ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (2,084,048)
  • American Institute of Physics  (610,486)
  • Oxford University Press  (428,982)
  • PANGAEA  (423,264)
  • Cell Press  (242,170)
  • MDPI Publishing
Collection
Keywords
Publisher
Language
Years
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-11
    Description: Towards a Vigilant Society sheds light on the emergence of a new society of vigilance, in particular the actions of anti-migrant groups around Dover and Calais. Based on field research on both sides of the channel, it studies the dynamics of these groups – midway between a social movement and vigilantism – at these two key points in the international migration route between the European Union and the United Kingdom. In recent years, a series of anti-migrant groups have been mobilising on both sides of the Channel to counter migrations. Their actions range from demonstrations, to violence against migrants. And by staging their actions on social media, which is an extraordinary sounding board, these groups can build an online community and a mass audience, influencing public opinion and even the migration policies of states.
    Keywords: Vigilantism Citizen participation in policing Securitisation Social reaction to migration Anti-migrant groups Far-right social movements Calais Dover Neighbourhood watches ; thema EDItEUR::J Society and Social Sciences::JH Sociology and anthropology::JHB Sociology ; thema EDItEUR::J Society and Social Sciences::JB Society and culture: general::JBF Social and ethical issues::JBFH Migration, immigration and emigration ; thema EDItEUR::5 Interest qualifiers::5P Relating to specific groups and cultures or social and cultural interests::5PB Relating to peoples: ethnic groups, indigenous peoples, cultures and other groupings of people::5PBC Relating to migrant groups / diaspora communities or peoples ; thema EDItEUR::J Society and Social Sciences::JB Society and culture: general::JBF Social and ethical issues::JBFG Refugees and political asylum
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-06
    Description: When we think about equality in the city, we are very likely to think first of the wide and growing divide between rich and poor, in material terms. Yet when we think more about a 'city of equals' it becomes apparent that how people feel treated by the city and those around them, and whether they can live according to their values, are much more central. Accordingly, combining their own reflections, a multi-disciplinary literature review, and, distinctively, more than 180 interviews in 10 cities in 6 countries, Wolff and de Shalit have derived an account of a city of equals based on the idea that it should give each of its city-zens a secure sense of place or belonging. Four underlying values structure this account. First, access to the goods and services of the city should not be based purely on the market. Second, each person should be able to live a life they find meaningful. Third, there should be diversity and wide social mixing. Fourth, there should be 'non-deferential inclusion': each person should be able to get access to what they are entitled to without being treated as less worthy than others. They should be able to enjoy their rights without bowing and scraping, waiting longer than others, or going through special bureaucratic hurdles. In sum, in a city of equals each person is proud of their city and has the (justified) feeling that their city is proud of (people like) them.
    Keywords: cities, equality, inequality, relational equality, equality in the city, inclusion, diversity, social mixing, public reflective equilibrium, urban political philosophy ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPA Political science and theory ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTQ Ethics and moral philosophy ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RG Geography
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-08
    Description: The Covid-19 pandemic is arguably the first international emergency of the twenty-first century. In order to respond to this emergency, countries and governments around the world were forced to engage in a range of actions and policies that would not otherwise have been permitted. Looking in particular at the use of surveillance technologies, this book examines the challenge of ethics in emergencies. What can states do to keep their populations safe, what can citizens expect of their governments, and when are those government actions unjustified? By looking at the use of surveillance in times of emergency, this book explores ethical, philosophical, political, and social concepts, challenges them, and offers a set of views on where those concepts may evolve into the future. As a global population, we will be faced with emergencies, and it is possible that these will also be global in their impact. The ethics of surveillance in times of emergency is both of its time, and ongoing; we must learn our lessons from the last emergency, to be prepared for the next ones.
    Keywords: applied ethics, surveillance, emergency ethics, pandemics, public health ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTQ Ethics and moral philosophy ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTS Social and political philosophy ; thema EDItEUR::M Medicine and Nursing::MB Medicine: general issues::MBN Public health and preventive medicine ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTQ Ethics and moral philosophy ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTS Social and political philosophy ; thema EDItEUR::M Medicine and Nursing::MB Medicine: general issues::MBN Public health and preventive medicine
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-04
    Description: What is Structural Injustice? is the first edited collection to bring together the voices of leading structural injustice scholars from politics, philosophy and law to explore the concept of structural injustice which has now become a central feature of all three disciplines and is considered by many to be a ‘field of study.’ The volume features specially selected original and essential works on structural injustice. The volume provides a range of disciplinary, ontological and epistemological perspectives on what structural injustice is and includes feminist and post-colonial theories to interrogate how structural injustice exacerbates and reproduces existing inequalities and relations of power. This book aims to become a touchstone text for those interested in the different ways we can understand structural injustice, how it manifests, how it relates to other forms of injustice, who is responsible for its redress and the different ways we might go about it. This book will appeal to a wide audience of students, both undergraduate and postgraduate, as well as the general academic population, experts on structural injustice, interested practitioners in politics and members of the public.
    Keywords: " Structural injustice, politics, philosophy, law, ontology, epistemology, feminism, power, historical injustice. " ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPA Political science and theory ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy ; thema EDItEUR::J Society and Social Sciences::JP Politics and government
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-11
    Description: This book argues that Plato’s Republic must be understood as developing out of a 5th Century sophistic debate. In Part One the author presents a new analysis of the sophists and their extant texts addressing the important topics of justice and its value. This part shows that already in the 5th Century there was a robust debate about whether the just or unjust life was better for the self-interested individual, and that multiple sophistic authors made inventive and philosophically sophisticated arguments on both sides of this debate. The Moral Cynics argues that the intelligent individual was better off being unjust, whereas the Friends of Justice defended the idea that the just life was better for human beings. Part Two argues that Plato was very much aware of this debate and that in a number of dialogues—but most importantly in Republic—he engaged with this debate. The immoralist challenge that Glaucon and Adeimantus pose to Socrates early in Republic draws from the arguments of the 5th Century Moral Cynics and moreover identifies problems with the arguments of the 5th Century Friends of Justice. By having Socrates make an argument that overcomes the theoretical weaknesses of the earlier Friends of Justice, Plato is able to pose a new defence of justice that is more effective at responding to the Moral Cynics. The book’s analysis of Republic suggests new readings for certain important passages, such as the division of goods.
    Keywords: Justice Prospering [εὐδαιμονία] Plato The Sophists The History of Moral and Political Philosophy ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDH Philosophical traditions and schools of thought::QDHA Ancient Greek and Roman philosophy ; thema EDItEUR::L Law::LA Jurisprudence and general issues::LAB Methods, theory and philosophy of law ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTQ Ethics and moral philosophy ; thema EDItEUR::3 Time period qualifiers::3C BCE period – Protohistory ; thema EDItEUR::1 Place qualifiers::1Q Other geographical groupings: Oceans and seas, historical, political etc::1QB Historical states, empires, territories and regions::1QBA Ancient World::1QBAG Ancient Greece
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-03-19
    Description: Landscape, Religion, and the Supernatural presents a summa of current and classic theorizing on religion and the supernatural in relationship to the land and develops this theorizing further by confronting it with a rich set of folkloristic and historical data. Focusing on the themes of “time and memory,” “repeating patterns,” “identity formation,” “morality,” “labor,” “playfulness and adventure,” “power and subversion,” “sound,” “emotions,” “coping with contingency,” “home and unhomeliness,” and “nature and environment,” the book engages with a broad range of theoretical concepts and approaches from the interdisciplinary field of landscape theory and the study of religions. It brings this theorizing into dialogue with the rich culture of local storytelling and landscape-related traditional beliefs of the Strandir district of the Icelandic Westfjords. In this rural region, landscape-related traditions have been collected since the early nineteenth century and continue to be important to this day. Confronting this rich heritage with the insights of landscape theory both in and beyond the study of religions allows important new contributions to theorizing landscape and religion, especially when it comes to considering the perspectives on landscape held by rural populations rather than the urban upper classes that have stood in the focus of research to date. The example of the Icelandic Westfjords shows the extreme richness of religious and supernatural approaches to the landscape that can be developed in rural communities, and how they are significantly and characteristically different from the urban perspectives of literature and the arts.
    Keywords: landscape, religion, supernatural, space, place, folklore, folk belief, Iceland ; bic Book Industry Communication::J Society & social sciences::JH Sociology & anthropology ; bic Book Industry Communication::H Humanities::HR Religion & beliefs ; bic Book Industry Communication::H Humanities::HB History::HBT History: specific events & topics::HBTP Historical geography ; bic Book Industry Communication::J Society & social sciences::JF Society & culture: general::JFS Social groups::JFSL Ethnic studies::JFSL9 Indigenous peoples
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-05
    Description: Despite the rise of global technocratic ideals of city-making, cities around the world are not merging into indistinguishable duplicates of one another. In fact, as the world urbanizes, urban formations remain diverse in their socio-economic and spatial characteristics, with varying potential to foster economic development and social justice. This book argues that these differences are primarily rooted in politics, and if we continue to view cities as economic and technological projects to be managed rather than terrains of political bargaining and contestation, the quest for better urban futures is doomed to fail. Dominant critical approaches to urban development tend to explain difference with reference to the variegated impacts of neoliberal regulatory institutions. This, however, neglects the multiple ways in which the wider politics of capital accumulation and distribution drive divergent forms of transformation in different urban places. In order to unpack the politics that shapes differential urban development, this book focuses on East Africa as the global urban frontier: the least urbanized but fastest urbanizing region in the world. Drawing on a decade of research spanning three case-study countries (Ethiopia, Rwanda, and Uganda), Politics and the Urban Frontier provides the first sustained, book-length comparative analysis of urban development trajectories in Eastern Africa and the political dynamics underpinning them. Through a focus on infrastructure investment, urban propertyscapes, street-level trading economies, and urban political protest, it offers a multi-scalar, historically grounded, and interdisciplinary analysis of the urban transformations unfolding in the world’s most dynamic crucible of urban change.
    Keywords: urban development, East Africa, comparative urban politics, late urbanization, infrastructure, planning, protest, Ethiopia, Rwanda, Uganda ; thema EDItEUR::K Economics, Finance, Business and Management::KC Economics::KCM Development economics and emerging economies ; thema EDItEUR::K Economics, Finance, Business and Management::KC Economics::KCV Economics of specific sectors::KCVS Regional / urban economics ; thema EDItEUR::K Economics, Finance, Business and Management::KC Economics::KCP Political economy ; thema EDItEUR::K Economics, Finance, Business and Management::KC Economics::KCG Economic growth ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPB Comparative politics ; thema EDItEUR::R Earth Sciences, Geography, Environment, Planning::RG Geography::RGC Human geography::RGCM Economic geography
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-03-29
    Description: What configuration of institutions and policies is most conducive to human flourishing? The historical and comparative evidence suggests that the answer is social democratic capitalism — a democratic political system, a capitalist economy, good elementary and secondary schooling, a big welfare state, pro-employment public services, and moderate regulation of product and labor markets. Lane Kenworthy shows that this system improves living standards for the least well-off, enhances economic security, and boosts equality of opportunity. And it does so without sacrificing other things we want in a good society, from liberty to economic growth to health and happiness. Its chief practitioners have been the Nordic nations. The Nordics have gone farther than other rich democratic countries in coupling a big welfare state with public services that promote high employment and modest product- and labor-market regulations. Many believe this system isn’t transferable beyond Scandinavia, but Kenworthy shows that social democratic capitalism and its successes can be replicated in other affluent nations, including the United States. Today, the U.S. lags behind other countries in economic security, opportunity, and shared prosperity. If the U.S. expanded existing social programs and added some additional ones, many Americans would have better lives. Kenworthy argues that, despite formidable political obstacles, the U.S. is likely to move toward social democratic capitalism in coming decades. As a country gets richer, he explains, it becomes more willing to spend more in order to safeguard against risk and enhance fairness. He lays out a detailed policy agenda that could alleviate many of America’s problems.
    Keywords: Social democratic capitalism, American politics, comparative politics, Western European politics, democracy, capitalism, welfare state, economic reform, regulation, economic equality ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPB Comparative politics ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPS International relations::JPSL Geopolitics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-02
    Description: Languages are central to the creation and expression of identities and cultures, as well as to life itself, yet the linguistic variegation of the later-Roman and post-imperial period in the Roman West is remarkably understudied. A deeper understanding of this important issue is crucial to any reconstruction of the broader story of linguistic continuity and change in Europe and the Mediterranean, as well as to the history of the communities who wrote, read, and spoke Latin and other languages. In spite of intensive study of culture and ethnic identity in late antiquity, language has often been neglected, a neglect encouraged by the disciplinary boundaries between linguists and historians, Romanists, and medievalists. There is no single volume that sets out the main developments, key features, and debates of the later-Roman and post-imperial linguistic environment. The linguistic landscapes of the late-Roman and post-imperial West are difficult to uncover and describe, while attempts to speak across disciplinary divides are challenging. The contributors have tackled this subject by offering detailed coverage of the Iberian Peninsula, North Africa, Gaul, the Germanies, Britain, and Ireland. This volume, the third in the LatinNow series, helps readers to understand better the embeddedness, or not, of Latin, at different social levels and across provinces, to consider (socio)linguistic variegation, bilingualism and multilingualism, and attitudes towards languages, and to confront the complex role of language in the communities, identities, and cultures of the later and post-imperial Roman West.
    Keywords: early middle ages, Gaul, the Germanies, Iberian Peninsula, later Roman world, Latin, local language, sociolinguistics, western provinces ; thema EDItEUR::N History and Archaeology::NH History::NHC Ancient history ; thema EDItEUR::N History and Archaeology::NH History::NHT History: specific events and topics::NHTB Social and cultural history ; thema EDItEUR::C Language and Linguistics::CF Linguistics::CFB Sociolinguistics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-11
    Description: Students of particle physics often find it difficult to locate resources to learn calculational techniques. Intermediate steps are not usually given in the research literature. To a certain extent, this is also the case even in some of the textbooks. In this book of worked problems we have made an effort to provide enough details so that a student starting in the field will understand the solution in each case. Our hope is that with this step-by-step guidance, students (after first attempting the solution themselves) can develop their skill, and confidence in their ability, to work out particle theory problems.
    Keywords: nuclear physics, mathematical and statistical physics, pure mathematics ; thema EDItEUR::P Mathematics and Science::PH Physics::PHS Statistical physics ; thema EDItEUR::P Mathematics and Science::PH Physics::PHF Materials / States of matter ; thema EDItEUR::P Mathematics and Science::PH Physics::PHF Materials / States of matter::PHFC Condensed matter physics (liquid state and solid state physics) ; thema EDItEUR::P Mathematics and Science::PH Physics::PHQ Quantum physics (quantum mechanics and quantum field theory) ; thema EDItEUR::P Mathematics and Science::PH Physics::PHK Electricity, electromagnetism and magnetism ; thema EDItEUR::P Mathematics and Science::PH Physics::PHU Mathematical physics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-07
    Description: Babies in Groups examines the consequences for science, for childcare policy, and for adult psychotherapy, of findings that young babies capably enjoy participating in groups. The authors’ research on preverbal infants’ capacities for group-communication in all-baby trios and quartets opens up new ways of imagining human development as fundamentally group-based. Babies in Groups highlights the changes a group-based vision of infancy brings to early child education and care by documenting the transformative consequences of introducing group-based practices into a high-quality childcare service in rural Australia. The book also examines the ways in which the belief that one-to-one infant-adult ‘attachments’ grounds human development unnecessarily narrows understanding of human potential, and slants scientific research. This examination culminates by showing how ignoring group contexts in many clinical traditions can distort descriptions of what happens in therapy, producing such unintended consequences as ‘mother-blaming’ for the future problems an infant may experience as she or he grows up.
    Keywords: attachment theory; childcare; childcare policy; cultural criticism; dyadic vision; early education; group psychology; human evolution; intersubjectivity; psychotherapy. ; thema EDItEUR::J Society and Social Sciences::JM Psychology::JMC Child, developmental and lifespan psychology ; thema EDItEUR::J Society and Social Sciences::JN Education::JNL Schools and pre-schools::JNLA Pre-school and kindergarten ; thema EDItEUR::J Society and Social Sciences::JM Psychology::JMH Social, group or collective psychology ; thema EDItEUR::J Society and Social Sciences::JB Society and culture: general::JBC Cultural and media studies::JBCC Cultural studies
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-03
    Description: This book examines the politics of revenue bargaining in Africa in a time when attention to domestic revenue mobilisation has expanded immensely. Measures to increase taxes and other revenues can -but do not always- lead to a process of bargaining, where revenue providers negotiate for some kind of a return. This book offers in-depth analyses of micro-instances of revenue bargaining across five African countries: Mozambique, Senegal, Tanzania, Togo, and Uganda. All case studies draw on a common theoretical framework combining the fiscal contract theory with the political settlement approach, which enables a systematic exploration into what triggers revenue bargaining; how these processes unfold; and finally, if and when they reach an agreement (whether a fiscal contract or not). From the empirically rich case narratives emerges a story of how power and initial bargaining position influence not only whether bargaining emerges in the first place, but also the processes and their outcomes. Less resourceful taxpayers are in a more difficult position to raise their voice, but in some cases even these groups manage to ally with other civil society groups to protest against tax reforms they perceive as unfair. Indirect taxes such as VAT often trigger protests, and so do sudden changes in tax practices. Revenue providers rarely call for improved services in return for paying tax, which would be expected to nurture the foundation for a fiscal social contract. Instead, revenue providers are more likely to negotiate for tax reductions, implying that governments’ effort to increase revenue is impeded. We do find many instances of state-society reciprocity when ruling elites try to be responsive to revenue providers’ demands. Hence, this book gives insight into the nature and dynamics not only of revenue bargaining but of policy-making in general as well as the implications hereof for state-society reciprocity in Africa.
    Keywords: Revenue bargaining; fiscal contract; political settlement; Africa; taxation; state-society relations; political economy; domestic revenue mobilisation; reciprocity; comparative politics ; thema EDItEUR::K Economics, Finance, Business and Management::KC Economics::KCM Development economics and emerging economies ; thema EDItEUR::K Economics, Finance, Business and Management::KC Economics::KCP Political economy ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPB Comparative politics ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPQ Central / national / federal government::JPQB Central / national / federal government policies ; thema EDItEUR::1 Place qualifiers::1H Africa
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-07
    Description: Every day, two or three women die because of pregnancy or childbirth. Nearly 80% of these deaths are preventable. These outcomes disproportionately impact racialized populations, including Black and Indigenous women, who are two to three times more likely to die. The Practical Playbook III: Working Together to Improve Maternal Health is a guide for maternal health stakeholders (like researchers, community activists, providers, and advocates) offering practical tools and strategies to address inequities in maternal health services and outcomes. With contributions from more than 150 authors, each chapter offers a different strategy that stakeholders can apply to improve maternal health in their community. The 50 chapters are divided into six main sections: Section I, Introduction; Section II, Collaborations; Section III, Equity; Section IV, Data; Section V, Innovations; and Section VI, Systems and Scalability. The chapters focus on ways to save mothers by centering equity, collaborating with people with lived experience, building better data systems, piloting and expanding innovations, and leveraging resources to scale and sustain what works. Throughout the book, readers encounter stories from women and birthing people that bring the problems and solutions into better focus. The editors are committed to continuing to share information about initiatives that are moving the needle through our online platforms.
    Keywords: Maternal Mortality, Maternal Morbidity Racial Disparities, maternal health equity, maternal health stakeholders, playbook, Maternal Health Data, Collaboration, Innovation, Sustainability ; thema EDItEUR::M Medicine and Nursing::MB Medicine: general issues::MBN Public health and preventive medicine ; thema EDItEUR::M Medicine and Nursing::MK Medical specialties, branches of medicine::MKC Gynaecology and obstetrics ; thema EDItEUR::M Medicine and Nursing::MB Medicine: general issues::MBN Public health and preventive medicine::MBNS Epidemiology and Medical statistics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-03-19
    Description: Comparing the Worth of the While in Fiji and Finland presents comparative case studies of clock time from Fiji and Finland in order to ask what other values is time capable of expressing besides monetary worth – what “else” can time be besides money? Time is a highly particular vehicle for different considerations of what is good or important, but it is also one which is deployed at different settings with surprisingly little consideration for the specificity of this particular a value form. This book looks into the different ways in which time is deployed in value projects in Fiji and Finland, not just to point out the various possible ways of allocating value to time, but to show that European clock-time, just like its Oceanic counterparts, requires a great deal of conceptual work to make it serve as vehicle of valuation. The cases analysed in the book range from considerations of rank and conspicuous leisure in Fiji to Finnish timebanking, taxation, and university auditing.
    Keywords: Fiji, Finland, time, value, anthropology ; bic Book Industry Communication::J Society & social sciences::JH Sociology & anthropology::JHM Anthropology::JHMC Social & cultural anthropology, ethnography ; bic Book Industry Communication::P Mathematics & science::PG Astronomy, space & time::PGZ Time (chronology), time systems & standards ; bic Book Industry Communication::J Society & social sciences::JH Sociology & anthropology::JHM Anthropology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-07
    Description: The Inter-American Human Rights System (IAHRS) fosters structural transformations throughout the Americas. This collection of analyses builds upon the studies on Ius Constitutionale Commune en América Latina and Latin American transformative constitutionalism to map out both the ground-level human rights impact of the IAHRS and the institutional characteristics that have enabled such fundamental changes in social reality. The volume starts with essays framing the concept and context of IAHRS impact. Then it navigates thematic analyses on specific rights and types of violations that are front and center to the protection of human rights in Latin America. The concluding essays explore whether and how it is possible to optimize the actions of the Inter-American System, indicating possible paths to increase positive human rights impact. The editors contend that the IAHRS victim-centric approach, community of practice, and openness to institutional reinvention have enabled it to create a virtuous cycle that catalyzes human rights in the Americas, furthering democracy and the Rule of Law throughout the continent.
    Keywords: Inter-American System, impact, human rights, Transformative Constitutionalism, Latin America ; thema EDItEUR::L Law::LB International law::LBB Public international law::LBBZ Public international law: criminal law ; thema EDItEUR::1 Place qualifiers::1K The Americas::1KL Latin America – Mexico, Central America, South America ; thema EDItEUR::L Law::LB International law::LBB Public international law::LBBR Public international law: human rights
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-14
    Description: Computing systems are everywhere today. Even the brain is thought to be a sort of computing system. But what does it mean to say that a given organ or system computes? What is it about laptops, smartphones, and nervous systems that they are deemed to compute, and why does it seldom occur to us to describe stomachs, hurricanes, rocks, or chairs that way? The book provides an extended argument for the semantic view of computation, which states that semantic properties are involved in the nature of computing systems. Laptops, smartphones, and nervous systems compute because they are accompanied by representations. Stomachs, hurricanes, and rocks, for instance, which do not have semantic properties, do not compute. The first part of the book argues that the linkage between the mathematical theory of computability and the notion of physical computation is weak. Theoretical notions such as algorithms, effective procedure, program, and automaton play only a minor role in identifying physical computation. The second part of the book reviews three influential accounts of physical computation and argues that while none of these accounts is satisfactory, each of them highlights certain key features of physical computation. The final part of the book develops and argues for a semantic account of physical computation and offers a characterization of computational explanations.
    Keywords: Metaphysics; Philosophy of Mathematics & Logic; Philosophy of Computational Science; Philosophy of Mathematics & Logic ; thema EDItEUR::U Computing and Information Technology::UY Computer science ; thema EDItEUR::U Computing and Information Technology::UY Computer science
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-05-11
    Description: Latinization is a strangely overlooked topic. Historians have noted it has been ‘taken for granted’ and viewed as an unremarkable by-product of ‘Romanization’, despite its central importance for understanding the Roman provincial world, its life and languages. This volume aims to fill the gap in our scholarship, along with its sister volumes, Latinization, Local Languages and Literacies in the Roman West and Languages and Communities in the Late-Roman and Post-Imperial Western Provinces, all outputs of the European Research Council-funded LatinNow project. Experts have been selected to create a multidisciplinary volume with a thematic approach to the vast subject, tackling administration, army, economy, law, mobility, religion (local and imperial religions and Christianity), social status, and urbanism. They situate the phenomena of Latinization, literacy, bi-, and multilingualism within local and broader social developments and draw together materials and arguments that have not before been coordinated in a single volume. The result is a comprehensive guide to the theme, which also offers original and more experimental work. The sociolinguistic, historical, and archaeological contributions reinforce, expand, and sometimes challenge our vision of Latinization and lay the foundations for future explorations.
    Keywords: army, economy, education, law, Latinization, mobility, religion, Roman western provinces, sociolinguistics, status, urbanism ; thema EDItEUR::N History and Archaeology::NH History::NHC Ancient history ; thema EDItEUR::N History and Archaeology::NH History::NHT History: specific events and topics::NHTB Social and cultural history ; thema EDItEUR::C Language and Linguistics::CF Linguistics::CFB Sociolinguistics
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-05-13
    Description: Questions of responsibility arise at all levels of health care. Most prominent has been the issue of patient responsibility. Some health conditions that risk death or serious harm are partly the result of lifestyle behaviours such as smoking, lack of exercise, or extreme sports. Are patients with such conditions responsible for them? If so, might healthcare providers, be they state-run systems or private entities, be justified in treating such patients differently? And if they are, which forms of differential treatment are justified? Responsibility isn’t just relevant for patients. Even when individuals affect their health through voluntary behaviour, other influences are also at work before, during, and after the patient’s interaction with the health care system. What are the responsibilities of individual clinicians and other medical professionals, when thinking about individual and public health? What about institutions such as governments or national health care services, or society as a whole? This collection brings together work by world-renowned experts in population ethics, distributive justice, philosophy of action, cognitive science, and medical ethics in order to push the debate forward by elucidating our understanding of these questions, their possible answers, and how they are related.
    Keywords: responsibility, health, health care, ethics, medical ethics ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTQ Ethics and moral philosophy ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAD Bioethics ; thema EDItEUR::L Law::LN Laws of specific jurisdictions and specific areas of law::LNT Social law and Medical law::LNTJ Public health and safety law ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPA Political science and theory
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-03-29
    Description: Pakistan would desperately like to produce enough electricity, but it usually doesn’t. This is the rare issue on which government and private sector can unite, and it is the cause of suffering for rich and poor alike across the entirety of the country. Despite prioritization by successive governments, targeted reforms shaped by international development actors, and featuring prominently in Chinese Belt and Road Investments, the Pakistani power sector still stifles economic and social life across the country. This book explores state capacity in Pakistan by following the material infrastructure of electricity across the provinces and down into cities and homes. It argues that the national challenges of budgetary constraints and power shortages directly result from conscious strategic decisions that are integral to Pakistan’s infrastructural state. Electricity shortages are one of the many poor governance outcomes characteristic of low- and middle-income countries. Standard development thinking points to an absence of institutions in comparison with an idealized and distant other country, with governance reform programs formulated accordingly. However, an orientation toward what Pakistan is not takes us away from how it actually functions and to whose benefit. Electricity governance in Pakistan reinforces relations of power between provinces and the federal center, contributes to the marginalization of subordinate groups in the city, and orients citizens toward a patronage-based relationship with the state through encounters with street-level bureaucrats. Looking through the lens of the electrical power sector reveals how Pakistan works, and for whom.
    Keywords: state capacity, infrastructure, electricity, Pakistan, urban, ethnography, institutions, political economy, development, China–Pakistan Economic Corridor ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPB Comparative politics ; thema EDItEUR::G Reference, Information and Interdisciplinary subjects::GT Interdisciplinary studies::GTP Development studies ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPQ Central / national / federal government::JPQB Central / national / federal government policies
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-03
    Description: The case for a modern democratic humane socialism typically has two parts. The first is that capitalism is bad, at or least not very good. In reaching this conclusion, most have either analyzed a theoretical ideal-type of capitalism or used a single country, often the United States, as a stand-in for capitalism. To fully and fairly assess democratic socialism’s desirability, we need to compare it to the best version of capitalism that humans have devised: social democratic capitalism, or what is often called the Nordic model. Each chapter in this book examines one of the things that we should want in a good society, that contemporary democratic socialists typically say they want, and that socialism might, conceivably, improve our ability to achieve: an end to poverty in rich countries, an end to poverty everywhere, more jobs, decent jobs, faster economic growth, inclusive growth, more public goods and services, affordable healthcare for all, helpful finance, truly democratic politics, economic democracy, less economic inequality, gender and racial equality, more community, and a livable planet. The book offers a close look at the evidence about how capitalist economies have performed on these outcomes, with particular attention to the performance of social democratic capitalism. The second part of the case for democratic socialism is the notion that it would be an improvement. For each of these outcomes, the book considers what, if anything, we can conclude about whether democratic socialism would do better than social democratic capitalism.
    Keywords: capitalism, socialism, Nordic model, poverty, employment, democracy, equality, inclusion, community ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPB Comparative politics ; thema EDItEUR::J Society and Social Sciences::JP Politics and government::JPS International relations::JPSL Geopolitics
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2024-04-08
    Description: This book is about mental imagery and the important work it does in our mental life. It plays a crucial role in the vast majority of our perceptual episodes. It also helps us understand many of the most puzzling features of perception (like the way it is influenced in a top-down manner and the way different sense modalities interact). But mental imagery also plays a very important role in emotions, action execution, and even in our desires. In sum, there are very few mental phenomena that mental imagery doesn’t show up in—in some way or other. The hope is that if we understand what mental imagery is, how it works and how it is related to other mental phenomena, we can make real progress on a number of important questions about the mind. This book aims at an interdisciplinary audience. As it aims to combine philosophy, psychology, and neuroscience to understand mental imagery, I have not presupposed any prior knowledge in any of these disciplines. As a result, readers with no background in any of these disciplines can also follow the arguments.
    Keywords: mental imagery, imagination, perception, philosophy, psychology, neuroscience ; bic Book Industry Communication::H Humanities::HP Philosophy::HPM Philosophy of mind ; bic Book Industry Communication::H Humanities::HP Philosophy::HPN Philosophy: aesthetics ; bic Book Industry Communication::J Society & social sciences::JM Psychology::JMR Cognition & cognitive psychology::JMRP Perception ; bic Book Industry Communication::H Humanities::HP Philosophy ; bic Book Industry Communication::J Society & social sciences::JM Psychology::JMR Cognition & cognitive psychology ; bic Book Industry Communication::P Mathematics & science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTM Philosophy of mind ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy::QDT Topics in philosophy::QDTN Philosophy: aesthetics ; thema EDItEUR::J Society and Social Sciences::JM Psychology::JMR Cognition and cognitive psychology ; thema EDItEUR::Q Philosophy and Religion::QD Philosophy ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-02-23
    Description: Compositional variations of amphibole stratigraphically recovered from multiple eruptions at a given volcano have a great potential to archive long-term magmatic processes in its crustal plumbing system. Calcic amphibole is a ubiquitous yet chemically and texturally diverse mineral at Mount St. Helens (MSH), where it occurs in dacites and in co-magmatic enclaves throughout the Spirit Lake stage (last ~4000 years of eruptive history). It forms three populations with distinct geochemical trends in key major and trace elements, which are subdivided into a high-Al (11–14.5 wt% Al2O3), a medium-Al (10–12.5 wt% Al2O3), and a low-Al (7.5–10 wt% Al2O3) amphibole population. The oldest investigated tephra record (Smith Creek period, 3900–3300 years BP) yields a bimodal amphibole distribution in which lower-crustal, high-Al amphibole cores (crystallized dominantly from basaltic andesite to andesite melts) and upper-crustal, low-Al amphibole rims (crystallized from rhyolitic melt) document occasional recharge of a shallow silicic mush by a more mafic melt from a lower-crustal reservoir. The sudden appearance of medium-Al amphiboles enriched in incompatible trace elements in eruptive periods younger than 2900 years BP is associated with a change in reservoir conditions toward hotter and drier magmas, which indicates recharge of the shallow silicic reservoir by basaltic melt enriched in incompatible elements. Deep-crystallizing, high-Al amphibole, however, appears mostly unaffected by such incompatible-element-enriched basaltic recharge, suggesting that these basalts bypass the lower crustal reservoir. This could be the result of the eastward offset position of the lower crustal reservoir relative to the upper crustal storage zone underneath the MSH edifice. Amphibole has proven to be a sensitive geochemical archive for uncovering storage conditions of magmas at MSH. In agreement with geophysical observations, storage and differentiation have occurred in two main zones: an upper crustal and lower crustal reservoir (the lower one being chemically less evolved). The upper crustal silicic reservoir, offset to the west of the lower crustal reservoir, has captured compositionally unusual mafic recharge (drier, hotter, and enriched in incompatible trace elements in comparison to the typical parental magmas in the region), resulting in an increased chemical diversity of amphiboles and their carrier intermediate magmas, in the last ~3000 years of MSH’s volcanic record.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-04-05
    Description: Current global warming results in rising sea-water temperatures, and the loss of sea ice in arctic and subarctic oceans impacts the community composition of primary producers with cascading effects on the food web and potentially on carbon export rates. This study analyzes metagenomic shotgun and diatom rbcL amplicon-sequencing data from sedimentary ancient DNA (sedaDNA) of the subarctic western Bering Sea that records phyto- and zooplankton community changes over the last glacial–interglacial cycle, including the last interglacial period (Eemian). Our data show that interglacial and glacial plankton communities differ, with distinct Eemian and Holocene plankton communities. The generally warm Holocene period is dominated by pico-sized cyanobacteria and bacteria-feeding heterotrophic protists, while the Eemian period is dominated by eukaryotic pico-sized chlorophytes and Triparmaceae. In contrast, the glacial period is characterized by micro-sized phototrophic protists, including sea-ice associated diatoms in the family Bacillariaceae and co-occurring diatom-feeding crustaceous zooplankton. Our deep-time record of plankton community changes reveals a long-term decrease in phytoplankton cell size coeval with increasing temperatures, and resembling community changes in the currently warming Bering Sea. The phytoplankton community in the warmer-than-present Eemian period is distinct from modern communities and limits the use of the Eemian as an analog for future climate scenarios. However, under enhanced future warming, the expected shift towards the dominance of small-sized phytoplankton and heterotrophic protists might result in an increased productivity, whereas the community’s potential of carbon export will be decreased, thereby weakening the subarctic Bering Sea’s function as an effective carbon sink.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-06-13
    Description: Neomphaloidean gastropods are endemic to chemosynthesis-based ecosystems ranging from hot vents to organic falls, and their diversity and evolutionary history remain poorly understood. In the southwestern Pacific, deep-sea hydrothermal vents on back-arc basins and volcanic arcs are found in three geographically secluded regions: a western region around Manus Basin, an eastern region around North Fiji and Lau Basins, and the intermediate Woodlark Basin where active venting was confirmed only recently, on the 2019 R/V L’Atalante CHUBACARC expedition. Although various lineages of neomphaloidean snails have been detected, typically restricted to one of the three regions, some of these have remained without names. Here, we use integrative taxonomy to describe three of these species: the neomphalid Symmetromphalus mithril sp. nov. from Woodlark Basin and the peltospirids Symmetriapelta becki sp. nov. from the eastern region and Symmetriapelta radiata sp. nov. from Woodlark Basin. A combination of shell sculpture and radular characters allow the morphological separation of these new species from their described congeners. A molecular phylogeny reconstructed from 570 bp of the mitochondrial cytochrome c oxidase subunit I gene confirmed the placement of the three new species in their respective genera and the superfamily Neomphaloidea. The finding of these new gastropods, particularly the ones from the Woodlark Basin, provides insights and implications on the historical role of Woodlark as a dispersing centre, in addition to highlighting the uniqueness of the Woodlark faunal community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-06-24
    Description: Several species from various zooplankton taxa perform seasonal vertical migrations (SVM) of typically several hundred meters between the surface layer and overwintering depths, particularly in high-latitude regions. We use OPtimality-based PLAnkton (OPPLA) ecosystem model) to simulate SVM behavior in zooplankton in the Labrador Sea. Zooplankton in OPPLA is a generic functional group without life cycle, which facilitates analyzing SVM evolutionary stability and interactions between SVM and the plankton ecosystem. A sensitivity analysis of SVM-related parameters reveals that SVM can amplify the seasonal variations of phytoplankton and zooplankton and enhance the reduction of summer surface nutrient concentrations. SVM is often explained as a strategy to reduce exposure to visual predators during winter. We find that species doing SVM can persist and even dominate the summer-time zooplankton community, even in the presence of Stayers, which have the same traits as the migrators, but do not perform SVM. The advantage of SVM depends strongly on the timing of the seasonal migrations, particularly the day of ascent. The presence of higher (visual) predators tends to suppress the Stayers in our simulations, whereas the SVM strategy can persist in the presence of non-migrating species even without higher predators.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-01-19
    Description: We performed seismic ambient noise tomography to investigate the shallow crustal structure around the Ivrea geophysical body (IGB) in the Ivrea-Verbano Zone (IVZ). We achieved higher resolution with respect to previous tomographic works covering the Western Alps, by processing seismic data collected by both permanent and temporary seismic networks (61 broad-band seismic stations in total). This included IvreaArray, a temporary, passive seismic experiment designed to investigate the IVZ crustal structure. Starting from continuous seismic ambient noise recordings, we measured and inverted the dispersion of the group velocity of surface Rayleigh waves (fundamental mode) in the period range 4–25 s. We obtained a new, 3-D vS model of the IVZ crust via the stochastic neighbourhood algorithm (NA), with the highest resolution between 3 to 40 km depth. The fast and shallow shear wave velocity anomaly associated with the IGB presents velocities of 3.6 km s−1 directly at the surface, in remarkable agreement with the location of the exposed lower-to-middle crustal and mantle outcrops. This suggests a continuity between the surface geological observations and the subsurface geophysical anomalies. The fast IGB structure reaches vS of 4 km s−1 at 20–25 km depth, at the boundary between the European and Adriatic tectonic plates, and in correspondence with the earlier identified Moho jump in the same area. The interpretation of a very shallow reaching IGB is further supported by the comparison of our new results with recent geophysical investigations, based on receiver functions and gravity anomaly data. By combining the new geophysical constraints and the geological observations at the surface, we provide a new structural interpretation of the IGB, which features lower crustal and mantle rocks at upper crustal depths. The comparison of the obtained vS values with the physical properties from laboratory analysis of local rock samples suggests that the bulk of the IGB consists of a combination of mantle peridotite, ultramafic and lower crustal rocks, bound in a heterogeneous structure. These new findings, based on vS tomography, corroborate the recent interpretation for which the Balmuccia peridotite outcrops are continuously linked to the IGB structure beneath. The new outcomes contribute to a multidisciplinary framework for the interpretation of the forthcoming results of the scientific drilling project DIVE. DIVE aims at probing the lower continental crust and its transition to the mantle, with two ongoing and one future boreholes (down to 4 km depth) in the IVZ area, providing new, complementary information on rock structure and composition across scales. In this framework, we constrain the upper crustal IGB geometries and lithology based on new evidence for vS, connecting prior crustal knowledge to recent active seismic investigations.
    Description: Published
    Description: 1089–1105
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology Letters, American Chemical Society
    Publication Date: 2024-01-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-01-23
    Description: On the 9th of January 2020, an Mw 6.4 strike-slip earthquake took place north of the Asian margin of the Bering Sea. The earthquake occurred within the known reverse-right-lateral active fault zone, called Khatyrka–Vyvenka, which transverses the Koryak Highland from SE to NW and is thought to be a surface manifestation of the Asian portion of either the Bering plate boundary or the northern edge of the Alaskan stream. No other strong earthquake has ever been recorded in this remote uninhabited area and the few existing seismic stations provide poor quality earthquake locations.We adopt SAR interferometry (InSAR) technique to define an improved location of the Koryak 2020 earthquake and constrain the seismic source. The analysis of the 2020 event revealed a previously unknown active fault of left-lateral kinematics that is possibly hidden and strikes NWtransversely to the Khatyrka–Vyvenka fault zone. Although several mechanisms could account for left-lateral kinematics of this fault, we propose that the structure is part of a more extended NW fault structure, that formed in pre-neotectonic times and has played a role of a pre-existing rheological discontinuity. This revived NW structure together with a similar structure located easterly, so far aseismic, make the plate/stream boundary segmented, step-like in plan view. The step-like boundary geometry may be the result of internal transform deformation of a rigid plate, but it is better explained by deflections of the Alaskan stream edge at local crustal asperities, which are pre-Cenozoic terrains.
    Description: Published
    Description: 1412–1421
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Plate motion ; Radar interferometry ; Seismic cycle ; Asia
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-04-03
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: Estimation of local seismic response plays a key role in assessing local seismic hazard and particularly in the design of shaking scenarios. Modelling local seismic response involves knowing of the shear wave velocity (Vs) and quality factor (Qs) profiles for the site in question. The many techniques that have been developed to assess Vs in surface deposits produce reliable measurements of Vs , but these rarely correspond to direct measurements of Qs . The latter is often considered through damping measures from laboratory tests on small-scale soil samples, which can provide information primarily on intrinsic attenuation, neglecting the contribution of scattering effects. In this paper, using seismic recordings obtained at the surface and in boreholes at 100 m depth, we estimate an average value of Qs of some characteristic alluvial deposits of the Po Plain (northern Italy). Data come from a microseismic network which sampled an almost uniform lithology in the central Po Plain and consisted of three surface and four borehole stations with an interstation distance of about 2 km. The average value of Qs of the shallowest 100 m of the sedimentary strata, Qs100, is estimated by considering: (1) the high-frequency attenuation of seismic waves due to propagation through the corresponding stratigraphy and (2) the interference between incident and surface-reflected waves observed at borehole stations. We parametrize the first through k0_100, the difference between the values of the spectral decay parameter kappa (k) estimated at the surface and at the boreholes depth, respectively. We use the second in order to compute Vs100, the time-averaged Vs referred to the uppermost 100 m stratigraphy. We obtain: k0_100 = (11 ± 3) ms, Vs100 = (309 ± 11) m s −1 and Qs100 = 31 ± 10. At the surface, the estimated values of the site-specific kappa, k0, are found to range from 75 to 79 ms. As expected, these results are in good agreement with studies performed in other sites characterized by sandy or clayey lithologies, and can be usefully used in site response analysis at sites where the rigidity is mainly controlled by lithostatic pressure.
    Description: Comune di Minerbio (grant: “Sperimentazione ILG Minerbio”; grant number: 0913.010).
    Description: Published
    Description: 2075–2094
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Earthquake ground motions ; Seismic attenuation ; Site effects ; Wave propagation ; Wave scattering and diffraction ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-03-19
    Description: Accurate quantification of seismic activity in volcanic regions is an important asset for im- proving hazard and risk assessment. This is especially true for densely populated areas, as in the case of Etna volcano (Southern Italy). There, the volcanic hazard is amplified by the seismic risk of acti ve faults, especiall y on the eastern flank of the volcano. In such a context, it is common to rely on moment magnitude ( M W ) to characterize seismicity and monitor the energy released during an eruption. In this study, we calculate the moment-based magnitude ( M W ) for selected seismic data sets, using different approaches in distinct magnitude ranges to cover the widest possible range of magnitude that characterizes Etna’s seismicity . Specifically , we computed the M W from a data set of moment tensor solutions of earthquakes that occurred in the magnitude range 3.4 ≤M L ≤4.8 during 2005–2020; we created a data set of seismic moment and associated M W for earthquakes 1.0 ≤M L 〈 3.4 obtained by analysing source spectra; we fine-tuned two relationships, for shallow and deep earthquakes, to obtain M W from response spectra. Finally, we calibrated a specific relationship between M W and M L for the Etna area earthquakes in the range 1.0 ≤M L ≤4.8. All the empirical relationships obtained in this study can be applied in real-time analysis of the seismicity to provide fast and robust information on the released seismic energy.
    Description: INGV-DPC 2012- 2021 agreement; B2 DPC-INGV 2019-2021 project; IMPACT Department strategic project ; ‘Project PE0000005–RETURN (NRRP)
    Description: Published
    Description: 2520-2534
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Earthquak e source observations ; Earthquake hazards ; Time series analysis ; Full moment tensor
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-03-12
    Description: This study presents a new robust statistical framework, in which to measure relative differences, or deviations from a hypothetical reference value, of Gutenberg-Richter b-value. Moreover, it applies this method to recent seismicity in Italy, to find possible changes of earthquake magnitude distribution in time and space. The method uses bootstrap techniques, which have no prior assumptions about the distribution of data, keeping their basic features. Excluding Central Italy, no significative b-value variation is found, revealing that the frequency-magnitude distribution exponent is substantially stable or that data are not able to reveal hidden variations. Considering the small size of examined magnitude samples, we cannot definitively decide if the higher b-values in Central Italy, consistently founded by all applied tests, have a physical origin or result from a statistical bias. In any case, they indicate short-lived excursions which have a temporary nature and, therefore, cannot be associated solely to spatial variations in tectonic framework. Both the methodological issues and the results of the application to seismicity in Italy show that a correct assessing of b-value changes requests appropriate statistics, that accurately quantify the low accuracy and precision of b-value estimation for small magnitude samples.
    Description: Published
    Description: 729–740
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-03-12
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: We present the results from a fully unconstrained moment tensor inversion of induced seismic events in a complex and high seismic hazard region (Val d’Agri basin, Southern Italy). The study area hosts two well-documented cases of induced microseismicity linked to (i) a wastewater injection well of a giant oilfield (the largest in onshore Europe), and (ii) severe seasonal level changes of an artificial lake. In order to gather information on the non-doublecouple components of the source and to better understand the rupture mechanisms, we analyse seismic events recorded during daily injection tests in the disposal well. The computed moment tensors have significant non-double-couple components that correlate with the well-head injection pressure. The injection parameters strongly influence the rupture mechanism that can be interpreted as due to the opening/closing of a fracture network inside a fault zone of a pre-existing thrust fault. For the case of the reservoir-induced seismicity, no direct correlations are observed with the loading/unloading of the reservoir.
    Description: Published
    Description: 1617–1627
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-04-09
    Description: Serpentinites are polymineralic rocks distributed almost ubiquitously across the globe in active tectonic regions. Magnetite-rich serpentinites are found in the low-strain domains of serpen- tinite shear zones, which act as potential sites of nucleation of unstable slip. To assess the potential of earthquake nucleation in these materials, we investigate the link between me- chanical properties and fabric of these rocks through a suite of laboratory shear experiments. Our experiments were done at room temperature and cover a range of normal stress and slip velocity from 25 to 100 MPa and 0.3 to 300 μm s −1 , respecti vel y. We show that magnetite-rich serpentinites are ideal materials since they display strong sensitivity to the loading rate and are susceptible to nucleation of unstable slip, especially at low forcing slip velocities. We also aim at the integration of mechanical and microstructural results to describe the underlying mechanisms that produce the macroscopic behaviour. We show that mineralogical composi- tion and mineral structure dictates the coexistence of two deformation mechanisms leading to stable and unstable slip. The weakness of phyllosilicates allows for creep during the interseis- mic phase of the laboratory seismic cycle while favouring the restoration of a load-bearing granular framework, responsible of the nucleation of unstable events. During dynamic slip, fault zone shear fabric determines the mode of slip, producing either asymmetric or Gaussian slip time functions for either fast or slow events. We report rate/state friction parameters and integrate our mechanical data with microstructural observations to shed light on the mech- anisms dictating the complexity of laborator y ear thquakes. We show that mineralogical and fabric heterogeneities control fault slip behaviour.
    Description: Published
    Description: 1778–1797
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-05-27
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: We report on about 20 yr of relative gravity measurements, acquired on Mt. Somma–Vesuvius volcano in order to investigate the hydrological and volcano-tectonic processes controlling the present-day activity of the volcano. The retrieved long-term field of time gravity change (2003–2022) shows a pattern essentially related to the subsidence, which have affected the central part of the volcano, as detected by the permanent GNSS network and InSAR data. After reducing the observations for the effect of vertical deformation, no significant residuals are found, indicating no significant mass accumulation or loss within the volcanic system. In the north-western sector of the study area, at the border of the volcano edifice, however, significant residual positive gravity changes are detected which are associated to ground-water rebound after years of intense exploitation of the aquifers. On the seasonal timescale, we find that stations within the caldera rim are affected by the seasonal hydrological effects, while the gravity stations at the base of the Vesuvius show a less clear correlation. Furthermore, within the caldera rim a multiyear gravity transient is detected with an increase phase lasting about 4 yr followed by a slower decrease phase. Analysis of rain data seem to exclude a hydrological origin, hence, we hypothesize a deeper source related to the geothermal activity, which can be present even if the volcano is in a quiescent state. We infer the depth and volume of the source by inverting the spatial pattern of the gravity field at the peak of the transient. A volume of fluids of 9.5 × 107 m3 with density of 1000 kg m−3 at 2.3 km depth is capable to fit reasonably well the observations. To explain the gravity transient, simple synthetic models are produced, that simulate the ascent of fluids from a deep reservoir up to the depth of 2.3 km and a successive diffusion within the carbonate aquifer hosting the geothermal system. The whole process appears to not significantly affect the seismicity rate and the deformation of the volcano. This study demonstrates the importance of a 4-D gravity monitoring of a volcano to understand its complex gravity signals that cover different spatial and temporal scales. Discriminating the different contributions that mix up in the observed gravity changes, in particular those due to hydrologic/anthropogenic activities form those due to the geothermal dynamics, is fundamental for a complete and reliable evaluation of the volcano state.
    Description: Published
    Description: 1565–1580
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-05-09
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: In a recent work, we applied the every earthquake a precursor according to scale (EEPAS) probabilistic model to the pseudo-prospective forecasting of shallow earthquakes with magni- tude M 5.0 in the Italian region. We compared the forecasting performance of EEPAS with that of the epidemic type aftershock sequences (ETAS) forecasting model, using the most recent consistency tests developed within the collaboratory for the study of earthquake predictabil- ity (CSEP). The application of such models for the forecasting of Italian target earthquakes seems to show peculiar characteristics for each of them. In particular, the ETAS model showed higher performance for short-term forecasting, in contrast, the EEPAS model showed higher forecasting performance for the medium/long-term. In this work, we compare the performance of EEPAS and ETAS models with that obtained by a deterministic model based on the occur- rence of strong foreshocks (FORE model) using an alarm-based approach. We apply the two rate-based models (ETAS and EEPAS) estimating the best probability threshold above which we issue an alarm. The model parameters and probability thresholds for issuing the alarms are calibrated on a learning data set from 1990 to 2011 during which 27 target earthquakes have occurred within the analysis region. The pseudo-prospective forecasting performance is as- sessed on a validation data set from 2012 to 2021, which also comprises 27 target earthquakes. Tests to assess the forecasting capability demonstrate that, even if all models outperform a purely random method, which trivially forecast earthquake proportionally to the space–time occupied by alarms, the EEPAS model exhibits lower forecasting performance than ETAS and FORE models. In addition, the relative performance comparison of the three models demonstrates that the forecasting capability of the FORE model appears slightly better than ETAS, but the difference is not statistically significant as it remains within the uncertainty level. However, truly prospective tests are necessary to validate such results, ideally using new testing procedures allowing the analysis of alarm-based models, not yet available within the CSEP.
    Description: Published
    Description: 1541–1551
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Keywords: Computational seismology ; Earthquake interaction, forecasting and prediction ; Statistical seismology ; Comparison betwee earthquake forecasting methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-05-09
    Description: To understand the seismic hazard of a subduction zone, it is necessary to know the geometry, location and mechanical characteristics of the interplate boundary below which an oceanic plate is thrust downward. By considering the azimuthal dependence of converted P-to-S (Ps) amplitudes in receiver functions, we have detected the interplate boundary in the Makran subduction zone, revealing significant seismic anisotropy at the base of the accretionary wedge above the slab before it bends down beneath the Jaz Murian basin. This anisotropic feature aligns with a zone of reduced seismic velocity and a high primary/secondary wave velocity ratio (Vp/Vs), as documented in previous studies. The presence of this low-velocity highly anisotropic layer at the base of the accretionary wedge, likely representing a low-strength shear zone, could possibly explain the unusually wide accretionary wedge in Makran. Additionally, it may impact the location and width of the locked zone along the interplate boundary.
    Description: Iranian National Science Foundation (INSF)
    Description: Published
    Description: 64-74
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: Earthquake hazards, Seismic anisotropy, Crustal structure, Subduction zone processes ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-05-09
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: The Every Earthquake a Precursor According to Scale (EEPAS) forecasting model is a space– time point-process model based on the precursory scale increase (ψ ) phenomenon and associated predictive scaling relations. It has been previously applied to New Zealand, Cal- ifornia and Japan earthquakes with target magnitude thresholds varying from about 5–7. In all previous application, computations were done using the computer code implemented in Fortran language by the model authors. In this work, we applied it to Italy using a suite of computing codes completely rewritten in Matlab. We first compared the two software codes to ensure the convergence and adequate coincidence between the estimated model parameters for a simple region capable of being analysed by both software codes. Then, using the rewritten codes, we optimized the parameters for a different and more complex polygon of analysis using the Homogenized Instrumental Seismic Catalogue data from 1990 to 2011. We then perform a pseudo-prospective forecasting experiment of Italian earthquakes from 2012 to 2021 with Mw ≥ 5.0 and compare the forecasting skill of EEPAS with those obtained by other time in- dependent (Spatially Uniform Poisson, Spatially Variable Poisson and PPE: Proximity to Past Earthquakes) and time dependent [Epidemic Type Aftershock Sequence (ETAS)] forecasting models using the information gain per active cell. The preference goes to the ETAS model for short time intervals (3 months) and to the EEPAS model for longer time intervals (6 months to 10 yr).
    Description: Published
    Description: 1681–1700
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Keywords: Computational seismology ; Earthquake interaction ; forecasting and prediction ; Statistical seismology ; Earthquake forecasting
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-06-17
    Description: Thermobarometry provides a critical means of assessing locations of magma storage and dynamics in the lead-up to volcanic eruptions and crustal growth. A common approach is to utilise minerals that have compositions sensitive to changes in pressure and/or temperature, such as clinopyroxene, which is ubiquitous in mafic to intermediate magmas. However, clinopyroxene thermobarometry may carry significant uncertainty and require an appropriate equilibrium melt composition. In addition, the degree of magma undercooling (ΔT) affects clinopyroxene composition and zoning, with common sector zoning potentially obfuscating thermobarometry results. Here, we use a set of crystallisation experiments on a primitive trachybasalt from Mt. Etna (Italy) at ΔT = 25–233 °C, P = 400–800 MPa, H2O = 0–4 wt % and fO2 = NNO + 2, with clinopyroxene crystals defined by Al-rich zones (prisms and skeletons) and Al-poor zones (hourglass and overgrowths) to assess common equilibrium models and thermobarometric approaches. Under the studied conditions, our data suggest that the commonly applied Fe–Mg exchange (cpx-meltKdFe–Mg) is insensitive to increasing ΔT and may not be a reliable indicator of equilibrium. The combined use of DiHd (CaMgSi2O6 + CaFeSi2O6) and EnFs (Mg2Si2O6 + Fe2Si2O6) models indicate the attainment of equilibrium in both Al-rich and Al-poor zones for almost all investigated ΔT. In contrast, CaTs (CaAl2SiO6) and CaTi (CaTiAl2O6) models reveal substantial deviations from equilibrium with increasing ΔT, particularly in Al-rich zones. We postulate that this reflects slower diffusion of Al and Ti in the melt compared with Ca and Mg and recommend the concurrent application of these four models to evaluate equilibrium between clinopyroxene and melt, particularly for sector-zoned crystals. Thermobarometers calibrated with only isothermal–isobaric experiments closely reproduce experimental P–T at low ΔT, equivalent to natural phenocrysts cores and sector-zoned mantles. Models that also consider decompression experiments are most accurate at high ΔT and are therefore suitable for outermost phenocryst rims and groundmass microlites. Recent machine learning approaches reproduce P–T conditions across all ΔT conditions. Applying our experimental constraints to sector-zoned microphenocrysts and groundmass microlites erupted during the 1974 eccentric eruption at Mt. Etna, we highlight that both hourglass and prism sectors are suitable for thermobarometry, given that equilibrium is sufficiently tested for. The combination of DiHd, EnFs, CaTs and CaTi models identifies compositions closest to equilibrium with the bulk melt composition, and results in smaller differences in P–T calculated for hourglass and prism sectors compared with applying only DiHd and EnFs equilibrium models. This provides a framework to assess crystallisation conditions recorded by sector-zoned clinopyroxene crystals in mafic alkaline settings.
    Description: Published
    Description: egad074
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Experimental Petrology ; Petrology ; Clinopyroxene ; Thermobarometry ; Experimental Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-04-11
    Description: This dataset reports measurements from a laboratory incubation of soils sourced from a boreal peatland and surrounding habitats (Siikaneva Bog, Finland). In August 2021, soil cores were collected from three habitat zones: a well-drained upland forest, an intermediate margin ecotone, and a Sphagnum moss bog. The cores from each habitat were taken from surface to approximately 50cm below surface using an Eijelkamp peat corer and subdivided by soil horizon. The samples were then incubated anaerobically for 140 days in three temperature treatment groups (0, 4, 20°C). Subsamples of the incubations headspace (250 µL) were measured on a gas chromatograph (7890A, Agilent Technologies, USA) with flame ionization detection (FID) for CO2 and CH4 concentrations. The rate of respiration from the samples were calculated per gram carbon and per gram soil as described in the method of Robertson., et al. (1999) and reported here, along with other relevant parameters.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
  • 41
    Publication Date: 2024-01-03
    Keywords: AGE; Antarctic Circumpolar Current; Clay; DEPTH, sediment/rock; Diatoms; Giant piston corer (Calypso); GPC-C; Grain size, Mastersizer S, Malvern Instrument Inc.; magnetic parameters; Marion Dufresne (1995); MD12-3401; MD128; mineralogic parameters; Silt; Summer sea surface temperature; SWAF
    Type: Dataset
    Format: text/tab-separated-values, 498 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-01-03
    Keywords: AGE; Anhysteretic susceptibility/magnetic susceptibility; Antarctic Circumpolar Current; Cryogenic magnetometer, 2G Enterprises; DEPTH, sediment/rock; Giant piston corer (Calypso); GPC-C; magnetic parameters; Magnetic susceptibility; Marion Dufresne (1995); MD12-3401; MD128; mineralogic parameters; Summer sea surface temperature; SWAF
    Type: Dataset
    Format: text/tab-separated-values, 320 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-01-03
    Keywords: AGE; Antarctic Circumpolar Current; calculated, 1 sigma; DEPTH, sediment/rock; Giant piston corer (Calypso); GPC-C; magnetic parameters; Marion Dufresne (1995); MD12-3401; MD128; mineralogic parameters; Reconstructed from the percentage of Neogloboquadrina pachyderma sinistral; Reconstructed from the percentage of planktic foraminifera; Sea surface temperature, summer; Sea surface temperature, summer, standard deviation; Summer sea surface temperature; SWAF
    Type: Dataset
    Format: text/tab-separated-values, 186 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-02-02
    Description: The onset of the first sustained Antarctic glaciation at the Eocene-Oligocene Transition (~34 Ma; EOT) was marked by several changes in calcareous nannofossils coinciding with long-term cooling and modifications in the sea-surface water structure. Here, we combined a high-resolution calcareous nannofossil assemblage data (%) with bulk geochemical data from IODP Site U1509 (New Caledonia Trough, Tasman Sea) in order to give an overview of the paleoclimatic and palaeoceanographic evolution of the study area.
    Keywords: 371-U1509A; Calcareous nannofossils; Calcium carbonate; DEPTH, sediment/rock; DSDP/ODP/IODP sample designation; Eocene-Oligocene Transition.; Exp371; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; IODP Depth Scale Terminology; Isotope ratio mass spectrometry; Joides Resolution; Sample code/label; Tasman Frontier Subduction Initiation and Paleogene Climate; Tasman Sea; δ13C, carbonate; δ18O, carbonate
    Type: Dataset
    Format: text/tab-separated-values, 732 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-02-01
    Description: Marine heat flow data from RV Meteor cruise M186. The GEOMAR project name is Azores Hot Vents. We used the 6 m Bremen heat probe with 21 channels @ 0.26 m spacing.
    Keywords: Azores; Center for Marine Environmental Sciences; heatflow; MARUM
    Type: Dataset
    Format: application/zip, 10 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-03-01
    Description: This data set contains airborne gravity data across central Dronning Maud Land, East Antarctica, acquired during the austral summer of 2009/2010 and within the project 'West-East Gondwana Amalgamation and its Separation' (WEGAS). The data span the offshore Astrid Ridge, and parts of the Nivl and Lazarev ice shelves. The survey was conducted using a ZLS Ultrasys Lacoste & Romberg Air/Sea gravimeter S56 installed into - and operated with - the research aircraft Polar 5. Base readings were performed with a handheld gravity meter at the base station Novolazarevskaja and in Cape Town. A ground speed of 130 knots and a time-domain filter of 220 s leads to a spatial resolution of around 7 km. The average crossover error after bias adjustment is 4.2 mGal. When citing this data set, please also cite the associated manuscript: Eisermann, H., Eagles, G. & Jokat, W. Coastal bathymetry in central Dronning Maud Land controls ice shelf stability. Sci Rep 14, 1367 (2024). https://doi.org/10.1038/s41598-024-51882-2.
    Keywords: AC; airborne gravity; Aircraft; Antarctica; Antarctica, East; Astrid Ridge; DATE/TIME; Event label; Free-air gravity anomaly; Gravity; Height; LATITUDE; Lazarev Ice Shelf; Line; LONGITUDE; Nivl Ice Shelf; PGM17 (NGA's Preliminary Geopotential Model 2017); POLAR 5; WEGAS_2009/10; WEGAS_2009/10_02; WEGAS_2009/10_03; WEGAS_2009/10_04; WEGAS_2009/10_05; WEGAS_2009/10_06; WEGAS_2009/10_07; WEGAS_2009/10_08; WEGAS_2009/10_09; WEGAS_2009/10_10; WEGAS_2009/10_11; WEGAS_2009/10_12; WEGAS_2009/10_13; WEGAS_2009/10_14; WEGAS_2009/10_16; WEGAS_2009/10_17; WEGAS_2009/10_18; WEGAS_2009/10_19; WEGAS_2009/10_20; WEGAS_2009/10_21; WEGAS offshore
    Type: Dataset
    Format: text/tab-separated-values, 128088 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-03-01
    Description: Attached data comprise a bathymetric model of central Dronning Maud Land, including the seabed beneath the Nivl Ice Shelf and the Lazarev Ice Shelf, as well as the offshore Astrid Ridge and adjacent parts of the Riiser-Larsen Sea. Here, this model is embedded within the larger Antarctic-wide bathymetric compilation IBCSOV2 (Dorschel et al., 2022). This is an addition to the stand-alone bathymetric model here: https://doi.org/10.1594/PANGAEA.961492. The embedded model gives seabed depths relative to WGS84 at a resolution of 2.5 km. It is generated by complementing existing topographic data sets - such as seismic data, ice penetrating radar data, and shipborne hydroacoustic data - with the inversion of airborne gravity data towards bathymetry. The airborne gravity data used for the inversion consist of data acquired during aerogeophysical campaigns VISA from the early 2000s and WEGAS from the austral summer of 2009/2010. When citing this model, please also cite the associated manuscript: Eisermann, H., Eagles, G. & Jokat, W. Coastal bathymetry in central Dronning Maud Land controls ice shelf stability. Sci Rep 14, 1367 (2024). https://doi.org/10.1038/s41598-024-51882-2.
    Keywords: Antarctica; Bathymetry; BathymetryModel_cDronningMaudLan; Bed elevation; Coordinate, x, relative; Coordinate, y, relative; Dronning Maud Land; Dronning Maud Land, Antarctica; gravity inversion; LATITUDE; Lazarev Ice Shelf; LONGITUDE; Model; Nivl Ice Shelf; water column
    Type: Dataset
    Format: text/tab-separated-values, 206742 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; Snow height; solar radiation; Tilt angle, X; Tilt angle, Y
    Type: Dataset
    Format: text/tab-separated-values, 29044 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 89452 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 89452 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 89452 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 36366 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 53713 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, technical
    Type: Dataset
    Format: text/tab-separated-values, 253099 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calculated; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, sun elevation; Sea Ice Physics @ AWI; snow depth; solar radiation; Transmittance; Transmittance, photosynthetically active; Transmittance at 320 nm; Transmittance at 321 nm; Transmittance at 322 nm; Transmittance at 323 nm; Transmittance at 324 nm; Transmittance at 325 nm; Transmittance at 326 nm; Transmittance at 327 nm; Transmittance at 328 nm; Transmittance at 329 nm; Transmittance at 330 nm; Transmittance at 331 nm; Transmittance at 332 nm; Transmittance at 333 nm; Transmittance at 334 nm; Transmittance at 335 nm; Transmittance at 336 nm; Transmittance at 337 nm; Transmittance at 338 nm; Transmittance at 339 nm; Transmittance at 340 nm; Transmittance at 341 nm; Transmittance at 342 nm; Transmittance at 343 nm; Transmittance at 344 nm; Transmittance at 345 nm; Transmittance at 346 nm; Transmittance at 347 nm; Transmittance at 348 nm; Transmittance at 349 nm; Transmittance at 350 nm; Transmittance at 351 nm; Transmittance at 352 nm; Transmittance at 353 nm; Transmittance at 354 nm; Transmittance at 355 nm; Transmittance at 356 nm; Transmittance at 357 nm; Transmittance at 358 nm; Transmittance at 359 nm; Transmittance at 360 nm; Transmittance at 361 nm; Transmittance at 362 nm; Transmittance at 363 nm; Transmittance at 364 nm; Transmittance at 365 nm; Transmittance at 366 nm; Transmittance at 367 nm; Transmittance at 368 nm; Transmittance at 369 nm; Transmittance at 370 nm; Transmittance at 371 nm; Transmittance at 372 nm; Transmittance at 373 nm; Transmittance at 374 nm; Transmittance at 375 nm; Transmittance at 376 nm; Transmittance at 377 nm; Transmittance at 378 nm; Transmittance at 379 nm; Transmittance at 380 nm; Transmittance at 381 nm; Transmittance at 382 nm; Transmittance at 383 nm; Transmittance at 384 nm; Transmittance at 385 nm; Transmittance at 386 nm; Transmittance at 387 nm; Transmittance at 388 nm; Transmittance at 389 nm; Transmittance at 390 nm; Transmittance at 391 nm; Transmittance at 392 nm; Transmittance at 393 nm; Transmittance at 394 nm; Transmittance at 395 nm; Transmittance at 396 nm; Transmittance at 397 nm; Transmittance at 398 nm; Transmittance at 399 nm; Transmittance at 400 nm; Transmittance at 401 nm; Transmittance at 402 nm; Transmittance at 403 nm; Transmittance at 404 nm; Transmittance at 405 nm; Transmittance at 406 nm; Transmittance at 407 nm; Transmittance at 408 nm; Transmittance at 409 nm; Transmittance at 410 nm; Transmittance at 411 nm; Transmittance at 412 nm; Transmittance at 413 nm; Transmittance at 414 nm; Transmittance at 415 nm; Transmittance at 416 nm; Transmittance at 417 nm; Transmittance at 418 nm; Transmittance at 419 nm; Transmittance at 420 nm; Transmittance at 421 nm; Transmittance at 422 nm; Transmittance at 423 nm; Transmittance at 424 nm; Transmittance at 425 nm; Transmittance at 426 nm; Transmittance at 427 nm; Transmittance at 428 nm; Transmittance at 429 nm; Transmittance at 430 nm; Transmittance at 431 nm; Transmittance at 432 nm; Transmittance at 433 nm; Transmittance at 434 nm; Transmittance at 435 nm; Transmittance at 436 nm; Transmittance at 437 nm; Transmittance at 438 nm; Transmittance at 439 nm; Transmittance at 440 nm; Transmittance at 441 nm; Transmittance at 442 nm; Transmittance at 443 nm; Transmittance at 444 nm; Transmittance at 445 nm; Transmittance at 446 nm; Transmittance at 447 nm; Transmittance at 448 nm; Transmittance at 449 nm; Transmittance at 450 nm; Transmittance at 451 nm; Transmittance at 452 nm; Transmittance at 453 nm; Transmittance at 454 nm; Transmittance at 455 nm; Transmittance at 456 nm; Transmittance at 457 nm; Transmittance at 458 nm; Transmittance at 459 nm; Transmittance at 460 nm; Transmittance at 461 nm; Transmittance at 462 nm; Transmittance at 463 nm; Transmittance at 464 nm; Transmittance at 465 nm; Transmittance at 466 nm; Transmittance at 467 nm; Transmittance at 468 nm; Transmittance at 469 nm; Transmittance at 470 nm; Transmittance at 471 nm; Transmittance at 472 nm; Transmittance at 473 nm; Transmittance at 474 nm; Transmittance at 475 nm; Transmittance at 476 nm; Transmittance at 477 nm; Transmittance at 478 nm; Transmittance at 479 nm; Transmittance at 480 nm; Transmittance at 481 nm; Transmittance at 482 nm; Transmittance at 483 nm; Transmittance at 484 nm; Transmittance at 485 nm; Transmittance at 486 nm; Transmittance at 487 nm; Transmittance at 488 nm; Transmittance at 489 nm; Transmittance at 490 nm; Transmittance at 491 nm; Transmittance at 492 nm; Transmittance at 493 nm; Transmittance at 494 nm; Transmittance at 495 nm; Transmittance at 496 nm; Transmittance at 497 nm; Transmittance at 498 nm; Transmittance at 499 nm; Transmittance at 500 nm; Transmittance at 501 nm; Transmittance at 502 nm; Transmittance at 503 nm; Transmittance at 504 nm; Transmittance at 505 nm; Transmittance at 506 nm; Transmittance at 507 nm; Transmittance at 508 nm; Transmittance at 509 nm; Transmittance at 510 nm; Transmittance at 511 nm; Transmittance at 512 nm; Transmittance at 513 nm; Transmittance at 514 nm; Transmittance at 515 nm; Transmittance at 516 nm; Transmittance at 517 nm; Transmittance at 518 nm; Transmittance at 519 nm; Transmittance at 520 nm; Transmittance at 521 nm; Transmittance at 522 nm; Transmittance at 523 nm; Transmittance at 524 nm; Transmittance at 525 nm; Transmittance at 526 nm; Transmittance at 527 nm; Transmittance at 528 nm; Transmittance at 529 nm; Transmittance at 530 nm; Transmittance at 531 nm; Transmittance at 532 nm; Transmittance at 533 nm; Transmittance at 534 nm; Transmittance at 535 nm; Transmittance at 536 nm; Transmittance at 537 nm; Transmittance at 538 nm; Transmittance at 539 nm; Transmittance at 540 nm; Transmittance at 541 nm; Transmittance at 542 nm; Transmittance at 543 nm; Transmittance at 544 nm; Transmittance at 545 nm; Transmittance at 546 nm; Transmittance at 547 nm; Transmittance at 548 nm; Transmittance at 549 nm; Transmittance at 550 nm; Transmittance at 551 nm; Transmittance at 552 nm; Transmittance at 553 nm; Transmittance at 554 nm; Transmittance at 555 nm; Transmittance at 556 nm; Transmittance at 557 nm; Transmittance at 558 nm; Transmittance at 559 nm; Transmittance at 560 nm; Transmittance at 561 nm; Transmittance at 562 nm; Transmittance at 563 nm; Transmittance at 564 nm; Transmittance at 565 nm; Transmittance at 566 nm; Transmittance at 567 nm; Transmittance at 568 nm; Transmittance at 569 nm; Transmittance at 570 nm; Transmittance at 571 nm; Transmittance at 572 nm; Transmittance at 573 nm; Transmittance at 574 nm; Transmittance at 575 nm; Transmittance at 576 nm; Transmittance at 577 nm; Transmittance at 578 nm; Transmittance at 579 nm; Transmittance at 580 nm; Transmittance at 581 nm; Transmittance at 582 nm; Transmittance at 583 nm; Transmittance at 584 nm; Transmittance at 585 nm; Transmittance at 586 nm; Transmittance at 587 nm; Transmittance at 588 nm; Transmittance at 589 nm; Transmittance at 590 nm; Transmittance at 591 nm; Transmittance at 592 nm; Transmittance at 593 nm; Transmittance at 594 nm; Transmittance at 595 nm; Transmittance at 596 nm; Transmittance at 597 nm; Transmittance at 598 nm; Transmittance at 599 nm; Transmittance at 600 nm; Transmittance at 601 nm; Transmittance at 602 nm; Transmittance at 603 nm; Transmittance at 604 nm; Transmittance at 605 nm; Transmittance at 606 nm; Transmittance at 607 nm; Transmittance at 608 nm; Transmittance at 609 nm; Transmittance at 610 nm; Transmittance at 611 nm; Transmittance at 612 nm; Transmittance at 613 nm; Transmittance at 614 nm; Transmittance at 615 nm; Transmittance
    Type: Dataset
    Format: text/tab-separated-values, 738492 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-03-05
    Keywords: 138-846B; 138-846C; AGE; Alkenone; Aluminium oxide; Barium sulfate; Calcium carbonate; Calibrated after Weltje & Tjallingi (2008); Date/Time of event; Depth, composite; DRILL; Drilling/drill rig; Eastern Equatorial Pacific; Event label; Iron oxide, Fe2O3; Joides Resolution; Latitude of event; Leg138; Longitude of event; Manganese oxide; ODP Site 846; Sample code/label; Sea surface temperature; Silicon dioxide; South Pacific Ocean; Titanium dioxide
    Type: Dataset
    Format: text/tab-separated-values, 75384 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Pressure, water; PS122/1_1-167, 2019R8; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 108915 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 90079 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 53713 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, difference
    Type: Dataset
    Format: text/tab-separated-values, 36366 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-03-05
    Keywords: 138-846; According to Herbert et al. (2021); Accumulation rate, alkenone C37; AGE; Alkenone; Alkenone, C37, logarithm; Calculated; COMPCORE; Composite Core; Eastern Equatorial Pacific; Joides Resolution; Leg138; ODP Site 846; Sea surface temperature; South Pacific Ocean
    Type: Dataset
    Format: text/tab-separated-values, 1056 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-03-05
    Keywords: 138-849; According to Herbert et al. (2021); Accumulation rate, alkenone C37; AGE; Alkenone; Alkenone, C37, logarithm; Calculated; COMPCORE; Composite Core; Eastern Equatorial Pacific; Joides Resolution; Leg138; North Pacific Ocean; ODP Site 846; Sea surface temperature
    Type: Dataset
    Format: text/tab-separated-values, 388 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-03-05
    Keywords: 321-U1338; According to Herbert et al. (2021); Accumulation rate, alkenone C37; AGE; Alkenone; Alkenone, C37, logarithm; Calculated; COMPCORE; Composite Core; Eastern Equatorial Pacific; Exp321; Joides Resolution; ODP Site 846; Pacific Equatorial Age Transect II / Juan de Fuca; Sea surface temperature
    Type: Dataset
    Format: text/tab-separated-values, 422 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 22236 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Horizontal visibility; HYGRO; Hygrometer; Monitoring station; MONS; Pressure, atmospheric; SYO; Syowa; Temperature, air; Thermometer; Visibility sensor; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 257782 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 25033 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 23254 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-02-29
    Description: Dinoflagellate cysts have been determined in sediments of core DP30PC on a resolution of 1 sample per 2.5 mm core depth (representing approximately 3 year) and 119.65 - 180.4 cm core depth. These data form the basis of high temporal resolution temperature and precipitation reconstructions for Roman times between about 200 BCE and 600 CE (ca. 205 BCE - 605 CE).
    Keywords: 64PE297; Age; Ataxiodinium choane; Bitectatodinium tepikiense; Center for Marine Environmental Sciences; Counting, dinoflagellate cysts; DEPTH, sediment/rock; Dinoflagellate cyst, other; Dinoflagellate cyst, warm water/cold water, ratio; Dinoflagellate cyst reworked; Discharge index; DP30PC; elements; Impagidinium aculeatum; Impagidinium paradoxum; Impagidinium patulum; Impagidinium plicatum; Impagidinium sphaericum; Impagidinium strialatum; Lingulodinium polyedrum; MARUM; Mediterranean; Nematosphaeropsis labyrinthus; Operculodinium israelianum; PC; Pelagia; Piston corer; Polysphaeridium zoharyi; Pseudoschizea spp.; Pyxidinopsis reticulata; Roman Climate Optimum; Spiniferites elongatus; Spiniferites mirabilis; Spiniferites ramosus; Tectatodinium pellitum; Temperature, water; Tuberculodinium vancampoae; volcanic glass shards
    Type: Dataset
    Format: text/tab-separated-values, 6092 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 27270 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 29012 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Horizontal visibility; HYGRO; Hygrometer; Monitoring station; MONS; Pressure, atmospheric; SYO; Syowa; Temperature, air; Thermometer; Visibility sensor; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 267840 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 24245 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-03-12
    Keywords: Aluminium oxide; Ardmore; Area/locality; Barium oxide; Barr_Creek; Calcium oxide; Cerium; Chromium(III) oxide; Depth, description; DEPTH, sediment/rock; DTREE; Duchess; Dysprosium; Erbium; Europium; Event label; Gadolinium; Georgina Basin; Hole; Holmium; Iron oxide, Fe2O3; Lanthanum; Laser Ablation; LATITUDE; Lily_Creek; LONGITUDE; Loss on ignition; Lutetium; Magnesium oxide; Manganese oxide; Neodymium; Paradise_North; Paradise_South; Phosphate_Hill; Phosphorite; Phosphorus pentoxide; Potassium oxide; Praseodymium; Rare-earth elements; ROCK; Rock sample; Samarium; Sample code/label; Sherrin_Creek; Silicon dioxide; Sodium oxide; Strontium oxide; Terbium; Thorium; Thulium; Titanium dioxide; Total; Uranium; Whole rock geochemistry; Ytterbium; Yttrium; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 1327 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-03-12
    Keywords: Aluminium; Aluminium oxide; Barium; Barium oxide; Calcium; Calcium oxide; Cerium; Cerium oxid; Chlorine; Date of determination; Electron micro probe analyser (EMPA); Fluorine; Gadolinium; Gadolinium oxide; Georgina Basin; Iron; Iron oxide, Fe2O3; Lanthanum; Lanthanum oxide; Laser Ablation; LATITUDE; LONGITUDE; Magnesium; Magnesium oxide; Manganese; Manganese oxide; Mineral name; Neodymium; Neodymium oxid; Oxygen; Phosphorite; Phosphorus; Phosphorus pentoxide; Sample ID; Silicon; Silicon dioxide; Site; Sodium; Sodium oxide; Strontium; Strontium oxide; Sulfur; Sulfur trioxide; Total; Whole rock geochemistry; Yttrium; Yttrium oxide
    Type: Dataset
    Format: text/tab-separated-values, 1764 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-12
    Description: We continuously measured aerosol size distributions in the range between 18 nm and 820 nm in 64 bit per decade resolution by means of a Scanning Mobility Particle Sizer (SMPS, TSI, i.e. a Series 3080 Electrostatic Classifier equipped with a Differential Mobility Analyzer DMA 3081). The measurements were conducted at the Air Chemistry Observatory (SPUSO) at Neumayer III Station (Antarctica) between 4 August 2023 and 31 December 2023. The data are based on an original 10-minute temporal resolution, submitted as 60-minute averages. Aerosol size distribution measurements are part of the air chemistry long-term observations at Neumayer III. Details about the instrument can be found under "resources" of the corresponding metadata link: https://hdl.handle.net/10013/sensor.81ece554-068a-4c6e-8de5-1ef1944c0156
    Keywords: aerosol; Air chemistry observatory; Air Chemistry Observatory; Atmospheric Chemistry @ AWI; AWI_AC; AWI_Glac; DATE/TIME; Date/time end; Dronning Maud Land, Antarctica; Glaciology @ AWI; HEIGHT above ground; Log-normal particle size distribution, normalized concentration at particle diameter 101.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 105.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 109.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 113.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 117.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 121.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 126.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 131 nm; Log-normal particle size distribution, normalized concentration at particle diameter 135.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 140.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 145.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 151.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 156.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 162.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 168.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 174.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 18.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 18.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 181.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 187.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 19.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 194.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 20.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 20.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 201.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 209.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 21.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 216.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 22.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 224.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 23.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 232.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 24.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 241.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 25.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 250.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 259.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 25 nm; Log-normal particle size distribution, normalized concentration at particle diameter 26.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 269 nm; Log-normal particle size distribution, normalized concentration at particle diameter 27.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 278.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 28.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 289 nm; Log-normal particle size distribution, normalized concentration at particle diameter 299.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 30 nm; Log-normal particle size distribution, normalized concentration at particle diameter 31.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 310.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 32.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 322 nm; Log-normal particle size distribution, normalized concentration at particle diameter 33.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 333.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 34.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 346 nm; Log-normal particle size distribution, normalized concentration at particle diameter 35.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 358.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 37.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 371.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 38.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 385.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 399.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 40 nm; Log-normal particle size distribution, normalized concentration at particle diameter 41.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 414.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 42.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 429.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 44.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 445.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 46.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 461.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 47.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 478.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 49.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 495.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 51.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 514 nm; Log-normal particle size distribution, normalized concentration at particle diameter 53.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 532.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 55.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 552.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 57.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 572.5 nm; Log-normal particle size distribution, normalized
    Type: Dataset
    Format: text/tab-separated-values, 385097 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-03-12
    Keywords: Aluminium; Aluminium oxide; Antimony; Ardmore; Area/locality; Arsenic; Barium; Barr_Creek; Beryllium; Bismuth; Boron; Cadmium; Caesium; Calcium; Calcium oxide; Cerium; Chromium; Cobalt; Copper; DTREE; Duchess; Dysprosium; Erbium; Europium; Gadolinium; Georgina Basin; Hafnium; Holmium; Inductively coupled plasma - mass spectrometry (ICP-MS); Iron; Iron oxide, Fe2O3; Lanthanum; Laser Ablation; LATITUDE; Lead-208; Lily_Creek; Lithium; Lithium borate fusion; acid digestion; LONGITUDE; Lutetium; Magnesium; Magnesium oxide; Manganese; Manganese oxide; Molybdenum; Neodymium; Nickel; Niobium; Paradise_North; Paradise_South; Phosphate_Hill; Phosphorite; Phosphorus; Phosphorus pentoxide; Potassium; Potassium oxide; Praseodymium; Rhenium; ROCK; Rock sample; Rock type; Rubidium; Samarium; Sample ID; Scandium; Sherrin_Creek; Silicon; Silicon dioxide; Sodium; Sodium oxide; Strontium; Tantalum; Tellurium; Terbium; Thallium; Thorium; Thulium; Tin; Titanium; Titanium dioxide; Total; Uranium; Vanadium; Whole rock geochemistry; Ytterbium; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 837 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-09
    Description: We operate a multi angle absorption photometer MAAP (Model 5012, Thermo Electron Corp.). which is in operation since March 2006 ongoing. This instrument measures atmospheric light absorption by aerosol (mainly caused by black carbon, BC). To this end, ambient aerosol was sampled on a glass filter tape. The measured absorption coefficients abs(637) refer to a wavelength of 637 nm. Raw data were originally sampled in one-minute resolution. Finally, hourly averaged MAAP data are presented here. We also provide BC concentrations (ng/m³) derived from the absorption coefficients using the specific BC attenuation cross section (QBC) of 6.6 m²/g.
    Keywords: aerosol; Aerosol absorption at 637 nm; AIRCHEM; Air chemistry observatory; Atmospheric chemistry; Atmospheric Chemistry @ AWI; AWI_AC; Black carbon, aerosol; DATE/TIME; Dronning Maud Land, Antarctica; Duration; HEIGHT above ground; Multi angle absorption spectrometer MAAP5012; Neumayer_based; Neumayer_SPUSO; NEUMAYER III; Spuso; SPUSO
    Type: Dataset
    Format: text/tab-separated-values, 26274 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-09
    Description: We continuously measured aerosol size distributions in the range between 90 nm and 5000 nm in 64 bit resolution with an optical particle sizer (TSI LAS3340). The measurements were conducted at the Air Chemistry Observatory (SPUSO) at Neumayer III Station (Antarctica) between 1 January 2023 and 10 July 2023. The data rely on an original 10-minute temporal resolution and are finally submitted as 60-minute averages. Aerosol size distribution measurements are part of the air chemistry long-term observations at Neumayer III. Details about the instrument can be found under "resources" of the corresponding metadata link: https://hdl.handle.net/10013/sensor.5d9a9253-e118-4744-be3a-05f31551314a.
    Keywords: aerosol; Air chemistry observatory; Air Chemistry Observatory; Atmospheric Chemistry @ AWI; AWI_AC; AWI_Glac; DATE/TIME; Date/time end; Dronning Maud Land, Antarctica; Glaciology @ AWI; HEIGHT above ground; las3340; Laser Aerosol Spectrometer TSI LAS3340; Log-normal particle size distribution, normalized concentration at particle diameter 1008.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 105.29 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1074.15 nm; Log-normal particle size distribution, normalized concentration at particle diameter 112.11 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1143.74 nm; Log-normal particle size distribution, normalized concentration at particle diameter 119.38 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1217.84 nm; Log-normal particle size distribution, normalized concentration at particle diameter 127.11 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1296.74 nm; Log-normal particle size distribution, normalized concentration at particle diameter 135.34 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1380.74 nm; Log-normal particle size distribution, normalized concentration at particle diameter 144.11 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1470.19 nm; Log-normal particle size distribution, normalized concentration at particle diameter 153.45 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1565.43 nm; Log-normal particle size distribution, normalized concentration at particle diameter 163.39 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1666.85 nm; Log-normal particle size distribution, normalized concentration at particle diameter 173.97 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1774.83 nm; Log-normal particle size distribution, normalized concentration at particle diameter 185.24 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1889.81 nm; Log-normal particle size distribution, normalized concentration at particle diameter 197.25 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2012.24 nm; Log-normal particle size distribution, normalized concentration at particle diameter 210.03 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2142.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 223.63 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2281.41 nm; Log-normal particle size distribution, normalized concentration at particle diameter 238.12 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2429.21 nm; Log-normal particle size distribution, normalized concentration at particle diameter 253.55 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2586.58 nm; Log-normal particle size distribution, normalized concentration at particle diameter 269.97 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2754.15 nm; Log-normal particle size distribution, normalized concentration at particle diameter 287.46 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2932.57 nm; Log-normal particle size distribution, normalized concentration at particle diameter 306.08 nm; Log-normal particle size distribution, normalized concentration at particle diameter 3122.55 nm; Log-normal particle size distribution, normalized concentration at particle diameter 325.91 nm; Log-normal particle size distribution, normalized concentration at particle diameter 3324.84 nm; Log-normal particle size distribution, normalized concentration at particle diameter 347.02 nm; Log-normal particle size distribution, normalized concentration at particle diameter 3540.24 nm; Log-normal particle size distribution, normalized concentration at particle diameter 369.51 nm; Log-normal particle size distribution, normalized concentration at particle diameter 3769.59 nm; Log-normal particle size distribution, normalized concentration at particle diameter 393.45 nm; Log-normal particle size distribution, normalized concentration at particle diameter 4013.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 418.93 nm; Log-normal particle size distribution, normalized concentration at particle diameter 4273.82 nm; Log-normal particle size distribution, normalized concentration at particle diameter 446.08 nm; Log-normal particle size distribution, normalized concentration at particle diameter 4550.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 474.98 nm; Log-normal particle size distribution, normalized concentration at particle diameter 4845.51 nm; Log-normal particle size distribution, normalized concentration at particle diameter 505.75 nm; Log-normal particle size distribution, normalized concentration at particle diameter 538.51 nm; Log-normal particle size distribution, normalized concentration at particle diameter 573.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 610.54 nm; Log-normal particle size distribution, normalized concentration at particle diameter 650.09 nm; Log-normal particle size distribution, normalized concentration at particle diameter 692.21 nm; Log-normal particle size distribution, normalized concentration at particle diameter 737.05 nm; Log-normal particle size distribution, normalized concentration at particle diameter 784.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 835.64 nm; Log-normal particle size distribution, normalized concentration at particle diameter 889.78 nm; Log-normal particle size distribution, normalized concentration at particle diameter 92.87 nm; Log-normal particle size distribution, normalized concentration at particle diameter 947.42 nm; Log-normal particle size distribution, normalized concentration at particle diameter 98.89 nm; Neumayer; Neumayer_based; Neumayer_SPUSO; NEUMAYER III; size distribution; Spuso; SPUSO; Time in minutes
    Type: Dataset
    Format: text/tab-separated-values, 300234 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-12
    Description: We operate a 7-wavelength aethalometer (Model AE33, Magee Scientific) which is in operation since 23 January 2019 ongoing. The Aethalometer model AE33 collects aerosol particles continuously by drawing the aerosol-laden air stream through a spot on the filter tape. It analyzes the aerosol by measuring the transmission of light through one portion of the filter tape containing the sample, versus the transmission through an unloaded portion of the filter tape acting as a reference area. This analysis is done at seven optical wavelengths spanning the range from the near-infrared to the near-ultraviolet. The Aethalometer calculates the instantaneous concentration of optically-absorbing aerosols from the rate of change of the attenuation of light transmitted through the particle-laden filter.
    Keywords: aerosol; Aerosol absorption at 370 nm; Aerosol absorption at 470 nm; Aerosol absorption at 520 nm; Aerosol absorption at 590 nm; Aerosol absorption at 660 nm; Aerosol absorption at 880 nm; Aerosol absorption at 950 nm; aerosol absorption coefficient; Aethalometer, AE33, Magee Scientific; Air chemistry observatory; Air Chemistry Observatory; Atmospheric Chemistry @ AWI; AWI_AC; DATE/TIME; Dronning Maud Land, Antarctica; Duration; HEIGHT above ground; Neumayer_based; Neumayer_SPUSO; NEUMAYER III; Neumayer Station; Spuso; SPUSO
    Type: Dataset
    Format: text/tab-separated-values, 131400 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; drift; FDOM; Ice mass balance; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Sea Ice Physics @ AWI; snow depth; solar radiation
    Type: Dataset
    Format: application/zip, 19 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calculated; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; Irradiance, upward, reflected at sea ice surface; Irradiance, upward, reflected at sea ice surface, photosythetically active; Irradiance, upward, reflected at sea ice surface, photosythetically active, absolute; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, sun elevation; Sea Ice Physics @ AWI; snow depth; solar radiation; Spectral irradiance, upward, reflected at sea ice surface at 320 nm; Spectral irradiance, upward, reflected at sea ice surface at 321 nm; Spectral irradiance, upward, reflected at sea ice surface at 322 nm; Spectral irradiance, upward, reflected at sea ice surface at 323 nm; Spectral irradiance, upward, reflected at sea ice surface at 324 nm; Spectral irradiance, upward, reflected at sea ice surface at 325 nm; Spectral irradiance, upward, reflected at sea ice surface at 326 nm; Spectral irradiance, upward, reflected at sea ice surface at 327 nm; Spectral irradiance, upward, reflected at sea ice surface at 328 nm; Spectral irradiance, upward, reflected at sea ice surface at 329 nm; Spectral irradiance, upward, reflected at sea ice surface at 330 nm; Spectral irradiance, upward, reflected at sea ice surface at 331 nm; Spectral irradiance, upward, reflected at sea ice surface at 332 nm; Spectral irradiance, upward, reflected at sea ice surface at 333 nm; Spectral irradiance, upward, reflected at sea ice surface at 334 nm; Spectral irradiance, upward, reflected at sea ice surface at 335 nm; Spectral irradiance, upward, reflected at sea ice surface at 336 nm; Spectral irradiance, upward, reflected at sea ice surface at 337 nm; Spectral irradiance, upward, reflected at sea ice surface at 338 nm; Spectral irradiance, upward, reflected at sea ice surface at 339 nm; Spectral irradiance, upward, reflected at sea ice surface at 340 nm; Spectral irradiance, upward, reflected at sea ice surface at 341 nm; Spectral irradiance, upward, reflected at sea ice surface at 342 nm; Spectral irradiance, upward, reflected at sea ice surface at 343 nm; Spectral irradiance, upward, reflected at sea ice surface at 344 nm; Spectral irradiance, upward, reflected at sea ice surface at 345 nm; Spectral irradiance, upward, reflected at sea ice surface at 346 nm; Spectral irradiance, upward, reflected at sea ice surface at 347 nm; Spectral irradiance, upward, reflected at sea ice surface at 348 nm; Spectral irradiance, upward, reflected at sea ice surface at 349 nm; Spectral irradiance, upward, reflected at sea ice surface at 350 nm; Spectral irradiance, upward, reflected at sea ice surface at 351 nm; Spectral irradiance, upward, reflected at sea ice surface at 352 nm; Spectral irradiance, upward, reflected at sea ice surface at 353 nm; Spectral irradiance, upward, reflected at sea ice surface at 354 nm; Spectral irradiance, upward, reflected at sea ice surface at 355 nm; Spectral irradiance, upward, reflected at sea ice surface at 356 nm; Spectral irradiance, upward, reflected at sea ice surface at 357 nm; Spectral irradiance, upward, reflected at sea ice surface at 358 nm; Spectral irradiance, upward, reflected at sea ice surface at 359 nm; Spectral irradiance, upward, reflected at sea ice surface at 360 nm; Spectral irradiance, upward, reflected at sea ice surface at 361 nm; Spectral irradiance, upward, reflected at sea ice surface at 362 nm; Spectral irradiance, upward, reflected at sea ice surface at 363 nm; Spectral irradiance, upward, reflected at sea ice surface at 364 nm; Spectral irradiance, upward, reflected at sea ice surface at 365 nm; Spectral irradiance, upward, reflected at sea ice surface at 366 nm; Spectral irradiance, upward, reflected at sea ice surface at 367 nm; Spectral irradiance, upward, reflected at sea ice surface at 368 nm; Spectral irradiance, upward, reflected at sea ice surface at 369 nm; Spectral irradiance, upward, reflected at sea ice surface at 370 nm; Spectral irradiance, upward, reflected at sea ice surface at 371 nm; Spectral irradiance, upward, reflected at sea ice surface at 372 nm; Spectral irradiance, upward, reflected at sea ice surface at 373 nm; Spectral irradiance, upward, reflected at sea ice surface at 374 nm; Spectral irradiance, upward, reflected at sea ice surface at 375 nm; Spectral irradiance, upward, reflected at sea ice surface at 376 nm; Spectral irradiance, upward, reflected at sea ice surface at 377 nm; Spectral irradiance, upward, reflected at sea ice surface at 378 nm; Spectral irradiance, upward, reflected at sea ice surface at 379 nm; Spectral irradiance, upward, reflected at sea ice surface at 380 nm; Spectral irradiance, upward, reflected at sea ice surface at 381 nm; Spectral irradiance, upward, reflected at sea ice surface at 382 nm; Spectral irradiance, upward, reflected at sea ice surface at 383 nm; Spectral irradiance, upward, reflected at sea ice surface at 384 nm; Spectral irradiance, upward, reflected at sea ice surface at 385 nm; Spectral irradiance, upward, reflected at sea ice surface at 386 nm; Spectral irradiance, upward, reflected at sea ice surface at 387 nm; Spectral irradiance, upward, reflected at sea ice surface at 388 nm; Spectral irradiance, upward, reflected at sea ice surface at 389 nm; Spectral irradiance, upward, reflected at sea ice surface at 390 nm; Spectral irradiance, upward, reflected at sea ice surface at 391 nm; Spectral irradiance, upward, reflected at sea ice surface at 392 nm; Spectral irradiance, upward, reflected at sea ice surface at 393 nm; Spectral irradiance, upward, reflected at sea ice surface at 394 nm; Spectral irradiance, upward, reflected at sea ice surface at 395 nm; Spectral irradiance, upward, reflected at sea ice surface at 396 nm; Spectral irradiance, upward, reflected at sea ice surface at 397 nm; Spectral irradiance, upward, reflected at sea ice surface at 398 nm; Spectral irradiance, upward, reflected at sea ice surface at 399 nm; Spectral irradiance, upward, reflected at sea ice surface at 400 nm; Spectral irradiance, upward, reflected at sea ice surface at 401 nm; Spectral irradiance, upward, reflected at sea ice surface at 402 nm; Spectral irradiance, upward, reflected at sea ice surface at 403 nm; Spectral irradiance, upward, reflected at sea ice surface at 404 nm; Spectral irradiance, upward, reflected at sea ice surface at 405 nm; Spectral irradiance, upward, reflected at sea ice surface at 406 nm; Spectral irradiance, upward, reflected at sea ice surface at 407 nm; Spectral irradiance, upward, reflected at sea ice surface at 408 nm; Spectral irradiance, upward, reflected at sea ice surface at 409 nm; Spectral irradiance, upward, reflected at sea ice surface at 410 nm; Spectral irradiance, upward, reflected at sea ice surface at 411 nm; Spectral irradiance, upward, reflected at sea ice surface at 412 nm; Spectral irradiance, upward, reflected at sea ice surface at 413 nm; Spectral irradiance, upward, reflected at sea ice surface at 414 nm; Spectral irradiance, upward, reflected at sea ice surface at 415 nm; Spectral irradiance, upward, reflected at sea ice surface at 416 nm; Spectral irradiance, upward, reflected at sea ice surface at 417 nm; Spectral irradiance, upward, reflected at sea ice surface at 418 nm; Spectral irradiance, upward, reflected at sea ice surface at 419 nm; Spectral irradiance, upward, reflected at sea ice surface at 420 nm; Spectral irradiance, upward, reflected at sea ice surface at 421 nm; Spectral irradiance, upward, reflected at sea ice surface at 422 nm; Spectral irradiance, upward, reflected at sea ice surface at 423 nm; Spectral irradiance, upward, reflected at sea ice surface at 424 nm; Spectral
    Type: Dataset
    Format: text/tab-separated-values, 955680 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorologisches Observatorium Potsdam
    Publication Date: 2024-03-02
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Code; DATE/TIME; Dew/frost point; Germany; HYGRO; Hygrometer; LIN; Lindenberg; Monitoring station; MONS; Past weather1; Past weather2; Present weather; Pressure, atmospheric; Station pressure; Temperature, air; Thermometer; Total cloud amount; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 6265 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorologisches Observatorium Potsdam
    Publication Date: 2024-03-02
    Keywords: Baseline Surface Radiation Network; BSRN; Cloud base height; DATE/TIME; Germany; LIN; Lindenberg; Monitoring station; MONS
    Type: Dataset
    Format: text/tab-separated-values, 3422 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorologisches Observatorium Potsdam
    Publication Date: 2024-03-02
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; Germany; LIN; Lindenberg; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Vaisala, RS41; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 782989 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Albedo, fraction; Albedo, photosynthetically active; Albedo at 320 nm; Albedo at 321 nm; Albedo at 322 nm; Albedo at 323 nm; Albedo at 324 nm; Albedo at 325 nm; Albedo at 326 nm; Albedo at 327 nm; Albedo at 328 nm; Albedo at 329 nm; Albedo at 330 nm; Albedo at 331 nm; Albedo at 332 nm; Albedo at 333 nm; Albedo at 334 nm; Albedo at 335 nm; Albedo at 336 nm; Albedo at 337 nm; Albedo at 338 nm; Albedo at 339 nm; Albedo at 340 nm; Albedo at 341 nm; Albedo at 342 nm; Albedo at 343 nm; Albedo at 344 nm; Albedo at 345 nm; Albedo at 346 nm; Albedo at 347 nm; Albedo at 348 nm; Albedo at 349 nm; Albedo at 350 nm; Albedo at 351 nm; Albedo at 352 nm; Albedo at 353 nm; Albedo at 354 nm; Albedo at 355 nm; Albedo at 356 nm; Albedo at 357 nm; Albedo at 358 nm; Albedo at 359 nm; Albedo at 360 nm; Albedo at 361 nm; Albedo at 362 nm; Albedo at 363 nm; Albedo at 364 nm; Albedo at 365 nm; Albedo at 366 nm; Albedo at 367 nm; Albedo at 368 nm; Albedo at 369 nm; Albedo at 370 nm; Albedo at 371 nm; Albedo at 372 nm; Albedo at 373 nm; Albedo at 374 nm; Albedo at 375 nm; Albedo at 376 nm; Albedo at 377 nm; Albedo at 378 nm; Albedo at 379 nm; Albedo at 380 nm; Albedo at 381 nm; Albedo at 382 nm; Albedo at 383 nm; Albedo at 384 nm; Albedo at 385 nm; Albedo at 386 nm; Albedo at 387 nm; Albedo at 388 nm; Albedo at 389 nm; Albedo at 390 nm; Albedo at 391 nm; Albedo at 392 nm; Albedo at 393 nm; Albedo at 394 nm; Albedo at 395 nm; Albedo at 396 nm; Albedo at 397 nm; Albedo at 398 nm; Albedo at 399 nm; Albedo at 400 nm; Albedo at 401 nm; Albedo at 402 nm; Albedo at 403 nm; Albedo at 404 nm; Albedo at 405 nm; Albedo at 406 nm; Albedo at 407 nm; Albedo at 408 nm; Albedo at 409 nm; Albedo at 410 nm; Albedo at 411 nm; Albedo at 412 nm; Albedo at 413 nm; Albedo at 414 nm; Albedo at 415 nm; Albedo at 416 nm; Albedo at 417 nm; Albedo at 418 nm; Albedo at 419 nm; Albedo at 420 nm; Albedo at 421 nm; Albedo at 422 nm; Albedo at 423 nm; Albedo at 424 nm; Albedo at 425 nm; Albedo at 426 nm; Albedo at 427 nm; Albedo at 428 nm; Albedo at 429 nm; Albedo at 430 nm; Albedo at 431 nm; Albedo at 432 nm; Albedo at 433 nm; Albedo at 434 nm; Albedo at 435 nm; Albedo at 436 nm; Albedo at 437 nm; Albedo at 438 nm; Albedo at 439 nm; Albedo at 440 nm; Albedo at 441 nm; Albedo at 442 nm; Albedo at 443 nm; Albedo at 444 nm; Albedo at 445 nm; Albedo at 446 nm; Albedo at 447 nm; Albedo at 448 nm; Albedo at 449 nm; Albedo at 450 nm; Albedo at 451 nm; Albedo at 452 nm; Albedo at 453 nm; Albedo at 454 nm; Albedo at 455 nm; Albedo at 456 nm; Albedo at 457 nm; Albedo at 458 nm; Albedo at 459 nm; Albedo at 460 nm; Albedo at 461 nm; Albedo at 462 nm; Albedo at 463 nm; Albedo at 464 nm; Albedo at 465 nm; Albedo at 466 nm; Albedo at 467 nm; Albedo at 468 nm; Albedo at 469 nm; Albedo at 470 nm; Albedo at 471 nm; Albedo at 472 nm; Albedo at 473 nm; Albedo at 474 nm; Albedo at 475 nm; Albedo at 476 nm; Albedo at 477 nm; Albedo at 478 nm; Albedo at 479 nm; Albedo at 480 nm; Albedo at 481 nm; Albedo at 482 nm; Albedo at 483 nm; Albedo at 484 nm; Albedo at 485 nm; Albedo at 486 nm; Albedo at 487 nm; Albedo at 488 nm; Albedo at 489 nm; Albedo at 490 nm; Albedo at 491 nm; Albedo at 492 nm; Albedo at 493 nm; Albedo at 494 nm; Albedo at 495 nm; Albedo at 496 nm; Albedo at 497 nm; Albedo at 498 nm; Albedo at 499 nm; Albedo at 500 nm; Albedo at 501 nm; Albedo at 502 nm; Albedo at 503 nm; Albedo at 504 nm; Albedo at 505 nm; Albedo at 506 nm; Albedo at 507 nm; Albedo at 508 nm; Albedo at 509 nm; Albedo at 510 nm; Albedo at 511 nm; Albedo at 512 nm; Albedo at 513 nm; Albedo at 514 nm; Albedo at 515 nm; Albedo at 516 nm; Albedo at 517 nm; Albedo at 518 nm; Albedo at 519 nm; Albedo at 520 nm; Albedo at 521 nm; Albedo at 522 nm; Albedo at 523 nm; Albedo at 524 nm; Albedo at 525 nm; Albedo at 526 nm; Albedo at 527 nm; Albedo at 528 nm; Albedo at 529 nm; Albedo at 530 nm; Albedo at 531 nm; Albedo at 532 nm; Albedo at 533 nm; Albedo at 534 nm; Albedo at 535 nm; Albedo at 536 nm; Albedo at 537 nm; Albedo at 538 nm; Albedo at 539 nm; Albedo at 540 nm; Albedo at 541 nm; Albedo at 542 nm; Albedo at 543 nm; Albedo at 544 nm; Albedo at 545 nm; Albedo at 546 nm; Albedo at 547 nm; Albedo at 548 nm; Albedo at 549 nm; Albedo at 550 nm; Albedo at 551 nm; Albedo at 552 nm; Albedo at 553 nm; Albedo at 554 nm; Albedo at 555 nm; Albedo at 556 nm; Albedo at 557 nm; Albedo at 558 nm; Albedo at 559 nm; Albedo at 560 nm; Albedo at 561 nm; Albedo at 562 nm; Albedo at 563 nm; Albedo at 564 nm; Albedo at 565 nm; Albedo at 566 nm; Albedo at 567 nm; Albedo at 568 nm; Albedo at 569 nm; Albedo at 570 nm; Albedo at 571 nm; Albedo at 572 nm; Albedo at 573 nm; Albedo at 574 nm; Albedo at 575 nm; Albedo at 576 nm; Albedo at 577 nm; Albedo at 578 nm; Albedo at 579 nm; Albedo at 580 nm; Albedo at 581 nm; Albedo at 582 nm; Albedo at 583 nm; Albedo at 584 nm; Albedo at 585 nm; Albedo at 586 nm; Albedo at 587 nm; Albedo at 588 nm; Albedo at 589 nm; Albedo at 590 nm; Albedo at 591 nm; Albedo at 592 nm; Albedo at 593 nm; Albedo at 594 nm; Albedo at 595 nm; Albedo at 596 nm; Albedo at 597 nm; Albedo at 598 nm; Albedo at 599 nm; Albedo at 600 nm; Albedo at 601 nm; Albedo at 602 nm; Albedo at 603 nm; Albedo at 604 nm; Albedo at 605 nm; Albedo at 606 nm; Albedo at 607 nm; Albedo at 608 nm; Albedo at 609 nm; Albedo at 610 nm; Albedo at 611 nm; Albedo at 612 nm; Albedo at 613 nm; Albedo at 614 nm; Albedo at 615 nm; Albedo at 616 nm; Albedo at 617 nm; Albedo at 618 nm; Albedo at 619 nm; Albedo at 620 nm; Albedo at 621 nm; Albedo at 622 nm; Albedo at 623 nm; Albedo at 624 nm; Albedo at 625 nm; Albedo at 626 nm; Albedo at 627 nm; Albedo at 628 nm; Albedo at 629 nm; Albedo at 630 nm; Albedo at 631 nm; Albedo at 632 nm; Albedo at 633 nm; Albedo at 634 nm; Albedo at 635 nm; Albedo at 636 nm; Albedo at 637 nm; Albedo at 638 nm; Albedo at 639 nm; Albedo at 640 nm; Albedo at 641 nm; Albedo at 642 nm; Albedo at 643 nm; Albedo at 644 nm; Albedo at 645 nm; Albedo at 646 nm; Albedo at 647 nm; Albedo at 648 nm; Albedo at 649 nm; Albedo at 650 nm; Albedo at 651 nm; Albedo at 652 nm; Albedo at 653 nm; Albedo at 654 nm; Albedo at 655 nm; Albedo at 656 nm; Albedo at 657 nm; Albedo at 658 nm; Albedo at 659 nm; Albedo at 660 nm; Albedo at 661 nm; Albedo at 662 nm; Albedo at 663 nm; Albedo at 664 nm; Albedo at 665 nm; Albedo at 666 nm; Albedo at 667 nm; Albedo at 668 nm; Albedo at 669 nm; Albedo at 670 nm; Albedo at 671 nm; Albedo at 672 nm; Albedo at 673 nm; Albedo at 674 nm; Albedo at 675 nm; Albedo at 676 nm; Albedo at 677 nm; Albedo at 678 nm; Albedo at 679 nm; Albedo at 680 nm; Albedo at 681 nm; Albedo at 682 nm; Albedo at 683 nm; Albedo at 684 nm; Albedo at 685 nm; Albedo at 686 nm; Albedo at 687 nm; Albedo at 688 nm; Albedo at 689 nm; Albedo at 690 nm; Albedo at 691 nm; Albedo at 692 nm; Albedo at 693 nm; Albedo at 694 nm; Albedo at 695 nm; Albedo at 696 nm; Albedo at 697 nm; Albedo at 698 nm; Albedo at 699 nm; Albedo at 700 nm; Albedo at 701 nm; Albedo at 702 nm; Albedo at 703 nm; Albedo at 704 nm; Albedo at 705 nm; Albedo at 706 nm; Albedo at 707 nm; Albedo at 708 nm; Albedo at 709 nm; Albedo at 710 nm; Albedo at 711 nm; Albedo at 712 nm; Albedo at 713 nm; Albedo at 714 nm; Albedo at 715 nm; Albedo at 716 nm; Albedo at 717 nm; Albedo at 718 nm; Albedo at 719 nm; Albedo at 720 nm; Albedo at 721 nm; Albedo at 722 nm; Albedo at 723 nm; Albedo at 724 nm; Albedo at 725 nm; Albedo at 726 nm; Albedo at 727 nm; Albedo at 728 nm; Albedo at 729 nm; Albedo at 730 nm; Albedo at 731 nm; Albedo at 732 nm; Albedo at 733 nm; Albedo at 734 nm; Albedo at 735 nm; Albedo at 736 nm; Albedo at 737 nm; Albedo at 738 nm; Albedo at 739 nm; Albedo at 740 nm; Albedo at 741 nm; Albedo at 742 nm; Albedo at 743 nm; Albedo at 744 nm; Albedo at 745 nm; Albedo at 746 nm; Albedo at 747 nm; Albedo at 748 nm; Albedo at 749 nm; Albedo at 750 nm; Albedo at 751 nm; Albedo at 752 nm; Albedo at 753 nm; Albedo at 754 nm; Albedo at 755 nm; Albedo at 756 nm; Albedo at 757 nm; Albedo at 758
    Type: Dataset
    Format: text/tab-separated-values, 727332 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calculated; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, sun elevation; Sea Ice Physics @ AWI; snow depth; solar radiation; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm;
    Type: Dataset
    Format: text/tab-separated-values, 955680 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; Battery, voltage; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Humidity, relative, technical; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Pressure, atmospheric; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, technical
    Type: Dataset
    Format: text/tab-separated-values, 34050 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; Backscatter strength; BRS; buoy; Buoy, radiation station; chlorophyll; Chlorophyll a; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Fluorescence, dissolved organic matter; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation
    Type: Dataset
    Format: text/tab-separated-values, 116176 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Amplitude, measured with blue excitation light; Amplitude, measured with red excitation light; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calibrated phase; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Phase, measurement with blue excitation light; Phase, measurement with red excitation light; PS122/1_1-167, 2019R8; Quality flag, position; Saturation, air, relative; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, water; Temperature compensated phase; Voltage, thermistor bridge
    Type: Dataset
    Format: text/tab-separated-values, 79871 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calculated; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, sun elevation; Sea Ice Physics @ AWI; snow depth; solar radiation; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm;
    Type: Dataset
    Format: text/tab-separated-values, 958850 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-03-08
    Keywords: Baseline Surface Radiation Network; BSRN; DATE/TIME; IZA; Izaña; Monitoring station; MONS; Ozone total; Tenerife, Spain
    Type: Dataset
    Format: text/tab-separated-values, 1663 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-03-08
    Keywords: Baseline Surface Radiation Network; BSRN; DATE/TIME; HEIGHT above ground; IZA; Izaña; Monitoring station; MONS; Tenerife, Spain; Ultraviolet-a global; Ultraviolet-a global, maximum; Ultraviolet-a global, minimum; Ultraviolet-a global, standard deviation; Ultraviolet-b global; Ultraviolet-b global, maximum; Ultraviolet-b global, minimum; Ultraviolet-b global, standard deviation; UV-Radiometer, Kipp & Zonen, UVB1, SN 970839, WRMC No. 61007; UV-Radiometer, Kipp & Zonen, UV-S-A-T, SN 080005, WRMC No. 61006
    Type: Dataset
    Format: text/tab-separated-values, 356432 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-03-08
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; IZA; Izaña; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Vaisala, RS92; Temperature, air; Tenerife, Spain; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 1318328 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-03-08
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Code; DATE/TIME; Dew/frost point; Geopotential of a standard isobaric surface; High cloud; HYGRO; Hygrometer; IZA; Izaña; Low/middle cloud amount; Low cloud; Middle cloud; Monitoring station; MONS; Past weather1; Past weather2; Present weather; Station pressure; Temperature, air; Tenerife, Spain; Thermometer; Total cloud amount; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 996 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-02-27
    Description: This data set includes biogeochemical proxy data analysed on sediment core TAN1106-28 in 2021 at the University of Tasmania, The Australian Nuclear Science and Technology Organisation, National Taiwan University, and the University of Southampton. This sediment core was collected in 2011 by the RV Tangaroa, in the Solander Trough, south of New Zealand (-48.372°S, 165.659°E). The data spans from 71–0 ka, and is comprised of sea surface temperatures, thorium normalised fluxes of iron, lithogenic material, total organic carbon, chlorins, CaCO3, and excess barium, as well as formanifera-bound nitrogen isotopic compositions, authigenic uranium and excess manganese concentrations, and Benthic-Planktic 14C offsets (yrs).
    Keywords: biogeochemistry; dust; Export Production; iron fertilization; Millennial scale variability; Southern Ocean; SST
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-27
    Description: Current velocities of the upper water column along the cruise track of R/V Maria S. Merian cruise MSM112/1 were collected by a vessel-mounted 75 kHz RDI Ocean Surveyor ADCP. The ADCP transducer was located at 6.0 m below the water line. The instrument was operated in narrowband mode (WM10) with a bin size of 8.00 m, a blanking distance of 8.00 m, and a total of 100 bins, covering the depth range between 22.0 m and 814.0 m. Heading, pitch and roll data from the ship's motion reference unit and the navigation data from the Global Positioning systems were used by the data acquisition software VmDAS internally to convert ADCP velocities into earth coordinates. Single-ping data were screened for bottom signals and, where appropriate, a bottom mask was manually processed. The ship's velocity was calculated from position fixes obtained by the Global Positioning System (GPS). Accuracy of the ADCP velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline. Data post-processing included water track calibration of the misalignment angle (-47.4056° +/- 0.6284°) and scale factor (1.0037 +/- 0.0102) of the Ocean Surveyor signal. The velocity data were averaged in time using an average interval of 60 s. Velocity quality flagging is based on different threshold criteria: Depth cells with ensemble-averaged percent-good values below 25% are marked as 'bad data'. Depth cells with velocities above 2.0 m/s are flagged as 'bad data'. Depth cells with a root-mean-square deviation between the measured ensemble-average velocity and a cell-wise running-mean velocity above 0.5 m/s are flagged as 'probably bad data'.
    Keywords: Current velocity, east-west; Current velocity, north-south; DAM_Underway; DAM Underway Research Data; DATE/TIME; DEPTH, water; Echo intensity, relative; LATITUDE; LONGITUDE; Maria S. Merian; MSM112; MSM112_0_Underway-3; Pings, averaged to a double ensemble value; Quality flag, current velocity; RM ROFI; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Vessel mounted Acoustic Doppler Current Profiler [75 kHz]; VMADCP-75
    Type: Dataset
    Format: text/tab-separated-values, 4385480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    PANGAEA
    In:  Instituto de Geofísica, Universidad Nacional Autónoma De México
    Publication Date: 2024-02-27
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Mexico; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP22, SN 160484, WRMC No. 83003; Pyranometer, Kipp & Zonen, CMP22, SN 160486, WRMC No. 83001; Pyrgeometer, Kipp & Zonen, CGR4, SN 140084, WRMC No. 83004; Pyrheliometer, Kipp & Zonen, CHP 1, SN 140189, WRMC No. 83002; SEL; Selegua, Mexico Solarimetric Station; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; Thermometer; UV-Biometer, Solar Light 501A, SN 19489, WRMC No. 83007
    Type: Dataset
    Format: text/tab-separated-values, 1202633 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-02-21
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; Japan; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Meisei, iMS; TAT; Tateno; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 32168 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    PANGAEA
    In:  GeoSphere Austria
    Publication Date: 2024-02-23
    Keywords: Amount of cloud layer 1; Amount of cloud layer 2; Amount of cloud layer 3; Anemometer; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cloud base height code, layer 1; Cloud base height code, layer 2; Cloud layer 1; Cloud layer 2; Cloud layer 3; Code; DATE/TIME; Dew/frost point; High cloud; HYGRO; Hygrometer; Low/middle cloud amount; Low cloud; Middle cloud; Monitoring station; MONS; Past weather1; Past weather2; Present weather; SON; Sonnblick; Station pressure; Temperature, air; Thermometer; Total cloud amount; Visibility sensor; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 5511 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    PANGAEA
    In:  GeoSphere Austria
    Publication Date: 2024-02-23
    Keywords: Amount of cloud layer 1; Amount of cloud layer 2; Amount of cloud layer 3; Anemometer; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cloud base height code, layer 1; Cloud base height code, layer 2; Cloud base height code, layer 3; Cloud layer 1; Cloud layer 2; Cloud layer 3; Code; DATE/TIME; Dew/frost point; High cloud; HYGRO; Hygrometer; Low/middle cloud amount; Low cloud; Middle cloud; Monitoring station; MONS; Past weather1; Past weather2; Present weather; SON; Sonnblick; Station pressure; Temperature, air; Thermometer; Total cloud amount; Visibility sensor; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 5214 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...