ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring  (20)
  • 05. General::05.02. Data dissemination::05.02.02. Seismological data  (8)
  • 04.02. Exploration geophysics
  • JSTOR Archive Collection Business II
  • Seismological Society of America  (21)
  • Wiley  (7)
  • Geophysical Research Abstracts  (5)
  • American Chemical Society (ACS)
Collection
Publisher
  • 1
    Publication Date: 2021-06-14
    Description: Southwestern Sicily is an area of infrequent seismic activity; however, some studies carried out in the archaeological Selinunte site suggest that, between the fourth century BC and the early Middle Ages, probably at least two earthquakes strucked this area with enough energy to damage and cause the collapse and kinematics of much of the architecture of Selinunte. Take into account that, in 2008, a noninvasive archaeological prospection and traditional data gathering methods along the Acropolis north fortifications were carried out. Following these first studies, after about 10 years, a new geophysical campaign was carried out. This second campaign benefited from the application of modern technologies for the acquisition and processing of the point cloud data on the northern part of the Acropolis, like terrestrial laser scanning and unmanned aerial vehicle photogrammetry. In this paper, we present the application of these techniques and a strategy for their integration for the 3D modelling of buildings and cultural heritages. We show how the integration of data acquired independently by these two techniques is an added value able to overcome the intrinsic limits of the individual techniques. The application to Selinunte's Acropolis allowed it to highlight and measure with high accuracy fractures, dislocation, inclinations of walls, depressions of some areas and other interesting observations, which may be important starting points for future investigations.
    Description: Published
    Description: 153-165
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: 3D reconstruction ; archaeological survey ; digital elevation model ; Selinunte Archaeological Park ; terrestrial laser scanning ; unmanned aerial vehicle photogrammetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics ; 05.02. Data dissemination ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2018-03-12
    Description: The paper has not any abstract
    Description: Published
    Description: 720-727
    Description: 2T. Sorgente Sismica
    Description: 1IT. Reti di monitoraggio
    Description: JCR Journal
    Keywords: Earthquake ; Monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In the framework of the European MEDiterrranean Supersite Volcanoes (MEDSUV) project, Mt. Etna (Italy) and Piton de la Fournaise (La Réunion) were chosen as “European Supersite Demonstrator” and test site, respectively, to promote the transfer and implementation of efficient tools for the identification of impending volcanic activity. Both are “open-conduit volcanoes”, forming ideal sites for the test and validation of innovative concepts, which can contribute to minimize volcanic hazard. OneoftheaimsoftheMED-SUVprojectwasthedevelopmentofsoftwareformachinelearningapplicabletodata processing for early-warning purposes. Near-real time classification of continuous seismic data stream has been carried out in the control room of INGV Osservatorio Etneo since 2010. Subsequently, automatic alert procedures were activated. In the light of the excellent results for the 24/7 surveillance of Etna, we examine the portability of tools developed in the framework of the project when applied to seismic data recorded at Piton de la Fournaise. In the present application to data recorded at Piton de la Fournaise, the classifier aims at highlighting changes in the frequency content of the background seismic signal heralding the activation of the volcanic source and the imminent eruption. We describe the preliminary results of this test on a set of data of nearly two years starting on January 2014. This period follows three years of inactivity and deflation of the volcano and marks a renewal of thevolcanoactivity withinflation,deep seismicity (-7kmbsl) andfive eruptions with fountains and lava flowsthat lasted from a few hours to more than two months. We discuss here the necessary tuning for the implementation of the software to the new dataset analyzed. We also propose a comparison with the results of pattern classification regarding recent eruptive activity at Etna.
    Description: Published
    Description: Vienna (Austria)
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: seismic signals ; Piton de la Fournaise ; Etna ; data processing ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-04
    Description: Macroseismic investigation with data collected through web- based questionnaires is today routinely applied by most impor- tant seismological institutions, such as the U.S. Geological Survey (http://earthquake.usgs.gov/earthquakes/dyfi/; last accessed December 2014), British Geological Survey (http://www. earthquakes.bgs.ac.uk/questionnaire/EqQuestIntro.html; last accessed December 2014), European-Mediterranean Seismological Centre (http://www.emsc-csem.org/Earthquake/Contribute/ choose_earthquake.php?lang=en; last accessed December 2014), Schweizerische Erdbebendienst (http://www.seismo.ethz. ch/eq/detected/eq_form/index_EN; last accessed December 2014), Bureau Central Sismologique Français (http://www .seisme.prd.fr/english.php; last accessed December 2014), and the New Zealand GeoNet project (http://www.geonet.org.nz/ quakes/; last accessed December 2014). The wide diffusion of Internet and the citizen collaboration (crowdsourcing) allow documentation of information on seismic effects and production of a macroseismic field with low costs and almost in real time. Transformation from qualitative information (as given by ques- tionnaires) to numerical quantification is a crucial issue. In the traditional evaluation of intensity, experts used to work through a complex comparison of effects basically driven by personal expe- rience. The major problem with this approach concerns the dif- ficulty in verifing and reproducing the evaluation process due to the lack of a detailed explanation of the employed workflow and to the large variability of possible cases. On the other hand, an automatic method for the estimation of macroseismic intensities needs to be completely well defined and specified in order to be reproducible and verifiable. For these reasons, this paper presents a comprehensive explanation of our intensity assessment method. A useful automatic method for intensity assessment should be computationally fast and strictly follow the macroseismic scales. To meet these requirements in 2010, we proposed a method that firstly quantified the effects using additive scores associated with each answer of the questionnaire item and then determined an intensity estimate for each questionnaire (Sbarra et al., 2010). After a trial period and having collected more than 500,000 questionnaires, we were able to thoroughly test the method. As a result of this testing, we describe here a new improved method that takes into account further factors, such as the situation and the location of the observer (Sbarra et al., 2012, 2014), to obtain a more accurate estimate of the macroseismic intensity degree at the municipality level. In this paper, we show some applications of our method with reference to the Mercalli–Cancani–Sieberg (MCS) scale, because this scale has long been used with Italian earthquakes and allows easy comparison between these intensities and other traditional ones.
    Description: Published
    Description: 985-990
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismics ; intensity ; questionnaires ; attenuation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-04
    Description: We investigate the influence of building height on the ability of people to feel earthquakes and observe that, in an urban area, short and tall buildings reach different levels of excitation. We quantify this behavior by analyzing macroseismic reports collected from individuals through the Internet, focusing on transitory effects, therefore in the elastic regime during recent earthquakes in Italy in the local magnitude (ML) range of 3 to 5.9. We find a maximum difference of 0.6 intensity units between the top floors of tall (7–10 stories) and short (1–2 stories) buildings at the highest considered magnitudes. As expected, tall buildings experience greater shaking than short buildings during large earthquakes at large source distances. However, we observe the opposite behavior at close distances when the ML is less than 3.5. These results can be explained by considering the different spectra radiated by small and large earthquakes and the different fundamental mode resonances of buildings (i.e., shorter buildings have higher resonance frequencies and vice versa). Using idealized building models excited by real acceleration time histories, we compute synthetic accelerograms on the top floors of short and tall buildings, and confirm the trend of the observed differences in felt intensities.
    Description: Published
    Description: 1803-1809
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismics ; intensity ; building height ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Even though the most reliable and physically consistent defi- nition of the size of an earthquake is the moment magnitude Mw, small earthquakes located in Italy and in other regions of the world are traditionally calculated using local magnitude ML. Because such magnitude was calibrated using a set of southern California earthquakes, a specific recalibration is required in regions with different attenuation properties. We determine the amplitude attenuation function for Italy using various datasets and different functional forms. We also esti- mate separate attenuation equations for a subdivision of the Italian area in two regions with different crustal properties.
    Description: Italian Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile (DPC)
    Description: Published
    Description: 1383-1392
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: local magnitude, attenuation law ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The description of the seismicity of the European region is today fragmented into an increasing number of earthquake archives, databases, and catalogs related to individual countries or even to part of them. Therefore, the compilation of a comprehensive, European earthquake history requires dealing with a puzzle of partially overlapping, only partially public catalogs, the background of which is compiled according to varied schemes. One of the consequences is that earthquakes in the frontier areas are often interpreted in a conflicting way by the catalogs of the bordering countries. In the framework of the European Commission (EC), 2006–2010 Network of Research Infrastructures for European Seismology (NERIES) Project, the task of Networking Activity 4 (NA4) was defined precisely to conceive and develop solutions to bridge over these differences. NA4 promoted the cooperation among existing national online archives, and contributed establishing new regional online archives compiled according to common standards. As a result, a first release of the distributed European archive of historical earthquake data, for the time-window 1000–1899 and for the large earthquakes, was published in 2010. Special attention was devoted to retrieve the earthquake background information, that is, the results of historical earthquake investigation—referenced to as studies in the following -in terms of a paper, a report, a book chapter, a map, etc. As the most useful studies are those supplying a set of macroseismic data points (MDPs)- that is a list of localities (name and coordinates) with a macroseismic intensity assessment and the related macroseismic scale—a dedicated effort was addressed to make such data available. The Archive of Historical Earthquake Data (AHEAD) distributed archive was improved and updated in the frame of the 2010–2012 EC Project Seismic Hazard Harmonization in Europe (SHARE), Task 3.1 European earthquake database, with the contribution of a number of European institutions. For the time window 1000–1899, it was AHEAD (AHEAD Working Group) that supported the compilation of the SHARE European Earthquake Catalog (SHEEC; Stucchi et al., 2013). This paper describes the AHEAD portal (http://www.emidius.eu/AHEAD/; last accessed March 2014), and how it was conceived to network the local components of the distributed archive. Although local historical macroseismic databases usually supply one set of information for each earthquake, at a European scale an earthquake still might be described by several studies, available from different archives. The AHEAD portal inventories and gives access to multiple sets of information concerning each earthquake, and allows users to get comprehensive information about individual earthquakes, providing the answers to the following questions: 1. which sets of earthquake parameters (time, location, magnitude, magnitude type, maximum intensity, etc.) are available for each earthquake? 2. what is the background information, or supporting material, upon which each set of earthquake parameter determination is based?
    Description: Published
    Description: 727-734
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: restricted
    Keywords: earthquakes ; earthquake catalogue ; historical seismology ; seismicity ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This work focuses on long-term broadband seismic signals acquired in shallow and deep seafloor sites of the Central-Eastern Mediterranean. We generated a reference model of background seismic noise based on seafloor observatories data. The observatories have been deployed at sites in the Ionian Sea, Tyrrhenian Sea, Marmara Sea and Gulf of Corinth. We concentrate on interesting and peculiar features of the noise signal in the frequency band 0.003-50 Hz. The main contribution in the short period band 〉5Hz (〈2s) comes from anthropic noise. In this band we find a peak around 0.8Hz (1.25s) which appears to be a persistent characteristic of the Mediterranean basins. Seasonal variations (summer-winter) are visible in the microseismic band 0.05-0.5Hz (2-20s). In the Ionian and Tyrrhenian deep seafloor sites we can distinguish the splitting of the DF in the long period (LPDF) and the short period (SPDF) peaks. The seasonal variations of the ratio between the LPDF and the SPDF amplitudes suggests that the SPDF depends on sea wave regime generated by local winds, while the LPDF can be considered a feature of deep seafloor sites not far from the coastlines. The shallow enclosed Mediterranean sites are characterized by an energetic bump between 0.3-0.4 Hz, which could be explained by a combination of effects which depend on bathymetry, water depth and local seastate.
    Description: Published
    Description: 1019-1033
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: seismic data quality ; long-time series ; seismic background noise ; seafloor observatories ; Mediterranean Sea ; EMSO Research infrastructure ; deep and shallow water ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: On May 20th, 2012, an ML 5.9 earthquake (Table 1) occurred near the town of Finale Emilia, in the Central Po Plain, Northern Italy (Figure 1). The mainshock caused 7 casualties and the collapse of several historical buildings and industrial sheds. The earthquake sequence continued with diminishing aftershock magnitudes until May 29th, when an ML 5.8 earthquake occurred near the town of Mirandola, ~12 km WSW of the mainshock (Scognamiglio et al., 2012). This second mainshock started a new aftershock sequence in this area, and increased structural damage and collapses, causing 19 more casualties and increasing to 15.000 the number of evacuees. Shortly after the first mainshock, the Department of Civil Protection (DPC) activated the Italian Space Agency (ASI), which provided post-seismic SAR Interferometry data coverage with all 4 COSMO-SkyMed SAR satellites. Within the next two weeks, several SAR Interferometry (InSAR) image pairs were processed by the INGV-SIGRIS system (Salvi et al., 2012), to generate displacement maps and preliminary source models for the emergency management. These results included continuous GPS site displacement data, from private and public sources, located in and around the epicentral area. In this paper we present the results of the geodetic data modeling, identifying two main fault planes for the Emilia seismic sequence and computing the corresponding slip distributions. We discuss the implication of this seismic sequence on the activity of the frontal part of the Northern Apennine accretionary wedge by comparing the co-seismic data with the long term (geological) and present day (GPS) velocity fields.
    Description: Published
    Description: 645-655
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.9. Rete GPS nazionale
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ; CFF analysis ; Tectonic ; geodynamic ; Seismic source ; Northern apennine (Italy) ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: In the present paper, we will describe the field survey (Fig. 1) and the data analysis of an experiment carried out to put constraints on the magnitude detection threshold in the area of Campi Flegrei. Results show that seismic radiation emitted from VT seismic events at frequency lower than 2 Hz has a high detection threshold (minimum magnitude around 1.5). In the range between 2 and 20 Hz, VT events with magnitudes smaller than about 0.5 have a high probability to be undetected. This result indicates that noise reduction through borehole stations and/or small arrays is essential for an accurate seismic monitoring in the Campi Flegrei area.
    Description: Published
    Description: 190-198
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: seismic noise ; magnitude detection ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Since 2002 the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS in Udine (Italy), the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna (Austria), and the Agencija Republike Slovenije za okolje (ARSO) in Ljubljana (Slovenija) are using the Antelope software suite as the main tool for collecting, analyzing, archiving and exchanging seismic data in real time, initially in the framework of the EU Interreg IIIA project “Trans-national seismological networks in the South-Eastern Alps”. The data exchange has proved to be effective and very useful in case of seismic events near the borders between Italy, Austria and Slovenia, where the poor single national seismic networks coverage precluded a correct localization, while the usage of common data from the integrated networks improves considerably the overall reliability of real time seismic monitoring of the area. At the moment the data exchange between the seismic data centers relies on internet: this however is not an ideal condition for civil protection purposes, since internet reliability is poor. For this reason in 2012 the Protezione Civile della Provincia Autonoma di Bolzano in Bolzano (Italy) joined OGS, ZAMG and ARSO in the Interreg IV Italia-Austria Project “SeismoSAT” aimed in connecting the seismic data centers in real time via satellite. The general schema of the project, including first data bandwith estimates and a possible architecture will be illustrated.
    Description: Published
    Description: Vienna, Austria
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: open
    Keywords: Seismic Data Centers ; satellite ; Interreg ; SeismoSAT ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-03
    Description: The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB borehole station configuration and installation, with first results.
    Description: Published
    Description: Vienna, Austria
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: open
    Keywords: VBB ; borehole ; seismic station ; Ferrara ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Body-wave magnitude mb is usually considered a poor proxy of moment magnitude Mw because it saturates for moderate and large earthquakes (M w 〉 5:5–6) and generally shows a poor correlation with Mw. On the other hand, the observed distri- bution of data at the global scale also seems to indicate an in- verse saturation at low magnitudes (M w 〈 4:5–5:0) in which M w appears to be almost uncorrelated with mb . We show here that the latter is an artifact of the incompleteness of the global M w datasets for M w 〈 4:5–5:0 and that disappears considering lower Mw estimates available from regional centroid moment tensor (CMT) catalogs and/or using general orthogonal regres- sion methods. In these cases we show that mb well corresponds to M w 〈 4:5–5:0 and hence can confidently be used for approximating the Mw of small earthquakes. Conversion relations between the band-limited short- period body-wave magnitude mb (Gutenberg and Richter, 1956) and moment magnitude Mw (Hanks and Kanamori, 1979) have been obtained in the past by several authors using ordinary least-squares (OLS) regression methods (e.g., Heaton et al., 1986; Johnston, 1996; Scordilis, 2006). Such a computa- tional approach, however, is inappropriate when the error in the independent variable (predictor) is not negligible compared with that of the dependent variable (response). Castellaro et al. (2006) have shown that the use of OLS in conversion relations produces a bias of the frequency–magnitude distribution law (Gutenberg and Richter, 1944), which can be avoided using the general orthogonal regression (GOR) method described by Fuller (1987). The latter method has been used in numerous studies of this type, both at the global and regional scale (Ristau, 2009; Wang et al., 2009; Deniz and Yucemen, 2010; Das et al., 2011, 2012a; Baruah et al., 2012; Gasperini et al., 2012). Other gen- eral orthogonal regression methods have been proposed in recent literature: the chi-square (CSQ) regression described by Stromeyer et al. (2004), which was used for conversions between magnitudes even by Grünthal and Wahlström (2003), Grünthal et al. (2009), and Gasperini et al. (2013); and the total weighted least-squares (WLS) method (Krystek and Anton, 2007), which was used by Bethmann et al. (2011). Gutdeutsch et al. (2011) showed that, if the ratio between the variances of the dependent and independent variables η is constant, the coefficients computed by the GOR and the CSQ methods have the same formulations. Under the same condi- tion (η const:), Lolli and Gasperini (2012) demonstrated that all three general orthogonal regression methods (CSQ, GOR, and WLS) provide virtually identical regression coeffi- cients and very similar uncertainties. Some recent works (Das et al., 2012b, 2013; Wason et al., 2012) proposed a modification to the GOR method that was intended by the authors to correct an alleged bias due to the use of observed values, affected by errors, in place of the true values (actually unknown) of the independent variable. Unfortu- nately, as argued by Gasperini and Lolli (2013), the new method is based on some incorrect assumptions. In particular, to demonstrate the superiority of their approach with respect to the original one by Fuller (1987), such authors use as goodness-of-fit estimator the simple standard deviation (s.d.) between observed and calculated values, which by definition does not consider the error of the independent variable. For this reason, the new method simply has to be rejected as well as all the regression relations formed thereby.
    Description: Italian Presidenza del Consiglio dei Ministri– Dipartimento della Protezione Civile (DPC)
    Description: Published
    Description: 932-937
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: body-wave magnitude ; orthogonal regression ; moment magnitude ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Using general orthogonal regressions (GORs), we calibrated local magnitudes, estimated in Italy using various methods in different periods of time from 1981 to 2010, with a set of homogeneous moment magnitudes (Mw). Magnitude uncertainties, necessary for the application of GOR methods, are inferred by a trial-anderror procedure based on a priori information and empirical regression results. We found that local magnitudes determined using real or synthesized Wood–Anderson waveforms (ML) scale 1:1 with Mw in most cases but in general underestimate Mw by about 0.1–0.2 magnitude units. The only significant deviation from the 1:1 scaling concerns the most recent data provided by the online ISIDE bulletin of the Istituto Nazionale di Geofisica e Vulcanologia and is probably due to the use of a distance correction table (−log A0) not fully appropriate for the Italian area. Magnitudes computed from the duration of the seismogram coda (MD) do not generally scale 1:1 with Mw and are also underestimated. The relevant regression coefficients vary significantly from one data set to another depending on the empirical formulas used by different catalogs and bulletins. The derived regression coefficients are used to build a homogenized catalog in terms of Mw that also includes a consistent estimate of uncertainty for all reported magnitudes. The analysis of the frequency–magnitude distribution of the resulting catalog, covering 30 years of data, shows a b-value slightly lower than 1, which is reasonably uniform over the different time intervals and data sets. It also shows a progressive decay of the earthquake rates below the best-fit straight line for Mw 〉4:5 that might reflect a magnitude distribution truncated or tapered to relatively small maximum magnitudes for some Italian seismic zones with low activity. This behavior also seems to exclude a characteristic earthquake recurrence mechanism for Italy.
    Description: Published
    Description: 2227 – 2246
    Description: JCR Journal
    Description: restricted
    Keywords: General orthogonal method regressions, seismology statistic, Gutenberg-Richted law ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: In this paper we investigate nature and properties of narrow-band, transient seismic signals observed by a temporary array deployed in the Val Tiberina area (central Apennines, Italy). These signals are characterized by spindle-shaped, harmonic waveforms with no clear S-wave arrivals. The first portion of the seismograms exhibits a main frequency peak centred at 4.5 Hz, while the spectrum of the slowly decaying coda is peaked at about 2 Hz. Events discrimination is performed using a matched-filtering technique, resulting in a set of 2466 detections spanning the 2010 January–March time interval. From a plane-wave-fitting procedure, we estimate the kinematic properties of signals pertaining to a cluster of similar events. The repetition of measurements over a large number of precisely aligned seismograms allows for obtaining a robust statistics of horizontal slownesses and propagation azimuths associated with the early portion of the waveforms. The P-wave arrival exhibits horizontal slownesses around 0.1 s km−1, thus suggesting waves impinging at the array almost vertically. Separately, we use traveltimes measured at a sparse network to derive independent constraints on epicentral location. Ray parameters and azimuths are calibrated using slowness measurements from a local, well-located earthquake. After this correction, the joint solution from traveltime inversion and array analysis indicates a source region spanning the 1–3 km depth interval. Considerations related to the source depth and energy, and the occurrence rate which is not related to the daily and weekly working cycles, play against a surface, artificial source. Instead, the close resemblance of these signals to those commonly observed in volcanic environments suggest a source mechanism related to the resonance of a fluid–filled fracture, likely associated with instabilities in the flux of pressurized CO2.
    Description: Published
    Description: 918-928
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture and flow ; Earthquake source observations ; Interface waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: A properly organized seismic network is a valuable tool for monitoring seismic zones and assessing seismic hazards. In this paper we propose a new method (seismic network evaluation through simulation, SNES) to evaluate the performance of hypocenter location of a seismic network. The SNES method gives, as a function of magnitude, hypocentral depth, and confidence level, the spatial distribution of the number of active stations in the location procedure and their relative azimuthal gaps, along with confidence intervals in hypocentral parameters. The application of the SNES method also permits evaluation of the magnitude of completeness (MC), the background noise levels at the stations, and assessment of the appropriateness of the velocity model used in location routine. Italy sits on a tectonically active plate boundary at the convergence of the Eurasian and African lithospheric plates and has a high level of seismicity. In this paper, we apply the SNES method to the Italian National Seismic Network (Rete Sismica Nazionale Centralizzata dell’Istituto Nazionale di Geofisica e Vulcanologia, RSNC– INGV) which has monitored Italian seismicity since the early 1980s, following the destructive 1980 Irpinia earthquake. In recent years, the RSNC–INGV has grown significantly. In fact, in February 2010, it received signals from 305 seismic stations, 258 with wideband three-component sensors. We constructed SNES maps for magnitudes of 1.5, 2, 2.5, and 3, fixing the hypocentral depth at 10 km and the confidence level at 95%. Through the application of the SNES method, we show that the RSNC–INGV provides the best monitoring coverage in the Apennine Mountains with errors that for M 2, are less than 2 and 4 km for epicenter and hypocentral depth, respectively. At M 2.5 this seismic network is capable of constraining earthquake hypocenters to depths of about 150 km for most of the Italian Peninsula. This seismic network provides a threshold of completeness down to M 2 for almost the entire Italian territory.
    Description: Published
    Description: 1213-1232
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Italian National Seismic Network ; Magnitude of Completeness ; Location Performance ; Seismic Noise ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-03
    Description: After an earthquake, rapid, real-time assessment of hazards such as ground shaking and tsunami potential is important for early warning and emergency response. Tsunami potential depends on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of earthquake rupture. Currently, the primary discriminant for tsunami potential is the centroid-moment tensor magnitude, MwCMT, representing the seismic potency LWD, and estimated through an indirect, inversion procedure. The obtained MwCMT and the implied LWD value vary with the depth of faulting, assumed earth model and other factors, and is only available 30 min or more after an earthquake. The use of more direct procedures for hazard assessment, when available, could avoid these problems and aid in effective early warning. Here we present a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measures on P-wave seismograms – the dominant period on the velocity records, Td, and the likelihood that the high-frequency, apparent rupture-duration, T0, exceeds 50-55 sec. T0 can be related to the critical parameters L and z, while Td may be related to W, D or z. For a set of recent, large earthquakes, we show that the period-duration product TdT0 gives more information on tsunami impact and size than MwCMT and other currently used discriminants. All discriminants have difficulty in assessing the tsunami potential for oceanic strike-slip and back-arc or upper-plate, intraplate earthquake types. Our analysis and results suggest that tsunami potential is not directly related to the potency LWD from the “seismic” faulting model, as is assumed with the use of the MwCMT discriminant. Instead, knowledge of rupture length, L, and depth, z, alone can constrain well the tsunami potential of an earthquake, with explicit determination of fault width, W, and slip, D, being of secondary importance. With available real-time seismogram data, rapid calculation of the direct, period- duration discriminant can be completed within 6-10 min after an earthquake occurs and thus can aid in effective and reliable tsunami early warning.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Earthquake dynamics ; Earthquake source observations ; Seismic monitoring ; Body waves ; Early warning ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-11-18
    Description: The Italian National Institute for Oceanography and Experimental Geophysics (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS) is running the Antarctic Seismographic Argentinean Italian Network (ASAIN), made of 5 seismic stations located in the Scotia Sea region in Antarctica and in Argentina: data from these stations are transferred in real time to the OGS headquarters in Trieste (Italy) via satellite links. OGS is also running, in close cooperation with the Friuli-Venezia Giulia Civil Defense, the North East (NI) Italy seismic network, making use of the Antelope commercial software suite from BRTT as the main acquisition system. As a test to check the global capabilities of Antelope, we set up an instance of Antelope acquiring data in real time from both the regional ASAIN seismic network in Antarctica and a subset of the Global Seismic Network (GSN) funded by the Incorporated Research Institution for Seismology (IRIS). The facilities of the IRIS Data Management System, and specifically the IRIS Data Management Center, were used for real time access to waveform required in this study. Preliminary results over 1 month period indicated that about 82% of the earthquakes with magnitude M〉5.0 listed in the PDE catalogue of the National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS) were also correctly detected by Antelope, with an average location error of 0.05 degrees and average body wave magnitude Mb estimation error below 0.1. The average time difference between event origin time and the actual time of event determination by Antelope was of about 45’: the comparison with 20’, the IASPEI91 P-wave travel time for 180 degrees distance, and 25’, the estimate of our test system data latency, indicate that Antelope is a serious candidate for regional and global early warning systems. Updated figures calculated over a longer period of time will be presented and discussed.
    Description: Published
    Description: Vienna, Austria
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: open
    Keywords: Antelope ; teleseism ; fast ; location ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: In April 1998, a swarm of 1800 microearthquakes near the village of Iznajar (southern Spain) was recorded at the Granada basin short-period seismic network. Focal mechanisms from local P-wave polarities are poorly constrained and cannot characterize the seismotectonics of the series. Here we combine polarity information and multiplet relocation to address this issue. We use waveform cross correlation on P and S arrivals to identify events with highly similar seismograms, group our detections into multiplet clusters, and invert the cross-correlation time delays to obtain precise relative locations. Relative locations have errors of several tens to a few hundreds of meters horizontally and vertically, and define strike and dip of active fault patches with an accuracy of 20°–30°. We introduce the multiplet fault plane orientations into focal mechanism inversion, now yielding mostly well-constrained solutions, in addition to resolving the nodal plane symmetry. We observe mainly north-south left-lateral strike-slip faulting and a few north-northwest–south-southeast normal faulting solutions, illustrating the kinematic complexity of the swarm, and pointing to a local deformation style different from the nearby Granada basin.
    Description: Published
    Description: 3421-3429
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Fault plane solution ; Precise location ; Seismic swarm ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Many medium to big size seismic data centers around the world are facing the same question: which software to use to acquire seismic data in real-time? A home-made or a commercial one? Both choices have pros and cons. The in-house development of software usually requires an increased investment in human resources rather than a financial investment. However, the advantage of fully accomplishing your own needs could be put in danger when the software engineer quits the job! Commercial software offers the advantage of being maintained, but it may require both a considerable financial investment and training. The main seismic software data acquisition suites available nowadays are the public domain SeisComP and EarthWorm packages and the commercial package Antelope. Nanometrics, Guralp and RefTek also provide seismic data acquisition software, but they are mainly intended for single station/network acquisition. Antelope is a software package for real-time acquisition and processing of seismic network data, with its roots in the academic seismological community. The software is developed by Boulder Real Time Technology (BRTT) and commercialized by Kinemetrics. It is used by IRIS affiliates for off-line data processing and it is the main acquisition tool for the USArray program and data centers in Europe like the ORFEUS Data Center, OGS (Italy), ZAMG (Austria), ARSO (Slovenia) and GFU (Czech Republic). SeisComP was originally developed for the GEOFON global network to provide a system for data acquisition, data exchange (SeedLink protocol) and automatic processing. It has evolved into to a widely distributed, networked seismographic system for data acquisition and real-time data exchange over Internet and is supported by ORFEUS as the standard seismic data acquisition tool in Europe. SeisComP3 is the next generation of the software and was developed for the German Indonesian Tsunami Early Warning System (GITEWS). SeisComP is licensed by GFZ (free of charge) and maintained by a private company (GEMPA). EarthWorm was originally developed by United States Geological Survey (USGS) to exchange data with the Canadian seismologists. Its is now used by several institution around the world. It is maintained and developed by a commercial software house, ISTI.
    Description: Published
    Description: Vienna (Austria)
    Description: open
    Keywords: Seismic Center ; data acquisition ; Antelope ; EarthWorm ; SeisComP ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: Horizontal-to-vertical spectral ratios using ambient noise (HVNSR) are commonly used in site effects studies. In the practice, many operators assume stability over time of HVNSR and base their analyses on few very short time windows. The availability of a long period of continuous microtremor recording allowed us to analyze three months of data coming from a dense array experiment performed at Cavola, a village in northern Apennines. This condition offers a good opportunity to check the validity of the stability assumption and to investigate variations of the local ambient noise wave-field composition. The Cavola site is characterized by landslide sediments over stiffer materials with a moderate impedance contrast and by a complex morphology. An intense industrial activity in the village contributes to the generation of seismic noise. After identifying this noise source in the time series, we evaluate its effects on HVNSR. The results indicate that the spectral peak of HVNSR varies in amplitude and frequency, posing a warning about stability in time. Analyzing the spectra we identify the anthropic activity as responsible for changes in the composition of the noise wave field. These variations affect HVNSR, including peak frequency and also ground-motion polarization.
    Description: Published
    Description: 1263-1275
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: noise measurements ; Rayleigh waves ; polarization ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: IEEE Standard for Local and Metropolitan Area Networks (hereafter IEEE 802.16; online at http://standards.ieee.org/getieee802/802.16.html) is one of the most promising mobile and fixed broadband wireless access technologies for next-generation all-IP networks in the 3.5 GHz band (European spectrum profile). Commonly known as Universal WiMAX (worldwide inter-operability for microwave access), this access technology reaches a high bit rate and covers large areas with a single base station, making it possible to offer connectivity to end users in a cost-effective way. A further useful property of the WiMAX technology is that the transmission can be used both in line-of-sight (LOS) and non-line-of-sight (NLOS) environments, allowing highly feasible communications (WiMAX Forum 2004). Thanks to these features, IEEE 802.16 opens the way to the use of wireless technologies in the environmental monitoring of areas such as seismic and volcanic zones.
    Description: European Community’s Sixth Framework Programme, Contract no. IST-034622-IP
    Description: Published
    Description: 411-419
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: WiMAX ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-06-14
    Description: On 6 April 2009, at 01:32 GMT, an Mw 6.3 seismic event hit the central Apennines, severely damaging the town of L’Aquila and dozens of neighboring villages and resulting in approximately 300 casualties (Istituto Nazionale di Geofisica e Vulcanologia, http://www.ingv.it; MedNet, http://mednet.rm.ingv.it/proce- dure/events/QRCMT/090406_013322/qrcmt.html). This earth- quake was the strongest in central Italy since the devastating 1915 Fucino event (Mw 7.0). The INGV national seismic net- work located the hypocenter 5 km southwest of L’Aquila, 8–9 km deep. Based on this information and on the seismotectonic framework of the region, earthquake geologists traveled to the field to identify possible surface faulting (Emergeo Working Group 2009a, 2009b). The most convincing evidence of pri- mary surface rupture is along the Paganica fault, the geometry of which is consistent with seismological, synthetic aperture radar (SAR) and GPS data. Investigation of other known nor- mal faults of the area, i.e., the Mt. Pettino, Mt. San Franco, and Mt. Stabiata normal faults suggested that these structures were not activated during the April 6 shock (Emergeo Working Group 2009a, 2009b). In this report, we first describe the seismotectonic frame- work of the area, and then we present the field information that supports the occurrence of surficial displacement on the Paganica fault.
    Description: Published
    Description: 940-950
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Surface coseismic ruptures ; Paganica Fault ; earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: In this note, we investigate the characteristics of ambient noise cross-correlations for station pairs in northern Italy, considering the secondary microseism bandwidth (0.1-0.6 Hz). The preliminary analysis that we performed exploiting the available continuous recording in the investigated area, agrees with the recent results of Pedersen et al. (2007): the directionality of the noise signal cannot be disregarded when the group velocity is estimated in the range 0.1-0.6 Hz and the selection of the path orientation for tomography must be carefully performed. In particular, while the favourable directions with respect to microseisms generated along the Atlantic coasts of France, Norway and British Islands cover a quite wide azimuthal range (from about 270N to 5N), allowing us to reliably estimate the fundamental mode Rayleigh group velocity for paths in the Alps (about 2.7 km/s), more care must be taken when the microseisms are generated in the Mediterranean Sea. In that case, different locations of the generating areas of microseisms could provide biased estimates of the group velocity due to differences between the true and the apparent velocity of propagation between the stations.
    Description: Published
    Description: 1389-1398
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: microseisms ; ambient noise ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The Campi Flegrei (southern Italy) is one of the most active calderas in the world. This caldera is characterized by episodes of slow vertical ground movement, called bradyseism. With several hundred thousand people living within its borders, this area is in a high-risk category should there be an eruption. The seismological monitoring system in the Campi Flegrei is based on nine seismic stations, eight of which are equipped with short-period seismometers (1 Hz), and one with a broadband seismometer (60 sec–50 Hz). While all of the seismic stations are located on land, part of the seismic activity occurs in the undersea area of the Pozzuoli Gulf (Campi Flegrei), where there are no seismic stations. This gap in the data coverage produces a biased and incomplete image of the volcanic area.We carried out an experiment in the Pozzuoli Gulf with the installation of two broadband seismic stations on the seafloor with remote and continuous data acquisition for a duration of 31 days between January and March 2005. Using the data acquired, we have computed the power spectral density (PSD) to characterize the background seismic noise, and to evaluate the true noise variation, we have generated the seismic noise probability density functions from the computed PSD curves. The results of our analysis show that the broadband seismic noise is high when compared with the Peterson noise model (land model), but for periods less than 0.3 sec, the seismic noise on the seafloor is lower than the recordings on land over the same period range. The last bradyseismic crisis (1982–1984) highlights the importance of this frequency range, where most of the spectral content of the recorded earthquakes was observed. Finally, we evaluate the detection threshold of a new seismic station located on the seafloor of the Campi Flegrei caldera considering the characteristics of the local seismicity. This analysis shows that the detection threshold for the sea-floor stations (Mw ∼ 0:2) is less than that for land stations (Mw ∼ 0:8).
    Description: Published
    Description: 2962–2974
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei Caldera ; Sea-Floor and On-Land Seismic ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: In 2004, on behalf of the Department of Civil Protection (DPC—Dipartimento della Protezione Civile), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) released a new Italian seismic hazard map. The entire scientific process was public and transparent: an international panel of experts conducted a peer review while the work was in progress, and all the input data, the final output, and the technical documentation was published. The details of the entire process are available on a dedicated Web site (http://zonesismiche.mi.ingv.it). Following the publication of the reference map, the DPC financed the S1 project to produce a set of additional elaborations that would better describe the Italian seismic hazard. This resulted in a set of maps expressed in terms of PGA and Sa (spectral accelerations), both evaluated for different probabilities of exceedance. Finally, the overall information, more than a “set of maps,” can be considered the realization of what can be defined as a complete seismic hazard model. One of the aims of the S1 project is the dissemination of the data through the Web (http://esse1.mi.ingv.it). To evaluate the state of the art in disseminating this type of data we conducted an overview of the Web sites of earthquake-prone countries,and in several cases we experienced difficulties and slowness in finding seismic hazard information for a specific area. Our goal was to provide a tool with a combined high level of interactivity and ease of use. Recognizing the need for a Web application that would enable users to intuitively and interactively locate the area of interest and show pertinent data in various formats, we decided to develop a dedicated Web interface.
    Description: Published
    Description: 68-78
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 5.4. TTC - Sistema Informativo Territoriale
    Description: 5.9. TTC - Sistema web
    Description: JCR Journal
    Description: reserved
    Keywords: WebGIS ; italy ; seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: The new Italian National Seismic Network (INSN) is a dense network of broadband stations deployed for monitoring Italian seismicity. The network consists of 250 stations with a typical station spacing of !40 km. Earthquake early warning is the rapid detection of an event in progress, assessment of the hazard it poses, and transmission of a warning ahead of any significant ground motion. We explore the potential for using the INSN real-time network for the purpose of earthquake early warning. We run the ElarmS early warning methodology off-line using a data set of more than 200 events with magnitudes between 2.5 and 6.0. A scaling relation for magnitude determination from the dominant period of the first seconds of signal following the P onset is developed from the data set. The standard deviation in the magnitude estimates using this approach is 0.4 magnitude units, and all event magnitude estimates are within !0:75 magnitude units of the true magnitude. Given the existing distribution of seismic stations it takes an average of 10 sec after event initiation before the P wave has been detected at four stations. If we require a detection at four stations before issuing the first alert, then the blind zone, within which no warning would be available, has a radius of !37 km. The ElarmS methodology can provide a warning earlier than this but with a greater uncertainty. An assessment of past damaging earthquakes across Italy shows that applying ElarmS with the existing seismic network could provide warning to population centers in repeats of past events. For example, in a repeat of the 1980 Irpinia earthquake Naples could receive an !15- sec warning. The variations in the size of the blind zone and warning times for different regions can be used as a guide to selecting strategic locations for future station deployments.
    Description: Published
    Description: 495-503
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Early Warning ; Earthquake Location ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: With the aim to find a more objective way to detect seismic families, we applied a series of successive steps to constrain the results of a waveform similarity analysis. The evaluation of similarity was carried out on the waveforms recorded in the period 1999–2003 by the stations operating in the Garfagnana area, located in northern Tuscany (Italy). The algorithm is based on the cross-correlation technique applied in a process that overcomes the limit of one order of magnitude between events to be compared through a bridging technique. In practice, if two couples of events (A, B) and (B, C), each exceeding the correlation threshold, share a common quake (B), then all three events are attributed to the same family even if the match between A and C is below a value chosen as a reference for similarity. To avoid any subjective choice of threshold for cross-correlation values, the results from the computation algorithm are submitted to a routine that gives increasing reliability to them if they are confirmed by the three components of the seismogram and if the number of families detected by each station is confirmed by more recordings. This latter constraint is made possible by the geometry of the recording network, with interdistances between stations of the order of 40–50 km. The process finally leads to the recognition of 27 families detected and confirmed by, on average, 3 stations that represent 40% of the recording capabilities. Since the performances of the recording network have been very odd in the past, especially in the early years of operation, the reliability of the detection is much higher, as in most cases the stations that detected the families were the only ones to be effectively recording. The methodology proved to be more efficient than other methods applied in the past; moreover, the results could be probably improved even more if, instead of doing a one-run process, it would be borne as a trial-and-error approach.
    Description: Published
    Description: 1903-1915
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; multiplets ; seismic families ; seismic sequences ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: A small aperture quadripartite seismic array was installed on the south-east flanks of Mt. Vesuvius about 1 km far from the crater axis, in order to improve the seismic monitoring of this active volcano. The array has the following main purposes: i) to discriminate natural-source generated signals by artificial-source-generated signals; ii) to detect and track the source of possible Long Period (LP) events; iii) to detect coherent phases in the low frequency noise that may be related to magma movements (tremor insurgence). In addition, the array greatly helps in locating the seismic signals produced by blasts (both in land and sea), allowing a fast discrimination of possible natural long period (LP) quakes. The array is also an useful tool for retrieving the kinematic properties of the wavefield associated to volcano-tectonic (VT) earthquakes (more than 99% of the whole natural seismicity) and to all the other transients which are routinely observed(landslides, artificial blasts). We also use the array to investigate if correlated signals are present in the background noise (insurgence of volcanic tremor). The main result obtained during this first year of observation is that one LP was clearly recognized in the background seismicity at Mt. Vesuvius.
    Description: Published
    Description: 344-355
    Description: open
    Keywords: Volcano monitoring ; Array techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 120320 bytes
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Journal cover
    Unknown
    Wiley | JSTOR | formerly Oxford University Press (OUP)
    Online: 10(1).1988 –
    Formerly as: Illinois Agricultural Economics; North Central Journal of Agricultural Economics; Review of Agricultural Economics  (1961–2009)
    Publisher: Wiley , JSTOR , formerly Oxford University Press (OUP)
    Print ISSN: 0191-9016 , 1058-7195 , 2040-5790
    Electronic ISSN: 1467-9353 , 2040-5804
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Journal cover
    Unknown
    Wiley | JSTOR
    Online: 78.1976 – (older than 6 years)
    Publisher: Wiley , JSTOR
    Print ISSN: 0347-0520
    Electronic ISSN: 1467-9442
    Topics: Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Journal cover
    Unknown
    Wiley | Financial Management Association International | JSTOR
    Online: 1(1).1972 – (older than 4 years)
    Publisher: Wiley , Financial Management Association International , JSTOR
    Print ISSN: 0046-3892
    Electronic ISSN: 1755-053X
    Topics: Economics
    Keywords: JSTOR Archive Collection Business II
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...