K to 415 K potential temperature), south of the Great Lakes (42N, 90W). Water vapor mixing ratios in this plume, measured by the Harvard Water Vapor instrument, constitute the highest values recorded in situ at these potential temperatures and latitudes. An analysis of geostationary satellite imagery in combination with trajectory calculations links this water vapor enhancement to its source, a deep tropopausepenetrating convective storm system that developed over Minnesota 20 h prior to the aircraft plume encounter. High resolution, groundbased radar data reveal that this system was composed of multiple individual storms, each with convective turrets that extended to a maximum of ~4 km above the tropopause level for several hours. In situ water vapor data show that this storm system irreversibly delivered between 6.6 kt and 13.5 kt of water to the stratosphere. This constitutes a 2025% increase in water vapor abundance in a column extending from 115 hP to 70 hPa over the plume area. Both in situ and satellite climatologies show a high frequency of localized water vapor enhancements over the central U.S. in summer, suggesting that deep convection can contribute to the stratospheric water budget over this region and season.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-26829 , Journal of Geophysical Research (ISSN 0148-0227) (e-ISSN 2156-2202); 122; 17; 9529-9554
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-11
    Description: A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-26292 , Surveys in Geophysics (ISSN 0169-3298) (e-ISSN 1573-0956); 38; 6; 1445-1482
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-15
    Description: In this work, we use the Clouds and the Earths Radiant Energy System (CERES) FluxByCloudTyp data product, which calculates TOA shortwave and longwave fluxes for cloud categories defined by cloud optical depth () and cloud top pressure (), to evaluate the HadGEM2-A model with a simulator. The CERES Flux-by-cloud type simulator is comprised of a cloud generator that produces subcolumns with profiles of binary cloud fraction, a cloud property simulator that determines the (,) cloud type for each subcolumn, and a radiative transfer model that calculates TOA fluxes. The identification of duplicate atmospheric profiles reduces the number of radiative transfer calculations required by approximately 97.6%. In the Southern Great Plains region in JFD (January, February, and December) 2008, the simulator shows that simulated cloud tops are higher in altitude than observed, but also have higher values of OLR than observed, leading to a compensating error that results in an average value of OLR that is close to observed. When the simulator is applied to the Southeast Pacific stratocumulus region in JJA 2008, the simulated cloud tops are primarily low in altitude; however, the clouds tend to be less numerous, and have higher optical depths than are observed. In addition to the increase in albedo that comes from having too many clouds with higher optical depth, the HadGEM2-A albedo is higher than observed for those cloud types that occur most frequently. The simulator is also applied to the entire 60 N 60 S region, and it is found that there are fewer clouds than observed for most cloud types, but there are also higher albedos for most cloud types, which represents a compensating error in terms of the shortwave radiative budget.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-27103 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 20; 10655-10668
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-13
    Description: The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry xperiment (FRAPP) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than 15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than 5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-26921 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 10; 10; 3865-3876
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: This paper presents airborne in situ measurements of carbon dioxide (CO2) and methane (CH4) downwind of an exceptionally large wildfire, the Rim Fire, near Yosemite, California, during two flights. Data analyses are discussed in terms of emission ratios (ER) and emission factors (EF) and are compared to previous studies. CH4 ERs were 7.5-7.9 parts per billion (ppb) CH4 for every 1 part per million (ppm) of CO2 (ppb CH4 (ppm CO2)(exp.-1)) on 29 August 2013 and 14.2-16.7 ppb CH4 (ppm CO2)(exp. -1) on 10 September 2013. This study measured only CO2 and CH4; however, estimated emission factors (EEFs) are used as rough estimates of EFs of CO2 and CH4 and are in close agreement with EFs reported in previous studies. In the western US, wildfires dominate over prescribed fires, contributing to atmospheric trace gas budgets and regional and local air pollution. Limited sampling of emissions from wildfires means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. Given the magnitude of the Yosemite Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western US to date, this study provides a valuable measurement dataset and may have important implications for forestry and regional air quality management.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN17201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: Landsat imagery was analyzed to understand changes in subalpine forest stands since the mid-1980s in the Sierra-Nevada region of California. At locations where long-term plot measurements have shown that stands are becoming denser in the number of small tree stems (compared to the early 1930s), the 30-year analysis of Landsat greenness index (NDVI) indicated that no consistent increases in canopy leaf cover have occurred at these same locations since the mid-1980s. Interannual variations in stand NDVI closely followed snow accumulation amounts recorded at nearby stations. In contrast, at eastern Sierra whitebark pine stand locations where it has been observed that widespread tree mortality has occurred, decreasing NDVI trends over the past 5-10 years were consistent with rapid loss of forest canopy cover. Landsat imagery was further analyzed to understand patterns of post-wildfire vegetation recovery, focusing on high burn severity (HBS) patches within burned areas dating from the late 1940s. Analysis of landscape metrics showed that the percentage of total HBS area comprised by the largest patch of recovered woody cover was relatively small in all fires that occurred since 1995, but increased rapidly with time since fire. Patch complexity of recovered woody cover decreased notably after more than 50 years of regrowth, but was not readily associated with time for fires that occurred since the mid 1990s. The aggregation level of patches with recovery of woody cover increased steadily with time since fire. The study approach using satellite remote sensing can be expanded to assess the consequences of stand-replacing wildfires in all forests of the region.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN26457 , Yosemite Hydroclimate Meeting 2015; Oct 08, 2015 - Oct 09, 2015; Yosemite National Park, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN19813
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-19
    Description: The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN26852 , Ames Instrumentation Workshop; Sep 16, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: As part of the Southeast United States-based Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), and collinear with part of the Southeast Atmosphere Study, the University of Wisconsin High Spectral Resolution Lidar system was deployed to the University of Alabama from 19 June to 4 November 2013. With a collocated Aerosol Robotic Network (AERONET) sun photometer, a nearby Chemical Speciation Network (PM2.5) measurement station, and near daily ozonesonde releases for the August-September SEAC4RS campaign, the site allowed the regions first comprehensive diurnal monitoring of aerosol particle vertical structure. A 532nm lidar ratio of 55 sr provided good closure between aerosol backscatter and AERONET (aerosol optical thickness, AOT). A principle component analysis was performed to identify key modes of variability in aerosol backscatter. ''Fair weather'' days exhibited classic planetary boundary layer structure of a mixed layer accounting for approx. 50% of AOT and an entrainment zone providing another 25%. An additional 5-15% of variance is gained from the lower free troposphere from either convective detrainment or frequent intrusions of western United States biomass burning smoke. Generally, aerosol particles were contained below the 0 C level, a common level of stability in convective regimes. However, occasional strong injections of smoke to the upper troposphere were also observed, accounting for the remaining 10-15% variability in AOT. Examples of these common modes of variability in frontal and convective regimes are presented, demonstrating why AOT often has only a weak relationship to surface PM2.5 concentration.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51500 , Journal of Geophysical Research Atmospheres (ISSN 2169-897X ) (e-ISSN 2169-8996); 122; 5 ; 2970-3004
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: Mapping evapotranspiration (ET) from agricultural areas in Californias Central Valley is critical for understanding historical consumptive use of surface and groundwater. In addition, long histories of ET maps provide valuable training information for predictive studies of surface and groundwater demands. During times of drought, groundwater is commonly pumped to supplement reduced surface water supplies in the Central Valley. Due to the lack of extensive groundwater pumping records, mapping consumptive use using satellite imagery is an efficient and robust way for estimating agricultural consumptive use and assessing drought impacts. To this end, we have developed and implemented an algorithm for automated calibration of the METRIC remotely sensed surface energy balance model on NASAs Earth Exchange (NEX) to estimate ET at the field scale. Using automated calibration techniques on the NEX has allowed for the creation of spatially explicit historical ET estimates for the Landsat archive dating from 1984 to the near present. Further, our use of spatial NLDAS and CIMIS weather data, and spatial soil water balance simulations within the NEX METRIC workflow, has helped overcome challenges of time integration between satellite image dates. This historical and near present time archive of agricultural water consumption for the Central Valley will be an extremely useful dataset for water use and drought impact reporting, and predictive analyses of groundwater demands.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN29800 , Earth Science Division Poster Session 2016; Dec 14, 2015 - Dec 18, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN19909 , American Geophysical Union (AGU) Fall Meeting 2015; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN15435 , SciTech 2015; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN35650 , International Journal of Wildland Fire (ISSN 1049-8001); 25; 1; 48-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-20889 , Applied Optics (ISSN 1559-128X); 54; 24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-21461 , CERES Science Team Meeting; May 05, 2015 - May 07, 2015; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: NF1676L-21513 , Virginia Aerospace Business Association Spring Gala; May 14, 2015 - May 15, 2015; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-21498 , Presentation at the University in Lille; May 18, 2015 - May 20, 2015; Lille; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: NF1676L-21040 , Virginia Tech Seminar (Department of Aerospace and Ocean Engineering); Mar 31, 2015; Blacksburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: NF1676L-20960 , Turbulence and Mixing Workshop; Apr 01, 2015 - Apr 03, 2015; College Station, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Radiation Budget Instrument (RBI) will be one of five instruments flying aboard the JPSS-2 spacecraft, a polar-orbiting sun-synchronous satellite in Low Earth Orbit. RBI is a passive remote sensing instrument that will follow the successful legacy of the Clouds and Earth's Radiant Energy System (CERES) instruments to make measurement of Earth's short and longwave radiation budget. The goal of RBI is to provide an independent measurement of the broadband reflected solar radiance and Earth's emitted thermal radiance by using three spectral bands (Shortwave, Longwave, and Total) that will have the same overlapped point spread function (PSF) footprint on Earth. To ensure precise NIST-traceable calibration in space the RBI sensor is designed to use a visible calibration target (VCT), a solar calibration target (SCT), and an infrared calibration target (ICT) containing phase change cells (PCC) to enable on-board temperature calibration. The VCT is a thermally controlled integrating sphere with space grade Spectralon covering the inner surface. Two sides of the sphere will have fiber-coupled laser diodes in the UV to IR wavelength region. An electrical substitution radiometer on the integrating sphere will monitor the long term stability of the sources and the possible degradation of the Spectralon in space. In addition the radiometric calibration operations will use the Spectralon diffusers of the SCT to provide accurate measurements of Solar degradation. All those stable on-orbit references will ensure that calibration stability is maintained over the RBI sensor lifetime. For the preflight calibration the RBI will view five calibration sources - two integrating spheres and three CrIS (Cross-track Infrared Sounder ) -like blackbodies whose outputs will be validated with NIST calibration approach. Thermopile are the selected detectors for the RBI. The sensor has a requirement to perform lunar calibration in addition to solar calibration in space in a way similar to CERES instruments approach. To monitor climate change and to get stable and traceable results, it is critical to assure stable calibration over instrument lifetime.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-20980 , CALCON Technical Meeting; Aug 24, 2015 - Aug 27, 2015; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The ASCENDS CarbonHawk Experiment Simulator (ACES) is a newly developed lidar developed at NASA Langley Research Center and funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technology advancements targeted include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration autonomous operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are critical towards developing not only spaceborne instruments but also their airborne simulators, with lower platform requirements for size, mass, and power, and with improved instrument performance for the ASCENDS mission. ACES transmits five laser beams: three from commercial EDFAs operating near 1.57 microns, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1.26 microns. The three EDFAs are capable of transmitting up to 10 watts average optical output power each and are seeded by compact, low noise, stable, narrow-linewidth laser sources stabilized with respect to a CO2 absorption line using a multi-pass gas absorption cell. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The ACES receiver uses three fiber-coupled 17.8-cm diameter athermal telescopes. The transmitter assembly consists of five fiber-coupled laser collimators and an associated Risley prism pair for each laser to co-align the outgoing laser beams and to align them with the telescope field of view. The backscattered return signals collected by the three telescopes are combined in a fiber bundle and sent to a single low noise detector. The detector/TIA development has improved the existing detector subsystem by increasing its bandwidth to 4.7 MHz from 500 kHz and increasing the duration of autonomous, service-free operation periods from 4 hours to 〉24 hours. The new detector subsystem enables the utilization of higher laser modulation rates, which provides greater flexibility for implementing advanced thin-cloud discrimination algorithms as well as improving range-determination resolution and error reduction. The cloud/aerosol discrimination algorithm development by Langley and Exelis features a new suite of algorithms for the minimization/elimination of bias errors in the return signal induced by the presence of intervening thin clouds. Multiple laser modulation schemes are being tested in an effort to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these test flights will be presented in this paper.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-19517 , AMS Annual Meeting; Jan 04, 2015 - Jan 08, 2015; Phoenix, AZ; United States|Symposium on Lidar Atmospheric Applications: Space Borne Lidars; Jan 04, 2015 - Jan 08, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-23235 , AGU 2015 Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-22747 , Radiation Measurements at Aviation Altitudes Workshop; Nov 20, 2015; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-22749 , European Space Weather Week Workshop; Nov 23, 2015 - Nov 27, 2015; Ostend; Belgium
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-22379 , Latin America and Caribbean Sea Large Marine Ecosystems Symposium; Sep 07, 2015 - Sep 08, 2015; Quintana Roo; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes the main goal of producing ozone and aerosol extinction profiles, while allowing exploration of new possibilities for the occultation technique, such as night-time aerosol extinction profiles or other trace gases not measured by SAGE in the past.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-22019 , International Atmospheric Limb Workshop; Sep 15, 2015 - Sep 17, 2015; Gothenburg; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-22177 , AGU 2015 Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: The study of global warming needs precisely and accurately measuring greenhouse gases concentrations in the atmosphere. CO2 and H2O are important greenhouse gases that significantly contribute to the carbon cycle and global radiation budget on Earth. NRC Decadal Survey recommends a mission for Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). 2 micron laser is a viable IPDA transmitter to measure CO2 and H2O column density from space. The objective is to demonstrate a first airborne direct detection 2 micron IPDA lidar for CO2 and H2O measurements.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-21590 , Application of Lasers for Sensing & Free Space Communication (LS&C); Jun 07, 2015 - Jun 11, 2015; Arlington, VA; United States|2015 Imaging and Applied Optics: OSA Optics and Photonics Congress; Jun 07, 2015 - Jun 11, 2015; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN31432 , Annals of Glaciology; 56; 70; 155-166
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: This paper compares the annual and monthly components of the simulated energy budget from the North American Land Data Assimilation System phase 2 (NLDAS-2) with reference products over the domains of the 12 River Forecast Centers (RFCs) of the continental United States (CONUS). The simulations are calculated from both operational and research versions of NLDAS-2. The reference radiation components are obtained from the National Aeronautics and Space Administration Surface Radiation Budget product. The reference sensible and latent heat fluxes are obtained from a multitree ensemble method applied to gridded FLUXNET data from the Max Planck Institute, Germany. As these references are obtained from different data sources, they cannot fully close the energy budget, although the range of closure error is less than 15%formean annual results. The analysis here demonstrates the usefulness of basin-scale surface energy budget analysis for evaluating model skill and deficiencies. The operational (i.e., Noah, Mosaic, and VIC) and research (i.e., Noah-I and VIC4.0.5) NLDAS-2 land surface models exhibit similarities and differences in depicting basin-averaged energy components. For example, the energy components of the five models have similar seasonal cycles, but with different magnitudes. Generally, Noah and VIC overestimate (underestimate) sensible (latent) heat flux over several RFCs of the eastern CONUS. In contrast, Mosaic underestimates (overestimates) sensible (latent) heat flux over almost all 12 RFCs. The research Noah-I and VIC4.0.5 versions show moderate-to-large improvements (basin and model dependent) relative to their operational versions, which indicates likely pathways for future improvements in the operational NLDAS-2 system.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN31294 , Journal or Geophysical Research: Atmospheres (ISSN 2169-897X); 121; 1; 196-220
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Informative presentation on the purpose and need for an Ecological Program at the Kennedy Space Center. Includes the federal laws mandating the program followed by a description of many of the long term monitoring projects. Projects include wildlife surveying by observation as well as interactive surveys to collect basic animal data for analysis of trends in habitat use and ecosystem health. The program is designed for a broad range in audience from elementary to college level.
    Keywords: Earth Resources and Remote Sensing
    Type: KSC-E-DAA-TN31246 , General Information for Elementary to College; Apr 15, 2015; Cape Coral, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%-82% and 60%-68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBSRMSE was approx.54%of that seen in the EnBS, while for snow courses the PBSRMSE was approx.79%of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN30629 , Journal of Hydrometeorology (e-ISSN 1525-7541); 16; 1752-1772
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN30327 , 2015 American Geophysical Union Annual Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: Assist with the evaluation and measuring of wetlands hydroperiod at the Plum Brook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: (1) Show the relative length of hydroperiod using available remote sensing datasets, (2) Date linked table of wetlands extent over time for all feasible non-forested wetlands, (3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables (4), A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment; and (5) A MTRI style report summarizing year 2 results.
    Keywords: Earth Resources and Remote Sensing
    Type: GRC-E-DAA-TN41104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: An overview of NASA GRC and how it is advancing exploration of our solar system and beyond while maintaining global leadership in aeronautics.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN27733 , Research Day; Oct 30, 2015; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: "Follow the water" is our basic strategy in searching for life in the universe. The universality of water as the solvent for living systems is usually justified by arguing that water supports the rich organic chemistry that seeds life, but alternative chemistries are possible in other organic solvents. Here, other, essential criteria for life that have not been sufficiently considered so far, will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN27307 , COSPAR SYMPOSIUM; Nov 09, 2015 - Nov 13, 2015; Foz do Iguacu; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG). Its 100-year global warming potential (GWP) is 34 times larger than that for carbon dioxide. The 100-year integrated GWPof CH4 is sensitive to changes in hydroxyl radical (OH) levels.Oxidation of CH4 and carbon monoxide (CO) by OH is the main loss process, thus affecting the oxidizing capacity of the atmosphere and contributing to the global ozone background. Limitations of using archived, monthly OH fields for studies of methane's and COs evolution are that feedbacks of the CH4-CO-OH system on methane, CO and OH are not captured. In this study, we employ the computationally Efficient CH4-CO-OH (ECCOH) module (Elshorbany et al., 2015) to investigate the nonlinear feedbacks of the CH4-CO-OH system on the interannual variability and trends of the CH4, CO, OH system.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN28893 , AGU Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: Earth Observing 1 (E0-1) satellite has an imaging spectrometer (hyperspectral) instrument called Hyperion. The satellite is able to image any spot on Earth in the nadir looking direction every 16 days. With slewing of the satellite and allowing for up to a 23 degree view angle, any spot on the Earth can be imaged approximately every 2 to 3 days. EO-1 has been used to track many natural hazards such as wildfires, volcanoes and floods. An enhanced capability that is sought is the ability to image natural hazards in a daily time series for space based imaging spectrometers. The Hyperion can not provide this capability on EO-1 with the present polar orbit. However, a constellation of cubesats, each with the same imaging spectrometer, positioned strategically in the same orbit, can be used to provide daily coverage, cost-effectively.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN28395 , American Geophysical Union (AGU) 2015 Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6.Monthly mean August 2014 Version-6.22 AIRS and CrIS products agree reasonably well with OMPS, CERES, and witheach other. JPL plans to process AIRS and CrIS for many months and compare interannual differences. Updates to thecalibration of both CrIS and ATMS are still being finalized. We are also working with JPL to develop a joint AIRS/CrISlevel-1 to level-3 processing system using a still to be finalized Version-7 retrieval algorithm. The NASA Goddard DISCwill eventually use this system to reprocess all AIRS and recalibrated CrIS/ATMS. .
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN28619 , 2015 AGU Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: This paper provides methodologies developed and implemented by the NASA VIIRS Calibration Support Team (VCST) to validate the S-NPP VIIRS Day-Night band (DNB) and M bands calibration performance. The Sensor Data Records produced by the Interface Data Processing Segment (IDPS) and NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired nearly nadir overpass for Libya 4 desert and Dome C snow surfaces. In the past 3.5 years, the modulated relative spectral responses (RSR) change with time and lead to 3.8% increase on the DNB sensed solar irradiance and 0.1% or less increases on the M4-M7 bands. After excluding data before April 5th, 2013, IDPS DNB radiance and reflectance data are consistent with Land PEATE data with 0.6% or less difference for Libya 4 site and 2% or less difference for Dome C site. These difference are caused by inconsistent LUTs and algorithms used in calibration. In Libya 4 site, the SCIAMACHY spectral and modulated RSR derived top of atmosphere (TOA) reflectance are compared with Land PEATE TOA reflectance and they indicate a decrease of 1.2% and 1.3%, respectively. The radiance of Land PEATE DNB are compared with the simulated radiance from aggregated M bands (M4, M5, and M7). These data trends match well with 2% or less difference for Libya 4 site and 4% or less difference for Dome C. This study demonstrate the consistent quality of DNB and M bands calibration for Land PEATE products during operational period and for IDPS products after April 5th, 2013.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN26072 , SPIE Optics and Photonics; Aug 09, 2015 - Aug 13, 2015; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Scanning L-band Active Passive (SLAP) is a recently-developed NASA airborne instrument specially tailored to simulate the new Soil Moisture Active Passive (SMAP) satellite instrument suite. SLAP conducted its first test flights in December, 2013 and participated in its first science campaign-the IPHEX ground validation campaign of the GPM mission-in May, 2014. This paper will present results from additional test flights and science observations scheduled for 2015.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN25570 , IEEE Geoscience and Remote Sensing Society (IGARSS 2015); Jul 26, 2015 - Jul 31, 2015; Milan; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: The landscape freeze/thaw (FT) state has an important impact on the surface energy balance, carbon fluxes, and hydrologic processes; the timing of spring melt is linked to active layer dynamics in permafrost areas. L-band (1.4 GHz) microwave emission could allow the monitoring of surface state dynamics due to its sensitivity to the pronounced permittivity difference between frozen and thawed soil. The aim of this paper is to evaluate the performance of both Aquarius and Soil Moisture and Ocean Salinity (SMOS) L-band passive microwave measurements using a polarization ratio-based algorithm for landscape FT monitoring. Weekly L-band satellite observations are compared with a large set of reference data at 48 sites across Canada spanning three environments: tundra, boreal forest, and prairies. The reference data include in situ measurements of soil temperature (Tsoil) and air temperature (Tair), and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and snow cover area (SCA) products. Results show generally good agreement between Lband FT detection and the surface state estimated from four reference datasets. The best apparent accuracies for all seasons are obtained using Tair as the reference. Aquarius radiometer 2 (incidence angle of 39.6) data gives the best accuracies (90.8), while for SMOS the best results (87.8 of accuracy) are obtained at higher incidence angles (55- 60). The FT algorithm identifies both freeze onset and end with a delay of about one week in tundra and two weeks in forest and prairies, when compared to Tair. The analysis shows a stronger FT signal at tundra sites due to the typically clean transitions between consistently frozen and thawed conditions (and vice versa) and the absence of surface vegetation. Results in the prairies were poorer because of the influence of vegetation growth in summer (which decreases the polarization ratio) and the high frequency of ephemeral thaw events during winter. Freeze onset and end maps created from the same algorithm applied to SMOS and Aquarius measurements characterize similar FT patterns over Canada. This study shows the potential of using L-band spaceborne observations for FT monitoring, but underlines some limitations due to ice crusts in the snowpack, liquid water content in snow cover during the spring freeze to thaw transition, and vegetation growth.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN24577 , IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; PP; 99
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN24819 , IGARSS (2015): International Geoscience and Remote Sensing Symposium; Jul 26, 2015 - Jul 31, 2015; Milan; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A guiding principle for conducting research in technology, science, and engineering, leading to innovation is based on our use of research methodology (both qualitative and qualitative). A brief review of research methodology will be presented with an overview of NASA process in developing aeronautics technologies and other things to consider in research including what is innovation.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN23832 , 2015 Digital Avionic Systems Conference (DASC 2015); Jul 13, 2015 - Jul 17, 2015; Prague; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN19495 , AIAA Science and Technology Forum and Exposition (SciTech 2015); Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN27547 , Journal of Geophysical Research: Atmospheres; 120; 14; 7079-7098
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: This talk presents some of the detailed observations of low-level stratocumulus over northern Vietnam during 7-SEASBASELInE 2013 by SMARTLabs' ACHIEVE W-band cloud radar and other remote sensing instruments. These observations are the first of their kind for this region and will aid in ongoing studies of biomass-burning aerosol impacts on local and regional weather and climate. Preliminary results from simulations using the Goddard Cumulus Ensemble (GCE) with recently implemented triple-moment bulk microphysics to examine the sensitivity of low-level stratocumulus over land to aerosols are also presented. Recommendations for future observational activities in the 7-SEAS northern region in collaboration with international partners will also be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN27360 , Seven South East Asian Studies (7-SEAS) northern region workshop; Oct 07, 2015 - Oct 10, 2015; Ha Noi; Viet Nam
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: MSFC-E-DAA-TN27282 , NASA-ISRO SAR Mission Applications Workshop: Linking The Applied Science Community to Mission Data; Oct 13, 2015 - Oct 15, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-12
    Description: As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The current NAS relies on pilot's vigilance and judgement to remain Well Clear (CFR 14 91.113) of other aircraft. RTCA SC-228 has defined DAA Well Clear (DAAWC) to provide a quantified Well Clear volume to allow systems to be designed and measured against. Extended research efforts have been conducted to understand and quantify system requirements needed to support a UAS pilot's ability to remain well clear of other aircraft. The efforts have included developing and testing sensor, algorithm, alerting, and display requirements. More recently, sensor uncertainty and uncertainty mitigation strategies have been evaluated. This paper discusses results and lessons learned from an End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS). NASA Langley Research Center (LaRC) was called upon to develop a system that evaluates a specific set of encounters, in a variety of geometries, with end-to-end DAA functionality including the use of sensor and tracker models, a sensor uncertainty mitigation model, DAA algorithmic guidance in both vertical and horizontal maneuvering, and a pilot model which maneuvers the ownship aircraft to remain well clear from intruder aircraft, having received collective input from the previous modules of the system. LaRC developed a functioning batch simulation and added a sensor/tracker model from the Federal Aviation Administration (FAA) William J. Hughes Technical Center, an in-house developed sensor uncertainty mitigation strategy, and implemented a pilot model similar to one from the Massachusetts Institute of Technology's Lincoln Laboratory (MIT/LL). The resulting simulation provides the following key parameters, among others, to evaluate the effectiveness of the MOPS DAA system: severity of loss of well clear (SLoWC), alert scoring, and number of increasing alerts (alert jitter). The technique, results, and lessons learned from a detailed examination of DAA system performance over specific test vectors and encounter cases during the simulation experiment will be presented in this paper.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2017-219598 , L-20780 , NF1676L-26279
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-12
    Description: In August 2015, NASA conducted a two-aircraft, coordinated campaign based out of Thule Air Base, Greenland, in support of Ice, Cloud, and land Elevation Satellite2 (ICESat-2) algorithm development. The survey targeted the Greenland Ice Sheet and sea ice in the Arctic Ocean during the summer melt season. The survey was conducted with a photon-counting laser altimeter in one aircraft and an imaging spectrometer in the second aircraft. Ultimately, the mission, SIMPL/AVIRIS-NG Greenland 2015, conducted nine coordinated science flights, for a total of 37 flight hours over the ice sheet and sea ice.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/TM-2015-217544 , GSFC-E-DAA-TN35997
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2015-218830 , E-19102
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-12
    Description: In July and August 2014, NASA conducted an airborne lidar campaign based out of Fort Wainwright,Fairbanks, Alaska, in support of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. The survey targeted Alaskan glaciers and icefields and sea ice in the Arctic Ocean during the summer melt season. Ultimately, the mission, MABEL Alaska 2014, including checkout and transit flights, conducted 11 science flights, for a total of over 50 flight hours over glaciers, icefields, and sea ice.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN35821 , NASA/TM-2017-219019
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: This work is using the newly available NASA SMAP soil moisture measurement data to evaluate its impact on the atmospheric dust emissions. Dust is an important component of atmospheric aerosols, which affects both climate and air quality. In this work, we focused on semi-desert regions, where dust emissions show seasonal variations due to soil moisture changes, i.e. in Sahel of Africa. We first identified three Aerosol Robotic Network (AERONET) sites in the Sahel (IER_Cinzana, Banizoumbou, and Zinder_Airport). We then utilized measurements of aerosol optical depth (AOD), fine mode fraction, size distribution, and single-scattering albedo and its wave-length dependence to select dust plumes from the available measurements We matched the latitude and longitude of the AERONET station to the corresponding SMAP data cell in the years 2015 and 2016, and calculated their correlation coefficient. Additionally, we looked at the correlation coefficient with a three-day and a five-day shift to check the impact of soil moisture on dust plumes with some time delay. Due to the arid nature of Banizoumbou and Zinder_Airport, no correlation was found to exist between local soil moisture and dust aerosol load. While IER_Cinzana had soil moisture levels above the satellite threshold of 0.02cm3/cm3, R-value approaching zero indicated no presence of a correlation. On the other hand, Ilorin demonstrated a significant negative correlation between aerosol optical depth and soil moisture. When isolating the analysis to Ilorin's dry season, a negative correlation of -0.593 was the largest dust-isolated R-value recorded, suggesting that soil moisture is driven the dust emission in this semi-desert region during transitional season.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38795 , 2017 BASC Symposium; Feb 02, 2017 - Feb 03, 2017; Berkeley, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed a 80% overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN37841 , 2017 Weed Science Society of America Annual Meeting; Feb 06, 2017 - Feb 09, 2017; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: Presentation will be for a general audience and focus on plant science and ecosystem science in NASA. Examples from the projects involving the presenter will be used to illustrate. Specifically, the California Sacramento-San Joaquin River Delta project. This collaboration supports the goals of the Delta Plan in developing science-based, adaptive-management strategies. The mission is to improve reliability of water supply and restore a healthy Delta ecosystem while enhancing agriculture and recreation. NASA can contribute gap-filling science understanding of overall functions in the Delta ecosystem and assess and help develop management plans for specific issues. Airborne and satellite remote-sensing, ecosystem modeling, and biological studies provide underlying data needed by Delta stakeholders to assess and address water, ecosystem restoration, and environmental and economic impacts of potential actions in the Delta. The California Sacramento-San Joaquin River Delta, the hub for California's water supply, supports important ecosystem services for fisheries, supplies drinking water for millions, and distributes water from Northern California to agriculture and urban communities to the south; millions of people and businesses depend on Delta water. Decades of competing demands for Delta resources and year-to-year variability in precipitation has resulted in diminished overall health of the Delta. Declines in fish populations, threatened ecosystems, endangered species, invasive plants and animals, cuts in agricultural exports, and increased water conservation is the result. NASA and the USDA, building on previous collaborations, aide local Delta stakeholders in assessing and developing an invasive weed management approach. Aquatic, terrestrial, and riparian invasive weeds threaten aquatic and terrestrial ecosystem restoration efforts. Aquatic weeds are currently detrimental economically, environmentally, and sociologically in the Delta. They negatively impact the redistribution of water and disrupt the ecology of the Bay Delta food web. Filling current science gaps in the Delta Plan and improving management practices within the Delta are important to achieving the mission of improved Delta health. Methods developed can become routine land and water management tools. New high-resolution NASA sensor systems could be used to provide data packages specifically designed for water system The presenter will also speak about his personal experience and the role Delaware Valley College played in preparation for a professional career science.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN21902 , Founder''s Day Celebration; Apr 09, 2015; Doylestown, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: Results from Landsat satellite image analysis since 1987 in all unburned areas (since the 1880s) of Yellowstone National Park (YNP) showed that consistent decreases in the normalized difference vegetation index (NDVI) have been strongly dependent on periodic variations in peak annual snow water equivalents (SWE).
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN24078
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: This study evaluated the cost-effective and timely use of Landsat imagery to map and monitor emergent aquatic plant biomass and to filter satellite image products for the most probable locations of water hyacinth coverage in the Delta based on field observations collected immediately after satellite image acquisition.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN24086
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: Marine-sourced organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large under-prediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having 〉 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN20802 , NCTS# 21764-15 The International GEOS-Chem Meeting; May 04, 2015 - May 07, 2015; Cambridge, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: Landsat image analysis over the past 20+ years showed that consistent increases in the satellite normalized difference vegetation index (NDVI) during relatively dry years were confined to large wildfire areas that burned in the late 1980s and 1990s.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN24081
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: This workshop presentation focuses on potential uses of unmanned aircraft observations in support of water resource management and agriculture. The presentation will provide an overview of NASA Airborne Science capabilities with an emphasis on past UAV missions to provide context on accomplishments as well as technical challenges. I will also focus on recent NASA Ames efforts to assist in irrigation management and invasive species management using airborne and satellite datasets.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN26894 , UAS for California Water Resources Summit; Sep 22, 2015; Davis, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: The Midwest is home to one of the world's largest agricultural growing regions. Between the time period of late May through early September, and with irrigation and seasonal rainfall these crops are able to reach their full maturity. Using moderate to high resolution remote sensors, the monitoring of the vegetation can be achieved using the red and near-infrared wavelengths. These wavelengths allow for the calculation of vegetation indices, such as Normalized Difference Vegetation Index (NDVI). The vegetation growth and greenness, in this region, grows and evolves uniformly as the growing season progresses. However one of the biggest threats to Midwest vegetation during the time period is thunderstorms that bring large hail and damaging winds. Hail and wind damage to crops can be very expensive to crop growers and, damage can be spread over long swaths associated with the tracks of the damaging storms. Damage to the vegetation can be apparent in remotely sensed imagery and is visible from space after storms slightly damage the crops, allowing for changes to occur slowly over time as the crops wilt or more readily apparent if the storms strip material from the crops or destroy them completely. Previous work on identifying these hail damage swaths used manual interpretation by the way of moderate and higher resolution satellite imagery. With the development of an automated and near-real time hail swath damage identification algorithm, detection can be improved, and more damage indicators be created in a faster and more efficient way. The automated detection of hail damage swaths will examine short-term, large changes in the vegetation by differencing near-real time eight day NDVI composites and comparing them to post storm imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua and Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi NPP. In addition land surface temperatures from these instruments will be examined as for hail damage swath identification. Initial validation of the automated algorithm is based upon Storm Prediction Center storm reports but also the National Severe Storm Laboratory (NSSL) Maximum Estimated Size Hail (MESH) product. Opportunities for future work are also shown, with focus on expansion of this algorithm with pixel-based image classification techniques for tracking surface changes as a result of severe weather.
    Keywords: Earth Resources and Remote Sensing
    Type: M14-3971 , American Meteorological Society (AMS) Annual Meeting; Jan 04, 2015 - Jan 08, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-20
    Description: The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (S-NPP) spacecraft. The S-NPP launched in October 2011 and it has been collecting valuable Earth science data with VIIRS and four other instruments for more than five years. The VIIRS Characterization Support Team (VCST) of the National Aeronautics and Space Administration (NASA) Science Investigator-led Processing Systems (SIPS) is designed to support the VIIRS sensor pre-launch geometric and radiometric characterization and to access on-orbit long-term Level-1B (L1B) calibration and performance. This paper reviews the VIIRS thermal emissive bands (TEB), covering wavelengths from 3.7 to 12.0 m, L1B radiometric calibration algorithms and presents the calibration uncertainty methodology which will be implanted in the L1B processing software. Discussions will be focused on the key uncertainty parameters and the application in L1B.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN66862 , 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Jul 23, 2017 - Jul 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-20
    Description: Turbulent flows have a large range of spatial and temporal scales which need to be resolved in order to obtain accurate predictions. Higher-order methods can provide greater efficiency for simulations requiring high spatial and temporal resolution, allowing for solutions with fewer degrees of freedom and lower computational cost than traditional second-order computational fluid dynamics (CFD) methods.1 Higher-order methods have been widely used for turbulent flows. However, the reduced numerical stabilization present in higher-order schemes implies that special care needs to be taken in the development of numerical methods to suppress nonlinear instabilities.26 In this work we present the development of a higher-order space-time discontinuous Galerkin method with a focus on the aspects of our numerical scheme required for ensuring nonlinear stability for turbulent simulations at high Reynolds numbers.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN16874 , AIAA Aerospace Sciences Meeting; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-20
    Description: Results are presented for four optimization benchmark problems posed by the AIAA Aerodynamic Design Optimization Discussion Group. The benchmarks are intended to exercise optimization frameworks on representative airfoil and wing design problems. All problems involve drag minimization subject to geometric and aerodynamic constraints. Our design approach involves two forms of adaptation. First, the shape parameterization is gradually and automatically enriched from an initially coarse search space. Second, adjoint solutions are used to drive adaptive mesh refinement to control discretization error. The error threshold is tailored so that the nest meshes, with the greatest accuracy, are used only when nearing the optimum. On the inviscid airfoil design problem, while reducing the drag by a factor of 10, we show how the combination of progressive parameterization and tiered discretization error control can dramatically accelerate the optimization. On the viscous airfoil design problem, we use inviscid analysis-driven optimization to reduce the total drag by a factor of two. Next, we improve the span efficiency factor of a wing by performing twist optimization. Finally, we optimize the Common Research Model wing, managing to hold drag roughly fixed, while targeting an initially-violated pitching moment constraint. Our approach aims to introduce greater complexity and accuracy only when necessary to improve the design, and also support a greater degree of automation.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN19716 , AIAA Aerospace Sciences Meeting; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-20
    Description: When observed from the ground, optically thick clouds minimally polarize light, while the linear polarization direction (angle) of optically thin clouds contains information about thermodynamic phase. For instruments such at the Cimel radiometers that comprise the AErosol RObotic NEtwork (AERONET), these properties can also be exploited to aid cloud optical property retrievals. Using vector radiative transfer simulations, we explore the conditions most favorable to cloud thermodynamic phase determination, then test with actual AERONET data. Results indicate that this technique may be appropriate for some, but not all, conditions, and motivate a deeper investigation about the polarization direction measurement capability of Cimel instruments, which to date have been primarily used to determine degree of polarization. Recent work explores these measurement issues using a newly installed instrument at the NASA Ames Research Center in Moffett Field, California.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN29258 , AGU Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-25
    Description: An overview of the NASA Advanced Air Transport Technology (AATT) Project and interest inboundary layer transition modeling for future aircraft and propulsion systems is presented.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN46604 , Transition Modeling Workshop; Sep 13, 2017; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-20
    Description: Primary Goal: Assist with the evaluation and measuring of wetlands hydroperiod at the PlumBrook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: 1) Show the relative length of hydroperiod using available remote sensing datasets 2) Date linked table of wetlands extent over time for all feasible non-forested wetlands 3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables 4) A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment 5) A MTRI style report summarizing year 2 results. This report serves as a descriptive summary of our completion of these our deliverables. Additionally, two formal meetings were held with Larry Liou and Amanda Sprinzl to provide project updates and receive direction on outputs. These were held on 2/26/15 and 9/17/15 at the Plum Brook Station. Principal Component Analysis (PCA) is a multivariate statistical technique used to identify dominant spatial and temporal backscatter signatures. PCA reduces the information contained in the temporal dataset to the first few new Principal Component (PC) images. Some advantages of PCA include the ability to filter out temporal autocorrelation and reduce speckle to the higher order PC images. A PCA was performed using ERDAS Imagine on a time series of PALSAR dates. Hydroperiod maps were created by separating the PALSAR dates into two date ranges, 2006-2008 and 2010, and performing an unsupervised classification on the PCAs.
    Keywords: Earth Resources and Remote Sensing
    Type: GRC-E-DAA-TN41104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-20
    Description: This paper considers the control of coupled aeroelastic aircraft model with Variable Camber Continuous Trailing Edge Flap (VCCTEF) system. The relative motion between two adjacent flaps is constrained and this actuation constraint problem is converted into an output covariance constraint problem, and therefore can be formulated using linear matrix inequalities (LMIs). A set of LMI conditions is derived for the design of an observer-based dynamic output feedback controller for VCCTEF configured aeroelastic aircraft model. The proposed controller is then applied to the NASA Generic Transport Model (GTM) for simulation, and the results demonstrate the efficacy of the proposed approach.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN19998 , ARC-E-DAA-TN16293 , AIAA SciTech Conference; Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-20
    Description: Calendar year 2013 was the driest on record in California, with a total of just 30 percent of average statewide precipitation. The objective of this present study was to assess the impacts of the historic 2013-2014 drought on ecosystems of the Central Coast region using a combination of satellite image analysis and in situ measurements of soil moisture. According to differences in Landsat NDWI and NDVI between May of 2010 and 2013, the geographic areas within the study region that were most severely impacted by the 2013 drought were the inland Carmel Valley in northern Monterey County, and the coast zones around San Simeon Point and Cambria in northern San Luis Obispo County. For more detailed examination of drought impacts, the entire study region was separated into the three predominate vegetation types (grasslands, shrublands, and forests) to examine changes in Landsat NDWI and NDVI in the context of differing plant community response to severe drought.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN19468
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-20
    Description: Computational simulations using structured overset grids with the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for predicting oblique shock/plume interaction effects to near-field sonic boom signatures. Standard second-order accurate as well as higher-resolution numerical discretizations are utilized and compared in the study. The numerical approach is compared with supersonic wind-tunnel data for three cases. The cases include an empty wind-tunnel at the operating conditions, an isolated shockgenerating diamond wedge within the tunnel, and a nozzle with diamond wedge configuration at five different nozzle pressure ratios. Solution sensitivity to numerical discretization is analyzed. Favorable comparisons between the computational results and experimental data of near-field pressure signatures are obtained. A simple prediction method for plume induced shock deflection is developed and results are compared with the CFD data.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN24265 , AIAA Applied Aerodynamics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-20
    Description: Talks presented by Dr. Ralph Kahn at the 16th AeroCom and 5th AeroSat Workshops, held October 9-13, 2017 in Helsinki, Finland.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47981 , AeroSat Workshops; Oct 09, 2017 - Oct 13, 2017; Helsinki; Finland|AeroCom; Oct 09, 2017 - Oct 13, 2017; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-20
    Description: Downwash and outwash characteristics of a model-scale tandem-rotor system in the presence of the ground were analyzed by identifying and understanding the physical mechanisms contributing to the observed flow field behavior. A building block approach was followed in simplifying the problem, separating the effects of the fuselage, effects of one rotor on the other, etc. Flow field velocities were acquired in a vertical plane at four aircraft azimuths of a small-scale tandem rotor system using the particle image velocimetry (PIV) technique for radial distances up to 4 times the rotor diameter. Results were compared against full-scale CH-47D measurements. Excellent correlation was found between the small- and full-scale mean flow fields (after appropriate normalization using rotor and wall jet parameters). Following the scalability analysis, the effect of rotor height on the outwash was also studied. Close to the aircraft, an increase in rotor height above ground decreased the outwash velocity at all aircraft azimuths. However, farther away, the longitudinal and lateral axes of the aircraft showed increasing and decreasing outwash velocities, respectively, with increasing rotor height. Measurements also indicated the presence of large-scale (of the size of the rotor height) shear-layer vortical structures along the ground that could be the source of low-frequency (approximately 1 Hz) flow variation observed in the full-scale measurements. Flow visualization studies and PIV measurements were also made on jets of different sizes to complement the observations made on rotors wherever possible. Baseline rotor measurements were made out-of-ground effect to understand the nature of inflow distribution for realistic rotor configurations and their modified characteristics in the presence of ground. Lastly, a feasibility study on applying high-fidelity CFD simulations for outwash study was conducted using Helios to model an isolated rotor configuration IGE at full-scale Reynolds number. The results were encouraging and demonstrated the practical challenges associated with predicting rotor outwash.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN18435 , AHS International''s Annual Forum and Technology Display; May 05, 2015 - May 07, 2015; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-20
    Description: Analysis of landscape metrics showed that the percentage of total high burn severity area comprised by the largest patch of recovered heavy fuel types was relatively small in all fires studied, but increased rapidly with time since fire.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN24089
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: JPL-CL-16-0590 , American Geophysical Union Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The Gravity Recovery and Climate Experiment - Follow-On (GRACE-FO) Mission is a NASA directed mission to continue the goals of the original GRACE mission and provide continuity for the GRACE data set. The GRACE-FO mission is the result of an international cooperation to develop a concept and approach that minimizes cost and risk and maximizes the probability of success through limited changes to the original GRACE system design. The result is a system architecture in which maintenance of heritage is paramount, including heritage derived through the partnership with the German Research Centre for Geosciences (GFZ) in Germany. As a secondary goal, GRACE-FO will carry a Laser Ranging Interferometer (LRI) as a technology demonstration, which will provide laser interferometry measurements of inter-satellite range, complementary to the K/Ka-Band microwave link to demonstrate laser-ranging technology in support of future GRACE-like missions. Another secondary objective is the continuation of GRACE radio occultation measurements.
    Keywords: Earth Resources and Remote Sensing
    Type: JPL-CL-16-6212 , 2017 IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States|2017 IEEE Aerospace Conference
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The ObseRvations of Aerosols above Clouds and their interactions (ORACLES) project is making a series of field deployments to the southeastern Atlantic with NASA ER-2 and P3 aircraft to acquire both detailed remote sensing observations and in situ measurements of the aerosols and clouds in that region. This area is home to one of the largest low-level cloud decks on Earth that is seasonally affected by vast plumes of smoke from biomass burning, which in effect provides a natural experiment testing the radiative and microphysical interactions between the smoke and the clouds. The downward solar radiation at the surface, or cloud top, is always reduced by the presence of smoke. However, whether the amount of sunlight reflected back out to space is increased, or decreased by the presence of smoke is sensitively dependent on the brightness of the clouds and the fraction of light that the smoke absorbs each time light hits a smoke particle. In this study we use data from the Research Scanning Polarimeter, an along track scanning instrument, that provides measurements of the Stokes parameters I, Q and U at 410, 470, 555, 670, 865, 960, 1590, 1880 and 2260 nm at 150 viewing angles over a range of +/- 60 from nadir for each contiguous sub-aircraft pixel (~ 300 m in size). A retrieval algorithm is applied to the data acquired with a table look up technique, similar to that of the operational POLDER algorithm, to provide a first guess of the complex refractive index, optical depth and size distribution of the smoke particles together with cloud droplet size and optical depth. A subsequent iterative fitting procedure, where the fact that the doubling/adding method allows the construction of the Green's function for the radiative transfer equation, is used to obtain an efficient and statistically optimal estimate of the aerosol and cloud retrieval parameters. These retrieval parameters are evaluated against in situ observations, when available, and the optical depth and intensive lidar variables that are measured by the High Spectral Resolution Lidar 2. Finally, the aerosol and cloud retrievals are used to evaluate the variations in top of the atmosphere, surface/cloud top shortwave radiative forcing and atmospheric absorption that are caused by variations in the smoke and clouds.
    Keywords: Earth Resources and Remote Sensing
    Type: A11C-1897 , GSFC-E-DAA-TN50461 , American Geophysical Union (AGU) Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: This paper describes the current ground-based calibration results of Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), Suomi National Polar orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2A Multispectral Instrument (MSI), using an automated suite of instruments located at Railroad Valley, Nevada, USA. The period of this study is 2012 to 2016 for MODIS, VIIRS, and ETM+, 2013 to 2016 for OLI, and 2015 to 2016 for MSI. The current results show that all sensors agree with the Radiometric Calibration Test Site (RadCaTS) to within +/-5% in the solar-reflective regime, except for one band on VIIRS that is within +/-6%. In the case of ETM+ and OLI, the agreement is within +/-3%, and, in the case of MODIS, the agreement is within +/-3.5%. MSI agrees with RadCaTS to within +/-4.5% in all applicable bands.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN59368 , Journal of Applied Remote Sensing (e-ISSN 1931-3195); 12; 1; 012004
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN43293 , Altair PBS Works User Group; May 22, 2017 - May 25, 2017; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L(s) = 291 deg (March 30, 2013) to Mars Year 33 L(s) = 127 deg (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of +/-0.6 precipitable microns and systematic errors no larger than +/-0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus they tend to support the hypothesis of substantial diurnal interactions of water vapor with the surface. Our preliminary aerosol results, meanwhile, show the expected seasonal pattern in dust particle size but also indicate a surprising interannual increase in water-ice cloud opacities.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51056 , Icarus (ISSN 0019-1035); 307; 294-326
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Since the 1960s, satellites have been looking down at the Earth to monitor weather patterns and track severe storms, observe how our land surface is changing and responding to hydrometerological extremes, and even to sense how the Earth's crust is deforming from earthquakes and volcanoes. Space and airborne platforms can provide unique views of the disaster lifecycle, informing pre-event mitigation and preparedness, emergency response following an event, and monitoring longer-term recovery. These remotely-sensed data, products and models can provide a global perspective to see beyond administrative boundaries, reach remote places where in situ observations are di cult or non-existent, and provide the necessary context and situational awareness to aid in disaster response. So how do these platforms work? Instruments aboard satellites use different portions of the electromagnetic spectrum to passively or actively observe energy across a range of wavelengths, which can be turned into meaningful data on geophysical, atmospheric, and hydrological variables. e US has had a broad range of Earth observation (EO) platforms delivering open data for scientific research and societal benefits for decades. e Landsat programme, a joint initiative between the US Geological Survey (USGS) and NASA, has the world's longest continuous collection of space-based satellite imagery of the Earth, extending from 1972 to present. e Landsat satellites provide visible, near infrared, and thermal data that are used to support emergency response and disaster relief by mapping changes in water during floods, and dramatic land surface changes, including those resulting from landslides, wild res, severe weather, volcanic plumes, and dust storms.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48416 , Crisis Response Journal (ISSN 1745-8633); 12; 4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47964 , AeroCom; Oct 09, 2017 - Oct 13, 2017; Helsinki; Finland|AeroSat Workshops; Oct 09, 2017 - Oct 13, 2017; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47965 , CFMIP Meeting on Cloud Processes, Circulation and Climate Sensitivity; Sep 25, 2017 - Sep 28, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural network (NN) and physically-based SMAP soil moisture retrievals were assimilated into the National Aeronautics and Space Administration (NASA) Catchment model over the contiguous United States for April 2015 to March 2017. By construction, the NN retrievals are consistent with the global climatology of the Catchment model soil moisture. Assimilating the NN retrievals without further bias correction improved the surface and root zone correlations against in situ measurements from 14 SMAP core validation sites (CVS) by 0.12 and 0.16, respectively, over the model-only skill, and reduced the surface and root zone unbiased root-mean-square error (ubRMSE) by 0.005 m(exp 3) m(exp 3) and 0.001 m(exp 3) m(exp 3), respectively. The assimilation reduced the average absolute surface bias against the CVS measurements by 0.009 m(exp 3) m(exp 3), but increased the root zone bias by 0.014 m(exp 3) m(exp 3). Assimilating the NN retrievals after a localized bias correction yielded slightly lower surface correlation and ubRMSE improvements, but generally the skill differences were small. The assimilation of the physically-based SMAP Level-2 passive soil moisture retrievals using a global bias correction yielded similar skill improvements, as did the direct assimilation of locally bias-corrected SMAP brightness temperatures within the SMAP Level-4 soil moisture algorithm. The results show that global bias correction methods may be able to extract more independent information from SMAP observations compared to local bias correction methods, but without accurate quality control and observation error characterization they are also more vulnerable to adverse effects from retrieval errors related to uncertainties in the retrieval inputs and algorithm. Furthermore, the results show that using global bias correction approaches without a simultaneous re-calibration of the land model processes can lead to skill degradation in other land surface variables.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN49630 , Remote Sensing (e-ISSN 2072-4292); 9; 11; 1179
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: Disturbances, both natural and anthropogenic, are critical determinants of forest structure, function, and distribution. The vulnerability of forests to potential changes in disturbance rates remains largely unknown. Here, we developed a framework for quantifying and mapping the vulnerability of forests to changes in disturbance rates. By comparing recent estimates of observed forest disturbance rates over a sample of contiguous US forests to modeled rates of disturbance resulting in forest loss, a novel index of vulnerability, Disturbance Distance, was produced. Sample results indicate that 20% of current US forestland could be lost if disturbance rates were to double, with southwestern forests showing highest vulnerability. Under a future climate scenario, the majority of US forests showed capabilities of withstanding higher rates of disturbance then under the current climate scenario, which may buffer some impacts of intensified forest disturbance.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN56607 , Environmental Research Letters (e-ISSN 1748-9326); 12; 11; 114015
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite uses its 14 reflective solar bands to passively collect solar radiant energy reflected off the Earth. The Level 1 product is the geolocated and radiometrically calibrated top-of- the-atmosphere solar reflectance. The absolute radiometric uncertainty associated with this product includes contributions from the noise associated with measured detector digital counts and the radiometric calibration bias. Here, we provide a detailed algorithm for calculating the estimated standard deviation of the retrieved top-of-the-atmosphere spectral solar radiation reflectance.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN53397 , IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2017); Jul 23, 2017 - Jul 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Uncertainties in input land cover estimates contribute to a significant bias in modeled above ground biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN48007 , 2017 AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Performing impact risk assessment for the 2017 Planetary Defense Conference (PDC17) hypothetical impact exercise, to take place at the PDC17 conference, May 15-20, 2017. Impact scenarios and trajectories are developed and provided by NASA's Near Earth Objects Office at JPL (Paul Chodas). These results represent purely hypothetical impact scenarios, and do not reflect any known asteroid threat. Risk assessment was performed using the Probabilistic Asteroid Impact Risk (PAIR) model developed by the Asteroid Threat Assessment Project (ATAP) at NASA Ames Research Center. This presentation includes sample results that may be presented or used in discussions during the various stages of the impact exercisecenter dot Some cases represent alternate scenario options that may not be used during the actual impact exercise at the PDC17 conference. Updates to these initial assessments and/or additional scenario assessments may be performed throughout the impact exercise as different scenario options unfold.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN43479 , 2017 IAA Planetary Defense Conference; May 15, 2017 - May 19, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice cloud's role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, three years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30degS-30deg N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 hours, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50893 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 2; 1185-1193
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Active cloud observations from A-Trains CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B CLDCLASSLIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major Cloud Vertical Structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap, and provide their global frequency of occurrence. We contrast CVS occurrences between daytime and nighttime, identify ocean and land differences, and examine their seasonal and geographical variations for the dominant CVS classes. In order to evaluate CVS role in the radiation budget, we estimate radiative effects and contributions of the various CVS classes at the solar and thermal infrared part of the spectrum. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of MODIS cloud regimes for spatiotemporally coincident MODIS-Aqua and CloudSat-CALIPSO daytime observations. This analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS regimes, and ultimately confirms previous interpretations of the nature of cloud regimes that did not have the benefit of collocated active observations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN51598 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 17; 9280–9300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: This work presents a state-of-the art methodology for constructing snow water equivalent (SWE) reanalysis. The method is comprised of two main components: (1) a coupled land surface model and snow depletion curve model, which is used to generate an ensemble of predictions of SWE and snow cover area for a given set of (uncertain) inputs, and (2) a reanalysis step, which updates estimation variables to be consistent with the satellite observed depletion of the fractional snow cover time series. This method was applied over the Sierra Nevada (USA) based on the assimilation of remotely sensed fractional snow covered area data from the Landsat 5-8 record (1985-2016). The verified dataset (based on a comparison with over 9000 station years of in situ data) exhibited mean and root-mean-square errors less than 3 and 13 cm, respectively, and correlation greater than 0.95 compared with in situ SWE observations. The method (fully Bayesian), resolution (daily, 90-meter), temporal extent (31 years), and accuracy provide a unique dataset for investigating snow processes. This presentation illustrates how the reanalysis dataset was used to provide a basic accounting of the stored snowpack water in the Sierra Nevada over the last 31 years and ultimately improve real-time streamflow predictions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50111 , International Conference on Reanalysis; Nov 13, 2017 - Nov 17, 2017; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Agricultural stakeholders need more credible information on which to base adaptation and mitigation policy decisions. In order to provide this, we must improve the rigor of agricultural modelling. Ensemble approaches can be used to address scale issues and integrated teams can overcome disciplinary silos. The AgMIP Coordinated Global and Regional Assessments of Climate Change and Food Security (CGRA) has the goal to link agricultural systems models using common protocols and scenarios to significantly improve understanding of climate effects on crops, livestock and livelihoods across multiple scales. The AgMIP CGRA assessment brings together experts in climate, crop, livestock, economics, and food security to develop Protocols to guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including, socioeconomic development, greenhouse gas concentrations, and specific pathways of agricultural sector development. Through these approaches, AgMIP partners around the world are providing an evidence base for their stakeholders as they make decisions and investments.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50534 , Australian Agronomy Conference; Sep 24, 2017 - Sep 28, 2017; Ballarat, Victoria; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: A study into the effects of altitude on an aircraft thermal Ice Protection System (IPS) performance has been conducted by the National Research Council Canada (NRC) in collaboration with the NASA Glenn Icing Branch. The study included tests of an airfoil model, with a heated-air IPS, installed in the NRCs Altitude Icing Wind Tunnel (AIWT) at altitude and ground level conditions.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN42559 , American Institute of Aeronautics and Astronautics (AIAA) Aviation Aviation Technology, Integration, and Operations Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...