ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (44)
  • JSTOR Archive Collection Business II
  • Textbook of informatics
  • MDPI  (38)
  • Wiley  (12)
  • American Chemical Society (ACS)
  • 1
    Publication Date: 2024-04-08
    Description: Vulcano is one of the seven volcanic islands composing the Aeolian Islands archipelago (Southern Italy), which also includes three other active volcanoes. The island was orig-inally a stratovolcano like Stromboli; afterwards, its shape turned towards a complex structure composed of several volcanic landforms of different sizes. This is due to the great variability of the tectonic and volcanic phenomena, presently showing a volcano made by two calderas, a lava dome complex and two small active cones. The largest of them is the tuff cone of La Fossa, hosted in the middle of a 3- km-wide caldera struc-ture (La Fossa caldera), whose borders are visible on the southern and western sides of the island. Its last eruption occurred in 1888–1890. At present, Vulcano is charac-terized by weak shallow seismicity and intense fumarolic activity mainly concentrated within the crater of the La Fossa cone and along its rims during a recent unrest phase started in 2021, and measured with a multiparametric monitoring network.
    Description: Published
    Description: 471-487
    Description: OSV4: Preparazione alle crisi vulcaniche
    Description: JCR Journal
    Keywords: Aeolian Islands, Vulcano ; multihazard ; plumbing system ; unrest ; volcanic history ; stratigraphy ; tectonics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-19
    Description: In recent decades, the Campi Flegrei caldera (Italy) showed unrest characterized by in- creases in seismicity, ground uplift, and hydrothermal activity. Currently, the seismic and hydrother- mal phenomena are mostly concentrated in the Solfatara–Pisciarelli area, which presents a wide fumarolic field and mud emissions. The main fumarole in Pisciarelli is associated with a boiling mud pool. Recently, episodes of a sudden increase in hydrothermal activity and expansion of mud and gas emissions occurred in this area. During these episodes, which occurred in December 2018 and September 2020, Short Duration Events (SDEs), related to the intensity of mud pool boiling, were recorded in the fumarolic seismic tremor. We applied a Self-Organizing Map (SOM) neural network to recognize the occurrence of SDEs in the fumarolic tremor of Campi Flegrei, which provides important information on the state of activity of the hydrothermal system and about the possible phreatic activity. Our method, based on an ad hoc feature extraction procedure, effectively clustered the seismic signals containing SDEs and separated them from those representing the normal fumarolic tremor. This result is useful for improving the monitoring of the Solfatara–Pisciarelli hydrothermal area which is a high-risk zone in Campi Flegrei.
    Description: Published
    Description: 5505
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-29
    Description: The geochemical monitoring of volcanic activity today relies largely on remote sensing, but the combination of this approach together with soil gas monitoring, using the appropriate parameters, is still not widely used. The main purpose of this study was to correlate data from crater gas emissions with flank emissions of soil gases at Mt. Etna volcano from June 2006 to December 2020. Crater SO2 fluxes were measured from fixed stations around the volcano using the DOAS technique and applying a modeled clear-sky spectrum. The SO2/HCl ratio in the crater plume was measured with the OP-FTIR technique from a transportable instrument, using the sun as an IR source. Soil CO2 efflux coupled with the 220Rn/222Rn activity ratio in soil gases (named SGDI) were measured at a fixed monitoring site on the east flank of Etna. All signals acquired were subject both to spectral analysis and to filtering of the periodic signals discovered. All filtered signals revealed changes that were nicely correlated both with other geophysical signals and with volcanic eruptions during the study period. Time lags between parameters were explained in terms of different modes of magma migration and storage inside the volcano before eruptions. A comprehensive dynamic degassing model is presented that allows for a better understanding of magma dynamics in an open-conduit volcano.
    Description: Published
    Description: 1122
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Mt. Etna crater ; SO2 flux ; halogen fluxes ; soil radon ; soil CO2 flux ; eruptive activity ; magma degassing ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-15
    Description: This paper addresses the classification of images depicting the eruptive activity of Mount Etna, captured by a network of ground-based thermal cameras. The proposed approach utilizes Convolutional Neural Networks (CNNs), focusing on pretrained models. Eight popular pretrained neural networks underwent systematic evaluation, revealing their effectiveness in addressing the classification problem. The experimental results demonstrated that, following a retraining phase with a limited dataset, specific networks such as VGG-16 and AlexNet, achieved an impressive total accuracy of approximately 90%. Notably, VGG-16 and AlexNet emerged as practical choices, exhibiting individual class accuracies exceeding 90%. The case study emphasized the pivotal role of transfer learning, as attempts to solve the classification problem without pretrained networks resulted in unsatisfactory outcomes.
    Description: Supported by Italian Research Center on High Performance Computing Big Data and Quantum Computing (ICSC), project funded by European Union—NextGenerationEU—and National Recovery and Resilience Plan (NRRP)—Mission 4 Component 2 within the activities of Spoke 3 (Astrophysics and Cosmos Observations). Sonia Calvari also acknowledges the financial support of the Project FIRST ForecastIng eRuptive activity at Stromboli volcano (Delibera n. 144/2020; Scientific Responsibility: S.C.) Vulcani 2019.
    Description: Published
    Description: 124-137
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Etna Volcano ; Lava Fountains ; classification of events ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-17
    Description: On 21 May 2023, a hidden eruption occurred at the Southeast Crater (SEC) of Etna (Italy); indeed, bad weather prevented its direct and remote observation. Tephra fell toward the southwest, and two lava flows propagated along the SEC’s southern and eastern flanks. The monitoring system of the Istituto Nazionale di Geofisica e Vulcanologia testified to its occurrence. We analyzed the seismic and infrasound signals to constrain the temporal evolution of the fountain, which lasted about 5 h. We finally reached Etna’s summit two weeks later and found an unexpected pyroclastic density current (PDC) deposit covering the southern lava flow at its middle portion. We performed unoccupied aerial system and field surveys to reconstruct in 3D the SEC, lava flows, and PDC deposits and to collect some samples. The data allowed for detailed mapping, quantification, and characterization of the products. The resulting lava flows and PDC deposit volumes were (1.54 ± 0.47) × 106 m3 and (1.30 ± 0.26) × 105 m3, respectively. We also analyzed ground-radar and satellite data to evaluate that the plume height ranges between 10 and 15 km. This work is a comprehensive analysis of the fieldwork, UAS, volcanic tremor, infrasound, radar, and satellite data. Our results increase awareness of the volcanic activity and potential dangers for visitors to Etna’s summit area.
    Description: Published
    Description: 1555
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: remote sensing monitoring system ; Etna paroxysm ; pyroclastic density current ; UAS survey ; fieldwork ; volcanic tremor ; infrasound ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-22
    Description: Between December 2020 and February 2022, the South East Crater of Etna has been the source of numerous eruptions, mostly characterized by the emission of lava fountains, pyroclastic material and short-lasting lava flows. Here we estimate the volume and distribution of the lava deposits by elaborating multi-source satellite imagery. SEVIRI data have been elaborated using CL-HOTSAT to estimate the lava volume emitted during each event and calculate the cumulative volume; Pléiades and WorldView-1 data have been used to derive Digital Surface Models, whose differences provide thickness distributions and hence volumes of the volcanic deposits. We find a good agreement, with the total average lava volume obtained by SEVIRI reaching 73.2 × 106 m3 and the one from optical data amounting to 67.7 × 106 m3. This proves the robustness of both techniques and the accuracy of the volume estimates, which provide important information on the lava flooding history and evolution of the volcano.
    Description: This work was supported by the INGV project Pianeta Dinamico (CUP D53J19000170001) funded by MIUR (“Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese,” legge 145/2018), Tema 8—PANACEA, Scientific Responsibility: A.C.). The research was also funded by “TUNE—Effusion rate estimates at Etna and Stromboli: constraints imposed by a variety of satellite remote sensing data” (Bando di Ricerca Libera 2019 of INGV; Scientific Responsibility: G.G.). This research was also supported by the Project FIRST—ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.).
    Description: Published
    Description: 916
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: thermal infrared satellite imagery ; photogrammetry ; effusion rate curves ; volcanic hazards ; Etna volcano ; Lava Fountaining ; Remote sensing ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-01
    Description: Offshore data in the western Ionian Sea indicate that the NW–SE-trending dextral shear zone of the Alfeo–Etna Fault System turns to the N–S direction near the Ionian coastline, where the extensional Timpe Fault System is located. Morpho-structural data show that NW–SE-trending right-lateral strikeslip faults connect the Timpe Fault System with the upper slope of the volcano, where the eruptive activity mainly occurs along the N–S to NE–SW-trending fissures. Fault systems are related to the ~E–Wtrending extension and they are seismically active having given rise to shallow and low-moderate magnitude earthquakes in the last 150 years. As a whole, morpho-structural, geodetic and seismological data, seismic profiles and bathymetric maps suggest that similar geometric and kinematic features characterize the shear zone both on the eastern flank of the volcano and in the Ionian offshore. The Alfeo– Etna Fault System probably represents a major kinematic boundary in the western Ionian Sea associated with the Africa–Europe plate convergence since it accommodates, by right-lateral kinematics, the differential motion of adjacent western Ionian compartments. Along this major tectonic alignment, crustal structures such as releasing bends, pull-apart basins and extensional horsetails occur both offshore and on-land, where they probably represent the pathway for magma uprising from depth
    Description: This research was funded by the Catania University PIA.CE.RI. Project (linea 2) “Interaction between volcanic activity and active tectonic processes in the Mt. Etna area (InvultEtna). The research has moreover benefited from funding provided by the agreement between Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile
    Description: Published
    Description: 128
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Ionian Sea ; Mt. Etna ; seismic reflection data ; GNSS data ; tectonic-driven volcanism ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-19
    Description: The volatiles released by the volcanic structures of the world contribute to natural environmental pollution both during the passive and active degassing stages. The Island of Vulcano is characterized by solfataric degassing mainly localized in the summit part (Fossa crater) and in the peripheral part in the Levante Bay. The normal solfataric degassing (high-temperature fumarolic area of the summit and boiling fluids emitted in the Levante Bay area), established after the last explosive eruption of 1888–90, is periodically interrupted by geochemical crises characterized by anomalous degassing that are attributable to increased volcanic inputs, which determine a sharp increase in the degassing rate. In this work, we have used the data acquired from the INGV (Istituto Nazionale di Geofisica e Vulcanologia) geochemical monitoring networks to identify, evaluate, and monitor the geochemical variations of the extensive parameters, such as the SO2 flux from the volcanic plume (solfataric cloud) and the CO2 flux from the soil in the summit area outside the fumaroles areas. The increase in the flux of volatiles started in June–July 2021 and reached its maximum in November of the same year. In particular, the mean monthly flux of SO2 plume of 22 tons day−1 (t d−1) and of CO2 from the soil of 1570 grams per square meter per day (g m2 d −1) increased during this event up to 89 t d−1 and 11,596 g m2 d −1, respectively, in November 2021. The average annual baseline value of SO2 output was estimated at 7700 t d−1 during normal solfataric activity. Instead, this outgassing increased to 18,000 and 24,000 t d−1 in 2021 and 2022, respectively, indicating that the system is still in an anomalous phase of outgassing and shows no signs of returning to the pre-crisis baseline values. In fact, in the first quarter of 2023, the SO2 output shows average values comparable to those emitted in 2022. Finally, the dispersion maps of SO2 on the island of Vulcano have been produced and have indicated that the areas close to the fumarolic source are characterized by concentrations of SO2 in the atmosphere higher than those permitted by European legislation (40 µg m−3 for 24 h of exposition) on human health.
    Description: This research was funded by the INGV-DPCN (Italian National Institute of Geophysics and Volcanology-Italian National Department for Civil Protection) volcanic surveillance program of Vulcano island, ObFu 0304.010. Moreover, this investigation was partially funded by TORS project in the framework of institutional INGV projects (“Ricerca Libera”, ObFu 9999.549 and Pianeta Dinamico Task V2, ObFu 1020.010).
    Description: Published
    Description: 3086
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: SO2 output ; Soil CO2 fluxes ; Air pollutant ; Vulcano Island ; Geochemical crisis ; Summit degassing ; SO2 map dispersion ; Extensive parameters ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-12
    Description: Stromboli is an open-conduit active volcano located in the southern Tyrrhenian Sea and is the easternmost island of the Aeolian Archipelago. It is known as “the lighthouse of the Mediterranean” for its continuous and mild Strombolian-type explosive activity, occurring at the summit craters. Sometimes the volcano undergoes more intense explosions, called “major explosions” if they affect just the summit above 500 m a.s.l. or “paroxysms” if the whole island is threatened. Effusive eruptions are less frequent, normally occurring every 3–5 years, and may be accompanied or preceded by landslides, crater collapses and tsunamis. Given the small size of the island (maximum diameter of 5 km, NE–SW) and the consequent proximity of the inhabited areas to the active craters (maximum distance 2.5 km), it is of paramount importance to use all available information to forecast the volcano’s eruptive activity. The availability of a detailed record of the volcano’s eruptive activity spanning some centuries has prompted evaluations on its possible short-term evolution. The aim of this paper is to present some statistical insights on the eruptive activity at Stromboli using a catalogue dating back to 1879 and reviewed for the events during the last two decades. Our results confirm the recent trend of a significant increase in major explosions, small lava flows and summit crater collapses at the volcano, and might help monitoring research institutions and stakeholders to evaluate volcanic hazards from eruptive activity at this and possibly other open-vent active basaltic volcanoes.
    Description: This research was funded by Project FIRST—ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV–Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.).
    Description: Published
    Description: 4822
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Stromboli catalogue ; Stromboli volcano ; effusive eruptions ; explosive eruptions ; crater collapse ; tsunami ; pyroclastic density current ; hot avalanche ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-09-13
    Description: The 2021 eruption at Tajogaite (Cumbre Vieja) volcano (La Palma, Spain) was characterized by Strombolian eruptions, Hawaiian fountaining, white gasdominated and grey ash-rich plumes, and lava effusion from multiple vents. The variety of eruptive styles displayed simultaneously and throughout the eruption presents an opportunity to explore controls on explosivity and the relationship between explosive and effusive activity. Explosive eruption dynamics were recorded using ground-based thermal photography and videography. We show results from the analysis of short (〈5 min) near-daily thermal videos taken throughout the eruption from multiple ground-based locations and continuous time-lapse thermal photos over the period November 16 to November 26. We measure the apparent radius, velocity, and volume flux of the high-temperature gas-and-ash jet and lava fountaining behaviors to investigate the evolution of the explosive activity over multiple time scales (seconds-minutes, hours, and daysweeks). We find fluctuations in volume flux of explosive material that correlate with changes in volcanic tremor and hours-long increases in explosive flux that are immediately preceded by increases in lava effusion rate. Correlated behavior at multiple vents suggests dynamic magma ascent pathways connected in the shallow (tens to hundreds of meters) sub-surface. We interpret the changes in explosivity and the relative amounts of effusive and explosivity to be the result of changes in gas flux and the degree of gas coupling.
    Description: Authors from INVOLCAN and ITER acknowledge support under projects VOLRISKMAC (MAC/3.5b/124) and VOLRISKMAC II (MAC2/3.5b/328), financed by the Program INTERREG V-A Spain-Portugal MAC 2014–2020 of the European Commission; Cumbre Vieja Emergencia, financed by the Science and Innovation Ministry, Spanish Government; TFassistance, financed by the Cabildo Insular de Tenerife; and LPvolcano, financed by the Cabildo Insular de La Palma. We are grateful to Antoni Álvarez for his logistical support. Authors from LDEO acknowledge support from the Gordon and Betty Moore Foundation under grant GBMF8995 for the AVERT project, and from NSF under EAR-1654588.
    Description: Published
    Description: 1193436
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Explosive activity ; Strombolian explosions ; lava fountains ; Thermal imagering ; Cumbre Vieja ; La Palma, ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-16
    Description: During the last two decades, the Etna volcano has undergone several sequences of lava fountaining (LF) events that have had a major impact on road conditions, infrastructure and the local population. In this paper, we consider the LF episodes occurring between 2011 and 2022, calculating their erupted volumes using the images recorded by the monitoring thermal cameras and applying a manual procedure and a dedicated software to determine the lava fountain height over time, which is necessary to obtain the erupted volume. The comparison between the results indicates the two procedures match quite well, the main differences occurring when the visibility is poor and data are interpolated. With the aim of providing insights for hazard assessment, we have fitted some probabilistic models of both the LF inter-event times and the erupted volumes of pyroclastic material. In more detail, we have tested power-law distributions against log-normal, Weibull, generalised Pareto and log-logistic. Results show that the power-law distribution is the most likely among the alternatives. This implies the lack of characteristic scales for both the inter-event time and the pyroclastic volume, which means that we have no indication as to when a new episode of LF will occur and/or how much material will be erupted. What we can reasonably say is only that short inter-event times are more frequent than long inter-event times, and that LF characterised by small volumes are more frequent than LF with high volumes. However, if the hypothesis that magma accumulates on Etna at a rate of about 0.8 m3 s −1 holds, the material accumulated in the source region from the beginning of the observation period (2011) to the present (2022) has already been ejected. In simple terms, there is no accumulated magma in the shallow storage that is prone to be erupted in the near future.
    Description: This research was funded by Project FIRST—ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.).
    Description: Published
    Description: 6183
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: lava fountains ; automatic detection ; Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-02-28
    Description: The Sciara del Fuoco (SdF) collapse scar at Stromboli is an active volcanic area affected by rapid morphological changes due to explosive/effusive eruptions and mass-wasting processes. The aim of this paper is to demonstrate the importance of an integrated analysis of multi-temporal remote sensing (photogrammetry, COSMO-SkyMed Synthetic Aperture Radar amplitude image) and marine geophysical data (multibeam and side scan sonar data) to characterize the main morphological, textural, and volumetric changes that occurred along the SdF slope in the 2020–2021 period. The analysis showed the marked erosive potential of the 19 May 2021 pyroclastic density current generated by a crater rim collapse, which mobilized a minimum volume of 44,000 m^3 in the upper Sciara del Fuoco slope and eroded 350,000–400,000 m^3 of material just considering the shallow-water setting. The analysis allowed us also to constrain the main factors controlling the emplacement of different lava flows and overflows during the monitored period. Despite the morphological continuity between the subaerial and submarine slope, textural variations in the SdF primarily depend on different processes and characteristics of the subaerial slope, the coastal area, the nearshore, and “deeper” marine areas.
    Description: Published
    Description: 4605
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli ; hazard ; active volcano ; morphological changes ; UAV flight ; remote sensing ; multibeam bathymetry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-02-02
    Description: The re-mobilization of volcaniclastic material poses a hazard factor which, although it decreases with time since the last eruption, remains present in the hydrographic basins of volcanic areas. Herein, we present the results of the numerical modelling of erosive phenomena of volcanic deposits, as well as of flooding in the volcanic area. The proposed approach includes runoff estimation, land use analysis, and the application of hydraulic and erosion modelling. It exploits the Iber software, a widely used and validated model for rainfall-runoff, river flooding, and erosion and sediment transport modelling. The methodology was applied to the Island of Vulcano (Italy), known for the erosion phenomena that affect the slopes of one of its volcanic cones (La Fossa cone). The rainfall excess was calculated using a 19-year dataset of hourly precipitations, and the curve number expressed by the information on soil cover in the area, derived from the land cover and land use analysis. The erosion and flow models were performed considering different rainfall scenarios. Results show a particularly strong erosion, with thicknesses greater than 0.4 m. This is consistent with field observations, in particular with some detailed data collected both after intense events and by long-term observation. Results of the hydraulic simulations show that moderate and torrential rainfall scenarios can lead to flood levels between 0.2 and 0.6 m, which mostly affect the harbours located in the island’s inhabited area.
    Description: This project was partially funded by the “Fondi di Ateneo 2022 (ex 60%)” by the Università degli Studi di Firenze (project “VOLFLANK—Use of remote sensing data for the stability analysis of active volcanoes”; P.I.: F.D.T.). A.F. and M.F. carried out this work in the frame of INGV Progetti Ricerca Libera 2022 (project “VOLF—VOlcaniclastic debris flows at La Fossa cone (Volcano Island): evolution and hazard implication”).
    Description: Published
    Description: 16549
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: erosion modelling ; floods modelling ; numerical models ; Iber software ; volcaniclastic deposits ; floods hazard ; Island of Vulcano ; Aeolian Archipelago ; geomorphological hazards ; 04.08. Volcanology ; 05.08. Risk ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-03-06
    Description: Numerical modelling of tephra fallout is a fast-developing research area in volcanology. Several models are currently available both to forecast the dispersion of volcanic particles in the atmosphere and to calculate the particles deposited at different locations on the ground. Data from these simulations can then be used both to manage volcanic crises (e.g., protect air traffic) or perform long-term hazard assessment studies (e.g., through hazard maps). Given the importance of these tasks, it is important that each model is thoroughly tested in order to assess advantages and limitations, and to provide useful information for quantifying the model uncertainty. In this study we tested the coupled PLUME-MoM/HYSPLIT models by applying them to the Puyehue–Cordon Caulle 2011 sub-Plinian eruption. More specifically, we tested new features recently introduced in these well-established models (ash aggregation, external water addition, and settling velocity models), we implemented a new inversion procedure, and we performed a parametric analysis. Our main results reaffirm the pivotal role played by mass eruption rate on the final deposit and show that some choices for the input parameters of the model can lead to the large overestimation in total deposited mass (which can be reduced with our inversion procedure). The parametric analysis suggests a most likely value of the mass eruption rate in the range 2.0–6.3 × 106 kg/s. More studies with a similar approach would be advisable in order to provide final users with useful indications about the parameters that should be carefully evaluated before being used as input for this kind of model.
    Description: Published
    Description: 784
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: tephra fallout ; numerical model ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-04-26
    Description: Constraining the magmatic 3He/4He signature of fluids degassed from a magmatic system is crucial for making inferences on its mantle source. This is especially important in arc volcanism, where variations in the composition of the wedge potentially induced by slab sediment fluids must be distinguished from the effects of magma differentiation, degassing, and crustal contamination. The study of fluid inclusions (FIs) trapped in minerals of volcanic rocks is becoming an increasingly used methodology in geochemical studies that integrates the classical study of volcanic and geothermal fluids. Here, we report on the first noble gas (He, Ne, Ar) concentrations and isotopic ratios of FI in olivine (Ol) and pyroxene (Px) crystals separated from eruptive products of the Telica and Baru volcanoes, belonging to the Nicaraguan and Panamanian arc-segments of Central America Volcanic arc (CAVA). FIs from Telica yield air corrected 3He/4He (Rc/Ra) of 7.2–7.4 Ra in Ol and 6.1–7.3 in Px, while those from Baru give 7.1–8.0 Ra in Ol and 4.2–5.8 Ra in Px. After a data quality check and a comparison with previous 3He/4He measurements carried out on the same volcanoes and along CAVA, we constrained a magmatic Rc/Ra signature of 7.5 Ra for Telica and of 8.0 Ra for Baru, both within the MORB range (8 1 Ra). These 3He/4He differences also reflect variations in the respective arc-segments, which cannot be explained by radiogenic 4He addition due to variable crust thickness, as the mantle beneath Nicaragua and Panama is at about 35 and 30 km, respectively. We instead highlight that the lowest 3He/4He signature observed in the Nicaraguan arc segment reflects a contamination of the underlying wedge by slab sediment fluids. Rc/Ra values up to 9.0 Ra are found at Pacaya volcano in Guatemala, where the crust is 45 km thick, while a 3He/4He signature of about 8.0 Ra was measured at Turrialba volcano in Costa Rica, which is similar to that of Baru, and reflects possible influence of slab melting, triggered by a change in subduction conditions and the contemporary subduction of the Galapagos hot-spot track below southern Costa Rica and western Panama.
    Description: Published
    Description: 2076-3417
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Telica volcano ; Baru volcano ; 3He/4He ; fluid inclusions ; CAVA ; slab fluids ; Isotope Geochemistry ; Noble gases ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-02-24
    Description: The identification of the mechanisms responsible for the deformation of calderas is of primary importance for our understanding of the dynamics of magmatic systems and the evaluation of volcanic hazards. We analyze twenty years (1997–2018) of geodetic measurements on Ischia Island (Italy), which include the Mt. Epomeo resurgent block, and is affected by hydrothermal manifestations and shallow seismicity. The data from the GPS Network and the leveling route show a constant subsidence with values up to 􀀀15 2.0 mm/yr and a centripetal displacement rate with the largest deformations on the southern flank of Mt. Epomeo. The joint inversion of GPS and levelling data is consistent with a 4 km deep source deflating by degassing and magma cooling below the southern flank of Mt. Epomeo. The depth of the source is supported by independent geophysical data. The Ischia deformation field is not related to the instability of the resurgent block or extensive gravity or tectonic processes. The seismicity reflects the dynamics of the shallow hydrothermal system being neither temporally nor spatially related to the deflation.
    Description: Published
    Description: 4648
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: GNSS ; resurgent caldera ; subsidence ; modelling ; degassing processes ; earthquakes ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-02
    Description: We propose a multi-temporal-scale analysis of ground deformation data using both high-rate tilt and GNSS measurements and the DInSAR and daily GNSS solutions in order to investigate a sequence of four paroxysmal episodes of the Voragine crater occurring in December 2015 at Mt. Etna (Italy). The analysis aimed at inferring the magma sources feeding a sequence of very violent eruptions, in order to understand the dynamics and to image the shallow feeding system of the volcano that enabled such a rapid magma accumulation and discharge. The high-rate data allowed us to constrain the sources responsible for the fast and violent dynamics of each paroxysm, while the cumulated deformation measured by DInSAR and daily GNSS solutions, over a period of 12 days encompassing the entire eruptive sequence, also showed the deeper part of the source involved in the considered period, where magma was stored. We defined the dynamics and rates of the magma transfer, with a middle-depth storage of gas-rich magma that charges, more or less continuously, a shallower level where magma stops temporarily, accumulating pressure due to the gas exsolution. This machine-gun-like mechanism could represent a general conceptual model for similar events at Etna and at all volcanoes.
    Description: Published
    Description: 4630
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: processing ; high-rate ; ground deformation ; lava fountain ; eruption ; geodesy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-01-11
    Description: Immersive virtual reality can potentially open up interesting geological sites to students, academics and others who may not have had the opportunity to visit such sites previously. We study how users perceive the usefulness of an immersive virtual reality approach applied to Earth Sciences teaching and communication. During nine immersive virtual reality-based events held in 2018 and 2019 in various locations (Vienna in Austria, Milan and Catania in Italy, Santorini in Greece), a large number of visitors had the opportunity to navigate, in immersive mode, across geological landscapes reconstructed by cutting-edge, unmanned aerial system-based photogrammetry techniques. The reconstructed virtual geological environments are specifically chosen virtual geosites, from Santorini (Greece), the North Volcanic Zone (Iceland), and Mt. Etna (Italy). Following the user experiences, we collected 459 questionnaires, with a large spread in participant age and cultural background. We find that the majority of respondents would be willing to repeat the immersive virtual reality experience, and importantly, most of the students and Earth Science academics who took part in the navigation confirmed the usefulness of this approach for geo-education purposes.
    Description: This research has been provided in the framework of the following projects: (i) the MIUR project ACPR15T4_00098–Argo3D (http://argo3d.unimib.it/ (accessed on 26 November 2021)); (ii) 3DTeLC Erasmus + Project 2017-1-UK01-KA203-036719 (http://www.3dtelc.com (accessed on 26 November 2021)); (iii) EGU 2018 Public Engagement Grant (https://www.egu.eu/outreach/peg/ (accessed on 26 November 2021)). Agisoft Metashape is acknowledged for photogrammetric data processing. This article is also an outcome of Project MIUR–Dipartimenti di Eccellenza 2018–2022. Finally, this paper is an outcome of the Virtual Reality lab for Earth Sciences—GeoVires lab (https://geovires.unimib.it/ (accessed on 26 November 2021)). The work supports UNESCO IGCP 692 ‘Geoheritage for Resilience’.
    Description: Published
    Description: 9
    Description: 1TM. Formazione
    Description: JCR Journal
    Keywords: immersive virtual reality ; geology; ; photogrammetry; ; education; ; Iceland; ; Santorini ; Etna ; 04.04. Geology ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-02-02
    Description: Volcanology, seismology and Earth Sciences in general, like all quantitative sciences, are increasingly dependent on the quantity and quality of data acquired. In recent dec-ades, a marked evolution has characterized Earth sciences towards a greater use of ana-lytical and numerical approaches, shifting these fields from the natural to the physical sciences. Understanding the physical behavior of active volcanoes and faults is critical to as-sess the hazards affecting the population living close to active volcano and seismic areas, and thus to mitigate the risks posed by those threats [1,2]. The knowledge of a physical process requires the acquisition of a huge amount of information (data) on that particular phenomenon. Today, different kinds of data record the processes that operate in volcanic and tec-tonic systems and provide insights that can lead to improved predictions of potential hazards, both immediate and long term. The geoscience community has collected an enormous wealth of data that require further analysis. The diversity and quantity of these geoscience data and collections continue to expand [3]. The increasing amount of data and the availability of new technologies and instru-mentation at an ever-greater rate open new frontiers and challenges for acquiring, trans-mitting, archiving, processing and analyzing the newly available datasets. Guo [4] pre-dicted growth for the general digital universe size of factor 10 from 2016 to 2025. Among all digital data, scientific data are those relevant to the observation of natural phenomena and characterized by non-repeatability, high uncertainty, high dimensionality and a high degree of computational complexity [4]. This means that scientific data need to be well preserved, due to the non-repeatability, and implies a parallel growth of processing capa-bilities to be well exploited. Cheng et al. [5] highlighted the striking growth of Earth Sci-ence data from molecular to astronomical scales and the increasing use of supercompu-ting tools for supporting geoscience research. The authors evidence how, with the contin-uously increasing availability of digital data, Earth Sciences are also turning from the tra-ditional question-driven or problem-driven approach, where scientists seek to find an-swers to known questions, to the new data-driven one where scientists apply a data dis-covery process that might find answers to still unknown questions. In agreement with Cheng et al. [5], we believe that new integrated multi-disciplinary knowledge systems and new data discovery techniques for handling and mining big data for knowledge discovery would spur the integration of transdisciplinary and mul-ti-dimensional Earth science data. Furthermore, this will help the transition from a nar-row focus on separate disciplines to a holistic, comprehensive and integrative focus of the different disciplines linked to the Earth Sciences. With this aim, for this special issue titled “Data Processing and Modeling on Volcan-ic and Seismic Areas”, we invited articles on all aspects of solid Earth Science that made use of data to analyze and model processes related to volcanoes or earthquakes. Manuscripts with various types of analyses, including volcanic ground deformation modeling, seismic swarm characterization and volcanic gas measurement, have been proposed and published. The collection provides an insight into the enormous need for increasingly complex data analysis and modeling techniques to try to describe the natural phenomena here considered. This special issue was introduced to collect the latest research on the processing and modeling of Earth Sciences data, and to address challenging problems with all topics re-lated to volcanoes and seismic areas. Various subjects have been addressed in this collec-tion, mainly on data processing for volcanic studies (three papers), tectonics (two papers) and one paper on data analysis of a new instrument to measure gases. The first contribution to this collection [6] reports the results of the processing and combination of high-rate and low-rate geodetic data for revealing the dynamics underly-ing violent volcanic eruptions at Mount Etna. This study evidences the wide spectrum of ground deformation produced by these phenomena, to be investigated, processed and modeled in order to generate a picture of the feeding system of the volcano and better un-derstand its dynamics and rates of magma transfer in the upper crust. Another contribution focuses on volcanoes [7]: the authors exploit 20 years of high temporal resolution satellite Thermal Infra-Red (TIR) data collected over three active vol-canoes (Etna, Shishaldin and Shinmoedake). They present the results of an analysis of this dataset performed through a preliminary RST (Robust Satellite Techniques) algorithm implementation to TIR data from the Advanced Spaceborne Thermal Emission and Re-flection Radiometer (ASTER). This approach ensures efficient identification and mapping of volcanic thermal features even of a low intensity level, which is also useful in the per-spective of an operational multi-satellite observing system. The contribution by Woohyun Son et al. [8] proposes specific depth-domain data processing of migration velocity analysis (MVA) of seismic data collected during a survey on a saline aquifer sediment in the Southern Continental Shelf of Korea. This analysis al-lowed the authors to identify and determine the precise depth of a basalt flow that could act as a cap rock for CO2 storage beneath the aquifer. The investigation, through the geo-logical model obtained from both time- and depth-domain processing, provides suitable information for locating the best drilling sites for CO2 injection, maximizing the storage volume. In volcanic areas, gases represent important physical evidence of volcanic processes that need to be measured. Parracino et al. [9] have shown how novel range-resolved DI-AL-Lidar (Differential Absorption Light Detection and Ranging) could herald a new era in the observation of long-term volcanic CO2 gases. An accurate and integrated analysis of different types of data such as GNSS, seismic and MT-InSAR, has led, in the work by Gatsios et al. [10], to a first account of deformation processes and their temporal evolution over recent years for Methana (Greece), thus providing initial information to feed into a volcano baseline hazard assessment and mon-itoring system. Seismic data are among the most important data to understand the dynamics of the Earth’s interior. A consistent analysis of a seismic swarm allowed Kostoglou et al. [11] to shed more light on the regional geodynamics of the Kefalonia Transform Fault Zone (Greece), and to follow the temporal evolution of the b-value to distinguish between fore-shock and aftershock behaviors.
    Description: Published
    Description: 10759
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: processing ; monitoring ; 04.08. Volcanology ; 05.01. Computational geophysics ; 05.06. Methods ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-01-11
    Description: Mt Etna has made headlines over the last weeks and months with spectacular eruptions, some of them highly explosive. This type of paroxysmal eruptive behaviour is characteristic of Etna’s activity over the past few decades and so it is no surprise that Etna is among the most active volcanoes worldwide. Etna is well-known for its extraordinary geology and due to its repeated eruptive activity it provides a continuous supply of new scientific opportunities to understand the inner workings of large basaltic volcanic systems. In addition to its scientific value, Etna is also a world famous tourist attraction and has been listed as a UNESCO World Heritage site in 2013 for its geological and cultural value and not least for its fine agricultural products. Etna’s status as an iconic volcano is not a recent phenomenon; in fact, Etna has been a literary fixture for at least 3000 years, giving rise to many ancient myths and legends that mark it as a special place, deserving of human respect. From the ancient eruptions to the latest events in February–April 2021, people try to explain and understand the processes that occur within and beneath the volcano. In this article, we briefly summarize the recent eruptive activity of Etna as well as the ancient myths and legends that surround this volcano, from the underground forge of Hephaestus to the adventures of Odysseus, all the way to the benefits and dangers the volcano provides to those living on its flanks today.
    Description: Published
    Description: 141-149
    Description: 2TM. Divulgazione Scientifica
    Description: N/A or not JCR
    Keywords: Etna, mythology, 2021 paroxysms, economy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-07-14
    Description: Two paroxysmal explosions occurred at Stromboli on July 3 and August 28, 2019, the first of which caused the death of a young tourist. After the first paroxysm an effusive activity began from the summit vents and affected the NW flank of the island for the entire period between the two paroxysms. We carried out an unsupervised analysis of seismic and infrasonic data of Strombolian explosions over 10 months (15 November 2018–15 September 2019) using a Self- Organizing Map (SOM) neural network to recognize changes in the eruptive patterns of Stromboli that preceded the paroxysms. We used a dataset of 14,289 events. The SOM analysis identified three main clusters that showed different occurrences with time indicating a clear change in Stromboli’s eruptive style before the paroxysm of 3 July 2019. We compared the main clusters with the recordings of the fixed monitoring cameras and with the Ground-Based Interferometric Synthetic Aperture Radar measurements, and found that the clusters are associated with different types of Strombolian explosions and different deformation patterns of the summit area. Our findings provide new insights into Strombolian eruptive mechanisms and new perspectives to improve the monitoring of Stromboli and other open conduit volcanoes.
    Description: This work was supported by the project Progetto Strategico Dipartimentale INGV 2019 “Forecasting eruptive activity at Stromboli volcano: timing, eruptive style, size, intensity and duration” (FIRST). This work is also supported by a Marie Sklodowska-Curie Innovative Training Network Fellowship of the European Commission’s Horizon 2020 Programme under Contract Number 765710 INSIGHTS. This work benefited from the EU (DG ECHO) Project EVE n. 826292. This work has been partially supported by the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile” (Presidency of the Council of Ministers–Department of Civil Protection; Scientific Responsibility: N.C.). However, this publication does not necessarily represent the official opinion and policies of the department.
    Description: Published
    Description: 1287
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: eruption precursors ; Stromboli volcano ; neural networks ; self-organizing map ; seismo-acoustic signals ; volcano monitoring ; ground-based visible and thermal imagery ; ground deformation ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-07-14
    Description: The Etna volcano is renowned worldwide for its extraordinary lava fountains that rise several kilometers above the vent and feed eruptive columns, then drift hundreds of kilometers away from the source. The Italian Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo (INGV-OE) is responsible for the monitoring of Mt. Etna, and for this reason, has deployed a network of visible and thermal cameras around the volcano. From these cameras, INGV-OE keeps a keen eye, and is able to observe the eruptive activity, promptly advising the civil protection and aviation authorities of any changes, as well as quantifying the spread of lava flows and the extent of pyroclastic and ash plumes by using a careful analysis of the videos recorded by the monitoring cameras. However, most of the work involves analysis carried out by hand, which is necessarily approximate and time-consuming, thus limiting the usefulness of these results for a prompt hazard assessment. In addition, the start of lava fountains is often a gradual process, increasing in strength from Strombolian activity, to intermediate explosive activity, and eventually leading to sustained lava fountains. The thresholds between these different fields (Strombolian, Intermediate, and lava fountains) are not clear cut, and are often very difficult to distinguish by a manual analysis of the images. In this paper, we presented an automated routine that, when applied to thermal images and with good weather conditions, allowed us to detect (1) the starting and ending time of each lava fountain, (2) the area occupied by hot pyroclasts, (3) the elevation reached by the lava fountains over time, and (4) eventually, to calculate in real-time the erupted volume of pyroclasts, giving results close to the manual analysis but more focused on the sustained portion of the lava fountain, which is also the most dangerous. This routine can also be applied to other active volcanoes, allowing a prompt and uniform definition of the timing of the lava fountain eruptive activity, as well as the magnitude and intensity of the event.
    Description: This research was funded by the Project FIRST—ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.).
    Description: Published
    Description: 2392
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Etna Volcano ; thermal imagery ; lava fountains ; 2020-2022 paroxysms ; automated detection ; remote sensing ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-08-18
    Description: Between 13 December 2020 and 21 February 2022, Etna volcano produced a sequence of 66 paroxysmal explosive eruptions, with Strombolian activity at the summit craters climaxing in lava fountains and eruption columns extending several kilometers above the craters, accompanied by minor and short-lasting lava flows from the crater rim. We selected three of these episodes that occurred within a short space of time, between 13 December 2020 and 12 March 2021, of different magnitude (i.e., erupted volume) and intensity (i.e., mass eruption rate or instantaneous eruption rate), and analyzed them from a multidisciplinary perspective. The aim was to gain insights into those parameters that mostly reveal the eruptive process for hazard assessment purposes. The multidisciplinary data consist of calibrated visible images, thermal images, seismic and infrasound data, ground deformation detected from the strainmeters, as well as satellite SEVIRI images. From these data, we obtained the timing of each paroxysmal event, the erupted volume in terms of tephra and lava flows, and the corresponding deflation of the source region, together with the development of the lava fountains and eruption columns with time. The results enabled determining that the smallest episode was that of 13 December 2020, which comprised three distinctive pulses but did not produce an eruptive column detectable from either monitoring cameras or satellites. The 28 February 2021 episode was remarkable for the short amount of time required to reach the climax, and was the most intense, whereas the 12 March 2021 event showed the longest duration but with an intensity between that of the previous two. Our results show that these three paroxysmal events display a typical trend, with the first event also being the smallest in terms of both erupted volume and intensity, the second being the most intense, and the third the one of greatest magnitude but less intense than the second. This is coherent with the end of the first paroxysmal phase on 1 April 2021, which was followed by 48 days of eruptive pause before starting again. In this context, the end of the paroxysmal phase was anticipated by a more effusive episode, thus heralding a temporary decline in the gas content within the feeding magma batch.
    Description: This research was funded by the Project FIRST-ForecastIng eRuptive activity at Stromboli volcano: Timing, eruptive style, size, intensity, and duration; INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020). A.C. thanks the CHANCE project, II Edition, Università degli Studi di Catania (principal investigator A.C.) and the grant PIACERI, 2020-22 programme (PAROSSISMA project, code 22722132140; principal investigator Marco Viccaro). A.I. thanks the IMPACT project—A Multidisciplinary Insight on the Kinematics and Dynamics of Magmatic Processes at Mt. Etna Aimed at Identifying Rrecursor Phenomena and Developing Early Warning Systems, funded by INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020). S.S. thanks the ‘e-shape’ project, which receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 820852.
    Description: Published
    Description: 4006
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Etna Volcano ; Lava Fountains ; volcanic plume ; multidisciplinary monitoring systems ; eruptive column ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-08-16
    Description: Editorial to a Special Issue
    Description: The monitoring of active volcanoes is a complex task based on multidisciplinary and integrated analyses that use ground, drones, and satellite monitoring devices. Over time, and with the development of new technology and increasing frequency of acquisition, the use of remote sensing to accomplish this important task has grown enormously. This is especially so with the use of drones and satellites for classifying eruptive events, detecting the opening of new vents, the spreading of lava flows on the surface or ash plumes in the atmosphere, the fallout of tephra on the ground, the intrusion of new magma within the volcano edifice, and the deformation preceding impending eruptions, and others besides. The main challenge in using remote sensing techniques is to develop automated and reliable systems that may assist the decision-maker in volcano monitoring, hazard assessment, and risk reduction. The integration with ground-based techniques represents a valuable additional aspect that makes the proposed methods more robust and reinforces the results obtained. This collection of papers is focused on several active volcanoes, such as Stromboli, Etna, and Vulcano in Italy; the Long Valley caldera and Kilauea volcano in the USA; and Cotopaxi in Ecuador. The authors make use of several different methods to predict and forecast the volcanoes’ future behavior, using insights from the available data or from new automated routines applied to the analysis of existing data. The aim is to enable rapid assessments of the state of a volcano, discovering the connection between variables apparently not related to each other and to the state of the volcano. The development of new or automated routines is an important step forward in the process of forecasting eruptive activities, and this collection comprises several such examples. This Special Issue on the monitoring of active volcanoes using an integration of remote sensing and ground-based techniques comprises twelve papers. Three are focused on the results obtained for Stromboli volcano (Italy), where eruptive activity varies from moderate Strombolian, often accompanied by summit overflows, to highly explosive paroxysms, which are very dangerous both for the local population and for the many tourists who frequently visit the island. The first paper [1] presents the precursors of the paroxysmal and devastating explosive eruptions occurring in 2019. This paper applied an unsupervised analysis of seismic and infrasonic data, comprising a dataset of 14,289 Strombolian explosions occurring over 10 months, using a Self-Organizing Map (SOM) neural network to recognize changes in the eruptive patterns preceding the paroxysms. The SOM analysis identified three main clusters indicating a clear change in Stromboli’s eruptive style before the paroxysm of 3 July 2019. The main clusters were then compared with the recordings of the fixed monitoring cameras and with the Ground-Based Interferometric Synthetic Aperture Radar measurements, showing that they were associated with different types of Strombolian explosions and different deformation patterns of the summit area.
    Description: Published
    Description: 3626
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: volcanic hazard ; volcano monitoring ; remote sensing ; explosive eruptions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-07-08
    Description: This work is devoted to the analysis of the background seismic noise acquired at the volcanoes (Campi Flegrei caldera, Ischia island, and Vesuvius) belonging to the Neapolitan volcanic district (Italy), and at the Colima volcano (Mexico). Continuous seismic acquisition is a complex mixture of volcanic transients and persistent volcanic and/or hydrothermal tremor, anthropogenic/ambient noise, oceanic loading, and meteo-marine contributions. The analysis of the background noise in a stationary volcanic phase could facilitate the identification of relevant waveforms often masked by microseisms and ambient noise. To address this issue, our approach proposes a machine learning (ML) modeling to recognize the “fingerprint” of a specific volcano by analyzing the background seismic noise from the continuous seismic acquisition. Specifically, two ML models, namely multi-layer perceptrons and convolutional neural network were trained to recognize one volcano from another based on the acquisition noise. Experimental results demonstrate the effectiveness of the two models in recognizing the noisy background signal, with promising performance in terms of accuracy, precision, recall, and F1 score. These results suggest that persistent volcanic signals share the same source information, as well as transient events, revealing a common generation mechanism but in different regimes. Moreover, assessing the dynamic state of a volcano through its background noise and promptly identifying any anomalies, which may indicate a change in its dynamics, can be a practical tool for real-time monitoring.
    Description: Published
    Description: 6835
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: seismic noise ; Neapolitan volcanoes ; Colima volcano ; multi-layer perceptrons ; convolutional neural network ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-10-18
    Description: Data availability: The source data (ground temperature measurements recorded -hourly- from 2009 to 2012) are submitted to PANGAEA — PDI31617.
    Description: Mild thermal anomalies are sensitive to changes in the advection processes in a volcanic system. A mild thermal anomaly, near the top of the North-East Rift of Mt. Etna (Italy), has been monitored from January 2010 to September 2012 by means of four temperature sensors buried in the shallow ground. The pulses of the convective circulation have been tracked and the diffuse heat flux has been evaluated. The positive pulses of the convective front reflected the local increases of volcanic degassing; conversely, the negative pulses showed the contraction of the convective front emerging through the North-East Rift. The steam condensation depth fluctuated below the monitoring site, from depths of a couple of meters to more than 30 meters, while the New South-East crater was erupting. The data hourly recorded, relative to the 2012 eruptive period, were compared to the radiant energy released by the paroxysms. We registered a dramatic decrease in the diffuse heat flux several hours before the onset of the two most energetic paroxysms (12 and 23 April). Thereafter, the convective front (the steam condensation depth) showed many negative pulses, reaching the deepest recorded levels. Thermal transients could be one of the early signals, possibly heralding transitions in the dynamic equilibrium conditions.
    Description: Published
    Description: 4471
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 6IT. Osservatori non satellitari
    Description: JCR Journal
    Keywords: thermal monitoring ; diffuse outgassing ; volcanic activity ; transition periods ; steam convection ; energy release ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-01-04
    Description: Following the 2004 seismic unrest at Tenerife and the 2011–2012 submarine eruption at El Hierro, the number of Global Navigation Satellite System (GNSS) observation sites in the Canary Islands (Spain) has increased, offering scientists a useful tool with which to infer the kinematics and present-day surface deformation of the Canary sector of the Atlantic Ocean. We take advantage of the common-mode component filtering technique to improve the signal-to-noise ratio of the velocities retrieved from the daily solutions of 18 permanent GNSS stations distributed in the Canaries. The analysis of GNSS time series spanning the period 2011–2017 enabled us to characterize major regions of deformation along the archipelago through the mapping of the 2D infinitesimal strain field. By applying the triangular segmentation approach to GNSS velocities, we unveil a variable kinematic behaviour within the islands. The retrieved extension pattern shows areas of maximum deformation west of Tenerife, Gran Canaria and Fuerteventura. For the submarine main seismogenic fault between Tenerife and Gran Canaria, we simulated the horizontal deformation and strain due to one of the strongest (mbLg 5.2) earthquakes of the region. The seismic areas between islands, mainly offshore Tenerife and Gran Canaria, seem mainly influenced by the regional tectonic stress, not the local volcanic activity. In addition, the analysis of the maximum shear strain confirms that the regional stress field influences the E–W and NE–SW tectonic lineaments, which, in accordance with the extensional and compressional tectonic regimes identified, might favour episodes of volcanism in the Canary Islands.
    Description: Published
    Description: 3297
    Description: 2T. Deformazione crostale attiva
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: GNSS time series ; kinematics and ground deformation ; Canary Islands ; 04.02. Exploration geophysics ; 04.03. Geodesy ; 04.07. Tectonophysics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-02-03
    Description: In the presented work, the spectral emissivity of basaltic melts at magmatic temperatures was retrieved in a laboratory-controlled experiment by measuring their spectral radiance. Granulated bombs of Etnean basalts were melted and the radiant energy from the melting surface was recorded by a portable spectroradiometer in the short wavelength infrared (SWIR) spectral range between 1500 and 2500 nm. The Draping algorithm, an improved algorithm for temperature and emissivity separation, was applied for the first time to SWIR hyperspectral data in order to take into account the non-uniform temperature distribution of the melt surface and, at the same time, solving the two temperatures and the spectral emissivity. The results have been validated by comparing our results with the emissivity measured at a "lava simulator". Basalt spectral emissivity does not vary significantly at magmatic temperature, but shows an absorption feature in the range 2180–2290 nm, an atmospheric window pivotal for the IR remote sensing of active volcanoes
    Description: Published
    Description: 2046
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: temperature–emissivity separation ; Draping ; thermal remote sensing ; Lab experiment ; 04.08. Volcanology ; solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-01-07
    Description: Explosive basaltic eruptions eject a great amount of pyroclastic material into the atmosphere, forming columns rising to several kilometers above the eruptive vent and causing significant disruption to both proximal and distal communities. Here, we analyze data, collected by an X-band polarimetric weather radar and an L-band Doppler fixed-pointing radar, as well as by a thermal infrared (TIR) camera, in relation to lava fountain-fed tephra plumes at the Etna volcano in Italy. We clearly identify a jet, mainly composed of lapilli and bombs mixed with hot gas in the first portion of these volcanic plumes and here called the incandescent jet region (IJR). At Etna and due to the TIR camera configuration, the IJR typically corresponds to the region that saturates thermal images. We find that the IJR is correlated to a unique signature in polarimetric radar data as it represents a zone with a relatively high reflectivity and a low copolar correlation coe cient. Analyzing five recent Etna eruptions occurring in 2013 and 2015, we propose a jet region radar retrieval algorithm (JR3A), based on a decision-tree combining polarimetric X-band observables with L-band radar constraints, aiming at the IJR height detection during the explosive eruptions. The height of the IJR does not exactly correspond to the height of the lava fountain due to a di erent altitude, potentially reached by lapilli and blocks detected by the X-band weather radar. Nonetheless, it can be used as a proxy of the lava fountain height in order to obtain a first approximation of the exit velocity of the mixture and, therefore, of the mass eruption rate. The comparisons between the JR3A estimates of IJR heights with the corresponding values recovered from TIR imagery, show a fairly good agreement with di erences of less than 20% in clear air conditions, whereas the di erence between JR3A estimates of IJR height values and those derived from L-band radar data only are greater than 40%. The advantage of using an X-band polarimetric weather radar in an early warning system is that it provides information in all weather conditions. As a matter of fact, we show that JR3A retrievals can also be obtained in cloudy conditions when the TIR camera data cannot be processed.
    Description: Published
    Description: 3629
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-01-07
    Description: On the morning of 24 December 2018, an eruptive event occurred at Etna, which was followed the next day by a strong sequence of shallow earthquakes. The eruptive episode lasted until 30 December, ranging from moderate strombolian to lava fountain activity coupled with vigorous ash/gas emissions and a lava flow e usion toward the eastern volcano flank of Valle del Bove. In this work, the data collected from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments on board the Meteosat Second Generation (MSG) geostationary satellite are used to characterize the Etna activity by estimating the proximal and distal eruption parameters in near real time. The inversion of data indicates the onset of eruption on 24 December at 11:15 UTC, a maximum Time Average Discharge Rate (TADR) of 8.3 m3/s, a cumulative lava volume emitted of 0.5 Mm3, and a Volcanic Plume Top Height (VPTH) that reached a maximum altitude of 8 km above sea level (asl). The volcanic cloud ash and SO2 result totally collocated, with an ash amount generally lower than SO2 except on 24 December during the climax phase. A total amount of about 100 and 35 kt of SO2 and ash respectively was emitted during the entire eruptive period, while the SO2 fluxes reached peaks of more than 600 kg/s, with a mean value of about 185 kg/s. The SEVIRI VPTH, ash/SO2 masses, and flux time series have been compared with the results obtained from the ground-based visible (VIS) cameras and FLux Automatic MEasurements (FLAME) networks, and the satellite images collected by the MODerate resolution Imaging Spectroradiometer (MODIS) instruments on board the Terra and Aqua- polar satellites. The analysis indicates good agreement between SEVIRI, VIS camera, and MODIS retrievals with VPTH, ash, and SO2 estimations all within measurement errors. The SEVIRI and FLAME SO2 flux retrievals show significant discrepancies due to the presence of volcanic ash and a gap of data on the FLAME network. The results obtained in this study show the ability of geostationary satellite systems to characterize eruptive events from the source to the atmosphere in near real time during the day and night, thus o ering a powerful tool to mitigate volcanic risk on both local population and airspace and to give insight on volcanic processes.
    Description: Published
    Description: 1336
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-01-29
    Description: Here we explore and review some of the latest ideas and applications of Raman spectroscopy to the volcanological sciences. Firstly, we provide a brief overview of how Raman spectral analysis works and how spectra from silicate glasses are interpreted. We then look at specific applications of Raman spectral analysis to the volcanological sciences based on measurements on and studies of natural materials in the laboratory. We conclude by examining the potential for Raman spectral analysis to be used as a field based aid to volcano monitoring via in situ studies of proximal deposits and; perhaps; in remote sensing campaigns.
    Description: Published
    Description: 805
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Raman spectroscopy ; field volcanology ; laboratory ; in-situ ; remote sensing ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-09-09
    Description: This work has been included in the discussion presented by the author at the 7th International Conference on Time Series and Forecasting, Gran Canaria, Spain,19–21 July 2021. Data Availability Statement: https://doi.org/10.26022/IEDA/112021, accessed on 11 June 2021.
    Description: On the Island of Vulcano (Aeolian Archipelago, Italy) the temperatures of fumarole emissions, have ranged from about 700 ◦C to the boiling point. Since the end of the last eruption (1890 A.D.), many periods of increased heating of hydrothermal systems, underlying the La Fossa area have been identified, but an eruptive condition has not yet been reached. The time variation of the high temperature fumaroles has been tracked by the network of sensors located at a few discrete sites on the summit area of La Fossa cone. The same continuous monitoring network has been working for more than 30 years. The time series shows that a natural cyclic modulation has repeated after almost 20 years, and its periodicity yet has to be discussed and interpreted. The statistical approach and the spectral analysis could provide an objective evaluation to reveal the timing, intensity, and general significance of the thermodynamic perturbations that occurred in the hydrothermal circuits of La Fossa caldera, during the study period. The continuous monitoring data series avoid unrealistic interpolations and allow promptly recognizing changes, which perturb the hydrothermal circuits, highlighting—possibly in near real time—the transient phases of energy release from the different sources (hydrologic/magmatic).
    Description: agreement between Istituto Nazionale di Geofisica e Vulcanologia and the Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 47
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: fumaroles ; temperature of the ground ; long-term monitoring ; close conduit volcano ; 04.08. Volcanology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-12-22
    Description: Volcanic emissions are a well-known hazard that can have serious impacts on local populations and aviation operations. Whereas several remote sensing observations detect high-intensity explosive eruptions, few studies focus on low intensity and long-lasting volcanic emissions. In this work, we have managed to fully characterize those events by analyzing the volcanic plume produced on the last day of the 2018 Christmas eruption at Mt. Etna, in Italy. We combined data from a visible calibrated camera, a multi-wavelength elastic/Raman Lidar system, from SEVIRI (EUMETSAT-MSG) and MODIS (NASA-Terra/Aqua) satellites and, for the first time, data from an automatic sun-photometer of the aerosol robotic network (AERONET). Results show that the volcanic plume height, ranging between 4.5 and 6 km at the source, decreased by about 0.5 km after 25 km. Moreover, the volcanic plume was detectable by the satellites up to a distance of about 400 km and contained very fine particles with a mean e ective radius of about 7 m. In some time intervals, volcanic ash mass concentration values were around the aviation safety thresholds of 2 10􀀀3 g m􀀀3. Of note, Lidar observations show two main stratifications of about 0.25 km, which were not observed at the volcanic source. The presence of the double stratification could have important implications on satellite retrievals, which usually consider only one plume layer. This work gives new details on the main features of volcanic plumes produced during low intensity and long-lasting volcanic plume emissions.
    Description: Published
    Description: 3866
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-12-15
    Description: Volcanism is the most widespread expression of cyclic processes of formation and/or destruction that shape the Earth’s surface. Calderas are morphological depressions resulting from the collapse of a magma chamber following large eruptions and are commonly found in subduction-related tectono-magmatic regimes, such as arc and back-arc settings. Some of the most impressive examples of seafloor hydrothermal venting occur within submarine calderas. Here, we show the results of magnetic investigations at two hydrothermally active submarine calderas, i.e., Palinuro Seamount in the Southern Tyrrhenian Sea, Italy, and Brothers volcano of the Kermadec arc, New Zealand. These volcanoes occur in different geodynamic settings but show similarities in the development of their hydrothermal systems, both of which are hosted within calderas. We present a new integrated model based on morphological, geological and magnetic data for the Palinuro caldera, and we compare this with the well-established model of Brothers caldera, highlighting the differences and common features in the geophysical expressions of both hydrothermal systems. For consistency with the results at Brothers volcano, we build a model of demagnetised areas associated with hydrothermal alteration derived from 3D inversion of magnetic data. Both these models for Brothers and Palinuro show that hydrothermal up-flow zones are strongly controlled by caldera structures which provide large-scale permeability pathways, favouring circulation of the hydrothermal fluids at depth.
    Description: Published
    Description: 504
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: magnetic anomalies ; submarine volcanism ; caldera structures ; hydrothermal fields; ; massive sulphide deposits ; inverse algorithm ; 04.08. Volcanology ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-12-23
    Description: In July and August 2019, Stromboli volcano underwent two dangerous paroxysms previously considered “unexpected” because of the absence of significant changes in usually monitored parameters. We applied a multidisciplinary approach to search for signals able to indicate the possibility of larger explosive activity and to devise a model to explain the observed variations. We analysed geodetic data, satellite thermal data, images from remote cameras and seismic data in a timespan crossing the eruptive period of 2019 to identify precursors of the two paroxysms on a medium-term time span (months) and to perform an in-depth analysis of the signals recorded on a short time scale (hours, minutes) before the paroxysm. We developed a model that explains the observations. We call the model “push and go” where the uppermost feeding system of Stromboli is made up of a lower section occupied by a low viscosity, low density magma that is largely composed of gases and a shallower section occupied by the accumulated melt. We hypothesize that the paroxysms are triggered when an overpressure in the lower section is built up; the explosion will occur at the very moment such overpressure overcomes the confining pressure of the highly viscous magma above it.
    Description: Published
    Description: 4064
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Stromboli volcano ; ground deformations ; thermal monitoring ; modelling of volcanic sources ; physics of volcanism ; geophysical monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-11-25
    Description: Recent volcanic gas compilations have urged the need to expand in-situ plume measurements to poorly studied, remote volcanic regions. Despite being recognized as one of the main volcanic epicenters on the planet, the Vanuatu arc remains poorly characterized for its subaerial emissions and their chemical imprints. Here, we report on the first plume chemistry data for Mount Garet, on the island of Gaua, one of the few persistent volatile emitters along the Vanuatu arc. Data were collected with a multi-component gas analyzer system (multi-GAS) during a field campaign in December 2018. The average volcanic gas chemistry is characterized by mean molar CO2/SO2, H2O/SO2, H2S/SO2 and H2/SO2 ratios of 0.87, 47.2, 0.13 and 0.01, respectively. Molar proportions in the gas plume are estimated at 95.9 11.6, 1.8 0.5, 2.0 0.01, 0.26 0.02 and 0.06 0.01, for H2O, CO2, SO2, H2S and H2. Using the satellite-based 10-year (2005–2015) averaged SO2 flux of ~434 t d􀀀1 for Mt. Garet, we estimate a total volatile output of about 6482 t d􀀀1 (CO2 ~259 t d􀀀1; H2O ~5758 t d􀀀1; H2S ~30 t d􀀀1; H2 ~0.5 t d􀀀1). This may be representative of a quiescent, yet persistent degassing period at Mt. Garet; whilst, as indicated by SO2 flux reports for the 2009–2010 unrest, emissions can be much higher during eruptive episodes. Our estimated emission rates and gas composition for Mount Garet provide insightful information on volcanic gas signatures in the northernmost part of the Vanuatu Arc Segment. The apparent CO2-poor signature of high-temperature plume degassing at Mount Garet raises questions on the nature of sediments being subducted in this region of the arc and the possible role of the slab as the source of subaerial CO2. In order to better address the dynamics of along-arc volatile recycling, more volcanic gas surveys are needed focusing on northern Vanuatu volcanoes.
    Description: This research was conducted as part of the Trail by Fire II—Closing the Ring Project (PI: Y. Moussallam) funded by the National Geographic Society (grant number CP-122R-17), the Rolex Awards for Enterprise and the French national Research Institute for Development (IRD). J.L. also acknowledges travel funding support from Ministero dell’istruzione, dell’università e della ricerca (MIUR;) under grant n. PRIN2017-2017LMNLAW).
    Description: Published
    Description: id 7293
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Vanuatu ; Gaua ; Mount Garet ; Multi-GAS ; volcanic gas composition ; volatile fluxes ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-09-16
    Description: Between 28 March and 1 April 2020, Stromboli volcano erupted, with overflows from the NE crater rim spreading along the barren Sciara del Fuoco slope and reaching the sea along the NW coast of the island. Poor weather conditions did not allow a detailed observation of the crater zone through the cameras monitoring network, but a clear view of the lower slope and the flows expanding in the area allowed us to characterize the flow features. This evidence was integrated with satellite, GBInSAR, and seismic data, thus enabling a reconstruction of the whole volcanic event, which involved several small collapses of the summit cone and the generation of pyroclastic density currents (PDCs) spreading along the slope and on the sea surface. Satellite monitoring allowed for the mapping of the lava flow field and the quantification of the erupted volume, and GBInSAR continuous measurements detected the crater widening and the deflation of the summit cone caused by the last overflow. The characterization of the seismicity made it possible to identify the signals that are associated with the propagation of PDCs along the volcano flank and, for the first time, to recognize the signal that is produced by the impact of the PDCs on the coast.
    Description: This work has been financially supported by the “Presidenza del Consiglio dei Ministri—Dipartimento della Protezione Civile” (Presidency of the Council of Ministers–Department of Civil Protection) (DPC-UNIFI Agreement 2019–2021; Scientific Responsibility: N.C.); this publication, however, does not necessarily reflect the position and the official policies of the Department. Additional funds for paper publication have been provided by INGV-OE.
    Description: Published
    Description: 3010
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Stromboli ; Volcanic hazard ; Volcanic hazard assessment ; Multidisciplinary data integration ; Stromboli Volcano monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-10-16
    Description: Accurate tracking and forecasting of ash dispersal in the atmosphere and quantification of its uncertainty are of fundamental importance for volcanic risk mitigation. Numerical models and satellite sensors offer two complementary ways to monitor ash clouds in real time, but limits and uncertainties affect both techniques. Numerical forecasts of volcanic clouds can be improved by assimilating satellite observations of atmospheric ash mass load. In this paper, we present a data assimilation procedure aimed at improving the monitoring and forecasting of volcanic ash clouds produced by explosive eruptions. In particular, we applied the Local Ensemble Transform Kalman Filter (LETKF) to the results of the Volcanic Ash Transport and Dispersion model HYSPLIT. To properly simulate the release and atmospheric transport of volcanic ash particles, HYSPLIT has been initialized with the results of the eruptive column model PLUME-MoM. The assimilation procedure has been tested against SEVIRI measurements of the volcanic cloud produced during the explosive eruption occurred at Mt. Etna on 24 December 2018. The results show how the assimilation procedure significantly improves the representation of the current ash dispersal and its forecast. In addition, the numerical tests show that the use of the sequential Ensemble Kalman Filter does not require a precise initialization of the numerical model, being able to improve the forecasts as the assimilation cycles are performed.
    Description: Published
    Description: id 359
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: data assimilatio ; volcanic eruption ; tephra dispersal ; numerical modeling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-12-03
    Description: Volcanic plume height is a key parameter in retrieving plume ascent and dispersal dynamics, as well as eruption intensity; all of which are crucial for assessing hazards to aircraft operations. One way to retrieve cloud height is the shadow technique. This uses shadows cast on the ground and the sun geometry to calculate cloud height. This technique has, however, not been frequently used, especially not with high-spatial resolution (30 m pixel) satellite data. On 26 October 2013, Mt Etna (Sicily, Italy) produced a lava fountain feeding an ash plume that drifted SW and through the approach routes to Catania international airport. We compared the proximal plume height time-series obtained from fixed monitoring cameras with data retrieved from a Landsat-8 Operational Land Imager image, with results being in good agreement. The application of the shadow technique to a single high-spatial resolution image allowed us to fully document the ascent and dispersion history of the plume–cloud system. We managed to do this over a distance of 60 km and a time period of 50 min, with a precision of a few seconds and vertical error on plume altitude of ±200 m. We converted height with distance to height with time using the plume dispersion velocity, defining a bent-over plume that settled to a neutral buoyancy level with distance. Potentially, the shadow technique defined here allows downwind plume height profiles and mass discharge rate time series to be built over distances of up to 260 km and periods of 24 h, depending on vent location in the image, wind speed, and direction.
    Description: This research was funded by CNES-TOSCA (Terre Solide), grant number 10 3703 “Integration of sample return data and remote sensing for advanced understanding of volcanic ash formation and dispersion” (PI: Lucia Gurioli).
    Description: Published
    Description: id 3951
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Mt Etna ; Paroxysmal explosive activity ; Ash plume extension ; Satellite imaging ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-03-12
    Description: The Etna flank eruption that started on 24 December 2018 lasted a few days and involved the opening of an eruptive fissure, accompanied by a seismic swarm and shallow earthquakes, significant SO2 flux release, and by large and widespread ground deformation, especially on the eastern flank of the volcano. Lava fountains and ash plumes from the uppermost eruptive fissure accompanied the opening stage, causing disruption to Catania International Airport, and were followed by a quiet lava effusion within the barren Valle del Bove depression until 27 December. This was the first flank eruption to occur at Etna in the last decade, during which eruptive activity was confined to the summit craters and resulted in lava fountains and lava flow output from the crater rims. In this paper, we used ground and satellite remote sensing techniques to describe the sequence of events, quantify the erupted volumes of lava, gas, and tephra, and assess volcanic hazards.
    Description: Published
    Description: id 905
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Etna volcano ; satellite monitoring ; remote sensing ; hazard assessment ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-03-09
    Description: Mixed‐mode fluid‐filled cracks represent a common means of fluid transport within the Earth's crust. They often show complex propagation paths which may be due to interaction with crustal heterogeneities or heterogeneous crustal stress. Previous experimental and numerical studies focus on the interplay between fluid over-pressure and external stress but neglect the effect of other crack parameters. In this study, we address the role of crack length on the propagation paths in the presence of an external heterogeneous stress field. We make use of numerical simulations of magmatic dike and hydrofracture propagation, carried out using a two‐dimensional boundary element model, and analogue experiments of air‐filled crack propagation into a transparent gelatin block. We use a 3‐D finite element model to compute the stress field acting within the gelatin block and perform a quantitative comparison between 2‐D numerical simulations and experiments. We show that, given the same ratio between external stress and fluid pressure, longer fluid‐filled cracks are less sensitive to the background stress, and we quantify this effect on fluid‐filled crack paths. Combining the magnitude of the external stress, the fluid pressure, and the crack length, we define a new parameter, which characterizes two end member scenarios for the propagation path of a fluid‐filled fracture. Our results have important implications for volcanological studies which aim to address the problem of complex trajectories of magmatic dikes (i.e., to forecast scenarios of new vents opening at volcanoes) but also have implications for studies that address the growth and propagation of natural and induced hydrofractures.
    Description: Published
    Description: 2064–2081
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Magmatic dykes ; hydrofractures ; Numerical symulations ; Analogue experiments ; 04.08. Volcanology ; 05.05. Mathematical geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-07-14
    Description: Archaeological exavations,undertaken since 2004 for the construction of the new Naples subway
    Description: Published
    Description: 542-557
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: A.D.79 eruption ; compositional data analysis ; geoarchaeology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-03-26
    Description: Some researchers view radon emissions as a precursor to earthquakes, especially those of high magnitude [e.g., Wang et al., 2014; Lombardi and Voltattorni, 2010], but the debate in the scientific community about the applicability of the gas to surveillance systems remains open. Yet radon “works” at Italy’s Mount Etna, one of the world’s most active volcanoes, although not specifically as a precursor to earthquakes. In a broader sense, this naturally radioactive gas from the decay of uranium in the soil, which has been analyzed at Etna in the past few years, acts as a tracer of eruptive activity and also, in some cases, of seismic–tectonic phenomena. To deepen the understanding of tectonic and eruptive phenomena at Etna, scientists analyzed radon escaping from the ground and compared those data with measurements gathered continuously by instrumental networks on the volcano. Here Etna is a boon to scientists—it’s traced by roads, making it easy to access for scientific observation. Dense monitoring networks, managed by the Istituto Nazionale di Geofisica e Vulcanologia, Catania–Osservatorio Etneo (INGV-OE), have been continuously observing the volcano for more than 40 years. This continuous dense monitoring made the volcano the perfect open-air laboratory for deciphering how eruptive activity may influence radon emissions.
    Description: This work was supported by the Mediterranean Supersite Volcanoes (MED-SUV) project, which has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement 308665.
    Description: Published
    Description: 7
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Radon ; seismic activity ; Etna ; volcanic activity ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Wiley
    In:  Chichester, 2nd ed., xvii + 517 pp., Wiley, vol. 5, no. 22, pp. 662-664, (ISBN 0-470-87000-1 (HB), ISBN 0-470-87001-X (PB))
    Publication Date: 2005
    Keywords: GIS ; Textbook of informatics ; Textbook of geography ; geography ; management ; policy
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Wiley
    In:  New York - 2nd ed., 372 pp., Wiley, vol. 1, pp. 225, (ISBN 0-471-32192-3)
    Publication Date: 1999
    Keywords: Textbook of geography ; Textbook of informatics ; GIS
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Wiley
    In:  Chichester, 292 pp., Wiley, vol. 45, pp. ii + 37 pp. + 35 figs. + 4 tabs., (ISBN 0-471-95596-5)
    Publication Date: 1998
    Keywords: Textbook of informatics ; FTN90 ; Gegenueberstellung ; der ; beiden ; Programmiersprachen ; PIK ; Potsdam
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Journal cover
    Unknown
    Wiley | Financial Management Association International | JSTOR
    Online: 1(1).1972 – (older than 4 years)
    Publisher: Wiley , Financial Management Association International , JSTOR
    Print ISSN: 0046-3892
    Electronic ISSN: 1755-053X
    Topics: Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Journal cover
    Unknown
    Wiley | JSTOR | formerly Oxford University Press (OUP)
    Online: 10(1).1988 –
    Formerly as: Illinois Agricultural Economics; North Central Journal of Agricultural Economics; Review of Agricultural Economics  (1961–2009)
    Publisher: Wiley , JSTOR , formerly Oxford University Press (OUP)
    Print ISSN: 0191-9016 , 1058-7195 , 2040-5790
    Electronic ISSN: 1467-9353 , 2040-5804
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Journal cover
    Unknown
    Wiley | JSTOR
    Online: 78.1976 – (older than 6 years)
    Publisher: Wiley , JSTOR
    Print ISSN: 0347-0520
    Electronic ISSN: 1467-9442
    Topics: Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...