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Preface

Students of particle physics often find it difficult to locate resources to learn
calculational techniques. Intermediate steps are not usually given in the research
literature. To a certain extent, this is also the case even in some of the textbooks.
In this book of worked problems we have made an effort to provide enough details
so that a student starting in the field will understand the solution in each case.
Our hope is that with this step-by-step guidance, students (after first attempting
the solution themselves) can develop their skill, and confidence in their ability, to
work out particle theory problems.

This collection of problems has evolved from the supplemental material devel-
oped for a graduate course that one of us (L.F.L.) has taught over the years at
Carnegie Mellon University, and is meant to be a companion volume to our text-
book Gauge Theory of Elementary Particle Physics (referred to as CL throughout
this book) rather than a complete assemblage of gauge theory problems. Neverthe-
less, it has a self-contained format so that even a reader not familiar with CL can
use it effectively. All the problems (usually with several parts) have been given a
descriptive title. By simply inspecting the table of contents readers should be able
to pick out the areas they wish to tackle.

Several new subjects have entered in the field in the fifteen years since the
original writing of CL. Although we have not revised the book to incorporate them
because we would not be able to do them justice, we hope this set of problem/
solution presentations is the first step towards remedying the situation. We have
incorporated a number of new topics and developed further those that were only
introduced briefly in the original text. Listed below are some of these areas:

Relations among different renormalization schemes
Further applications of the path-integral formalism
General relativity as a gauge theory
Superconductivity as a Higgs phenomenon
Non-linear sigma model and chiral symmetry

Path integral derivation of the axial anomaly

Infrared and collinear divergence in QCD

Further examples of the parton model phenomenology
QCD and Al = % rule in the non-leptonic weak decays
More on gauge theories of lepton number violation
Group theory of grand unification

Further examples of solitons

Many people have helped us in preparing this book. Our thanks go particularly
to all the students who have taken the course and have worked through a good part
of these problems. One of us (T.P.C.) also wishes to acknowledge the enjoyable



vi Preface

hospitality of the Santa Cruz Institute of Particle Physics when finishing up this
project. The original literature has only been referenced casually, and we apologize
to the authors whose work we may have neglected to cite.

This book and CL share a page on the World Wide Web at the URL
http://www.umsl.edu/~tpcheng/gaugebooks.html. Misprints or
other corrections brought to our attention will be posted on this page. We would
be grateful for any comments about these books.

St. Louis T.P.C.
Pittsburgh L.FL.
January 1999
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1 Field quantization

1.1 Simple exercises in A¢” theory

In A¢* theory, the interaction is given by

A 4

(a) Show that, to the lowest order in A, the differential cross-section for two-
particle elastic scattering in the centre-of-mass frame is given by

do  3? (12)
dQ  12872s ‘
where s = (p;+ p2)?, with p; and p, being the momenta of the incoming particles.

(b) Use Wick’s theorem to show that the graphs in Fig. 1.1 have the symmetry
factors as given. Also, check that these results agree with a compact expression
for the symmetry factor

s=g [[ 2?an™ (1.3)

n=2,3,...

where g is the number of possible permutations of vertices which leave unchanged
the diagram with fixed external lines, «,, is the number of vertex pairs connected
by n identical lines, and § is the number of lines connecting a vertex with itself.

(¢) Show that the two-point Green’s function satisfies the relation

A
(O + ) {O0IT (P (x)p (»))]0) = ;<0|T(¢3(x)¢(y>)|0> —i8*(x — ).

Also verify this relation diagrammatically to first order in A.

O

5=6
S§=2
§=4 S=4

FiG. 1.1. Symmetry factors.



2 Field quantization 1.1

(d) A Green’s function involving the composite operator 2(x) = %(bz(x) is
defined as

G (x; X1, %) = (OIT ()P (x1) - -+ p (x,))[0). (1.4)

Write down, to the first order in A, the various contributions to Gg ) (x; x1, x2).

Solution to Problem 1.1

(a) The tree diagram for a two-particle elastic scattering is shown in Fig. 1.2. Thus
to this order the scattering amplitude is simply 7 = —iA giving rise to a differential
cross-section: (see CL-Appendix A for rules of cross-section calculation):

J 1 11 A d’ps d’py
o= ———|—1
|V1 — V2| 2E1 2E2 (27T)32E3 (27T)32E4
x(2m)*8*(p1 + p2 — p3 — pa)3- (1.5)

The last % factor is inserted to account for the presence of two identical particles
in the final state.
We then have the phase space factor of

d’ps d’py
(27)32E; 27)2E4

p= /(277) 8(p = ps— pa) (1.6)
where p = p; + p». In the centre-of-mass frame, the four momenta can be
parametrized as p; = (E, p), p» = (E, —p), p3 = (E’, p/), and py, = (E’, —p’).
After performing the d°p, integration, the phase factor becomes

d3p/
= | @7)"28QQE —2FE’
P /( ) 78( )45/2
p'E'dE’
= /(27‘[) 2§QE —2E)——— 157 dQ
pl
= H.7F ds (1.7)

and thus the differential cross-section

do 1 1 |p| A?
dQ  |vi —Vo|4E23272E 2

(1.8)

FiG. 1.2.



1.1 Simple exercises in A¢* theory 3

After substituting the flux of |v; — v»| = [(p1/E1) — (p2/E>)| = 2|p|/E and the
invariant variable s = (p; + p,)> = 4E? into the above expression we obtain
do A2
dQ ~ 12872’
(b) (i) The diagram in Fig. 1.3 corresponds to a second-order term in the pertur-
bation expansion

(1.9)

1 /—ix\?
5 (4—’,) f d*y1 d*y, (01T 19 (x1)p (12):0 (3 (YD (YD P (31):
6 (y2) (32)b (y2)¢ (32):1]0). (1.10)

The amplitude like the one above but with the interchange y; <> y, has the same
contribution. This doubling cancels the first factor of % in the above expression,
which comes from the Taylor expansion.

Wick’s expansion leads to the following contractions. There are four ways to
contract ¢ (x;) with any one of the ¢ (y;)s and similarly four ways to contract ¢ (x,)
with any one of the ¢ (y)s; then there are 3! ways to contract the remaining pairs
of ¢(y1) and ¢ (y,). The (inverse) symmetry factor is

(1 1)’ 1
st=(=-2)(=) 4-4.31=—. (L11)
2! 41 3!

This checks with the result obtained by using eqn (1.3) directly, because g = 1,
a3 =1,and B = 0.
(ii) The diagram in Fig. 1.4 is first order in the coupling
TR d*y (OIT[¢ (x1)p (x2):0 (Y)p (1) (1) ():1]0). (1.12)
There are four ways to contract ¢ (x;) with any one of the ¢ (y)s and three ways
to contract ¢ (x,) with any one of the remaining three ¢ (y)s. Hence

s3] (1.13)
T4 2 ’
This checks with the result obtained from eqn (1.3), since g = 1, o, = 0, and

B=1.
n O\ %

X

FiG. 1.3.

FiG. 1.4.



4 Field quantization 1.1

(iii) The diagram in Fig. 1.5, like the one in Fig. 1.2, corresponds to the second-
order term as given in (i).

The multiplicity is determined by noting that there are four ways to contract
¢ (x1) with any one of the ¢(y;)s and three ways to contract ¢ (x,) with any one
of the remaining three ¢ (y;)s. And there are (‘2‘) = 4 - 3 ways to contract the

remaining ¢ (y;) pair to all the possible pairs out of the four ¢ (y,)s.

sl = 12 ! 4343—1 1.14
_<5')(4!)2"'._Z' (1.14)

Equation (1.3) also yields S = 4 because in thiscase g = 1, o = 1, and § = 1.
(iv) Figure 1.6(a) is a fourth-order diagram. There are % such diagrams corres-
ponding to 4! ways to permute the y; » 3 4 positions for a fixed x; » 3 4, and the two
categories of diagrams as illustrated in Fig. 1.6(b) are actually identical. Thus the
Taylor series factor of ﬁ is only partially compensated.
For brevity, for the remaining part of the amplitude we will only display the
position factors of the fields

X1X2X3X4 YIVIVIYL Y2Y2Y2Y2 Y3Y3Y3¥3 YaYayaya (1.15)
%)
Xy bgl X
FiG. 1.5.
Y3
X, X
3
y] yZ (a)
)Cz y4 x4
V3 Y,
(b)
y4 y3

FiG. 1.6.



1.1 Simple exercises in A¢* theory 5

and examine its combinatorics. There are 4 - 3 ways to contract ¢ (x1) and ¢ (x3)
with the four ¢ (y;)s, and the same number of ways between ¢ (x3) and ¢ (x4)
and the ¢ (y,)s. For the remaining two ¢ (y;)s to contract into the respective four
¢ (y3)s and ¢ (y4)s there are 2 - 4 - 4 ways. Similarly, for the remaining two ¢ (y;)s
to contract into the respective remaining three ¢ (y3)s and ¢ (y4)s there are 2 -3 - 3
ways. Finally, there are two ways for the remaining two ¢ (y3)s and ¢ (y4)s to
contract into each other.

L <1 4!) 1 ,
K- =) — . @-32.2-4-4.2-3-3)-2

41 2 ) @4
14-3)%.23 1
= —ay =7 (1.16)

This again checks with eqn (1.3), since g =2, 0y = 1,and 8 = 0.
(c) First we show that the differentiation of the two-point function with respect to
x yields
3 (OIT (¢ (x)¢ ()[0) = (0T (3" (x)¢ ())10)
+(0[[e (x), ¢ (M]10)d(x0 — yo) (1.17)

where the equal-time commutator actually vanishes. Differentiating for the second
time we have

B (01T (x)¢(»)10) = (OIT (B (x)¢(¥))|0)
+(01[80¢ (x), ¢ (¥)110)8(x0 — yo). (1.18)

From the equation of motion O¢(x) = —u’¢ — (A/3!)¢> and the canonical
commutation relation [y (x), ¢ (¥)]18(xo — yo) = —ié*(x — y), we then obtain
the result stated in the problem.

A
(O + 1) (01T (@ (x)p (3))0) = —§<0|T(¢3(X)¢(y))lo) —is*x — y).
(1.19)

To verify this relation diagrammatically we note that the first order in A diagrams
for the two-point function are given in Fig. 1.7(a).
The Feynman diagrams lead us to the relation

OIT @) (NI0) = iAp(x — y) + <7’>

x / A2 lidp(x — DNidr(z — NIARO)  (1.20)

Using the relation (O, 4+ u?)Ar(x — y) = —8*(x — y), we obtain the left-hand
side of eqn (1.19) to first order:

—is*(x —y) + (%) /d4z [i8*(x — DIiAF(z — ¥)]iAF(0)

A
=—7A8r = y)Ar0) — it — y). (1.21)



6 Field quantization 1.2

+ Q Q
Yy  x z y x

X y
(a) (b)
FiG. 1.7.
X1 z X2
(a) (b)
FiG. 1.8.

Writing out the Green’s function on the right-hand side, we have

A A
30T @ X)P )G xX)P(yDI0) = =ZiAr(x = y)iAF(0). (1.22)

Equations (1.21) and (1.22) clearly show that the relation (1.19) is satisfied. The
Feynman diagram for eqn (1.22) is shown in Fig. 1.7(b).

(d) There are three first-order diagrams for the two-point function
Gg (x: x1,3) = (01T (3¢ ()¢ (x1)$ (x2))|0). (1.23)

We shall explicitly work out the case of diagram (a) in Fig. 1.8.

_')\'
0T 1> (x)p (x1) ¢ (x2) <4—’,) / d*y¢*()|0)

= (%) /d4}’[iAF(X1 —WIiArGo — DIAF — . (1.24)
The symmetry factor of S = 2 can be understood by noting that there are 4 - 3 ways
to contract between ¢ (x;)¢ (x») and two ¢s in ¢*(y), and 2 ways to contract ¢ (x)
with the remaining two ¢ (y)s. Thus the 4! factor in the coupling is cancelled,
and we are left with the % factor from the composite operator. The diagrams in
Fig. 1.8(b) can be worked out in the same way. Their symmetry factors are also 2.

1.2 Auxiliary field

The Lagrangian density for a set of real scalar field 9%, a = 1,2, ..., N,is given as

_1 a a H’_zaa & a ga\2
E—E(am )(@"¢*) — 2¢¢ —8(¢¢)- (1.25)

(a) Work out the basic vertices in this theory by calculating the four-point ampu-
tated Green’s function to the first order in A.



1.2 Auxiliary field 7

(b) Consider the Lagrangian density

1 u? 1 1
£’=—8 O (H D) — T pip? -2 - a_a 1.26
2(u¢)(¢) 2¢¢+2A0 20¢¢ (1.26)
where o (x) is another scalar field.

(i) Show that if we eliminate o (x) by using the equation of motion, we end up
with the Lagrangian in eqn (1.25).

(ii) If we do noteliminate o (x), and take the propagator for o (x) in the momen-
tum space to be —iA (which can be justified by adding a term (¢/2)(9,,0)(0"0)
and then the limit of ¢ — 0 after the propagator has been worked out), show that
L’ gives the same basic vertex for ¢ (x) as that given in part (a).

Solution to Problem 1.2

(a) To the first order in A, the four-point Green’s function with the four external
lines carrying the internal indices a, b, c, d is given as

(OIT¢" 9" ¢ ¢ (?’A) ¢'¢'¢’¢’10) (1.27)
where we have grouped the four fields in the interaction term into two pairs labelled
i and j, respectively—repeated indices are always summed over.

As displayed in Fig. 1.9, there are two ways ¢'s can be contracted with ¢“¢?,
and two ways between ¢/s and ¢°¢?; these four ways are to be multiplied by 2
corresponding to the interchange i <> j. Thus the factor of 8 is cancelled and the
vertex is given by —iA8’8°¢. There are of course other ways we can pair off
the four external lines. Removing the propagators for the external lines, we have

the basic vertex for this theory:
—iA(8%P s 4 gacgbd 4 gadgbey, (1.28)

(b) (i) Since the £ does not contain the 9,0 field, the equation of motion for the
o field 3L/ /do = 0 is simply a constraint equation: o /A = %qb“qb“. Substituting
this condition into the £’ Lagrangian density, the o -dependent part becomes

12_1 aa_)\ aaZ_)“ aa2__}\ a ay2 1.29
23 §0¢¢—§(¢¢) Z(¢¢)_ §(¢¢) (1.29)

and thus £ = L.

a b b a d
c/\d ¢ d c b

@ (b) (©)

Fic. 1.9.



8 Field quantization 1.3

q)a
S N (+i)) S (i 6
q)b
FIG. 1.10. Feynman rules for the Lagrangian £’.
a b a d
\/ a b \/
| o |
| o —-—= Ke]
| |
| |
/\ ¢ d /\
c d c b
() (b) (©
Fic. 1.11.

(ii) The Feynman rule from the £’ theory is shown in Fig. 1.10.
From this we can construct the Feynman diagrams for the four-point function
in Fig. 1.11.

Diagram (a) yields (—i8)(4i)(—i8?) = —i§’§°?. Similarly, diagrams (b)

and (c) give —i8°°8°? and —i89?8%¢, respectively.

Remark. Very often this kind of auxiliary field is introduced to make the calcu-
lation more tractable. For the case here, the use of the o-field makes the flow of
the internal symmetry indices easier to monitor.

1.3 Disconnected diagrams

Consider the unperturbed and perturbative parts of the scalar field theory

1 w? m?
Lo= (0,07 — =¢°, Li=——0¢" 1.30
0 2( 1P 2 ¢ 1 ) ¢ (1.30)
In the perturbation theory, the two-point Green’s function is given by

GP (x1, x2) = (0]T (¢ (x1)(x2))]0)

_ (OIT (¢o(x1)po(x2) exp[—i [ H'(x) dx1)|0) (131)
(OIT (exp[—i [ H'(x) dx])|0) ' '

Use Wick’s theorem to demonstrate explicitly that the respective disconnected
graphs in the numerator and denominator cancel.



1.4 Simple external field problem 9

FiG. 1.12.

FiGc. 1.13.

Solution to Problem 1.3

The two-point Green’s function

GO (ur.xyy = LT @0l expl—i [ H'(¥) dxDI0) _ N
(01T (expl—i [ H'(x) dx])|0) D

(1.32)

has the following Wick’s (diagrammatic) expansions, shown in Fig. 1.12, for the
denominator D and the numerator N, respectively, where the dot represents the
‘vertex’ of L£; = —(m?/2):¢*(x):. This is equivalent to the expansion as shown
in Fig. 1.13.

We see that the disconnected contribution has been cancelled.

1.4 Simple external field problem

Suppose the Lagrangian for a scalar field is given by

= 1 9 )2 W 2
= 5( 1) —7¢ —J(x)p(x) (1.33)

where J(x) is a real c-number function.
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(a) Calculate (0]|¢ (x)|0) and the two-point function (0|7 (¢ (x)¢(0))|0) exactly.

(b) Treat the term J(x)¢(x) as a perturbation and calculate (0|¢(x)|0) and
(O|T (¢ (x)(0))|0) to the lowest order in J (x).

Solution to Problem 1.4

(a) The Lagrangian yields the equation of motion

O+ 1)) = —J (x). (1.34)
If we define the usual Green’s (propagator) function,
O+ pHAr(x —y) = —8*(x — y), (1.35)

the field operator can then be written as ¢ (x) = ¢o(x) + (ﬁ(x), where ¢p(x) is a
c-number function:

Po(x) = / d*y Ap(x — y)J (). (1.36)

¢3(x) satisfies the homogeneous Klein—Gordon equation, (O + /ﬁ)qg(x) =0, and
can be expanded in terms of the usual creation and annihilation operators, satisfying
the commutation relation [a(k), a’ (k)] = 8% (k — k'):

5 &’k . .
$(x) = / W[a(k)e_’k'x~|—a'(k)e’k'x]. (137)

Because qAS(x)|O) = (O|<;A5(x) = 0 the vacuum expectation value of the unshifted
field operator is non-vanishing:

(0lp (x)10) = ¢po(x) = /d4y Ap(x = y)J (), (1.38)
and the two-point Green’s function is also shifted as
(01T ¢ (x)¢(0)[0) = (0| ¢ (x)0(0)[0) + (0| b (x)$(0)[0)
= ¢po(x)Po(0) +iAFp(x). (1.39)
(b) The ‘interaction vertex’ in the Feynman’s diagrams for this theory is given in
Fig. 1.14(a).
(i) The perturbative expansion for the vacuum expectation value can be repre-
sented by a diagram similar to Fig. 1.14(a).
(="

n!

(0l¢(0)|0) = (01T (x) )
« f Ay TOD$1 () - - d*yu T (3)d1 (3)[0)e
— / d*y (01T 61 ()1 (1)]0) ()

_ /d4y Ar(x = I () = po(x).
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J(») J(y) Iy
x ¥ x »noo»n 0
(a) (b)
FiG. 1.14.

(ii) The perturbative expansion for the two-point Green’s function is given by
Fig. 1.14(b).

(OIT ¢ (x)9(0)[0) = (01T ¢;(x)¢;(0)

_\2
X%/CﬂM d*y2 J(y)J (v2)br (y1)d1 (32)10),
_ (_i)2 d4 d4 . .
= nd 'y [iAr(x — yD)iAp(=y2)J (y1)J (y2)
+ O < )l
= ¢o(x)$o(0). (1.40)

1.5 Path integral for a free particle

Show that the transition amplitude for a free particle (mass m) moving in one
dimension has the expression

12 ; N2
(q/,t’|q,t):|:%i| exp[%%} (1.41)

You should check that this result can be obtained by starting either from the
Hamiltonian or the path integral (Lagrangian) representations of the transition
amplitude:

(q'|exp[—iH(@ — )]lq)

, (1.42)
N [ldq)exp [i /! dt”L]

(q'.1lg,1) =

where H = p?/2m and L = (m/2)4* and the integration measure in the path
integral representation is given by

dg1 = tim (=" V"7 a 1.43
Nldq] = i ( ) ; .

[dq] = lim (—— 11 q (1.43)
with (#' — t) being divided into n equal segments of A: ¢, t, 6, ..., 1,1, = t,,

having the corresponding positions q, g1, q2, - - -, gu—1, 4’ = qn-
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Solution to Problem 1.5
(a) The Hamiltonian method

(q'.1'lq.t) = {q'lexp[—i H(t' — )]lq)

’ _ipz ’
= (q'| exp [W(t - l)} lq). (1.44)

Inserting a complete set of momentum states:
[ dp / _ipz ’
(g’ 1q.1) =/2—<q | exp [—(t =) |Ip)plg)
b4
f—e P[ ' =1 +ip(q’ —q)] (1.45)

which can be integrated by using the Gaussian integral formula:

oo T bZ
/ dx exp(—a)c2 +bx) =,/ —exp (—) . (1.46)
—00 a da
In our case, we have a = (i/2m)(t’ — t) and b = i(q’ — g). Thus,
1/2 . / 2
’o m m (q - Q)
g, t) = | ——— _—. 1.47
‘g rlg.1) |:2ni(t/—t):| [2 v —t } (147)
(b) The path integral method
The action can be written in terms of the space-time intervals as
2 t, m o qdi —qi+1 )
S = Ldt" = —¢*dt" = — A
[ = [ a5 (v
(1.48)

= % [(q - 611)2 + (g1 — q2)2 + o (G — q/)z] .

Using this and the given integration measure, the transition amplitude can be

expressed as
, , m n/2
(q'.1'1q, 1) = /]_[dqleXP{ [(q —a1)’

+ (@1 — )+ + (g1 — ¢)?] } (1.49)

The successive integrals can be calculated by using the formulae for Gaussian
integrals of the form
/OO dx exp [a( )%+ b( )7] il ex ab ( )?
X alx —x X—x =|— — (X —x
_ P : ? a+b P atb 2

o0
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/dql exp {

so that one has

[(q —q)* + (g1 — q2) ]}

2A
miA 172 im (q — q2)?
=[50 3] e[
2
fova S o)
2niA 2 im (q — q3)*
=[5 5] e ]
2
/d%exp{%[(q ) + (g3 — q4) :“
2riA 372 im (q — q4)*
=[50 ] e ]

and so on. In this way, one obtains

gt = 1 ( m )n/z 2iAN""? (12 n—1\"?
s , ) = him —— ...
1 9 n—o00 \27i A m 23 n

X ex ii( _ ’)2

p A q9—49
. mo\12 im(q' — q)
= lim ( - ) exp| ——
n—o0o \2mwinA 2" — 1)

m 2 im(q' — q)*
~(zww=s) 5] -

where one has used nA = (¢’ — t). This result agrees with that obtained in (i) by
using the Hamiltonian as the generator of time evolution.

1.6 Path integral for a general quadratic action

We will study the case of the action containing at most quadratic terms

S[g] = /dt [a(t)g* + b(t)g + c()gq +d(t)g + e()g” + f(B)].  (1.51)
(a) Show that

(Gr.trlgi ti) = Fty, t)exp [iSc(qr, tr: qiv17)] (1.52)

where Sc(q¢, t; gi, t;) is the action for the classical trajectory, and F (¢, ;), being
independent of ¢; and g, can be written as

0,t5) ty
F(ty, ;) = N/ [dn(t)] exp {i / dt [an® + ey + 6772]} . (1.53)
0,%;) 1

Namely, we have the boundary condition n(¢) = n(¢’) = 0. Thus 7(¢) can be
thought of as the difference between a given ¢ () and its classical trajectory.
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(b) Show that the prefactor F (¢, t;) can be expressed in the compact form of
F(ts,1;) = N'/[det A]"/2, (1.54)

with the differential operator A= —a(d?/dt*) + c(d/dt) + e and N’ being a
constant.

Suggestion. Expand 7(¢) as a series in terms of some orthonormal basis functions
xn(t) (wWithn =1,2,3,...):

() =Y caxnlt) (1.55)

where ftt’ Xn () Xm () = 8um and x, () = x.(ty) = 0. The integration measure
N [dn()] = NI, dn(t,) can be taken as N [], dc,. Thus we can obtain an
alternative definition of the path integral as

@r trlgi, t;) :N/l—[dcn expiSq]. (1.56)

Solution to Problem 1.6

(a) The path integral representation of the transition amplitude has the form

@Gr:tr)

(qr.trlqi. ti) = N/ [dq]expi/dt [L(g.q.D)]. (1.57)

(qi i)

Let g. () be the solution to the equation of motion

8S d (0L oL
dq dt \ 9¢q aq

with the boundary condition ¢.(#;)) = ¢; and g.(ty) = qy. An arbitrary path
q(t) can always be written as g () = q.(t) + n(¢). Namely, n(¢) is defined to
be the deviation of ¢ (¢) from the classical trajectory with the boundary condition

n(t) = n(ty) = 0. In terms of the unique classical trajectory and 7(t), we can
express the transition amplitude as

(qystr)
(qr-trlgi, t;) = N [dn(2)]expliSlg. + nl}- (1.59)
(gi-ti)

The action S can be expanded in powers of (¢) : S[g.+n] = Slg.1+S1+ 52, where
S is linear in n(¢) and S, is quadratic. Since the classical trajectory, according to

the variational principle, corresponds to the path with respect to which the action
is stationary, we have S; = 0. Thus

l‘f
Slge + nl = Slgc] + f dt [a(®)i* + cOni + e(On*] . (1.60)

i



1.6  Path integral for a general quadratic action 15

S[q.] is independent of n(¢). Evidently S, is independent of ¢g., hence also of ¢;
and g . (This is only true for a quadratic action.) One then has

0.1f)

(q7:t5lqi, i) = exp(S[g.DN [dn(1)]
©.17)

iy
X exp {i / dt [an® + e + enz]}
1

i

= F(ty,t;)exp[iSc(qr.tr; qinti)] (1.61)

which is just the claimed result.

Remark. In many physical applications of the path integral formalism it is not
necessary to know the prefactor F' (¢, t;), which does not depend on the coordinates

(qf’ C]z)

(b) Start from the expression

F(ty, 1) = N/[dn(t)]eXp {i/f dt [aﬁ2+cnﬁ+en2]}

i

(Y d? d
= Nf[dn(t)]exp {l /z, din(t) [—aﬁ + CE +e] n(t)}
(1.62)

where to reach the second line we have performed an integration by parts.
Now expand 7(¢) in terms of a complete set of orthonormal functions: n(¢) =
>, cn Xn(t) with the condition of y, (#;) = x,(¢;) = 0. We then have

ty R
F(ts, 1) :N/l—[dcn exp{i/ dtn(t)An(t)} (1.63)

14

where A is the differential operator given in the problem. For convenience, we can
choose the orthornormal functions to be the eigenfunctions of A:
Axa(t) & e el ) = ko (1.64)
n =|—a55 c— €| Xn = KnXn\l). .
X dr> ~ drt X X
Then
tr n
/ dtn(An(t) =y / dt ok X (1) Xon (1) = Y Pk, (1.65)
t; n

n,m

and the prefactor for the path integral becomes

F(ty, 1) = Nl_[/dcn exp (i Zc,zk,) ) (1.66)
n 1
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For each term with n = [ we can use the Gaussian integral [ dx exp(—ax?) =
(7t /a)'/* to obtain the promised result:

. 1/2
F(tp.t)=N]] (;ﬂ) = N'detA"'/? (1.67)

‘We can check this result by working out explicitly the simple case of a free particle
S = [\" dt(m/2)g* Thus A = —(m/2)(d*/(d1*) and the eigenvalue equation has
the form for a simple harmonic oscillator equation, —(m/2) (d? Xn /dtz) = kuxn,
which has the solution of ¥, = ,sinw,( — ;), with o, = (2k,/m)'/?. The
boundary condition w,(¢t; — ;) = nm, with n being an integer, implies that the
eigenvalues k, = (m/2)(nm/ty — t;)?. Thus, the determinant has the value of
det A='/2 =T, k, '/*. Include the multiplicative factor from the Gaussian integral
of (m/2)(im)"/? and choose the normalization factor N' = [2n/im(t; —;)]"/* so
that we obtain the expected value (as determined in Problem 1.1) for the prefactor:

Far =T (=) o[ =17 e
(tr,0) = 2 nw )_ ity — ;)| (L.

n

1.7 Spreading of a wave packet
The time-dependent Schrédinger wave function is defined by ¥ (q, 1) = (q, t|¥).
(a) Show that

vt = [(ar a0 van da (1.69)
(b) For the free particle, suppose ¥ (g, t = 0) is a Gaussian wave packet:
1/4 (¢ — a)?
q—a)
,0) = —. 1.70
¥ (q,0) (2]702) eXP[ 152 ] (1.70)
Show that it will spread as time evolves:
N (g —a)?
2
D= ——— —_ 1.71
¥ (q. 1) |:27102(t)i| exp[ =) ] (1.71)
where
2 2 r*

Remark. One may recall the physical interpretation for this spreading Gaussian
wave packet. The initial Gaussian wave function can be thought of as a super-
position of plane waves e’P*. As they evolve with time, such plane waves acquire a
momentum and time-dependent phase e~iP’1/2m \which will make the superposition
go out of phase for ¢ # 0.
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Solution to Problem 1.7

(a) This connection between the initial and final wave functions by the transition
amplitude can be obtained simply by inserting a complete set of states in the
expression for the wave function,

Viqs.tr) =A{qy trl) = /d%’(qf’ tlgis i) qi til¥r). (1.73)

(b) Substituting into the above equation the expression for transition amplitude
for the free particle case as derived in Problem 1.1 and the wavefunction ¥ (g, 0),

12 . o N\2
(q,t|q,0):(%) exp[%@} (1.74)

we end up with a Gaussian integral of the form shown in Problem 1.5

,(m N2 [im (g —q')? 1\ (¢ — a)?
vian=[ao (535)" oo [T (5) | -]

_( m >1/2 1 VAT 4mio?t l/zexp _ (g —a)?
2mit 2mwo? it +2mo? 402 +i2t/m |’

(1.75)

The y¥*¢ has a simpler expression; it is straightforward to show it checks with the
result given in the problem.

1.8 Path integral for a harmonic oscillator
The Lagrangian is given by

2
m., mo

L=—4*"— —g~. 1.76
X 54 (1.76)

(a) Show that the transition amplitude has the form:

ol mo 172 imw
L trlgi ) = _ exp| z—
as-tr\dis i 2risinw(ty — 1) P 2sinw(ty —1;)

x [(qF + g} cosw(ty —1;) — 2q_f-qi]}. (1.77)

(b) Show that for an initial wave packet of the Gaussian form

1/4
Val@.0) = (=) exp[-Z2 g —ar’]. (1.78)

we have
Wa(q, )? = (?)1/2 exp [—mw(q — acoswn)?]. (1.79)

Namely, there is no spreading of the wave packet.
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(¢) In general, the transition amplitude, as a Green’s function, can be expressed
in terms of the energy eigenfunctions as

(' t1g. 1) = ¢u(ge}(q) ™" (1.80)

where ¢,,(q) = {(g|n) and H|n) = E,|n). Show this and then work out the ground
state energy and wave function by taking the limit of # = 0 and ' — —ioo in the
transition amplitude (¢, t’'|q, t).

Solution to Problem 1.8

(a) The action being a quadratic function, the transition amplitude, according to
Problem 1.6, has the form of

(qr.trlgi t;) = F(tp, t)exp [iSc(qr. ty: qin1)]. (1.81)

Thus we need first to calculate the classical action S, then the prefactor F.
Given the Lagrangian we can immediately write down the equation of motion:
G + w*q = 0. Its solution corresponds to the classical trajectory: g.(t) =
Asinwt 4+ B coswt with its coefficients A and B to be fixed by the boundary
conditions of g. (t =t; = 0) = ¢g; and g, (t = ty) = qy. We find B = ¢; and
A = (qr —gicoswty)/sinwty. Thus,

ge(t) = [gi sinw(ty — 1) + g sinowrt] (1.82)

sinwt ¢

with the velocity

Ge(t) = [—gicosw(ty — 1) + qfcoswt]. (1.83)

sin wt ¢

The classical action is

m [ .
Se(qritr; qi,0) = 5/ dt [¢ (1) — 0 (1)]
0
w2

MY 1 cos 200 — 1)
= — - COS Zw — .
sin®wt; 2 Jo 9 !

+ g} cos 2wt — 2giqy cosw(ty —20)].  (1.84)

It is straightforward to do the z-integrals

2 . . .

me sin 2wt sin 2wt sin wt ¢
S.(qs.ts; i, 0) = 2 +42 L _2g

gy tr; qi, 0) 2sin? ) [q, o T qiq ¢
mw

2 2
=—[(q; tr —2qiqr] - 1.85
2siner; [(47 +q}) coswry —2qiqy] (1.85)
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This is the expression for the classical action that appears in the transition
amplitude:

(qr.trlqi. t;) = F(tp, t)exp [iSc(qr. ty: qin1)]. (1.86)

Now we are ready to calculate the prefactor F (¢, t;). It can be determined from
the condition of

(gr.trlgi, t;) =/dq(qf,tflq,t)(q,thi,m (1.87)

where we have inserted a complete set of state {|q, 7)} for a fixed time ¢. Explicitly
writing this out, we have

F(tr, t)exp[iSc(qy. ty: qis 11)]

= F(tf,t)F(t,ti)/dqexp[iSc(Q_fvtf§Qat)+ iSc(q,t;q;,1)].  (1.88)

The integral on the right-hand side has the form

~ Ad* + Bo) | € = (T)" B ¢ 1.89
/_Oo qgexp(—Aq~+ Bq) |e —(;) exp E+ (1.89)

where

A= (1.90)

mo [cosw(ty —1) cosw(t —1;)

2i [sina)(tf—t) sina)(t—ti)]'
For our purpose of calculating the prefactor, there is no need to work out the Bq+C
term as it only contributes to the exponent, which must match the i S. (g, tf; q;, t;)
factor on the left-hand side of the equation. Thus with the presumed cancellation
(check this) of the resultant exponential factors on both sides of the equation, the
only relevant Gaussian integral is

aN\1/2  [2rmisino(t; —t)sino( —t) ">
/dqexPAq2=<Z) z[ mws{nw([f_t‘) ] . (191

This means that the prefactors have the following relation:

12
[%] [sinw(ty — t,~)]l/2 F(ts, 1)

= [sinw(ty — )]'"2F(ts,1) - [sinw( —)]"?F@t, ).  (1.92)

From the above equation we can deduce the desired result:

mow 1/2
F(l‘f,[,') = |: )i| . (1.93)

2risinw(ty —t;
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(b) From Problems 6 and 7, we have the relation

V.0 = [ dd'ta.11g" .01 q.0) (1.94)
where
maw 1/2 imw
, /’0 — 2 722 ) / .
(g, 114’ 0) [2nisina)t] eXp{ZSinwt [(q +a7)coswt qq]}
(1.95)
and, as is given,
Loy = (Me\ _Mme )2
Vulq'. 0 = (22) " exp [ -5 — ] (1.96)

Putting them together,

Valg, 1) = (%)1/4 (%)I/Z/dq/

imw maw
X exp { [(¢* + ¢”) coswt —2qq'] — T(q/ — a)z} .

2 sin wt
(1.97)
The exponential integrand having a quadratic function of ¢’: {---} = —Aq” +
Bgq' + C as its exponent
—imwcoswt  mw —imw ;.
A= ——— +— = —
2 sinwt 2 2 sin wt
—imw o
B = — (g +iasinwt) (1.98)
sin wt

imwcoswt , mw ,
€= 2sinor T 2
the integral is of the Gaussian type discussed in part (a) and yields the result of
(7'[/A)1/2 exp((Bz/4A) + C). We obtain the final wave function

maw\1/4 mo 2rsinot  17?
Vata.n = (=) [ = e“‘”] expl---] (199)
T 2wisinwt —imw

where the exponent has real and imaginary parts:

—imwe i imwcoswt , mw ,

. . 2
.« e — t —_— —_
L P e a
mw 2, MW . 2
:—T(q—acoswt) +175mwt(2aq+a coswt).  (1.100)

In this way we obtain the wave function
1/4
Valg.n = (2) e P exp[ 22 (g — acoson?]
b4 2
[me . 2
X expi [T sinwt (2aq + a cosa)t)], (1.101)

and an expression for |¥,(q, )| just as that quoted in the problem. There is
no spread of the wave packet because the original Gaussian wave function is an
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eigenfunction of the SHO Hamiltonian, and the time evolution comes in only as
an overall phase.

(c) We will first express the transition amplitude in terms of the energy

eigenfunctions:

(@' 1'lg. 1) = (q'lexpliH(t' = D]lq) =Y (gl expli H(¢' — 1)]|n}(nlq)

n

=D PG Iy nlg) = ) du(agr (@) e B,

Setting ¢ = 0 for convenience, it is clear that in the limitof ¢’ = —i T with T — oo
this sum is dominated by the ground state |0) contribution:

lim (¢',—iT|q,0) = lim ¢o(q)p;i(q)e ™", (1.102)
T—00 T—o00

This should be compared to the limiting expression for the transition amplitude
obtained in part (a)

@ 719,0) = (52 ) exp 1 52 (g 4¢P cos o’ — 24'q]

g, 0)=———7—) ex - coswt’ — ,

q 4 27i sin wt’ P 2 sin wt’ 4 a @ 149
(1.103)

Noting that both cos wt’ and i sin wt’ increase as %e‘”T in this limit:

P mw \1/2 —mw ®
(q',—iT|q,0) = (n’e“’T) exp{ ot [(q/z +q2)%€ T _ 2q/Q]}

maw

- (_)]/2 exp {—_mw[(q’2 + qz)]} e 0T/, (1.104)
- 2

Compare the expressions in eqns (1.102) and (1.104) and we obtain the ground
state energy and wave function as

1 mw\ 1/4 —-mw ,
Ey = 7 bo(q) = (7) exp <TCI ) . (1.105)

1.9 Path integral for a partition function

Show that the partition function of canonical ensemble Z = Tr(e ##) with 8 =
(kT)~" and H the Hamiltonian, for a simple case of one degree of freedom system,
can be written as a path integral representation as

—iB
Z = /qu/[dq]exp (l/ th(q,c})) (1.106)
0

where g, = q(t = 0) = g(—iB) and A(q, q) is the Lagrangian in Euclidean time
T =Iif.
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Solution to Problem 1.9

The trace in the partition function can be written as the sum of the matrix elements
of the e #H operator between the eigenstates of the ¢ operator,

Z =" (qole™""|qo). (1.107)
4o

Compare this with the path integral representation of the transition amplitude, cf.
in particular CL-eqn (1.47),

(@7, trlgi, ;) = (qple” =g,

Iy
=f[dq]/[dp]exp (1/ dt[pc}—H(q,p)]). (1.108)

We see that the partition function in eqn (1.107) can be viewed as the special case
of the path integral representation in eqn (1.108) with the restriction

tr—t; =—ip or ti=0 and 1y =—if (1.109)

and the initial and final position identified ¢y = g; = g,. Namely, the path g () is
periodical

q(ty) =qt) = qo- (1.110)
For convenience, we can introduce the new variable t = ir. The integral in
eqn (1.108) becomes
~i . p dq
i/ dt[pq — H(q, p)] =/ dt [ip— — H(g, p)} (1.111)
0 0 dt

and therefore

p d
Z= /[dq]/[dp] exp{/o dr [:pﬁ —H(q,p)“. (1.112)

For most cases, H = (p*/2m) + V (q), the momentum integral is Gaussian

P 1 2 .dq
/dpexp{/o dt[—%p +IEP_V“
: P m (dq\’
=Nexp{/0 dt[—E(E> —V:”. (1.113)

And we have the partition function

p m (dq 2
Z:N/[dq]exp —/0 dr|:3 <E> +Vi| (1.114)

where the combination —[(m/2)(dq/dt)?> + V] is just the usual Euclidean
Lagrangian A(q, g). The constant N is independent of temperature (hence has
no physical significance). The integration is over all the periodic paths with the
boundary path g, = g(0) = g(B).

From this problem we see that the partition function can be obtained from the
usual path integral method through the steps (i) set ; = 0, and t; = —if}, and
q(ty) = q(t;) = q,; and (ii) integrate over ¢,.
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1.10 Partition function for an SHO system
The partition function for the case of the simple harmonic oscillator V(g) =

(mw/2)q?* can be obtained as follows

-1
7 = tr(e_ﬁH) — Ze—ﬂ(il+(l/2))w — (2 sinh %) ) (1.115)

n

Now use the path integral method, as outlined in Problem 1.9, to recover this
result in two ways:

(a) by making use of the SHO result of Problem 1.8, then performing the inte-
gration over boundary values of g, = ¢q(ty) = q(#) as a simple Gaussian
integral, or

(b) by using the approach of calculating the path integral as indicated in
Problem 1.6: Z oc det A~!/2 with A being the appropriate operator for the SHO
case.

Solution to Problem 1.10

(a) From Problem 1.8, we have obtained the SHO transition amplitude

. mo 172 imo
gt = | —— eXpy o —————
ar>trigis i 2isinw(ty —1;) P 2sinw(ty —1;)

x [(¢} + g7 cosw(ty —1;) —2qfq,»]}. (1.116)

To get the partition function by following the method given in Problem 1.9, we set
ti = 0and g5 = q; = q,; the exponent in the above equation becomes

j —2ima sin®(wt /2
()= Y aglcoswry — 1) = 98 (wif/2) 2
2sinwt s sin wt ¢
—i in(wt 2 t
- ng = —imwg? tan =L (1.117)
cos(wtr/2) 2
By integrating over g, and setting r; = —if8, we then obtain

mw 12 . wty 2
Z=—"7" dgyexp | — | imwtan — | g
2mi sinwt g 2

1/2 1/2 —1
maw T .. Wiy
= O — T = 21 sin ——
<2m smwtf) <zmwtan(wtf/2)) < 2 )

—1
_ <2sinh %) . (1.118)



24 Field quantization 1.11

(b) We start with the path integral representation of the partition function as given
ineqn (1.114):

B 1 (dqg 22 )
Z—N/[dq]exp{—/o dt |:§ (E) +7q
=N |[ld ! ﬁd i :
= f[ Q]CXP[—EA TCI(—W+0)>CI]

= N"[det A]"/? (1.119)

where A = —(d?/dt?) + »? and det A = [], a, with a, being the eigenvalues of
A on the space of periodic functions f(t) = f(r + B). We expand this periodic
functionas f(z) = Y, c,e”>™" then the eigenvalues are a, = w? +4w2n2 =2
for the eigenfunction ¢ n order to evaluate such a determinant of a series,
we first take the logarithm of the determinant

Indet A = Zln(w2 +4n%n?B7?). (1.120)

To evaluate this series, we note that

“ dlndetA @ dIndet A
Indet A = dy——=2 xdx———. (1.121)
0 dx 0 dx
In the integrand we have substituted w by .
d o 2 2,5-2\—1
d—lendetA =”;oo(x +47%n%B7?) (1.122)
+oo
_ X72+22(X2 4 4n2n2p2)"!
n=1
—1
= sz + 2—}32 'S n’ + —'BZXZ
dr? 472
= szn'B—X coth n'B—X ﬁ coth 'B—X
2 2 2 2
where we have used the identity
+00
wycothmy = 1+ 2y? Z(nz—i—yz)_l. (1.123)
n=1
In this way
lndetA:/ Bdx coth'BTX —=2In (sinh’%x> (1.124)
0

ordetA = (sinh(,Bx/Z))z. Thus
~1
Z=N (sinh 'BTX> (1.125)

which is in agreement with the result obtained in (a) when we recall that the
temperature independent constant in front has no physical significance.
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1.11 Non-standard path-integral representation
Consider the Lagrangian with a position-dependent ‘mass’
1 .
L=3f@3i (1.126)

Thus the canonical momentum is p = f(g)g and the Hamiltonian H =
(p%/2f(q)). Show that the path-integral representation of the transition ampli-
tude has the form

/ / / . . l
(q'.1'lg.1) =N f [dg]exp {z /dt [L(q, §) ~ 560 In f(q)” . (L127)
Suggestion. One can start with the expression of the transition amplitude

(q'.1lq,1) =N/[dq]/[dp]e><p{i/ dt [pé—H(q,p)]}

n—00 27 2

and then explicitly perform the momentum integrations.

. dp,  dpy N\ gi — gi—1
= lim [ =& ... dq; - --dg,exp ZIZSI Di s

Remark. This is the counter-example, first given by Lee and Yang (1962), show-
ing that path-integral representation is not always of the form

(q’,t’|q,t):N’/[dq]exp{i/dtL(q,c})}. (1.129)

Solution to Problem 1.11

For the given Lagrangian, we have

t 2
. . 14
(/,t/|,l‘)=N/[d ]/[d ]ex l/ dt|: — :|
q q q p1exp i pPq 2f(@)
. dpi  dpa
=1 S dq, ---dq,_
nglc}o 2T 2T 7 In-1

n 2
. qi —qi-1 P
X exp {z E,- ot |:p,- ( 5 ) - 2f(qi)]} . (1.130)

The momentum integrals are of the Gaussian type fj;o dx exp(—Ax?> + B) =
(r/A)'/? exp(B?/4A):

00 2
_ ‘ . (49— 41\ D
! _/0 4P exp{m ["( 51 > 2f(q,~)“

N 1/2 ,
_ |:2nf(6]z)i| exp [——Zf(ql)(qi - %—1)2:| . (1.131)

iét 4iét
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Since we are eventually interested in expressing the [dq] integrand in the form of
an exponential, we will now write the position-dependent part of the prefactor in
the exponential form [ f(¢)]"/* = exp {% In f(q) } In this way the above integral
becomes

172 . . 2 ; .
1,:(.2—”) epoﬂq,) (q, q,1> _tlnf(q,)}&}_ 1132)
i6t 2 3 25t

This means that the path-integral representation can be written

(q'.tg.t) = nlirr;o(ZniSI)‘”/Z/dql-~-dqn71

- f i—qio )\ il f
xeXp{iZ[f(zq)<q 8tq l) —ln2£I(Q)j|8t}

i=1

=N/[dq]exp{i/ [f(zq)q'z— ilng(q)s(O)} dt}. (1.133)

This is the claimed result. To get to the last line we have used the expression for
Dirac’s delta function as

o
5(0) = lim —. (1.134)

1.12 Weyl ordering of operators
Notes on operator ordering

For the simple system of which the Hamiltonian in the form

2

Ho(p,q) = f—m +V(g) (1.135)

has no terms that depend on both p and ¢, the quantization is straightforward:
just replace the classical variables (p, ¢) by operators (p, ¢). Thus the quantum
Hamiltonian operator is unique:

”

H(p,§) = o+ V), (1.136)

and we have the path-integral representation of the matrix element

Aia A dp; il T4\ oo
<Qi+1|H(PaQ)|Qi> — ch Pi, u e’Pr(‘]rH qi) (1.137)
2 2

For the more general case of which the Hamiltonian function H.(p, g) can have
mixed terms of p and g, for example p?g?, the quantized theory is not unique.
Each of the choices: p>4>, §p>q, pg*p, and g>p* will have the same classical
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limit. If these choices are non-equivalent, experimental measurements will, in
principle, pick out the correct choice. Problem 12 will illustrate the point that for
a Hamiltonian containing terms of the type ¢” p™, the path integral quantization
corresponds to, in some sense, the most symmetric ordering, called Weyl order-
ing. It is defined to be the average of all possible orderings of ps and gs. For
instance,

1 n n—1 n
(pqg™ Z(qpq )= @' P +q" P+t pg")

2 n
(PPq"w = (n+1)(n+2) Z 9" pq' pg"" (1.138)

An instructive discussion of Weyl ordering can be found in the book by
Lee (1990).

Remark. To do Problem 1.12, you may find the following identities useful:
& 1
Zl:in(n—i-l) (I-1)

le —n(n +D@n+ 1) 1-2)

n 3 1 2
Zl = [—n(n + 1)] (I-3)
=1 2

and

2 = Z (';) (I-4)

=1

n2n 1 Zl< ) (I-5)
n(n —1)2"2 Zl(l—l)( ) (1-6)

where ( ) (n!/1!(n — I)!) are the binomial coefficients. Can you prove these
identities?

Suggestion. One approach to the first three relations will be to use the equalities
Yoo =" =31 1™ = (n+ 1)" form = 2,3, 4. We note that the left-hand
sides are just different combinations of >, I¥ with k = 1,2, 3. The last three
identities (I-4, I-5, and I-6) simply follow from the successive differentiations
@ /dx" 1 +x)"atx =1form=0,1,2.
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Problems on Weyl ordering

(a) Show that the Weyl ordering of operators p and g can be written as
n 1 n n—1 n
(Pqw = ——=@"p+q" pg+---+pq")
n+1

1 & n! | onei
— i g, 1139
2n;l!(n—1)!qpq (1139

with the matrix element of

qi+1 + qi

) ) (giv1lplai). (1.140)

(@iv1l(pg")wlai) = (

(b) Show the Weyl ordering of the operator product with two powers of p:

2 n
2 n — m 1 n—Il—m
P4 = e D Z;Iq rq' pq

n

1 n! | 2 nei
N 1.141
2nl;zz(n—l)!qpq (1.14D)

which leads to the matrix element of

qgi+1 + qi

5 ) (giv11P%14:)- (1.142)

@i (PP g wlqi) = (

Remark. According to eqns (1.140) and (1.142), the matrix elements of g in the
Weyl ordering are just of the form (g, + ¢;)/2 as prescribed in the path-integral
formalism.

Solution to Problem 1.12

(a) Before working out the situation for general n, let us first consider the simplest
non-trivial case of n = 2:

(ra>w = 2@’p +apq + pa®) = pq” +iq (1.143)
where we have used the commutation relations [¢", p] = img™ ™' to move gs to

the right of ps. The right-hand side is shown to be just the claimed result (as given
in the problem) by further application of these commutation relations:

1 2 2 1 2 . 2 . 2
5 (@°p +24pq + pg*) = Z[(pq +2iq) +2(pq* + iq) + pq*]

= pg® +ig. (1.144)
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The matrix element then has the simple structure:

1

(Gir11(pgHwlg:) = §<qi+1lq2p +2gpq + pq’la;)

1
= ?(qia-l +2gi119i + ¢7){(qi+11plg:)

qi+1 +qi :
=\ (gi+11plgi)- (1.145)

Now let us repeat the above steps for the general # situation,

1 & _
(pg"w = > @'pg"™
=0

n+1

1 n
— n il n—1
"+lz§:o(pq +ilg"™)

= pq" + %nq"“, (1.146)

where to reach the last line we have used the identity (I-1). This result is the same
as given in the problem, eqn (1.139), because,

1 & n! ; » 1 & al o
_E R net _ 1 ol . L
2 1=0 l!(l’l—l)!qpq Qn;“(n_l)'(pq +ilg"")

1 - n n <7 n—1
/ (pq" +ilg"™")

n
23

= pq" + ’znq"—‘ (1.147)
where we have used (I-4) and (I-5). The combination of eqns (1.146) and (1.147)
yields the claimed result:
= n! ;

S n=t, 1.148
Ol!(n_l)!qpq ( )

. 1
(M)W_z_"l

The general matrix element can now be written as

n

n 1 n! 1 n—I[
(gisil(Pg"wlai) = 5 ;H(n i arld' g 141
L& (n\ 1 o
:2_,,2 I qi19; {qinlplgi)
1=0
_ (‘1z‘+1 +q;

2 ) (giv11plgi). (1.149)
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(b) Before working out the general n situation, let us first consider the simplest
non-trivial case of n = 2:

(P’a*)w = £ p* +apap +qp’q + pa’p + papq + p’q®).  (1.150)
The right-hand side can then be rearranged by using the commutators
[¢", p*] = im@" ' p+ pg" "), (1.151)
so that
(P*qH)w = é{ [p*a> + 2i(ap + p9)] + [(pq + Dgp]
+1(pg + ) pql + [P*a” +2ipq] + [P’a” + ipq] + pzqz}
= L(6p’q* + 12ipq — 3) = p*q* + 2ipqg — 1. (1.152)

This last expression can be shown to be just (g2 p? + 2qp*q + p>q*)/4 which is
eqn (1.141) withn = 2:
L@ p? +2q9p%q + P*g» = L[(pPq® + 2ipq + 2igp)
+2(p%q +2ip)q + p*q’]
=1 [4p°¢” + 8ipg — 2] = p*q” +2ipg — 3.

(1.153)
Thus
(P*a>Hw = %(qu2 +29p%q + P*4d), (1.154)
and
(@i 1(P*a*Iwlai) = <%)2 (i1 1) (1.155)

Now let us repeat the above steps for the general # situation.

2 1 o
Z qlpqmpqn l—m

2 n —
(P°q"w = (n+ D +2)

m=0
2

_ 1 .7 =1\ m n—l—m

= mlzo(pq +ilg""q" pq

_ 2 i (pqlerpqnflfm + l-lqler*lpqn*l*m)
(n+D(n+2)

m=0
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2 - I+ . l+m—1 —Il-
e — m il m +m n m
n+ D +2) ZymEO{P[Pq +i(l+m)q ]CI

+il [pqlerfl + l(l +m— 1)ql+m72] qnlm}

B 2
S+ D@ +2)

x Y [PPa" +i@+mpg"t — 10 +m —1Dg"?]. (1.156)
1,m=0

We will discuss separately the three terms on the right-hand side of this equation.
In the first term we have the sum

n n n-—l n n n
Yo=3>=Y -1+ => m+1) =1
1=0 1=0

1,m=0 =0 m=0 =0

=(m+1D*—inn+ D=3+ Dn+2) (1.157)

where the identity (I-1) has been used. We then evaluate the sum in the second
term of eqn (1.156):

n—m

Z(21+m)—22n321+z Z

[,m=0 m=0 [=0 m=0 =0

_22 (n—m)(n—m+1)~|—Zm(n—m+1)

m=0

= Z[n(n + 1) —nml=nm+1)? - In?@m+1)
m=0

= 1n(n+ D +2), (1.158)

where (I-1) has been used. To evaluate the sum in the third term of eqn (1.156),
we will need to use all three identities (I-1, I-2, and I-3):

n

Zl(l+m—1)

1,m=0
—izzm@zz S
=0 m=0 m=0 =0 m=0

n

(A =D —1+ D+ @ D —1+1)]

~

=0

[ 303 +3(n + DI* — (n +2)I]
[=0

NI'—‘
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1 n?(n + 1)? nn+1)2n+1) nn+1)
= %n(n—i—l)(n—i—E)(n— 1). (1.159)

Substituting the results from eqns (1.157) to (1.159) into eqn (1.156), we have
(P’q"w = p*q" +inpg"~" — n(n — g" . (1.160)
We next show that the right-hand side is equal to (1/2") >/ (})q' p*¢"":

1
1 & /n .
> (l)qlpzq’
=0

1 n
= o > <’;> [P*d' +ilq""'p+ pg'™H]q"
=0

] n
= 2_n Z (’;) [p2qn +il(q1—1pqn—l +pqn—l)]

1=0
1 &

=% <’;>[PZQ”+2ilpq”‘l—l(l—l)q”‘z]. (1.161)
2 =0

Using the identities (I-4, I-5, and I-6), we have

1 & n B n . e 1 .
= ¢'p2q" " = p2q" +inpg" ' — —n(n — g" 2. (1.162)
2 im ! 4

Comparing eqns (1.160) and (1.162) we see the relation of eqn (1.141) is satisfied.

1.13 Generating functional for a scalar field

The generating functional for the free scalar field ¢ (x) is of the form

W,[J] =/[d¢]exp{i/d4x£,} (1.163)

where the Lagrangian density with an external c-number source J (x) is given by
1 1

L= 5(a¢>)2 - Euzqsz +J¢. (1.164)

(a) Show that such an £ leads to the equation of motion (O 4 u?)¢ = J with a
classical solution that can be obtained by the usual Green’s function method:

be(x) = — f d*y Ap(x — y)J (). (1.165)

The Green’s function A (x — y) is the Feynman propagator for the scalar field in
position space:
d4k eik(x—y)

Ap(x—y): (27[)4](2—“2—{—1'8. (1166)
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(b) Show that, by a change of variable ¢ (x) = ¢.(x) + n(x) in the Lagrangian
density, the generating functional can be expressed in the form

W,[J] = N exp {—’5 / d*xd*y J(x)Ap(x — y)J(y)} (1.167)
where N is a constant, independent of J.

Remark. One way to understand the ie prescription in the expression (1.166) for
the propagator Ap(x — y) is to note that the path integral expression in (1.163)
is not well defined because of the oscillatory behaviour of exp {i f d*x L j} for a
real L. In principle, we have to go over to the Euclidean space-time t = it in
order to convert this oscillatory behaviour into a damping one. We then return to the
Minkowski space by the method of analytic continuation. However, a much simpler
approach that will accomplish the same task is to add a term exp{i f d*x(ie)¢?}
with ¢ > 0 in the generating functional. This will provide a strong damping to
the Gaussian integral. The generating functional will then be well defined. The
Green'’s function for the corresponding equation of motion (O + u? — ig)¢ = J
is of the form

(Oc + 12 —ie)Ap(x — y) = =8*(x —y) (1.168)

with the solution as given in eqn (1.166).

Solution to Problem 1.13

(a) The minimization condition of the action (modified according to the ie pre-
scription as discussed in the Remark):

S;[¢p] = /d4x L= [d4x [1(0¢)* — L(u? —ie)p> + J¢] (1.169)

is simply the Euler-Lagrangian equation

T BT W O —
8051 = 5 3"(3(3#@)_ W2 —ie)p+J—Dp=0. (1.170)

Thus the equation of motion is
(O, + p? —ie)p(x) = J(x). (1.171)

This equation can be solved by the usual Green’s function method
Ge(x) = — / Ap(x—y)J(y)dty (1.172)
with the Green’s function (the propagator) being defined by the equation

(Oy + 1? — i) Ap(x —y) = =8*(x — ). (1.173)

Equation (1.173) can be solved by Fourier transform with the solution being given
by eqn (1.166).
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(b) The change of variable ¢ (x) = ¢.(x) + n(x) in the Lagrangian density of
eqn (1.169)
S;lp] = fd4x L, = /d4x [16(-0—uhe + J¢] (1.174)
leads to an expression of the action in the form of
Ssl¢e +nl = f d“x{ [=3¢e(0 + 1)pe + T ¢c]

IO + 1Dge — 1 - Inl@ + ;ﬁ)n]}. (1.175)

Because ¢, satisfies the equation of motion, the second term on the right-hand side
vanishes and the first term can be simplified,

/ d'x [-1¢c(0+ 1o + Jo.| = / d'x [-1¢.J + T o]

=3 / d*x J (x)¢e(x)
=-3 / d*x J@)Ap(x = ) () d*y.
(1.176)
The generating functional being
WolJ] = /[d¢] exp{iSy[¢]} = [[dn] exp{iSs[¢c +nl}, (1.177)

we can then factor out the part of action which is independent of the n(x) field:
wisi=esp {2 [ s0are - I d]
x [tnconexp {—%/d“xn(x)(m +M2)n(X)}
= Nexp {—%/d“x JX)Ap(x —y)J(y) d4y} (1.178)
where

N = /[dn(x)]eXp{—%/d4x n(x)(0 +u2)n(x)} (1.179)

is independent of J (x). This is the desired result.
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1.14 Poles in Green's function

Consider the following generalization of the LSZ reduction formula: let T (q, . ..)
be a Fourier transform of the vacuum expectation value of a time-ordered product

T(g,...)= /d4x e (0|T (A(x)B(y) ---)|0), (1.180)

where the operators A(x)B(y)--- can be either elementary field operators like
¢ (x) or composite operators like ¢%(x). Suppose the operator A(x) has a non-zero
matrix element between the vacuum and some one-particle state carrying quantum
number a,

(0]A(0)|p, a) # 0, with (p* +m?)'? = E,. (1.181)

Show that in the upper half of the energy plane g, > 0 the function 7' (g, . ..) has
a pole structure of

I _ . {0lAO)|p, a){p, a |T(B(y) ---)|0)
im T(g,...)=1i 5 5
rm q> —m2 +ie

for g, > 0. (1.182)

Solution to Problem 1.14

We only need to consider in detail the simplest non-trivial case of two operators.
Generalization to cases involving more than two operators will be straightforward.

T(q) = /d4x ¢! (0T (A(x) B(0))|0)

= / d*x ¢ (0 () (0| A () B(0)[0) + 6(—x) (0] BOO)A(x)[0}}
- / d*x ew{e(x)Z<O|A(x)|n><n|B<0)|0>

+9(—x)Z(OIB(O)|k)(k|A(x)|0)}. (1.183)
k

For the one-particle state |p, a) in {|n)}

d*p
Z_)/—(271)32Ea’ (1.184)

we can use the translational invariance to write (0|A(x)|p,a) =
(0]A(0)|p, a) e~P*, and

/ d*x P9 (x) = 27)°8 (p — q) / dtexpli(qo — E,) - 1}
0

1
=28 p-q@——
(2m)°5°(p Q)qo " E e

i(Qo + Ea)

= (271)383(P—q)m, (1.185)
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where we have used p = q so that

go—Ey= B -EL G -womi  atom (1.186)
(qO + Ea) (QO + Ea) (QO + Ea)

Inserting this into eqn (1.183), we can evaluate the function 7'(g) in the limit of
q* — m? with ¢, > 0
d’p 2E
T(@) = | ——2n)*8*(p-q —uo—
@ meQ&<> e e s

x(0]A(O)|p, a)(p, a| B(0)[0) +- - - -

01A©O)la. a)la.alBO)0) ,

1.187
q> —m2 +ie ( )

=i

where the ellipsis stands for the remaining terms, which are clearly free of poles
and hence can be dropped in this limit. This is the desired result.

We also note that for the case of (q, a|A(0)|0) # 0O there will be a pole term in
the go < 0 region of the form

lim T(q) = i (01B(0)Iq, a){q, a|A(0)[0)

for gy < 0. 1.188
q*—>m? g>—m2+ie qo ( )




2 Renormalization

2.1 Counterterms in A¢* theory and in QED
(a) Use the power-counting argument to construct counterterms and draw all the
one-loop divergent 1PI graphs for the real scalar field theory with an interaction of

A A
Lin = —3—j¢3 - ﬁcpf @2.1)

(b) Use the power-counting argument to construct counterterms for the QED
Lagrangian

- - 1
L=vY@iy"*d, —m)y —epy"yA, — ZF“”FW 2.2)
where F,, =9, A, —3,A,.

Remark. One of the key features of the QED theory is that it is invariant under
the gauge transformation (see CL-Section 8.1 for details)

Y(x) = P (x) = e Y (x)
Y (x) = ¥ (x) = ey (x)
1
Au(x) — A;L(x) =A,(x)+ - Ao (x). 2.3)

The desired counterterms must also be gauge invariant.

Solution to Problem 2.1

(a) The superficial degree of divergence D is related to the number of external
boson lines B and the number of ¢* vertices n; by CL-eqn (2.133):

D=4—B—n,. (2.4)

(i) B = 2 (the self-energy diagram): see Fig. 2.1(a) for the one-loop divergent
1PI graph. Thus D = 2—n . Since the number of external lines is even, n| must also
be even: n; = 0 and 2, leading to quadratically divergent ¢ and logarithmically
divergent 0,,¢ 0*¢ counterterms.

(i) B = 3 (the ¢3-vertex diagram): see Fig. 2.1(b) for the one-loop divergent
1PI graph. Thus D = 1 — n; = 0, as n; must be odd (hence n; = 1), leading to a
logarithmically divergent ¢* counterterm.

(iii) B = 4 (the ¢*-vertex diagram): see Fig. 2.2 for the one-loop divergent 1PI
graph. Thus D = 0 leading to a logarithmically divergent ¢* counterterm.
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0O X

(a) (b)

FiG. 2.1.
FiG. 2.2

(@ (b)
Fic. 2.3.

Remark. We may also consider the ‘tadpole diagrams’ of Fig. 2.3 with B = 1
and D = 3 — ny with odd n; = 1 and 3. The quadratically divergent ones are
shown in Fig. 2.3(b), while the logarithmic divergent one is shown in Fig. 2.3(a).

(b) Here both the external boson and fermion line numbers enter into CL-eqn
(2.133)

3
D=4-B-F. (2.5)

Let us enumerate all possible terms starting with the lowest possible external
fermion (electron) and boson (photon) lines:

(i) F = 0, B = 2 (the vacuum polarization diagram, Fig. 2.4(a)): thus the
degree of divergence D = 2 (i.e. quadratically divergent). In order to have a finite
term we need to expand this contribution 7, (k) beyond the second order in photon
momentum k:

T (k) = 70, (0) + k? 8,71 (0) + Kk 712(0) + 7 (). (2.6)

Thus the required counterterms are (A)? and (3 A)2. But there is no gauge-invariant
counterterm of the non-derivative form (A)2. However, there is one gauge-invariant
term of (3A)>: (0,A, — 0,A,)(0"* A — 9VAM), which is the same form as the
photon kinetic energy term F,, F*".
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L
@ W

(2) (b)

O NNNY

© (d)
FiG. 2.4.

(ii) F = 0, B = 4 (the photon—photon scattering diagram, Fig. 2.4(b)): here
we have D = 0 (i.e. logarithmically divergent).

g (ki) = Tyunap(0) 4 T (ki) 2.7

where f"uw (k;) is convergent. The required counterterm is of the form (A)*.
However, it is not possible to construct such a term which is gauge invariant. Thus
we would expect I' 5, (k;) itself to be convergent.

(iii) F =2, B = 0 (the electron self-energy diagram, Fig. 2.4(c): the degree of
divergence is one; hence it is linearly divergent.
Z(p) = T(0) + #T'(0) + Z(p) (2.8)

where we expect X (0) to be linearly (or logarithmically) and %'(0) to be logarith-
mically divergent, 3 ( p) being convergent. The required counterterms are X (0) ¥y
and X'(0)yy "3, ¥, respectively.
(iv) F = 2, B = 1 (the electron—photon vertex diagram, Fig. 2.4(d): it is
logarithmically divergent, because D = 0.
Lu(p,q) =Tw(0) +Tu(p, q) (2.9

with a counterterm of the form vy “1.

2.2 Divergences in non-linear chiral theory

The non-linear SU(2) x SU(2) chiral Lagrangian is of the form

2
L= T Tr("U"9,U) (2.10)

oon ()

and T = (11, 1o, 73) are the Pauli matrices.

where
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Also f = 94 MeV is the pion decay constant. (For more discussion of non-linear
chiral theories, see Problems 5.7, 5.8, and 5.9.) Use power counting to enumerate
all the superficially divergent Green’s functions at the one-loop level and construct
the appropriate counterterms.

Solution to Problem 2.2

The superficial degree of divergence is given by

D=4-B+Y nib+di—4). 2.11)

For the chiral Lagrangian, we have the number of derivatives in the ith vertex being
d; = 2, for all vertices. Substituting the topological relation

2(B)+ B =Y nb; (2.12)
into
= (IB) —Zn,- +1 (2.13)
we get
Zn(b 2)——+1 (2.14)

The superficial degree of divergence is then

D=4—B+Zni(b,~—2)=2+2L. (2.15)

This gives the result that at the one-loop level (L = 1) the degree of divergence
D = 4, independent of the external lines. It implies that the number of derivatives
in the counterterms should be four or less. The term with two derivatives is just the
term in the original Lagrangian. The four derivative terms should have the form

(0,.0)(2"$)(0,¢)(3" )", n even. (2.16)

Similarly for the other counterterms. Taking into account the SU(2) x SU(2)
symmetry, the counterterms are of the form,
[Tr@"U"3,U)1
Tr("U"8,U 8 U"3,U)
Tr@*UU"3,UU 3, UUT 3" UUT)
Tr("U"8"U)Tr3,U"8,U)
Tr@*"UU 3, UUNTr@,UU3"UU"). (2.17)
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2.3 Divergences in lower-dimensional field theories

Consider theories with scalar field ¢, fermion field v/, and massless vector gauge
field A, in a d-dimensional space-time (d — 1 space coordinates and 1 time
coordinate).

Express the superficial degree of divergence of a diagram D in terms of the
number of external fermion F, boson B lines, and the number of fermion f;,
boson b; lines and the number of derivatives d; in the ith type vertex. Namely,
deduce the generalization of CL-eqn (2.133) to a d-dimensional field theory. Keep
in mind that the propagator in d-dimensional field theory has exactly the same
form as those in our physical four-dimensional momentum space. For example,
the propagator for the gauge field A, in the £ = 1 Feynman gauge is

—iguv
k2 +ie

iA, (k) = (2.18)

Use the formula deduced in (a) to write down all possible renormalizable and
super-renormalizable interactions for dimensions: (i) d = 2 and (ii) d = 3.

Solution to Problem 2.3

From the structure of the graph we have the relations

B+2(IB) =) nib:, F+20F) =) _ni fi, (2.19)

as well as

(IB) + (IF) — Zni +1=L (2.20)

where L is the number of loops in the graph. The superficial degree of divergence
can be calculated by using the relation (2.20)

D =dL—2(B) — (IF) + Y _ nid;

—d ((IB) +UF) =Y ni+ 1) —20B) — UF)+ Y mid;.  (2.21)

Eliminating /B and IF by eqn (2.19), we get

D= (%) |:lZn,~b,~ —B} + (%) {an —Fj|
—i—Zn,-(d,- —d)+d
() ()
+Xi:n,- [d[+ (#)bmt(d%)ﬁ —d].
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d—-2 d—1
D=d-— (T) B— (T) F+ Zniai (2.22)
where §; is the index of divergence,

d-2 d—1
8 = (T) b; + (T) fi+d —d. (2.23)

Clearly, these results check with CL-eqn (2.133) for the case of dimension d = 4.
(i) The d = 2 case: Equations (2.22) and (2.23) are reduced to

D:2—§+Zni6;, 8i:§+d,-—2. (2.24)
e super-renormalizable interaction, §; < 0
¢", n=3,4,... 3(¢") = =2,
Ve, n=12,... S(Yye") = -1,
Uy At Sy At) = —1 (2.25)

Note the interaction of the type A, A* is super-renormalizable but not gauge
invariance.
e renormalizable interaction, §; = 0

d; =0, W)’ (W) e"
di =1, 1/77u¢3M¢¢"7 ll}VvVulﬂF’”,
di=2, (0,43 ¢)¢". (2.26)

(ii) The d = 3 case: Equations (2.22) and (2.23) are reduced to
p=3_2 F+Y né P d+bi+f 3 2.27)
=35~ nio;, i =di T i 9. .
2 - 2

e super-renormalizable interaction, §; < 0

di = 09 ¢37 ¢47 ¢59 1/_f)/;ﬂ/fAM7
di=1,  9,A". (2.28)

e renormalizable interaction, §; = 0

di =0, ¢° Yy¢’,
d; =1, B pAL P (2.29)



2.4 n-Dimensional ‘spherical’ coordinates 43

2.4 n-Dimensional 'spherical’ coordinates

In an n-dimensional space, the Cartesian coordinates can be parametrized in terms
of the ‘spherical’ coordinates as

X| =r,sin6,_ysinf,_,---sinb, sin Hy,
X =r,sin6,_;sin6,_, ---sin b, cos Hy,

X3 =r,sin6,_1sinf,_,---sinf3 cos b,

X, = 1, cos6,_1 (2.30)
where
0<6,<2m, 0<6,,0;5,...,0,1 <m, (2.3D)
and
rP=xi a4l (2.32)

Show that the n-dimensional infinitesimal volume is given by
dxydxydxs...dx, = r" ' (sin€, ;)" "(sinf, )" -
x (sin6,)(d6; dO - - - d6,_,) dry (2.33)

as used in CL-p. 53.

Solution to Problem 2.4

We will solve this problem by finding the relation between the volume factors in
n and n — 1 dimensions. Namely, we will proceed from the simplest n = 2 to
higher-dimensional cases:

n=2) — (n=3) — (n =4) —> (general n). (2.34)

@n=2
Here the two Cartesian coordinates (x;, x;) are related to the familiar polar
coordinates (r,, 6;) by

x| =rpsinf, x; =rycosb, 0<6,<2m, ri=x}+x3 (235
The distance ds, between neighbouring points is given by
(ds2)* = (dx1)* + (dx2)* = (dr2)? + ry(d6))*. (2.36)

The ‘volume’ element is then the product of segments in orthogonal directions,
i.e. the product of the coordinate differential with the appropriate coefficients as
indicated by the (quadratic) distance relation:

de = dx1 dX2 = (drz)(}"zdel) = Vzdrz d@l. (237)
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(b)yn=3

Consider a sphere in three dimensions. If we cut this sphere by a plane perpendic-
ular to the x3-axis, we get a series of circles in the planes spanned by Cartesian
coordinates (x;, x,) which are related to the polar coordinates (r,, 6,) by

X1 =rsinfy, x, =rpcos6, 0<6, <2m, r22 = xf +x§. (2.38)

The infinitesimal distance on this plane can be expressed in these two coordinate
systems as

(dx1)* + (dx2)? = (dr))? + r3(d6))*. (2.39)

We can also cut the sphere by a plane containing the x3-axis, resulting in a series of
‘vertical circles’. On these two-dimensional subspaces, the Cartesian coordinates
are (r;, x3) and the corresponding polar coordinates are (r3 6,). We recognize that
6, is the usual polar angle.

rp =r3sinf,, x3 =r3cosb,, 0<6,<m. (2.40)

r32:r22—|—_x§=x12+x§+x32. (241)

As in eqn (2.39), the infinitesimal distance can be expressed in two equivalent
ways:

(dry)* + (dx3)? = (dr3)? + ri(d6)*. (2.42)

Combining the two sets of coordinates in eqns (2.38) and (2.40), we get the usual
spherical coordinate relations,

X1 = r3sin 6, sin 0y,
X, = r3sin 6, cos by,

X3 = r3cosbs. (2.43)
We can turn the distance formula
(ds3)* = (dx1)* + (dx2)* + (dx3)
into
(ds3)* = (dr2)* +r3(d6)* + (dx3) (2.44)
by using eqn (2.39). This can be further reduced, by using eqns (2.40) and (2.42), to

(ds3)? = (dx1)* + (dx2)* + (dx3)?
= (dr3)* + ry(d6)* + r3(d6y)
= (dr3)? + rsin02(d6))* + ri(d6,)*. (2.45)

The volume element can be obtained from the product of these three terms

dV3 = (d}”3)(7‘3 sin 92 d@l)(}”3 d@z) = }"32 sin 92((1}”3 d@l d@z) (246)
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c)n=4

We can also imagine cutting the sphere in four dimensions by the manifold (x4 =
constant) to get a three-sphere with radius r3 = r4 sin 63, where we can introduce
three-dimensional spherical coordinates (3, 61, 8>) as in eqn (2.43)

X1 = r3sinb; sin 0 = (r4 sin 63) sin 6, sin 6y,
Xo = r3sinf, cos ) = (r4 sinB3) sinH, cos 6y,
X3 = r3c08 6, = (rysin63) cos 6,, (2.47)
with the distance formula (2.45)
(dx1)* + (dx2)* + (dx3)* = (dr3)* + r3(d6)* + risin® 6>(d0))*.  (2.48)
Now we introduce two-dimensional polar coordinates (r4, 63) in the (3, x4) plane
r3 = ry4 Sin6s, X4 = r4C0S 03, (2.49)
with the distance formula
(dr3)? + (dx4)? = (dry)* + r2(d6s)”. (2.50)

In this way the infinitesimal distance in this four-dimensional space can be rewritten
by using eqns (2.48) and (2.50)
(dsg)® = [(dx1)* + (dx2)* + (dx3)*] + (doxa)?
= [(dr3)* +15(d62)* + 1§ sin® 62(d61)°] + (dxs)?
= [(dr3)* + (dx4)*] + r5(d62)* + r3 sin” 0,(d6,)*
= (dry)* + r}(d63)? + r;(d6y)* + risin® 6:(d6)*.  (2.51)
The infinitesimal volume element is then
dvy = (drs)(r4 d03)(r3 d6,)(r3 sin6, d6))
= r} sin’ 05 sin 6, (dry d6; d6; d65) (2.52)
where we have used eqn (2.49) to reach the last expression.
(d) General n
X| =r,sinf,_;sinb,_, - - -sin &, sin Hy,
Xy = r,sin6,_ysinb,_, - - -sin &, cos Oy,

X3 =r,sin6,_;sin6,_, - - - sin 03 cos G,

X, = r, cos6,_ (2.53)

where

2 2

rP=xl x4+ x2, 0<6, <27, 0<6),6s,....0, <7

(254
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The infinitesimal distance is

(dsy)* = (dx)* + (dx2)* + -+ - + (dx,)’
= (dry)? + 1} (d6,-1)* + r} sin® 6,_1(d6,_2)’
+ r2sin® 6,_ sin? 6,_»(d6,_3)* + - -
+ r2sin®6,_; sin? 6, - - - sin” 0,(d6;)? (2.55)

and the volume element is

dV, =dx;dxy---dx,
= (r)" "' (5inG,_1)" 2 (sin G2)" > - -

x $in 6y (dr, d6; dOs - - - dBy_1). (2.56)

2.5 Some integrals in dimensional regularization

Use the dimensional regularization to derive the following results for the Feynman
integrals with denominator power « in n dimensions:

d"k 1
I =
(a) O(a’ n) (2ﬂ)n (k2+2pk—|—M2+l{;‘)a
—)2 T (e — n/2 1
_ " —n/2) : . (257
@ry Tl (M? = p? i)
o) L. m) d"k ky
o, n) =
u\&, (27.[)11 (k2+2pk—|—M2+l5')a
= —pulo(a. n). (2.58)
d"k kyk
1 = e
(c) ,u,v(a’ i’l) (27’[)” (k2+2pk—|—M2+l{;‘)w
= Iy(a, n) 4 icknd (2:59)
= lp(a,n) | pupy zgw(a—n/Z—l) ’ ’
d"k k, kok
(d) Luvp(a, n) = o

Qo) (k2 +2p -k + M?+is)e
= Ip(a, n) |:py_pvpp + %(gpwpp + 8up Pv + gvppu.)

LY
(@—n/2—1)
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Solution to Problem 2.5

(a) In the Feynman integral

d"k 1
lo(ar, n) = : 2.60
o= | Gy @ T 2p k1Mt (2.60)
the denominator can be written as
D=k +2p k+M +ie=(p+k*+ M —p’)+ie
=k? + (M?* - p?) +is (2.61)

where kK’ = k + p. For the case p2 > M?, we can perform the Wick rotation to get
D=—-k>+M —p>+ic=—(k*+d% (2.62)
where a®> = p> — M? —ie and

d'k 1 1

Q@m)n (=D (k2 + a?)’ (2.63)

Iy(a,n) =1

As usual [see CL-eqn (2.112)], the n-dimensional angular integration gives

2nn/2
/ 9, = . (2.64)
T (n/2)

Then
(=)™ 27?2 [ krldk
Qm)yr Tm/2) Jo (k2 + a2«
_ i(—1)—“2n_"/21/°° "2 14t
Qmyr T(/2)? )y (@ +a?)®
(=)~ gn? 1 T(n/2)T(a —n/2)
@2m)" T'(n/2) (a*)*=/2 ()
(=)' T(a —n/2) 1
Q2m)" M) (M2 — p24ig)e—n/2’

Iy(a,n) =

(2.65)

One of the most common convergent Feynman integrals has o = 3,
d"k 1

Qm)r (k2 +2p -k + M? +ig)?
_(=m)"*TGB - (n/2) 1

T Q) FG)  (M?2— p?+ig)in/2

10(3, I’l) =

(2.66)

which gives, for n = 4,

d*k 1
Q2m)* (k2 +2p -k + M? +ig)3
i 1

= . 2.67
3272 (M2 — p? +is) 2.67)

1h(3,4) =
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(b) I(a,n) = f 'k ull (2.68)
W= oy 1 2p k+ M? +ie)* '

As before, we set k' = k + p. Then

K K, = py
Q) (k2 4+ a?)*’

I(a,n) = (2.69)

and the term linear in k;, gives zero because of the symmetric integration. The
result is

I, (a,n) = —p,lo(a, n). (2.70)

d"k Kk,

Q)" (k2 4+2p -k + M2 +ig)”
_ d"k (k; - pu)(k,/; - pv)

) @rr (kR +a?)e

_ / d"k kuk, n / d"k 1 2.71)
- Q)" (kz + az)“ Pupv Q)" (kz 4 aZ)a : :

(© Iu(a,n) =

In the first term we can replace k, k, by (l/n)kzgﬂv to get

/ d"k k#kv g / d'k k2
Quyt (k2 +ar 0 ) Q) (k2 +a?)®
8y d"k k2 + (12 — 612
n J @mye (k2 +a?)”
=8 @ — 1) —d?h@n)].  272)

n

Using the identity I'(x 4+ 1) = xI"(x), we get

. (@ — 1)a?
Io(O[ — 1, i’l) = mlo(a, l’l) (273)

and

:| Ip(a, n). (2.74)

1
Li(a,n) = [pﬂpv + 28w M~ ”z]m

For the case ¢ = 4, we have

d"k Kk,

L4, n) =
p(® ) Q)" (k2 42p -k + M? +ig)*

= |:pupv + %guv[Mz - pz] i| Iy(4,n). (2.75)

1
3 —n/2)
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which gives for n = 4,

_ 1 2 2 l 1
Liv@ ) = [pupy + 38 M = P*1] 5 G FTie) (2.76)
d"k kykok
d Lip(a,n) = S
@ oo (@ 1) Qr) (2 +2p -k + M2+ ig)
d"k (K, — p K, — p) (K, —
_ (ky, — pu)( po)k, — pp) 2.77)
Q2m)" (k% + a?)«
Dropping terms with odd powers of k', we get
d"k 1
I/w,o((xv l’l) = —[_(kukvpp + kupvkp + p//.kvkp) - pupvpp]

Q)" (k% + a?)*
= —pubvPplola,n) — (pplyy + pulp + Pulyp)

M2 _ p2
= Ip(a, n) |:4p/4pvpp + %(g/wpp + gup v + guppﬂ)m]

2.6 Vacuum polarization and subtraction schemes

Use the dimensional regularization to compute the one-loop vacuum polarization
in QED.

Solution to Problem 2.6

The usual vacuum polarization in QED is given by

in*(q) = (q*q” — ¢*¢*P)in (q*)

d*p i i
_ )2 o B
= —(— Ti .
(ieo) / 2n)* r[y J—m+ic’ p—4 —m+ie]
(2.78)
In the dimensional regularization, we can replace
d* d?
LP | L2 (2.79)
(2m)* (2m)d

where ¢ = 4 — d and u is some arbitrary mass scale that one can introduce in the
dimensional regularization scheme. The integrand can be simplified as

—Tr|y“ ! B !
Y —mxiel F—f—m~tic

1 1
Z_[pz—m“rie} [(p—q)z—m2+i8]
xTrly*($p +m)y? (p — 4 +m)]. (2.80)
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The numerator is of the form
N =Trly“ py" (B — D) +m*Tr(y“y"). (2.81)
Dirac algebra in d dimensions gives
. v’y =281, (2.82)
where I, is the identity matrix in d-dimensional Dirac algebra space, with the trace
Trl; = f(d). (2.83)

Here f(d) can be any function so long as it has the property f(4) = 4. It is
straightforward to see that

Trgpdd) = f(dl@-b)(c-d)—(a-o)b-d)+(a-d)b o). (2.84)
Using these we get for the numerator

N = f @ {p*(p—)f + PP (p —)* — P - (p — )1+ m*g*’}.

(2.85)
The denominator is calculated in the usual way,
1 1 Ld
= : — = = (2.86)
(p* —m?+ie) [(p —q)* —m? + ig] o A?
where
A=l —-a)p*—m>) +al(p—q)* —m?’]
=p’—2ap-q—m’+aq’
=(p—aq) —a (2.87)
with
a* =m? —a(l —a)g>. (2.88)

The vacuum polarization is then of the form

ddp NP
aff ) &
% (q) = leO/dOt/ (27r)d'u [ —aq?—al (2.89)

To simplify the integration we shift the variable, p — p +aq. Then the numerator
(2.85) becomes

N > f@{l(p+aq)*(p — 1 —)g)? + (p +ag)’ (p — (1 — a)g)*
— gm* = (p+aq) - (p — (1 —a)q)]}
= f@{2p*p” = 2a(l —a)g°q”
+8*[m* — (p* — a(l — a)g*)1} (2.90)
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where we have dropped terms linear in p which will vanish under the symmetric
integration in p. Then we have

o . . ! ddp 1
7 (q) = iegn f(d)/o d“/m(pz_—az)z
x {ZP“’p —2a(1 —a)q°q”
+ 5"’ = (p? — el —a)g)1}. 2.91)

The term proportional to g*# can be written as
—[p* =m’ +a(l —a)g’] + 2a(1 —0)g* = —(p* — a*) + 2a(1 — a)g

so we get

) ! dip 2p%pP 200(1 — )g%q”
af 2 €
7 (q) = iegu f(d)/0 dozf(z )d{

(p* —a?)? (p* —a?)?

20(1 — a)g* g™ g*f
(p2 _ a2)2 P2 _ (12

o : d'p [[_2r°p” g

n 2a(1 —a)(¢”8*" — q°¢") }
(p? —a?)? '

(2.92)

The relevant formulae for the dimensional integration are eqns (2.57) and (2.59).

o fdp 1 inPT@-d/2) 1
I = Qm)d (p2—a?)e  (m)d T@)  (—a?)edr’ (2.93)
_ dp  p"p _ g™ (—a?)
IMV - (27-[)11 (p2 _ aZ)a - (Ol _ d/2 — 1)10 (294)
Using these we get

/ ddp pO‘pl3 _ ga/s l(_n)d/z F(z _ d/2) 1 (2 95)

Qmy (p2—a®)?  (1—-d/2) Qn) ro) oy &

d af s d/2 _

dp & i TA—d) 1 296

Qmn)d (p* —a?) § 2n)d 0() (—a?)l—d2"

(D) e

Using the identity
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we can show that

(2.98)

d'p [ 2p“pf ¢ 0
Qm)? (pz — a?)? pz —a2 |
Now the vacuum polarization is of the gauge-invariant form,
20 (1 — )

naﬁ(Q) = e(%ﬂgf(d) 2 _ a(l — O5)6]2]3/2'

1
a B 2 af d
—167r2(47r)—8/2(q 9" —q°g )/ a[m

Expanding in the power of ¢,

P2 2 @) + 0 (2.99)
@2 "¢ 7 '
where y = 0.5772. .. is the Euler constant,
u @)% =1- %(m a’> —Inp?) (2.100)
we get
2 d 1 2 2 _ 1— 2
w(q) = SACH / dea(l—a)y{——y +In(dr) —In w .
872 ), £ u?
Write
fd=fO+d-Df' D+ ---=40+ac+--) (2.101)
where a = —% f'(4). Then we have

272 |3

1 2 _ — 2
_/ dw(l_a)ln[w”
0 w

Different subtraction schemes

el [1[2
n(q) = —{— [g —7/+ln(4n)+2ai|

From this we see that different choice of f(d) corresponds to different constants in
the finite part of 77 (q), which is arbitrary anyway. For convenience, we can choose
a=0,or f(d) =4foralld.

Minimal subtraction scheme (MS). Here we subtract out the pole in ¢ to get

2

1
mus(@) = ~2 1~ (—y + Indnm)
27213

1 2 _ — 2
_f dw(l_ann[w”
0 2

This corresponds to choosing the renormalization constant,

2
_ [4
(Zyms = 1+ i (2.102)



2.7 Renormalization of A§> theory in n dimensions 53

Modified minimal subtraction scheme (MS). The renormalization constant is
chosen so that the term (—y + In4m) is also removed from the finite part,

(g) = =50 /ld (1 —ayin [0 = @q” (2.103)
ms(q) = — ae(l—a)ln| ————|. .
MS q 27_[2 o MQ
From this result we can study the low- and high-energy behaviour of 7 (g). For
lq|> < m?,
2 _ (] — 2 2 2
In [w] ~in ol —a) L (2.104)
w 2 m
and

1 2 _ — 2
/ doa(l —)in [w}
0 jz

1 m2 e
:/ dao(l —a) I:ln—z—a(l—oz)—z:|
0 128 m

1. m? 1 (¢
= In— — — (L 2.105
6 2 30<m2>+ (2.105)
Then we have
= S, b (4 2.106
s ) = a o 2 ) T (2100

In the other limit |g|? > m?,
2 1— 2 —a(l = 2 2
ln[w} :m(“(_zm> [1_2m_+...}
% jz ga(l —a)

and
1 2 _ 1— 2
/ daa(l —a)ln [w}
0 128

—g2 1 1
:1n<_‘12)/ doza(l—a)—i—/ daa(l —a)Infe(l — )]
0 0

"
LAY Gl i (2.107)
=-In{—)——+---. .
6 u? 18
Thus the limit is
2 2 2
. e; —q Sej
Ts(@) = — 15,2 1 <_u2 ) tae T (2.108)

2.7 Renormalization of k¢3 theory in n dimensions

Consider the A¢* theory where the Lagrangian is of the form,

_1 2 m? 2 Ao 3
L_E(a,@) —7¢> —§¢>. (2.109)
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(a) Show that Ao has dimension (6 — n) /2 in n-dimensional space-time. To have
Ao with fixed dimension for arbitrary n, we can define

o = Ao @2 Ry = aout,  with wrgﬁ (2.110)
where p is an arbitrary mass scale.

(b) Show that the one-loop divergent graphs for the case n = 4 are those given in
Fig. 2.5.

(¢) Carry out the renormalization program for this theory by using the MS scheme.

Solution to Problem 2.7

(a) Since the action § = f d"x L is dimensionless, £ has the dimension n. From
the mass term or the kinetic energy term we see that ¢ has dimension (n — 2)/2,
which gives the dimension of Ay as (6 — n)/2.

(b) From eqn (2.23) we know that the index of divergence for the ¢* interaction is

(n—Z) (n—6)
5§=3 —n= 2.111)
2 2

which, as expected, is just the negative of the dimension of Aq. The superficial
degree of divergence is then

n—2
D=n-— (T>B+v8 (2.112)

where v is the number of ¢* interactions in the graph. The number of loops L is
given by eqn (2.14)

L=1v-B)+1. (2.113)
Thus in one-loop we have v = B, and
D =n-2B, (2.114)

and for four-dimensional theories n = 4, only B = 2 self-energy and B = 1
tadpole graphs are divergent.

a
N

FIG. 2.5. Self-energy and tadpole diagrams in the 1> theory.
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(c-I) The self-energy graph

() (iou®)? d'k i i 2.115)
T Gor = md) [= p—ml ’
It is straightforward to evaluate this integral to get
2p¥ T ! du
(p) =2 . 2.116
D)= Gy )y i —all—ap? =il (2.116)
Using
1
Fe)=-—y+0(), a®=1+¢elna+ 0(@? (2.117)
€
we can expand X (p) around ¢ = 0, to get
Y| 1 4 p?
T(p) =2 - —y+1
D= ()
_/ldozln [mz —ed —zot)pz _ ie] }
0 m
We now rewrite the Lagrangian as
1 m> Al 1
L==03,0)° — R¢> - Z—¢> — —sm*¢* 2.118
5 u®) R4 T R0me ( )

with 8m* = m* — m%. This amounts to the replacement m*> — m% and add the

term 18m>¢?as a new vertex. The new self-energy X7 (p) is then

=R (p,mg) = T(p, mg) + Sm*. 2.119)
Now if we choose
A2 1 1
2 0
== ——+cp 2.120
" 2(47r)2|:8+ci| (2.120)

where ¢, is finite for ¢ — 0, but is otherwise arbitrary (different renormalization
schemes correspond to different choices of ¢,,), then the pole at ¢ = 0 cancels
out and

A1 A p?
L =20 " — 1
(p,mg) 2 @m)? {C y + n( m% )

_/1daln[m§—a(l—a)p2—i8j|}
0 my
is finite.

We now study this choice of ¢, in various renormalization schemes.
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(i) Momentum subtraction Suppose we choose
2R (p,mp)l e =0 (2.121)

for some M?. (This corresponds to normalizing the propagator such that it is the
same as the free propagator at p> = —M?.) Then the constant c,, is given by

4 2 1 2 1— Mz_ .
Cm :J/—ln( i )+/ daln[mk+a( 2 18} (2.122)
0

mpg mg

and the self-energy is

2 1 1 2 ol —a)p? —i
SR(p,mpg) = 20 / daln[mR o =a)p ’8] (2.123)
0

2 (4m)? m? +oa(l —a)M? —ic
(ii) Minimum subtraction (MS scheme) This corresponds to the choice
cm = 0, and it means that we subtract only the pole at ¢ = 0 and the self-energy is
2

o1 47 p?
>R (p, =2 —y+1

_/' Jaln [m§ —a(l —a)p? —ie} }
0 m%

(iii) Modified minimum substraction (MS scheme) It turns out that the
combination

(1/e) —y +Indx (2.124)

always appears in the dimensional regularization. Thus it is convenient to choose

cn =y —Indr (2.125)
and we get
221 ! m3 —a(l —a)p? —ie
2R (p, =-=2 / doln| £ : 2.126
(p,mpg) 2 @) )y o n|: pE ( )
(c-IT) The tadpole diagram
We have
(ikom)/‘ d"k i i Aout 1—
= = - I'e—1 e, 2.127
T @y K —md 2 nype & Do) (127

This will contribute to the vacuum expectation value
T
(0l (®)|0) = —- (2.128)
my

and will give an infinite constant vacuum expectation value for the field. To elim-
inate this infinity, we can add another counterterm to the Lagrangian of the form

Liga = —T. (2.129)

This counterterm will have the effect of cancelling all the tadpole terms, without
interfering with any other consideration.
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Remark. The parameter of renormalized mass, m g, can be related to measurable
quantities as follows. The physical mass of the ¢-particle, m , is defined to be
the position of the single-particle pole in the two-point function. This gives m, as
a function

m, =m,(mg, A, i, Cp). (2.130)
We can solve for my in terms of other parameters,

mr=mgr(mp, X, U, Cp). (2.131)
It is important to note that the parameter my has implicit dependence on the

arbitrary mass scale .

2.8 Renormalization of composite operators

Consider a theory with a fermion and a complex scalar field. The Lagrangian is
given by

L= 097)@"9) — 197~ S6"9)’
+ Y (iy"d, —m)y + g + h.c. (2.132)
Show that the composite operators
Of =yy"y. 0y =i(¢"0, — ¢3,0") (2.133)
mix under the renormalization.

Solution to Problem 2.8

Vertices for the composite operators are displayed in Fig 2.6, where solid lines are
fermions and dashed lines are bosons. Add two terms to the Lagrangian for these

operators
L—> L+ iJm(x)OfL(x) + iJzu(x)Of(x). (2.134)
The one-loop divergent diagrams for these composite operators are shown in
Fig. 2.7.
of 0
M /Q\\ m
=Y A AN =(p,tp,)
7/ N
7 A
p p, p P,
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o

/ p
p]/ \ 2

(b)

/ I
/ \ | }
/ \ <

\ AN
~
b7 \ P n - 153
(©) (]
FiGc. 2.7.

Figure 2.7(a) is a logarithmically divergent Green’s function for the operator O}'
with two fermion external lines. We can separate out the divergent part as

Il (p1, p2) = y*T14(0,0) + py, T+ - - (2.135)

where the first term is logarithmically divergent and all other terms are finite. Thus
we need a counterterm of the form

~iT1(0, )Py Y J1,u(x) = —iT'14(0,0)J1,, O} (2.136)

Figure 2.7( b) gives a logarithmically divergent Green’s function for the operator
01" with two scalar external lines. Again, separate out the divergent part as

Iy, ki, ko) = (ki + k) T15(0,0) + - - - (2.137)
It shows the necessity of a counterterm of the form
—iT"15(0,0)J,, 05 (2.138)
Figure 2.7(c) shows the necessity of a counterterm of the form
—iT2:(0,0)J5, Of'. (2.139)
Figure 2.7(d) shows the necessity of a counterterm of the form
—iT24(0,0) 5,05 (2.140)

Thus the effective Lagrangian which contains the composite operators and their
one-loop counterterms is of the form

Lo =iJ1,0](1 =T14(0,0)) 4 iJp, 05 (1 —T'2(0,0))
—iJllLOgF]b(O, 0) — iJzMO{Ll_‘]c(O, 0)
= i]lMOiLZH + iJzMOQ‘Zzz + l']mO;le + l.JQHOfLZZI

Zu Z ot
- 11 12 1
=1 (Jl > Jz)(221 Z22) (05—)

=iJ!'z;0 (2.141)
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where

Z11 =1-T1(0,0), Z1p = —T'1,(0, 0),

Zy =1-T24(0,0), Zy = —T2.(0,0). (2.142)

The renormalization constants are now in the matrix form, explicitly display the
mixing of these operators,

Zuy Zn
Z = 2.143
(ZZI Zzz) ( )

which is neither symmetric nor real. Nevertheless we can diagonalize this
by biunitary transformation (see CL-Section 11.3 for the details of biunitary
transformation),

Z=Uz,Vv" (2.144)

where

(Z, 0
Zd—(o Zz) (2.145)

is diagonal. V and U are unitary matrices. Then we can write
L.=iJl'Z;;0} =i]{'Z,0{ +iJ} 7,0} (2.146)

where

AR _ T M no__ gyt gk
of =viof, J=U}J!

This means that neither O} nor O are multiplicatively renormalizable. But the
combinations

Of = Vj,0 + VL0t Of = Viof + V0! @.147)

are multiplicatively renormalized.

2.9 Cutkosky rules

In the A¢> theory, the one-loop diagram in Fig. 2.5 gives the contribution

I(s) =TI'( 2)—A—2 @k ! ! (2.148)
VeI =S L Gt lp 1k — 2t iel K — 2 tiel

Show that in the complex s plane, the imaginary part for s > 4u? is of the form

ImT(s)

%[F(s +ie) —T(s —ig)]

A2 d*k ) 2 2 2 2
=2 [ S camirs 07 - ks = . 2149
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Solution to Problem 2.9

From the structure of the two propagators, the poles are located at the following
two locations in the complex &y plane. From the second propagator, we have

ko =+ (K2 + ) Fie = £(E; —ie) (2.150)
where E; = (k> + ©?)!/2, and from the first propagator, we have
ko=—po+ ((P+K?’+uH)?Fie=—py (Epri —ie).  (2.151)

The integrand is of the form

1 1 1
X
(ko — Ep +ie) (ko + Ex —ie) (ko + po + E, —ie)
1
X —.
(ko + po — Epx +i8)

1

We can close the contour in the upper half plane and get the contribution from the
residues at kg = —Ey +ic and kg = —po — E 44 + ic.

(i) Residue at kg = —FE; + i¢

1 1
11 = —2mi ; B . .
QEy —ie) (—Ex+ Epyr + po—ie) (—Ex — Epyx + po +i€)
(2.152)
The last two terms in the denominator can be put into the form
2
(Ex — po)* — Ep = [+ )" = po]” = (p+ k) — u?
= p2 —2P0Ek —2pk+l£
For convenience we can take p* = (po, 0), then py = /s and
1 1 .
I —(—2mi). (2.153)

T 2E( S —2JSE, +is

Since E; > u,we see that for § > 4/1,2 the factor (S — 2\/§Ek + is)’1 has
singularity along the path of integration (from E; = p to oo) and will contribute
to the discontinuity for S > 4.

(ii) Residue at ko = —po — E4x +ie
1 1

QEp4k —i€) (po+ Epix — Ex +i€) (po + Epsi + Ex — ie)’
(2.154)

12 = —2mi

In the denominator, we have

(Po+ Eppi)’ — Ef —ie = pg+ (@ + K + 1 + 2poEpyi — K — 1
= pg +2PoE pix. (2.155)
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and

1
L =-2mi .
2 ! (2E,,+k> S+ 2v5E i +ie

(2.156)

It is easy to see that this denominator never vanishes for s > 4% and will not give
discontinuity in the physical region. Thus if we close the integration contour in
the upper half & plane, only /; will contribute to the discontinuity in the physical
region.

For the calculation of the discontinuity, we write

1 1
L= 2n)|— )| ——— 2.157
=t )<2Ek> p(p —2Ex +i¢) ( )
where p = ./s. Using the formula
1 1 .
— =P Find(x —a) (2.158)
x—axie X —a

we can obtain the discontinuity across the cut for the case s > 4u?,

2
discIy = I} (p +ie) — [}(p —ie) = (—27i)*8(p — 2Ey) <%) . (2.159)
k

To get a more systematic rule for calculating the discontinuity, we write I; as

1
(p+k3?—u2+ie

I = / dko (=27i)8 (k> — %) (2.160)

We see that this corresponds to replacing the propagator (k> — u? + ie)~! by
(—27i)8(k* — u?). Similarly,

disc I; = /dko (=208 (k> — ) (=270)8[(p + k)? — u?] (2.161)

or

. 2’ d*k . 2 2 . 2 2
discI'(s) = 7/ (27_[)4(—2m)8(k — u)(2mi)s[(p + k)" — ] (2.162)

which is the requested result.

Discussion

As indicated by this calculation, we can obtain the discontinuity of I"(s) by putting
each particle in the loop on the mass shell with the replacement of

1

B Ay DK — uh k). (2.163)
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In fact, this discontinuity can be written in terms of physical matrix elements, as
we now illustrate:
A d*ky d*ks

T =7 ) @iy

1 1

2m)*8* k) + ko — .
Gyt e = P G i Wi v ie)

Then using the replacement given above we get the discontinuity as

_ Ao dYk
discI'(s) = - (271)14

(=2mi)8(k? — )6 (ko)

x / d'ky (=2mi)8 (k3 — u®)(2m)*
2m)*
x 8% (ky + ky — p)B (k). (2.164)
The integration over ky is of the form

Ko o8 — 120 (k) = — 2.165
/gem)( — *)000) = 77 (2.165)

where E; = (k* + u?)!/2, and

disc T'(s) = » / i f ke (=M Q)48 (ky + ks — p)
1SC S) = — —1 T — .
2] @ny2E, | @n)2E, 1R

The factor (—iA) is just the scattering amplitude in first order of A, 71 = —iA. Thus
to order A2, the discontinuity of the scattering amplitude in the variable s = p?
can be written as the integral over the phase space of |T}|?. This is the essence
of the unitarity of the S-matrix, SS* = S7S = 1 which implies for the 7-matrix
(S=1+iT)

T-T'=1T1" (2.166)
or

Ty =T =Y TiT}, (2.167)

The prescription of replacing (k> — u? +ie)~!' by (=2mi)8(k* — p?) is a simple
example of the Cutkosky rule which gives a general method for computing the
discontinuity for an arbitrary Feynman diagram and is summarized below:

o Cut through the diagram in all possible ways such that the cut propagator can be
put simultaneously on the mass shell for the kinematic region of interest (e.g.
only for s > 4% can both propagators be put on the mass shell).

e For each cut, replace the propagator (k> — 2 +ie) ™! by (=2mi)8(k* — u?)8 (ko)
and perform the loop integration.

e Sum the contributions of all possible cuts.
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3.1 Homogeneous renormalization-group equation

Consider the A¢* theory in d-dimensional space-time, where the Lagrangian for
& =2 —(d/2) is given by

1 m2 )»0
=~ (9,0)% — Dog2 2044
L 3 (0,9) 3 ¢ 1 ¢
1 2 A
=3 3,0r)> — %q&i - 4—1:,u8¢;§ + (counterterms) 3.1

where Ag, ¢r, and mp are renormalized quantities, and w is the arbitrary mass
scale one needs to introduce in the dimensional regularization.

Use the fact that the unrenormalized n-point Green’s functions '™ (p;, ho, mo)
depend on the bare parameters (m1¢, 1) and are independent of the arbitrary mass
scale, u, present in any scheme of dimensional regularization,

9
Ma—l“‘”) (pis ho, mo) =0, with my, Ao held fixed (3.2)
w

to derive the renormalization group (RG) equation for this theory.

Solution to Problem 3.1

Recall that the relation, CL-eqn (3.50), between unrenormalized and renormalized
Green’s functions is given by

T™ (pi, Ao, mo) = Zy" Ty (i, A, mg. 10) 33)

Thus the statement of 11d/d "™ = 0 means that

I . _ 4
"an Zy "Tp (pisAg,mp, )| =0. (34
Note that both Az and m g depend implicitly on u. Thus we have

moA D ke 9 me D
_— R n R —_— [ —
2 e T TR e T M o oma

x T (pis g mg, ) = 0.
Defining the quantities,

Or) = 20 Zp B OR) = () O
= KU ) = ) m mg = PR
vV (AR 2“8,41 ¢ R w m Vi R)MR =M o
(3.5)
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we can write the renormalization group equation as

B] B] B ,
=+ B (hg) =— — ny (Ag) + MgYm (Ag) T (pis hg.mp, ) = 0.
3,LL BAR amR
(3.6)

Remark 1. Implicit in such calculation is the fact that the bare quantities 1o and
my are held fixed.

Remark 2. This equation is a homogeneous equation which is more convenient
to work with than the original Callan—Symanzik equation.

3.2 Renormalization constants

In A¢* theory, the renormalized and unrenormalized coupling constants in the
dimensional regularization scheme are related by

Ar(w) = 1™ Z 7 (Wko 3.7
where Z is the coupling constant renormalization constant of the form
z7'=2;'7; (3.8)
where Z; and Z, are defined in CL-eqns (2.23), (2.36), and (2.40).

(a) Show that the B-function can be written as

B = —ern — L9Z5 (3.9)
= —EAR — = —AR. .
R R 7du R
(b) In the one-loop approximation, we have
3
Z7 =1 ", Zs =1+ 0 (2%). 3.10
* 1672¢ ¢ + ( ) (3.10)
Show that
322
1) = o (A¥). 3.11
B = 15 +0 () 3.11)
Solution to Problem 3.2

(a) By explicit differentiation of eqn (3.7), we have

B0 = 1 ® = 0 (e Z(uyne)
R = = g (T ZG0k
—& 7 —& dZ
=—eu " Z(Who — 120
du
dz
= —eag— 2425 (3.12)

Zdu
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(b) Substituting the one-loop result (3.10) into eqn (3.8), we get

3AR

51 _ =12 . 7=l _ 1 _
7 =7 25> 2 = -

or Z >~ 1+ (3xg/167%¢). Thus

dz 3 dig 3

—_—— Y — = — A
dn 162 dp T Tenze? PR

7

and, ignoring higher-order terms, we obtain

1 dZ 3
U = —

~ AR) .
Z dp 16n2£ﬁ( ®)

In this way the relation (3.9) becomes

dzZ 3
B (Ar) = —eAp — <%_,U«> AR = —€AR R_B(hg).

"~ l6m2e

Solving for B (Ag), we get

-1
ﬂ(/\R)=—8)LR(1+3A_R) ~ —ghg (1_ 3Ag )

1672¢

Taking the limit ¢ — 0, we obtain the stated result:

2

3
B (hg) = 16;2 +0(A}).
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(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Remark. More general analysis of ¢ dependence of B()A) can be carried out as

follows. We first write eqn (3.7) as

ro = AUt Z. (3.19)
From pudig/dp = 0, we get
. - d - - d -
wlerZ)+u—mn2)| =0 or —e(AZ) = u—@N0Z2). (3.20)
du du
In the MS scheme , Z can be written as power series in (1/¢),
- by (x by(n
7o142® 2(2)+..- (3.21)
e e
then
- A A
AZ=aq B e® (3.22)

€ g2
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where a; (A) = Ab;(1). Differentiating both sides of this equation, we get
d - da, da, 1
— (A7) = — =1 A 3.23
Hap D) [+Zd“n] [*de }ﬁ() (3.23)
Equation (3.20) becomes

a(A) az()») da; da, 1
—e[x+ R ] ﬂ(k)[1+ﬁ—+ﬁz+ ].(3.24)

Assume that the 8(}) is a finite series in &,

B = [Bo+ Bie + Pag + -+ Bue"]. (3.25)

By identifying powers of & on both sides eqn (3.24), we see that the S()) series
must terminate after the first power of ¢ (8, = 0 for k > 1):

BA) = Bo + Bie. (3.26)
From eqn (3.24) we then get
Br=—2 (3.27)
and
Bo + ﬁldﬂ = —a or Bo = —a -I-k%. (3.28)

Thus the S-function is given by

dll] da1
BA) = —re —a; + )»H — —ay + AE as g — 0. (3.29)

Using a; = Ab;, we get

B =22 (db ) . (3.30)
dx

In fact, eqn (3.24) also relates different powers of (1/¢) in the expansion of
Z(or AZ). From the coefficient of (1/¢)" we have

,3 da, +,3 dan+1 T d(l] da, )\da,,ﬂ
—ly = N _
TR TP A WL ) an dx
or
dan-H dal d(ln
—Un A =1|— . 3.31
Ang1 +A—> ( ap + A R ) Iy (3.31)

Thus all the coefficients @, with n > 1 can be determined from a;, by repeated
use of eqn (3.31).
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3.3 B-function for QED
The photon propagator is given by

ie’D,,(q) = —_ie—(%
W= P T
where
2
2 € 2 1
= = s = ~ 1 — O 5
1+ 3 ST 11700 ()
and

7(q) (g;w - QM‘]V) = 7u(q)
is the vacuum polarization tensor. Define the running electric charge as

2

2 = ———m—m—m—mm—mmmmmmm
D= Re7 (@)

where 7 () = m(g?) — m(0) is finite. Show that in one-loop, we have

2 ” 2 2 ef)‘ /‘/1%
e (—ug) =e(—up) + 12722 In ,U«_%e
for the case of u%, w? > m?. If we define
de
Ble) = urp—o,
R
then we will have
3
Ble) = +0().

1272

Solution to Problem 3.3

Vacuum polarization in QED is calculated in Problem 2.6, and is given by

n(q?) =

et T(e/2) 8/‘d a(l —a)
202 @t Jy i = e = 17

6(2) ! + Indnr
1272 | \& v

1 2 _ 2 _
—6/ doa(l —a)ln [%‘M] + 0(5)}.
0
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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Taking u = m, the subtracted quantity becomes

7(q*) = w(g*) — 7 (0)

2 1 2 _ d%20(1 —
__ % daa(l —a)ln m” —ge(l—a) ] (3.40)
272 J m?
Write
2,2 e 2 2
=~ 1 —Ren . 3.41
e*(q”) T ReA@) "¢ [ e (q%)] (3.41)
For the case of |g2| > m?, we have
2 2
~ 9 €y —q
~——In|— 3.42
7(q7) o2 n<m2> (3.42)
2 2
2, 2\ 2 € —q

Thus, as (—qz) increases, ez(qz) also increases.

Different subtraction schemes

From the vacuum polarization 7 (g%) given in eqn (3.39) we can illustrate the
difference of different renormalization schemes.

Momentum subtraction scheme. In this scheme, we make a subtraction at q2 =

—M?, then
2 ol 2 2
2 —eg m”—qa(l —a)
M) = — d 11—l . 3.44
mr (g%, M) 2 ), aa(l —a) n|:m2+M2a(1—a) (3.44)
Suppose m? > |q2| and M?, then
2 2 2
2 0 9 M

This means that a heavy fermion will decouple in the vacuum polarization at
energies much smaller than the heavy fermion mass. This property will enable
us to ignore all the unknown particles which are much heavier than the present
energies.

MS scheme. Here we subtract out the pole at ¢ = 0 and some constants,

_ 2 1 2 _ 2 1 —
¥ (g% = ﬁ/ daa(l —a)ln w . (3.46)
272 Jo w?
In the limit m? > |g?| we get
2 2
MS, 2 —¢ m
()~ 55 (F) (3.47)

which is non-zero. Thus in this scheme, the heavy particles do not decouple at low
energies. One way to remove the effect of the heavy particles is to integrate out



3.4 Behaviour of g near a simple fixed point 69

the heavy fields in the Lagrangian and work with the effective Lagrangian without
the heavy particles.

3.4 Behaviour of g near a simple fixed point

Derive the ultraviolet behaviour of g(¢) in the case that the S-function is given by

B(g) = g(a* — g% (3.48)

with a being a known constant. This example illustrates the typical behaviour of
the running coupling near a simple fixed point.

Solution to Problem 3.4

To analyse the asymptotic behaviour, we plot 8(g) vs. g,

3

N N

FiG. 3.1.

The initial condition for the running coupling constant is
g) = go at r=0.
Then it is clear from this plot that

gt) — a if go>0
gt) > —a if g9 <0.

This can be verified by more explicit calculation as given below.

dg dg 1
—gzé(a2—§2) = /ﬁg;:/dt. (3.49)

Carrying out the integration and using the initial condition, we get

1 g £
57 [111 (gz—cﬂ) —In (gg—cﬂ =t (3.50)
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or
80 (g2 B az) _ =24’ (3 51)
- ) =e .
g (g5 —a?)

so that
2 2_ 2

F=—  wih a=50"1 (3.52)
1 — Ae—=at £

Taking the square root, we get
_ +a 3153
ST Ao ) (3:53)

To choose the sign, we need to go back to the initial condition that g = gg atz = 0.
For the case gy > 0, we take the positive sign

a

8= (1 — Ae—20)'"?

sothatatt =0,

_ a a
g = = =
(I —=A)12 (a/g0)
In this case, g — a, as t — o0. For the case go < 0, we need to choose the other
sign

8o-

_ —d
g = Ry (3.54)

Then we have g —> —a ast — 0.

3.5 Running coupling near a general fixed point
At the stable critical point g = go, show that

(a) if B(g) has a simple zero: §(g) = —b(g — a) with b > 0, then the approach
of g(¢) to gop as t — oo is exponential in ¢;

(b) if B(g) has a double or higher zero: 8(g) = —b(g — a)" with b > 0 and
n > 1, then the approach of g(r) to gy as t — oo is some inverse power in .

Solution to Problem 3.5

(a) Simple zero: S(g) = —b(g — a)
From the renormalization group equation

948 _ 5. / dg —/bdt, (3.55)
dt g—a
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then with the initial condition of g — g¢ att = 0, we have

In ( £—4d ) — bt (3.56)
8o —a
with b > 0,
g=a+(go—a)e . (3.57)

Then, g — a exponentially in the asymptotic t — oo limit.

(b) Double zero or higher: f(g) = —b(g —a)", n > 1.
The same calculation yields

dg / 1 [ 1 1 ]
—= = — | bd — =b
/(g—a)" T anlGoa e
or

3 = 1 ~1/(n—1)
smar [1/(5,’0—64)”—l +(n— 1)b;} ,Z’oo‘“ro(f ). (3.58)

3.6 One-loop renormalization-group equation in
massless A¢* theory

In the renormalization of the massless A¢4 theory, we can momentum subtract at
p* = —M? to avoid infrared singularities. In this case the renormalization-group
equation takes the form

0 d n
[MW +B) 5~ nym} T (propa.--.. pa) = 0. (3.59)

Verify explicitly, the one-loop result for the four-point function Fg) (p1, p2, P3)
satisfies this renormalization-group equation.

Solution to Problem 3.6

From CL-eqn.(2.31), the four-point function in one-loop is of the form

6" (s, 1,u) = =ik + () + (1) + T () (3.60)
where I'(p?) in the dimensional regularization scheme is given by [Cf. CL-eqn
(2.121)]

P = 2o [ 2 /ldn (1 = )] = In(=p?) (3.61)
=— 11— - n — — In(— . .
Pr=3002 \a—q ), “OH"¥N T4 p
Suppose we make a subtraction at some space-like momentum p> = —M?. Then
we have

M2 2 2 _i}‘g —1’2
F(p) =)~ (M) = = 0n <W> (3.62)
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where the dependence on M is rather simple (compared with the > dependence

in the massive theory). The renormalized Green’s function being
T, t,u) = —ir+T(s) + @) + Tw)
we get
d 3in2 3iA?
M—TP 6 u)=—"2=""2100%.
om R = g0 = q T O
Also we have
2

9 3
A—T =
BN T (s tow) (mz

) [—i+0M)]

where we have used CL-eqn (3.47)
2

2) = 3% ol
ﬁ()—<@>+ (A7).

(3.63)

(3.64)

(3.65)

(3.66)

Therefore, from CL-eqn (3.48) that y(A) ~ O(A?), we see that F;;D(s, t,u)

satisfies the renormalization-group equation to order A>.

3.7 B-function for the Yukawa coupling

The Lagrangian for the Yukawa interaction is given by

- _ 1 2
L=y e, —my + FIve+ 50,07 - .

Compute the Callan—Symanzik B-function for the coupling constant f.

Solution to Problem 3.7

\
/

FiG. 3.2

It is convenient to set all the masses to zero.

(i) Vertex correction

d*k i\
(i3 _ _
F=&if) /(Zn)‘*(zé—k) 2

d*k d
= f3 [ i with a? = —a (1 — ) p?
2m)* (k2 — az)z

(3.67)

(3.68)
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where we have combined the denominators by using the Feynman parameter and
have shifted the integration variable k — k + ap. The divergent part is then

21 ' A2
= ! <1n—+---) (3.69)

Qm)* (k2 —a?)? 1672 a?
so that
if3 A?
The vertex renormalization constant is then
2
Z;=1+ 16n2(lnA2+-~-). (3.71)

Recall that the B-function is given by

B = —fa(lnA)Zf, where Z;=Z7;'7,7;. (3.72)

Here Z, and Z,, are the wavefunction renormalization constants for scalar and
fermion fields. Thus the contribution coming from Z is

= 9 z7' = f—3(2) (3.73)
ﬂl__fa(lnA) T Tha ‘

(ii) Fermion self-energy

d*k i i(p—¥)
Zy(p) = (—if)* — : 3.74
v (p) = (=if) / GOk (3.74)
Combine the denominators in the usual way
1 1 do
——7=[ = 3.75
e/ % G7)

with A = (k — ap)? — a® and a®> = —a(1 — ) p?. Shift the integration variable
k — k 4+ ap; the numerator becomes (1 — ) p — ¥ . Then we have

dk 1 10— wp — 4]
_ 2
B =7 / <2n)4/o e

2/151 ¢! )¢L<1A—2+ > (3.76)
-/ 0 ol T 1672 na2 ’

and the wave function renormalization constant is
2

Zy=1- InA? +--- 3.77
v 3 T ©77
and its contribution to the S-function is
d 3
Br=—-f (3.78)

Z, = .
dnA) Y T l6n2

Since there are two such diagrams in the vertex, this contribution should be
multiplied by two.
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(iii) Scalar self-energy

sep = it o) [ L (v
o et \E G -1

d*k Trlk (p —¥)]
= (—)f2/ r— L4 . (3.79)
Q2r)* k*(p—k)
The numerator is, in the dimensional regularization,
N=Trlf(p —)1=d(p-k—k*). (3.80)
The denominator is
! /1 d ! ith a? (1—a)p? (3.81)
- = o— wi a”=—a(l — .
-0 Jo (k2 - a?)’

where the shift k¥ — k + ap has been made. With the shift the numerator is then

N =d[(k+ap)* — p - (k+ap)] — d[k* — a(l — a)p*] = d(k* + a?).

(3.82)
The self-energy is
> )— 2 ddk /ld L(kzﬁ- 2) (3 83)
o(p)=—Ff /(27_[)[1 A a(kz—a2)2 a?). )
Using the formulae
ddk 1 _ l(_)" F(l’l _ d/z) 1 n—d/2
/ Q2r)d (k2 — a2t~ (4m)d/? T'(n) (a_z) (3.84)
d'k K i(=)"'T(—d/2—-1) (i)n—d/z—l (g) 55)
Qm)d (k2 — a?)r - (477)d/2 T(n) 2 > .

we get
dk (kK>+a> i N2 g J .,
Q@m)d (k* —a?)? — (4m)? <?> [_EF (1 - 5) tr (2 - E)]
d

i 1\ 1- d
e (a) () (-g) o

The self-energy is then

! di 1—d d\ /7 1\!4
__p ~9 (=
To(p) = —f /0 da(4n)d/2<1_d/2>l"(2 2) <a2> . (3.87)
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The divergent part, which is relevant to the wavefunction renormalization, is then,
withd - 4and T2 —d/2) - 2/(4 — d)),
22 2 22 A2
L) LI A (3.88)
1672 4—d 1672 u?

g (P)aiv =

where we have used the correspondence (2/(4 —d)) — In A? (see CL-p. 56). The
wave function renormalization constant is

f2 A2
Zy=1+ 16n221n 7z (3.89)
and its contribution to the S-function is
Bz = %;2 . (3.90)
The total contribution to the B-function is then
b= B+ 25+ ) = L (2+2x1+z)=5f3. (3.91)
1672 2 1672

This is the result given in CL-eqn (10.16).

3.8 Solving the renormalization-group equation by
Coleman's method

Consider a one-dimensional fluid with velocity v(x) and in the fluid there are
bacteria (see Coleman 1985). Let p(¢, x) and g(x) be the density and the growth
rate of the bacteria, respectively.

(a) Show that the density of the bacteria p(z, x) satisfies the differential equation

0 R
[E + v(x)a — g(x)] p(t,x)=0. (3.92)

(b) The position of a fluid element is described by x = x(¢, x) with the initial
condition x (0, x) = x. Namely, the fluid element which was at x at ¢ = 0 is now
at x at time ¢. Clearly x (¢, x) satisfies the differential equation

%)_c(t,x) =v(x). (3.93)

Show that if p(0, x) = po(x), then at later time p(¢, x) is given by

p(t, x) = po(x(t, x)) exp [/0 dt'g(x (', X))} : (3.94)

Solution to Problem 3.8

(a) The term due to the growth rate g(x) is self-evident. We will concentrate on
the second term which is due to the motion of the fluid.



76 Renormalization group 3.8

Consider a fluid element f with length dx located at x. The bacteria in this fluid
element is just p (¢, x) dx. At a later time, ¢ + At, this fluid element is replaced by
those which were located at (x — vAt) at time ¢. Thus the rate of change in the
bacteria density in f is

[p(t,x) — p(t,x —vAN)] Ua_p
At T ox

where we have made the approximation p(t, x — vAt) >~ p(t, x) — vdp/dx At.
This gives the second term in the differential equation.

(3.95)

(b) Integrating eqn (3.93) for x, we get

X d t
/ 2 / dr'. (3.96)
X U(y) 0
We can differentiate this equation with respect to x to get
1 odx 1
e — (3.97)

v(x)dx  v(x) -
Then for any function f(x) we can show that

d _oodi
Ef(x(t,X)) =f (X)E = f (v ),

d X
v(x)a—f(i(t,x)) — ) () o = f @) (3.98)
x ox
Combining these we get
[% — v(x)%} f&x(,x)=0. (3.99)
Or changing t — —t, we get
[% + v(x)%] f(E(=1,x)) =0. (3.100)

Then it is straightforward to verify that the solution is of the form
t
p(t, x) = po(x(—t, x)) exp [/ dt'g(x(~t', X))] . (3.101)
0
Remark. The generalization to a higher dimension is simply

0 0
|:— + v (xq, ..., X)) — —g(xl,...,x,,)] p(t,x1,...,x,) =0. (3.102)

ot 0x;
Define
Ei,-(t,xl, X)) =X, ., X,) with  x; (0, x, ..., x,) = x;.

(3.103)
The solution is then

t
o, xt, ..., Xx,) = po(X; (£, X1, ..., Xy)) EXP [/ dr'g(x;(t', x1, ..., xn))} .
0
(3.104)
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3.9 Anomalous dimensions for composite operators

In the A¢* theory, compute the anomalous dimensions for the composite operators,
¢? and ¢°, in the one-loop approximation.

Solution to Problem 3.9

(i) Anomalous dimension of > As was described in CL-Section 2.4, the only one-
loop divergent graph involving ¢? is in the two-point function Ffz) , and is of the
form

?2) . _ —_l)» d4l i i
Ly (ps PhP2)—< 5 )/ ) [12—,&} [(l_p)z_uz] (3.105)

This has exactly the same structure as the function I'(p?), given in CL-eqn (2.70),
which appears in the four-point function. Taking over the result, we have

—) A? :
T2 (ps p1op2) = 5 {1n— —/ daln[p? —a(l —a)p*1+--- }
®? 3072 w2 0

(3.106)
and

Zyp = 1+T72(0,0,0)~ 1 — — 1Az 3.107
¢2—+¢,z(,,)— _ﬁnﬁ' (3.107)

The anomalous dimension is then
———1InZ —A (3.108)

= — n 2 = . .
T N AR T

(ii) Anomalous dimension of ¢® The one-loop divergent graphs are all of the type
shown in Fig. 3.3 with altogether (§) distinctive diagrams.

FiGc. 3.3.

This again can be expressed in terms of I'(p?). Taking into account the combina-
torics we get
150 A?

Zgo =1+ 151“;}2(0, 0,0) = 1——1n e (3.109)

The anomalous dimension is then

151

Voo



4 Group theory and the quark
model

4.1 Unitary and hermitian matrices
Show the following relationships between the unitary and hermitian matrices:

(a) Any n x n unitary matrix UTU = 1 can be written as
U=exp(iH) 4.1

where H is hermitian, H' = H.

(b) det U = 1 implies that H is traceless.

Remark. This result means that n x n unitary matrices with unit determinant can
be generated by n x n traceless hermitian matrices.

Solution to Problem 4.1
(a) The matrix U can always be diagonalized by some unitary matrix V

vuv' = Uy 4.2)

where Uy is a diagonal matrix satisfying the unitarity condition U, U, ; = 1. This
implies that the each of the diagonal elements can be expressed as a complex
number with unit magnitude e¢'®.

e
eiaz
Us = . 4.3)
eia,,
where ;s are real. It is then straightforward to see the equality Uy = e'", where
H, is a real diagonal matrix: H; = diag(a,, oz, . .., o,). We then have
U=V'U,v=Viety =" (4.4)

with H = V' H,;V. Because H, is real and diagonal, the matrix H is hermitian:

H = (VHV) =V'H]V =H. 4.5)
(b) From the matrix identity e = det(e”), we have for U = e
e — det (¢') = det U. (4.6)

Thus det U = 1 implies that 7rH = 0.
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4.2 SU(n) matrices
The n X n unitary matrices with unit determinant form the SU(n) group.

(a) Show that it has n> — 1 independent group parameters.

(b) Show that the maximum number of mutually commuting matrices in an SU (n)
group is (n — 1). (This is the rank of the group.)

Solution to Problem 4.2

(a) To count the number of independent group parameters, it is easier to do so
through the generator matrix. From the previous problem, we have U = ¢'f,
where H is an n x n traceless hermitian matrix. For a general hermitian matrix,
the diagonal elements must be real, H;; = H%. Because of the traceless condition,
this corresponds to (n — 1) independent parameters. There are altogether (n*> — n)
off-diagonal elements and thus (n?> — n) independent parameters because each
complex element corresponds to two real parameters, yet this factor of two is
cancelled by the hermitian conditions H;; = H?};. Consequently, we have a total
of m—14+n*—n)=w*-1 independent parameters.

(b) From the discussion in Part (a) we already know that there are n—1 independent
diagonal SU(n) matrices, which obviously must be mutually commutative. On the
other hand, if there were more than » — 1 mutually commuting matrices, they could
all be diagonalized simultaneously, thus yielding more than » — 1 independent
diagonal matrices. This is impossible for n x n traceless hermitian generating
matrices.

4.3 Reality of SU(2) representations

This problem illustrates the special property of the SU(2) representations, their
being equivalent to their complex conjugate representations.

(a) Forevery 2 x 2 unitary matrix U with unit determinant, show that there exists
a matrix S which connects U to its complex conjugate matrix U* through the
similarity transformation

s~'us=u*. 4.7)

(b) Suppose ¥ and v, are the bases for the spin—% representation of SU(2) having
eigenvalues of :I:% for the diagonal generator T3,

T3y = 3y and Tsyn = — 1y, (4.8)

calculate the eigenvalues of 73 operating on v/ and v, respectively.

Solution to Problem 4.3

(a) We will prove this by explicit construction. Problem 4.1 taught us that the
unitary matrix U can be expressed in terms of its generating matrix U = expi H.
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Thus the matrix S, if it exists, must have the property of
ST'HS = —H* (4.9)

so that S~'US = S~ (expiH)S = U* = exp(—iH*). The generating matrix H,
being a 2 x 2 traceless hermitian matrix, can be expanded in terms of the Pauli
matrices

H = a|o1 + axon + azo3 (410)

with real coefficients of expansion as. Since o7 and o3 are real, o, imaginary, we
have

H*:alol —a202+a303. (411)

Equation (4.9) can be translated into relations between S and Pauli matrices:
S7'o1S = —o1, S~ 028 = 03, and S~'03S = —o3. Namely, the matrix S must
commute with 0,, and anticommute with o and 3. This can be satisfied with

S =co 4.12)

where c is some arbitrary constant. If we choose ¢ = 1, the matrix § is unitary and
hermitian; for ¢ = i, S is real.

(b) The statement ‘i and v, are the bases for the spin-% representation of SU(2)’
means that under an SU(2) transformation (i = 1, 2)

VY, —> ¢/ =U;y; with U =exp(iea- o). (4.13)
In matrix notation, this is ¥’ = U. The complex conjugate equation is then
Y =UY = (STUSYT or (SY) = USy™). (4.14)

This means that Sy* has the same transformation properties as . Explicitly, with

S = io,, we have
«_ (0 LN(YI\_ (¥
se=(1 o) (0)=(5) 12

To say that it has the same transformation properties as

(i
v = ( %) (4.16)

means that, for example,

v\ (1/2 0 v
s (—é;‘) N ( 0 —1/2) (_1;1*) (4.17)

Namely, the eigenvalues of the 75 generators are

B3 =60 =3
W) =61) = —3. (4.18)
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Remark. This shows that the 7 = % representation is equivalent to its complex
conjugate representation. We say that it is a real representation. This property
can be extended to all other representations of the SU(2) group, because all other
representations can be obtained from the 7 = % representation by tensor product.
Part (b) shows that the matrix § transforms any real diagonal matrix, e.g. o3,
into the negative of itself. In other words, S will transform any eigenvalue to its
negative. Thus the existence of such a matrix § requires that the eigenvalues of the
hermitian-generating matrix occur in pairs of the form o, a5y, . . . (or are zero).
It is then clear that for groups of SU(n) with n > 3, such a matrix S cannot exist
as eigenvalues of higher-rank special unitary groups do not have such a special
pairwise structure.

4.4 An identity for unitary matrices

(a) Show that if A and B are two n x n matrices, we have the Baker—Hausdorff
relation
2
¢4 Be™" = B+i[A, B+ A [A. Bl + -

rn

+:7[A,[A,...[A,B]...]]+--~ (4.19)

(b) Show that the matrix B is invariant (up to a phase) under the transformations
generated by the matrix A, if these two matrices satisfy the commutation relation
of [A, B] = B.

Solution to Problem 4.4

(a) The matrix J, defined as J (L) = e*4 Be™"*4, being a function of some real
parameter A, can be differentiated to yield:

dj . . dJ
= = ¢™[A, Ble T = —— =i[A,B]l=iC,
d dxrl,_,
dzJ LA =2 —iLA dz‘] .2 .2
Sz e [A,[A, Blle :WA:():l [A,[A,Bll=i"C,
drJ : 4 drJ
—— = MA,Cp]eT M = =i"[A,Cy_1]1 =i"C,.
dan da |, _,
Expand J()) in a Taylor series:
o0 dnJ An o0 )\”
J\) = = =) i"c,= 4.20
@) ;dkn o 1! ;’ n! (4.20)

where Co = B, C; = [A, B], and C,, = [A, C,_1]. Setting A = 1, we have the
desired result
2
¢4Be”' = B +i[A, Bl + %[A, [A,B]]+---. 4.21)
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(b) To show that ‘the matrix B is invariant (up to a phase) under transformations
generated by matrix A’ means to show that

e ““Be~94 = B (4.22)

for an arbitrary real parameter «. But from Part (a) we have already shown that
A BeTiA = Z l"c — (4.23)

where Cy = B, C; = [A, B], and C, = [A, C,_]. For the case at hand of
[A, B] = Bwehave C,, = Bforalln =0,1, ...

o0

icA ﬂ'aA C)l
B E — = 4.24
e e n ( )

This is the claimed result.

4.5 An identity for SU(2) matrices

Prove the identity for 2 x 2 unitary matrices generated by Pauli matrices ¢ =
(01, 02, 03):

exp(ir - ¢) = cosr + (f - o) sinr (4.25)

where r = |r| is the magnitude of the vector r and t = r/r is the unit vector.

Solution to Problem 4.5

We will first derive a useful identity for Pauli matrices. Consider the multiplication
of two matrices

(A-0)B-0) = (0i0;)A;B;
= %[(Gi 0j+o0j0i)+ (0i0; —0;0;)]A;B;j
= 30, 0} +[01, ;DA B;
= 1(28;; + 2ig;j01) A; B; (4.26)
where we have used the basic commutation relations satisfied by the Pauli matrices:
loi, 0j] = 2ig;jrox and {oi, 0} =26;;. 4.27)
Thus we have the identity
(A-o)B-0)=A-B+io-(AxB). (4.28)

SetA=B=r,weget(r-0)>=r’+ioc-(rxr)=r’and(r-o)’ =r’(r-o) =
r3(F - o). It is then straightforward to see that

r-o)”=r" and (r-o)”" =r""(t.0) (4.29)
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withn = 1,2, .... The desired identity for the unitary matrix then follows as

rn

exp(ir - o) = Z ’%(r o)"

n

i" i
-y Brhea Y Dy
n=even n! n=odd n!
=cosr + (F- o)sinr. (4.30)
Remark. This relation holds only for 2 x 2 unitary matrices and does not hold

for higher-dimensional cases, where anticommutation relations are much more
complicated than just the Kronecker delta.

4.6 SU(3) algebra in terms of quark fields

(a) Given a set of composite quark field operators

i T )“_l 3
F'=|gq (x)zq(x)dx 4.31)

where the quark field operators

q1(x)
q(x) =1 g2(x) (4.32)
q3(x)
satisfy the anticommutation relations
{0 ai» )| =smsc -, (433)
X0=Yo
and where A/, withi = 1,2, ..., 8, are the Gell-Mann matrices
R I > (4.34)
—, = | =i —, .
2° 2 2

show that { F'}, if assumed to be time-independent, generate the Lie algebra SU(3):
[Fi, F/1=ifiUkF*, (4.35)

(b) Calculate the commutators [Wf, Wf ] for the non-hermitian generators
wh = / 45 (0)qa(x) d*x. (4.36)

Show that W, is just the isospin raising operator. Similarly, W5 and W3 are,
respectively, the U-spin and V-spin raising operators.
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Solution to Problem 4.6

(a) The proof can be obtained by applying to the commutator [F?, F/] the iden-
tity of

[AB,CD] = —-AC{D,B}+ A{B,C}D — C{A, D}B + {C, A}DB, (4.37)
which for the present case has {A, C} = {B, D} =0,

S . Al A
[F',F/]= /d3x d’y [qa'(x) <3) qr(x), . (y) (7> qd(y)]
ab cd
_ 3 3 3 T )‘i )”j
= | &xd’y&(x—y)|q)(x) 5 Bbe > qa(y)
ab cd
—ql(» (£> Sad (A—> qb(x)}
¢ 2 cd ¢ 2 ab

3. % A - ijk ok
:/d xq'(x) 57 qg(x) =ifY"F*, (4.38)

where, because F's are assumed to be time-independent, we have chosen xo = yq

for convenience, and applied the equal-time anticommutator of the quark field
operators.

(b) Again from the identity eqn (4.37) and the quark field anticommutation rela-
tions, we have

[w?, W] = / Exdy [g] (000, 4] (a0

= [ @xdyst = [alostam - gjostaw)

=8'wh — sbwd. (4.39)
If we write (g1, g2, g3) = (u, d, 5), the non-hermitian operator

W) = / gl (g (x) dPx = / u'(x)d(x)d*x (4.40)

is shown to be an operator which transforms a d-quark to a u. Clearly W21 is the

o - w3 s
isospin raising operator. Similarly, we have s — d and s — u.

Remark. In this notation the third component of the isospin generator T3 takes
the form of

T = %/(u*u —d'd)yd’x = %/(qfch —g3q2) d’x

and the hypercharge in the form of

Y =1 /(u*u +d'd —2sTs)d’x = J(W| + W; —2W)). (4.42)
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4.7 Combining two spin-% states

Consider a doublet y» = (Y1, ,) of the SU(2) group. Show that the composite
operators S = ¥y and V = ¢ 1y, T = (11, 12, 13) being the usual Pauli
matrices, transform as a scalar and a vector respectively. Also, demonstrate the
vectorial transformation property of V in several ways:

(a) for a general infinitesimal rotation,
(b) for a finite rotation around the 3-axis,

(c) for a general finite rotation.

Solution to Problem 4.7

Under the SU(2) transformation, we have
w N w/ — e*i(x“[/zlp,’ 1//’[ N w/‘{ — ,‘//Teiwr/z (443)

where o = (a1, o, 3) are the three arbitrary real parameters. It is clear that v/ "y
is an invariant under SU(2) transformation.

S = w/fw/ — wTe+ia-t/2e—ia~r/2w — wTw =S. (4.44)

(a) To demonstrate the vectorial transformation property of V under a general
infinitesimal rotation

¥ — oy = —ia- /2,

. ) ) (4.45)
v — vy =yt A tia 7/2),
we note that the transformed composite operator can be written
V=vy Tty >~y U +ia-1/2)1(1 —ie- T/2)¢
=y (r+i[ 5 o]+ 0@)v. (4.46)
But the commutation relation for Pauli matrices yields
[%, rk] =a; [%’, Tk] =ioj€ejnt =i(T X o). 4.47)

Thus we have demonstrated the vectorial nature of V under the infinitesimal SU(2)
transformation

V=vy(t—txa)y =V-Vxa. (4.48)

(b) To demonstrate the vectorial transformation property of V under a finite rota-
tion around the 3-axis:

v =Ry, y'T=vy R, with R = e i®%/2, (4.49)
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the transformed V operator can be written
V' =y 1y’ =y RITRY = ¢l @™/ e/ n 2y, (4.50)
Applying the formula of eqn (4.19)
2
¥ i . [a3T3 :| l_ |:063‘L'3 |:Ol3‘L'3 ]] .
RrR—r—i—z[—z,t—i—z! =5 )+ (4.51)

we clearly see that, because [(73/2), 13] = 0, and thus R'13R = 13, the third
component of V is unchanged under a rotation around the 3-axis. For the other two
components we need to calculate [(73/2), 71 2]. This can be considerably simplified
if we work with the combinations 7. = 7| £ i1p, which obey the commutation
relation of

)
(5 o] =2 (4.52)
In particular, we have
3 3 3
235 )] = (4:33)
and thus
1 ,
R't,R =1, (1 + (io3) + 5(1'013)2 + - > =1, €%, (4.54)

N 1 .
R'T_R=1_ (1 + (—ia3) + 5(—iag)z + - ) =1 e, (455)
It then follows that
1 . .
R't/R = 3 (r+ e +1_ e_““) = Cos3T] — Sina3Ty (4.56)
and similarly
T 1 —ia +ia :
R'HR = 3 (t+e St 1 e 3) = sina3T| + COS 3T 4.57)

Consequently, the three components of V have the following transformation
property under a finite transformation around the 3-axis:

V] =cosazV; —sinas Vs,

V; = sinaz V) + cosaz Va,

V3’ = V. (4.58)
(¢) For the case of arbitrary SU(2) transformation, we have

V =y 'ty =y U tUY where U = e 1®7/2, (4.59)
2

v =ei(5) ]+ [(55) [(555) o]+
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The basic commutator can be calculated as follows:

[<aé T)’ ‘L'k] =qj [%], Tk] =ajiejut = (—o -ty (4.60)

where we have recognized the spin-1 representation of the rotation operator
(fj)kl = —iéjkl. 4.61)
For the double commutator,

(57 [(%57) < ]) = e on[(%57).

=(—a-y(—a-t);T;

=(—a- -5y (4.62)

and so on. Thus

1 .
U'qU = |:1 + (—ia-t) + 5(—“’6 )+ :| 7= (""Yn, (4.63)
! K

or

Vi— V)= (""" Vi (4.64)

4.8 The SU(2) adjoint representation

(a) Suppose ¢ transforms as a vector under SU(2) as discussed in eqn (4.64):
¢; — ¢ = (€'Y juehx. (4.65)

Show that the transformation law for the 2 x 2 matrix defined by D=1 ¢is
given by

d— d=UPU  with U=e "> (4.66)
(b) Suppose T is a2 x 2 hermitian traceless matrix which transforms as
2 — ¥ =U'SU with U=e'*"2 (4.67)

Show that 3’ is also hermitian traceless, and with det 3 = det 3. Since ¥ and
3’ are hermitian and traceless, they can be expanded in terms of Pauli matrices

A

S=7-¢ and Y =1-¢. (4.68)

Show that ¢ and ¢’ are related by a rotation.

(¢) Suppose we have the nucleon in the isodoublet representation N = (p, n),
and the pion in the isotriplet representation @ = (m, 7o, m3) with 73 = 70,
(m — inz)/\/z =n",and (m; + inz)/\/z = 7, construct the SU(2) invariant

pion—nucleon 7 N N coupling.
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Solution to Problem 4.8
(a) We will show that &' = UTDU follows from the transformation eqn (4.65):
O =ity = (e i, (4.69)

1
=¢k[1+(—ioc-t)+—(_ia.t)2+...] 7
2! i

which can be written, according to eqn (4.63), as
=4 U U =U"dU. (4.70)
Remark. This problem shows that there are two alternative ways to describe the

transformation of the vector representation (more generally, the adjoint represen-
tation): as in eqn (4.64) or as in eqn (4.66).

(b) To show that 3 is hermitian if ¥ is hermitian:

vih=witu)y =vitiv=vu'zvu =% (4.71)
To show that 3 is traceless if X is traceless:
r¥ =trU'SU =trUUTE = 1rS = 0. (4.72)
To show that det &' = det 3::
dety =detU'SU =detUU'S = det . (4.73)
Expanding 3’ and ¥ in terms of Pauli matrices:
r=Td= <¢1 it ¢1—¢l3¢2) ’ @79
it is easy to calculate their determinants:
det¥ = — (¢7 + ¢7 +¢3). (4.75)

Thus the above result of det 3/ = det & implies that the transformation ¢ —> ¢’
leaves the length | @| unchanged. This must be a rotation.

(¢) From (a) and (b) we see that the 2 x 2 hermitian traceless matrix M=1- T,
formed from an SU(2) vector m, transforms by the similarity transformation:

M— N =UTU  with U=e 72 (4.76)

In this form, it is easy to see that the product N fIN , where N is an SU(2) doublet,
is invariant under SU(2) transformations. This suggests the invariant pion—nucleon
7 NN coupling to be

~ 0 +
Lany =gNT- 1N = g(p. i) (\};ﬂ f’:o ) (”)

n
—g [(ﬁp — in)7® + V2(pnrt + ﬁpn_)] , 4.77)

and thus the relations among coupling constants are

1 1

8ppn® = —8ann® = ﬁgﬁmfr = Egﬁpn’ =8§. (4.78)



4.9 Couplings of SU(2) vector representations 89

Remark. The relation gj,+ = gipr- follows from the hermiticity of the
Lagrangian density (or charge conjugation).

4.9 Couplings of SU(2) vector representations

(a) The p vector meson has isospin 1 (it has three charge states: p*, p°, p7).
Construct the SU(2) invariant pzrr coupling.

(b) The w vector meson has isospin 0. Construct the SU(2) invariant wpm coupling.

Solution to Problem 4.9

(a) Since p has spin 1 and isospin 1, we can represent the p-fields as p,, (x) and

define a 2 x 2 matrix Iaﬂ =T7-p, As one has seen in Problems 4.8 and 4.9, it
transforms under SU(2) as

A

P, — P, =UPU (4.79)

just as the pion matrix 1 — IT = UTTIU, where U is an arbitrary 2 x 2 SU(2)
matrix. This suggests the invariant coupling to be

Lpzn = gtr(P, 0" T11T)

:gtr< P «/5/)*")( 3,70 \/Ealﬂﬁ)( 70 ﬁ;ﬁ)

V2pTH —pOm V2o~ —,7° V2= —n®
=g[2p" (Bt — ) + 20" (B 70 — 8,177
+ 207" (3,7t 7® — 9,77 ")]. (4.80)

This implies, for example, the equality of decay rates
Frp’ > 727 )=T(pt > 72t72") =T - = 7. (4.81)

Remark 1. The decay p° — 7%7° is forbidden because the (7°7°) system can

only have even orbital angular momentum because of the Bose statistics. Hence
angular momentum conservation will forbid this decay. Note: the same argument
can be applied to the vector gauge boson Z to forbid the decay into two identical
Higgs (scalar or pseudoscalar) bosons.

Remark 2. The other possible coupling tr(IS,LfIZ)“fI) is not independent of the
one just considered. This can be seen by applying the Pauli matrix identity

(t-A)(-B)=A-B)+it-(AxB) (4.82)
which implies that
or (B0 1) = i p, (0" 7 x ), (4.83)

tr (ﬁﬂﬁa“ﬁ) = —ip, (" x 7). (4.84)
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(b) The SU(2) invariant Lorentz scalar combination out of the p, 7, and  meson
fields can be constructed as

Lprw = gtr(P, MMo"
=28 (pfn " +pn" + ,02710) o™ (4.85)

4.10 Isospin breaking effects

Exact SU(2) symmetry implies the degeneracy for particles in the same irreducible
representation of SU(2). But the SU(2) isospin symmetry is broken in nature by
electromagnetism as well as by up-and-down quark mass difference. The first-order
electromagnetic breaking, involving the emission and absorption of a photon (and
thus the electromagnetic charge operator Q acting twice), contains an isospin-
changing Al = 1 piece, as well as a AI = 2 piece. On the other hand, the quark
mass-difference:

my, +m

myiis + madd = 4 (u + dd) + @(fm —dd) (4.86)

contributes only a Al = 1 breaking, as the last term transforms as the third
component of the isospin generator /3. Thus the strong interaction Hamiltonian
can be written as

where H ) is SU(2) invariant, H}z) is the Al = 2 electromagnetic breaking
term, and the A7 = 1 piece 'H;l) contains both the electromagnetic and up—down
mass-difference breakings. In this problem you are asked to calculate the first-
order mass shifts due to H’ by using the Wigner—Eckart theorem for the following
isomultiplets:

@ I=3:(p.n),
() I =1:(=F, 20,57,
(© I=3:(ATH AT A% AY).

Solution to Problem 4.10

According to the Wigner—Eckart theorem, the matrix elements of a tensor operator
OM . having isospin T and third component value M, have the simple structure of

(I, 1oy | 1. L) = (1", G| T, M; I, L){I'| Or | 1) (4.88)

where the first factor on the right-hand side is the Clebsch—Gordon coefficient and
the second factor is the reduced matrix element, which is independent of I3, 13/,
and M. For this problem, the operator O = H/(l) and H/(z) which transforms as the
(T =1,M =0)and (T =2, M = 0), respectively.
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aIl=-: multlplet (p, n). The first-order mass shift due to H(]) can be evaluated
by the ngner—Eckart theorem as

8Vm, = (p [Hey| p)= (3. 5 [Hi| 55 3)
= (141,04, 1) 8Wmy = — [ TsVmy (4.89)
and
B, = P o) = (4 )

= (L 11,04, ~1)6Dmy \/}m (4.90)

where 8V m y is the I -independent reduced matrix element.

Exactly the same calculation shows that the A7 = 2 shifts §@m, = §Pm, = 0
as the corresponding Clebsch—Gordon coefficients vanish (because an I = 2 oper-
ator cannot connect two I = 1/2 states).

In this way we find that the proton and neutron mass shifts ém,, = §Vm,,
have the same magnitude but are opposite in sign:

Smpy = —8my,. (4.91)

Remark 1. We can apply this result to any other / = % multiplets. For example,

dmgo = —émg-, dmgo = —38mg-, etc. 4.92)

Remark 2. Alternatively, we can write down an effective mass term in the
Lagrangian, which contains an operator having an isospin value of (T =1, M =
0). For the isodoublets this can be represented by a 2 x 2 matrix, 3. The effective
mass term for the nucleon can then be written as

Lsmy = NSmytsN = Smy(p, 1) (é _01) <Z>
= dmy (pp — nn), (4.93)
which yields
dm, = —0m, = dmy. (4.94)
(b) I = 1 multiplet (£*, £° ¥ ~) The Wigner—Eckart theorem yields
§WVmye = (27 [H() | ) = (1 +1 [H{| 1, +1)

=(1,+1/1,0; 1, +1)8Vm \ﬁs“) (4.95)

8Vmso = (20 [}, 5 = (1,0 ]3| 1,0)
=(1,0[1,0;1,06Vmy =0 (4.96)
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8Wmy- = (27 [y [ B7) = (1 —1[Hy [ 1. 1)

=(1,—-1/1,0; 1, = 1)8Vm \ﬁs“) (4.97)
and
8Pmys = (T |H,) | =) = (1, +112,0;: 1, +1)6Pm f(s(z’ (4.98)
8P mzo = (2% |Hp, | 2°) = (1,02, 0; 1,0)6%m \ﬁs@) (4.99)

§Pmy- = (57 [Hip | 7) = (1 ~112,0: 1, 1)@m= /6@ mz.  (4.100)

Combining these results and using the notation m; = \/gé(l)mg and m, =
\/%S(z)mz, we have
my+ = mo+m; + my,
mso = mo+ 0 —2m,,
ms- = mo—m; + ms. (4.101)
The I = 1 and I = 2 mass splittings can then be isolated:
my = Y(mg+ —msx-), (4.102)
my = 3(ms+ +my- —2ms). (4.103)

While m contains both the electromagnetic and up—down mass difference effects,
my is purely electromagnetic in origin.

Remark. The same analysis holds for the isotriplet pions. In particular, we have,
besides 8 V'm0 = 0, the result

8Pmar = =8Um-. (4.104)
But 7 is the antiparticle of 77~ and should have the same mass. Hence
Mg+ = 8my-. (4.105)

The only way to reconcile these two eqns (4.104) and (4.105) is to have the reduced
matrix element §Vm, = 0. (The Wigner—Eckart theorem does not by itself give
any information about the reduced matrix element.) The same result can be seen
from writing out the mass term in the Lagrangian:

L) =AVm, tr (ﬁmﬁ)

— A 70 V27t 1 0 70 V2rt
= mgy Ir \/—7_[_ _7_[0 0 —1 \/ETF_ _7.[0
=AYm,(x"”% -2t =72 4+ 27Tn7) =0. (4.106)

Thus the pion mass differences (and for p mesons also) are entirely due to the
I = 2 electromagnetic corrections.
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(¢) 7 =3/2 multiplet (AT, AT, A? A7)
The Wigner—Eckart theorem yields

§Vmare = (2, +3]1,0; 2, +3)60m, = \/g(g(l)mA
§Vmae = (3. 41]1,0: 2, +1)50ms = [ £50m,
§Vmpe = (§ _%| 1,0; 3, _%>3(1)mA — _ 11_56(1)mA

8Wma- =(2,-3]1,0; 2, =2)6Vm, = —@S(I)mA (4.107)

and
§Pmas = (i’ +%| 2,0; %’ +%>8(2)mA = %3(2)mA
$Oma: = (3, 412,05 1)5ma = — /16
$m = (3, ~42.0:3,~1)3%ms =~/ 18m

8Pma-=(3,-3(2,0:2,-3)8%ms = ﬁa@m. (4.108)
Combining these results we have
ma++ = mg + 3m; + mo,
ma+ = mgy + m; — my,
mao = mo — nyp — ny,
ma- = mg — 3m| + ms,. (4.109)

Besides allowing us to isolate the / = 1 and / = 2 mass splittings, these equations
also imply a mass relation of

Mpa++ — Ma- = 3(Ma+ — Mpo). (4.110)
This simply reflects the absence of an I = 3 piece in the symmetry-breaking
Hamiltonian.
4.11 Spin wave function of three quarks

As an exercise in Clebsch—Gordon coefficient calculation, construct the spin states
of baryons, which are composed of three spin-% quarks.

Solution to Problem 4.11

The possible spin states for two quarks are S;, = 0, 1, where S;» = S; + S». As
discussed in the text, the S;» = 1 states | Sz, Sz, ;) are

|1, 1) = 10
I1,0) = S5 (12 + Braz)
11, =1) = Bi12 (4.111)
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where o« = %, %) and 8 = %, —%) are the spin-up and spin-down states, respec-

tively. Also we have the spin-zero combination:
10.0) = 7 (12 — Prata). (4.112)

Combining the Sj, = 1 states with S3 = %, we obtain § = % and % states, where
S=S,+S3=8+S; +8Ss.

s=18=3=111

3. 3) = a0 (4.113)

To reach the other § = % states, we use the lowering operators

Y2188 — 1) (4.114)

S_18,8.) = [(S+ 8S)(S = S. + )]
to obtain
33
S-13.3)=v3

On the other hand, S_ = (S12)_ + (S3)_. Thus

3.4, (4.115)

S_|1, 1)

503) =S| 1) |5, +5) + 11, 1)(S3)- |3, 3)
= V2|1, 0)a3 + |1, 1) Bs. (4.116)

Combining eqns (4.115), (4.116), and (4.111), we get

3.3 = 5[ V2L 000 + 11,185
= %[(061/32 + Bran)as + ajan B3l
= Jslonpras + Brones + arcapsl. 4.117)

Similar to eqn (4.113), we have

S=is=-f=iL-nh-Y=ppp @y
and using S; we can obtain
3,-3= \/%[051/32/33 + Broafz + Bifras]. (4.119)

The state | S = 1, S. = 1) must be orthogonal to [§ = 2, S, = 1) ineqn (4.117):

=% [—|1, Oy + V2|1, 1>ﬁ3]

= #5[2“1052,33 = (Bron + a1 Ba)asl, (4.120)

o=

)

o=

where the subscript S signifies the symmetry property of the state under the per-
mutation of quarks 1 <> 2. Similarly, we have

3 =3l = T 281820 — (@12 + Bro) B3l (4.121)
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But ‘%, :i:%) can also be obtained from combining the S;; = 0 and S3 = % states.
Such combinations are antisymmetric under the permutation of quarks 1 < 2:

33 = J%(ouﬂz — Bro2) 3. (4.122)

To summarize, we have four S = % states, which are completely symmetric under
any permutation of all three quarks (1, 2, 3):

) = e
3= %[mﬂzm + Bronas + a1 fsl
2, —3)= %[alﬂzﬂs + Broafs + BiBros]
5.=3) = BiB2bs (4.123)
and two § = % states |5, & ) s = Xm,s, which have mixed symmetry with respect

141
202
to the permutation of (1, 2, 3) but are symmetric under the permutation of 1 <> 2:

[2a1a2B3 — (Bioa + a1 Ba)as]
2818203 — (a1 B2 + Braa) B3] (4.124)

)
>s=

andtwo § = % states %, :I:%) A= XM A which have mixed symmetry with respect
to the permutation of (1, 2, 3) but are antisymmetric under the permutation of

1< 2:

&= &=

13.3), = \/%(011,32 = Braz)as
I
2

)u = (@12 — Bra)ps. (4.125)

Remark. If we are interested in the isospin of three non-strange light quarks u and
d (as for the nucleons and the A resonances), we can work out the corresponding
isospin wave functions by the simple substitution of « — u and 8 — d:

. . . _ §
(a) Symmetric isospin [ = 3 states

A% = 3.3) = s
AT = |%, %) = %[uldzm + diusuz + ujurds]
AV =3, -1 = \/%[M1d2d3 + diuyds + dydyus]
A™ =3, -3) = didpds. (4.126)

(b) Mixed-symmetric (but symmetric with respect to the interchange 1 < 2)
I = % states ¢, s:

55l = \/Lg[zulu2d3 — (dyuz + uydr)us]

(ST S

3 —3)s = Jl2didous — (rdy + dyuz)ds). (4.127)
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(¢) Mixed-symmetric (but antisymmetric with respect to the interchange 1 < 2)
I = % states ¢ar 4.

11 1
350, = 75 widy — dyuz)us
1
)

), = %(uldz — dyun)ds. (4.128)

4.12 Permutation symmetry in the spin-isospin space

Show that the spin and isospin combination of the mixed symmetry states dis-
cussed in Problem 14.11, xa . s¢m.s + Xm.a®m. 4 is invariant under the general
permutations of particles indices. Hint: Such permutation operations are repre-
sented by orthogonal matrices in the 2D spaces spanned by mixed-symmetric spin
wave functions, x; = xm.s and xo = xu. 4, Or isospin wave functions, ¢ = ¢u.s
and ¢ = ¢ a.

Solution to Problem 4.12
The general permutation of three indices can be denoted as
P = (.1 2 3) (4.129)
11 12 13

where (1,2, 3) are replaced by (iy, i, i3)—thus a permutation of the particle
indices (1, 2, 3). There are six elements in this permutation group Ss:

1 3 1 2 3 1 2 3
P12=(2 3>, 1"13=<3 5 1), P23=<1 3 2),

1 2 3 1 2 3 1 2 3
P123=<2 1>, P132=<3 1 2>, 1=(1 > 3).

It is clear that under any of the permutation operations, the mixed-symmetric spin
wave functions yu s and x4 transform into linear combinations of yjs s and
Xum. 4. The trivial examples are  and Pj,. By construction, we have

— N

w

Pioxm,s = Xm.,s» Pioxma = —Xum.aA, (4.130)

i.e. xm.s and yu 4 are eigenstates of Py and /. The operator / and Pj, can be
written as an orthogonal matrices:

ro - I X1 D 3 1 0 X1
(b (). Aa(l 2)() e

The more general cases can be exemplified by Pj3 acting on

xi =15, 45 = Raiwps — (Bias + aipas],
xe=l3.+3), = %2(011/32 — rax)as, (4.132)
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to yield
Pixi = \/Lg[zaﬂzﬂl = (Bsor + a3B2)ai]
=iy - “75)@, (4.133)
and

Pi3x2 = %(053}32 — Bsap)ag

~ Ly + 1 (4.134)

Thus Pj3 can also be represented by an orthogonal matrix

1 ﬂ
Pax=( 2 2 )(%). (4.135)
_ 3 _|__ X2
2 2

It is not difficult to convince oneself that, because the permuted states Py — x’
must remain orthogonal to each other, all the six permutation elements can be
represented by orthogonal matrices:

PTP=PPT=1]. (4.136)

From this property it follows that the combinations such as

A

TR=xt4x RTé=xd + 0 (4.137)

are invariant under all the permutations of the particle indices.

Remark. Since the combination xu s¢m.s + Xm.a®m 4 1s invariant under any
permutation of quark indices, it is totally symmetric in the spin and isospin space.
From this we can conclude that the nucleon wave function, which is a product
of spin, isospin, and the totally antisymmetric colour wave functions, is totally
antisymmetric with respect to interchange of any of its three quarks. This is com-
patible with the requirement of the (generalized) Pauli principle as the nucleon is
a system of fermions (quarks).

4.13 Combining two fundamental representations

Work out the tensor products of the defining representations of SU(2) and SU(3):

(a) Let w ( ) ( ) be an isospin doublet with its hermitian conjugate being

) uT dT Find the isospin of the product ¥*; (wherei =1, 2).
Vi u
(b) Letyy = [ o | = | d | be an SU(3) triplet. Decompose the product y*;
V3 s
(where i = 1, 2, 3) into irreducible representations of SU(3).



98 Group theory and the quark model 4.13

Solution to Problem 4.13

(a) It is useful to denote the complex conjugate ¥ by ¥'. Namely, ¥’ = .
From the fact that under an SU(2) transformation,

Vi — Yl = Uy, = Ul (4.138)
where Ul.j = U;; and U is unitary, we have
v — Y = UGy = Wj(Uij)* (4.139)
or
Y — Y =yU; (4.140)
where U j’ = (Uij )*. It is clear that the combination 1y is an SU(2) invariant:
Yyl = I UIUS = Y U Une = 7 85 = v/ (4.141)

Thus ¥/1; hasisospin I = 0. Itis easy to see that the remaining three combinations
in the product ¥+, transform as an I = 1 triplet. We can remove the I = 0
combination by the following subtraction:

T, = ¢y — 3850 v (4.142)

which has the property of Tii = 0. The T; components can be explicitly written
out to be:

=y =u'd~n"
=y Y1 =du~n"

and
T = ¢'y — 3 (' +97Y0) = L (vl — vPn)
=1y —d'd)~ %750 (4.143)
T =9y — 3 (V' + v 2n) = =1 (V' — vn)

= —3'u —d'd) ~ . (4.144)

Sometimes it is convenient to write T} as a traceless matrix

. ! T2 1 70 V2nt
T = '] 12 = — . (4.145)
T2 T2 \/E \/ET[ B —7T0
‘We can summarize the result in the form of a direct sum:

2*x2=1+3, (4.146)

where the representations are denoted by their respective dimensions. The triplet
is called the adjoint representation of SU(2).
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(b) Again the SU(3) invariant trace
Viv, =u'u+d'd+s's (4.147)

is an SU(3) singlet. The remaining eight components transform as the octet repre-
sentation under SU(3),

3x3 =1+8. (4.148)

Following the same procedure as in (a) we can display the adjoint representation
of SU(3) as

A} =yl — 3850 o). (4.149)
To display the quantum numbers of various components:
Ay=u'd ~n, Al=d'u~n",
AézuTSNK_, A?:sTMNK“L,
Al =sTd ~ KO, A2 =d's ~ KO, (4.150)
for the diagonal elements
1 . . 7.[0 ’70
Al =vw'u— —@u+did+sTs) ~ —=+ — (4.151)
: 3 NN

where
1 . 1
0 _ i 0_ t t t
m=—Wwu—-d'd), n=—wWu+d'd-2s's). (4.152)
V2 V6

Similarly, we can work out

e DO A R DR (4.153)
VAN v s '

These octet components can be organized as a traceless hermitian matrix:

x4 o + +

A{ A% A? ﬁ+J6 jT . K

A 1 2 3 _ — _ n 0
A= A% A§ A§ = b [2—{—[6 K20
Ay A A - 0 2
3 3 3 K K 7

Because of the transformation properties of the defining representation and its
conjugate:

Vi — W = Ul W — = yIU (4.154)
the adjoint representation transforms as
Al — A = UUS A = (Up)* Al (U)), (4.155)

or, in terms of matrix multiplication, it has the simple form of

A— A =UTAU. (4.156)
Let us recall that here the U matrix is the defining representation of the SU(3)
group.
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4.14 SU(3) invariant octet baryon-meson couplings

The baryon octet can be represented by a 3 x 3 matrix

2 A + Dy A T E-
b E, 27':(: 6 7’;1\ ? V2 - Ve L;K
- B Ve P TR
and the pseudoscalar meson octet by
= oy zt K+
ﬁ \/6 0 8
M= T —+ % K
K- Ko =
V6

(a) Construct the SU(3) invariant BBM couplings.

(b) Express all the above meson—baryon couplings in terms of two SU(3) sym-
metric couplings. This implies numerous coupling relations. But most of them
actually follow from SU(2) isospin symmetry. Thus it is useful to express these
SU(2) invariant couplings directly in terms of the two SU(3) couplings.

Solution to Problem 4.14
(a) Interms of these baryon and meson matrices, it is clear that there are only two

invariant BBM couplings as there are only two independent traces of multiplying
these matrices together:

Lggy = V2[g1 tr(BBM) + g> tr(BMB)]
= V2[a (B/BiM]) + g (B MiB]) . (4.157)

A common way to express these couplings is to write

_D+F _D-F @158)
gl - 2 ) gz — 2 5 .
so that
F - D .
Ly = 7 tr(B[B, M]) + 7 tr(B{M, B}). (4.159)

Namely, the F' coupling is proportional to the commutator, and D to the anti-
commutator. We now work out these couplings in terms of individual baryon and
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meson fields:

(i) The =" couplings
E;-ﬁ = \/EMIZ (g]B%B} —I— gzéil Bé)

o[ (52 (B3 =]

V2 Ve

AR A

et T8 (50 s 4 O (5e0  wne
ﬁn[f<zz D) + (57a-2x")
+ g B8 + 2pn]. (4.160)
Or
Lo =27+ {-(TEO—EOE >+£(E+A—AZ’)
2 V6
D+F— _ D—F._
+ o B+ ——pny. (4.161)

(ii) The 7° coupling

Lo =2 [Mll (gIB{B} + ng}B{) + M3 (gnBJBZ- +8:B; )]

(5 3) G )
o (5253

(52

Bl STER

= 7TO|:(gl - 8) (FZ’ - FE) + gljggz (ﬁz\ +K2°)

— B0E) + ga(pp - r‘m)}.

] |
)

+ g1 <3737

(4.162)
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Lo = nO[F (Fz— — 2+2+) T (ﬁA +K2°)
D+ _

+

For—__ =50 D-F o
> (cu ET—E .:u) 5 (pp —nn)|. (4.163)

(iii) The K+ couplings

Lg+ = «/EM? (glégB} + ngiIBé)

M P ci—
=«/§K+[ (p— +ﬁ2>+ +3tE?
81 «/5 82 ﬁ
—2g1+8 —__ & —2g _ }
+ 0 SCAE 4+ 22 HA. (4.164)
NG V6

D+ F (pX° D—F (208~
£K+=x/§K+[L (p— +ﬁ2—>+ ( +3 E°>

2 A 2 NG
D+3F _ D —3F
— —— AE — ——7A (4.165)
NG 276 p]
(iv) The K° couplings
Lyo = 2M3 (glé; B? + gZB;B;)
0 A 2 _
=J§K°{ [_E++ﬁ<——+—>——AEO}
81| P ﬁ J@ A
+ &l 8+ §+K 2° 2‘A}
& ——+—=]8"——=n
£ V2 6 6
7%0 Pl —
=J§K°[ (—n—+‘2+>+ - +X-E"
81 NG p 82 NG
—2g1+8 — o & —28 _ ]
+ —— AE"+ =———nA|. 4.166
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Or

D+F ([ ax° D-F [ ¥0° __
L o:ﬁKo[ (——+ ‘2+>+ - + -8
“ 2 N 2 V2
D+3F — D —3F
+ g0 — ﬁA}. (4.167)

2/6 2V6

(v) The n® coupling
Ly =2 M (18] B} +2:B! B]) + M3 (1B B + 0, B B

+ M3 (gIB;'Bj + ng?Bé) ]
n® Ripl | Bip? RJ B3
:—3[g1 (BiB) + B/} —2B{B])
g (B B] + B2BS —2BB) | + -+

so that

2
+ ﬁ+X (ZO+A>+”_”° 2pp — 27 XA]
N — _— — sV — —<nn — =
NGRS AR a
+ [ ngK <20+A +EFE 4 pp+ TR
N2 )\ 2T 6 pp
N §+K (E°+A>
V2 6 2 Ve
+in — 28~ 87 —2E°E —gAA +
Or
U = T0v0 L 5T A
Ly = ﬁ[(gl +82) (2—2— + 3080 + E+E+) — (&1t 8)AA

+ (01 —2g2) (B8 +E°E) — 21 — )PP + ﬁn)}

8
_ Ty 43050 £ 375 — DA
_ﬁ[D<EE + 30y +22) DAA
3F—D D+3F
2-5 4+ 50=0) - 7
. (u = +uu) . (pp+nn):|. (4.168)

The other couplings are related by hermitian conjugation:
Ll.=Ler. Lyo=Lgx. Lyg=Lg.

(4.169)
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(b) The baryon octet contains the following isospin multiplets:

singlet: A

doublets: N = (p), E= <
n

triplet: T = <

0
) (4.170)

25 —x0
while the meson octet contains

8

singlet: 7
K+ KO
doublets: K = , K= (4.171)
K° K-
triplet: I1 x 2t
riplet: = .
P V2n~ —n°

From this it is straightforward to construct all the SU(2) invariant couplings,
cf. Problem 4.8(b):

(i) Three singlets
nAA (4.172)
(ii) One singlet & two doublets
nNN, nE2E, KAE, K°AN (4.173)

(iii) One singlet & two triplets

ntrflcfl, Atrsil 4.174)
(iv) One triplet & two doublets
NIIN, ENE, NIK, ESK® (4.175)
(v) Three triplets
trSCSIl (4.176)

By working out the components such as
NIIN = (pp — in)w® + N2(pnw ™ + ipn™)
rEEA =7t (370 - 3057 ) -2 (5720 - 30xY)

e (Fz— - Fv) 4.177)
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and comparing them with the couplings shown above, we can easily express the
SU(2) invariant couplings in terms of the SU(3) D and F couplings.

D—F
g(nNN):T, grEXY) =F, (4.178)
and similarly

D
—8gMAA) = gEX) =g(rAY) = —

NG

gGINN) = g(KAE) = — 2+ 3F

23/3

e — kAN — D3

gMmEE) = g( ) = W

D+ F

g(MEE) = —g(KNX) = — >

D—-F
§(KEX) = —g(TNN) = ———. (4.179)

Remark. Just as we have seen in Problem 8 that, in terms of the Cartesian com-
ponents m =(7; 7, 73), the coupling NTIN can be written as N TN - m, the three
triplet coupling 1r 2511 can be written as i 3¢ x X - 7, where we have used the
identity

(T TnTh) = L€mn. (4.180)

4.15 Isospin wave functions of two pions

Two pions can have total isospin I = 2, 1, 0. Use the relations

I\LE)=[I+5L{U—-5L+D]"*1,L-1) (4.181)
LAL L) =[( — )T+ L+ DI L L+ 1) (4.182)

to construct the total isospin wave functions of two pions.

Solution to Problem 4.15

(a) The I = 2 states
Starting from

12,2) = |7, ;") (4.183)

wecanuse /_|2,2) = 2|2, 1)and I_|1, 1) = /2|1, 0) or I_|nt) = +/2|7°) to get

1
2,1) = 7 (| 7d) + 707y ) ; (4.184)
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and use 1_|2, 1) = +/6|2,0) and I_|7°) = /2|7 ") to get

1
2,0) = NG (| my )+ 2 |7 )7d) + |7y 7)) (4.185)
Similarly,
1 _ _
2.-1) = — (jnfm) + [ 7))
2, =2) = |7, 7y ). (4.186)

(b) The I =1 states
The |1, 1) state is a linear combination of |{7, ) and |, 7r3) which is orthogonal
to the |2, +1) state. Thus if we write

1L 1) =al|nn))+ b |7)n)) (4.187)

with |a|? 4 |b|> = 1, the orthogonality condition becomes 1/+/2(a 4+ b) = 0. The
solution of a = —b = 1/+/2 can be chosen:

1
I1,1) = 75 (| 7d) = |7y )) . (4.188)

This choice (as opposed to a = —b = —1/+/2) corresponds to a particular con-
vention for the Clebsch—Gordon coefficients. It is easy to see that using the isospin
lowering operator /_ we can get the other / = 1 states:

11,0) = —= (|7 75 ) = | 7))

_«I|~
[\)

11, —1) = 75 (|mPms ) = |7y 7)) (4.189)

(¢) The I = O state
The |0, 0) state must be orthogonal to both |2, 0) and |1, 0). This fixes it to be

1 B i
10, 0) = 7 (|7rfmy ) = |nd) + |y 7)) (4.190)

Remark. We note that the / = 2 and /I = 0 states are symmetric under the
interchange of particles 1 < 2, while the / = 1 states are antisymmetric. (This
is why the combination |7)7r}) is absent in the |1, 0) state.) In general, for two
particles with the same isospin, the largest total isospin states are symmetric under
the interchange of particles 1 <> 2. Then the next isospin states are antisymmetric,
followed by symmetric states, etc. For example, in a system with two I = 3/2
particles, the state with / = 3, 1 is symmetric, while the one with I = 2,0 is
antisymmetric.
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4.16 lIsospins in non-leptonic weak processes

The low-energy AS = 1 non-leptonic weak Hamiltonian is given by
Gr . . _
Hy = —=luy" (1 — ys)dI[sy,(1 — ys)ul + h.c. (4.191)
V2
The first term (ud) is an isospin state |1, 1) and the second term (5u) a } %, %) From

isospin addition of
11y _ /2
La=V3

we see that this weak Hamiltonian can be decomposed into two pieces with definite
isospins:

11, 1)

2.4, (4.192)

Hw = Hipz + Hapo. (4.193)

(a) Use this isospin decomposition of H,, and Clebsch—Gordon coefficients to
evaluate the decay amplitudes for

KT > 7t7% K= zatn™, K°— 7070, (4.194)

in terms of two reduced matrix elements.

(b) Repeat the same calculation for the decays A — pm~ and A — nx®.

Solution to Problem 4.16

(a) Here we need to evaluate the matrix elements of (mm|H,|K) =
(nnIHl/glK) (nn|H3/2|K) Since (K*, K) is an isospin doublet, |K*) =

+1)and |K°) = |1, —1), we have
HiplK™) =3.3)3.3) =111
HaplKt) = [3, 1|15, 1 = L2, 1) - L1, 1), (4.195)
HiplK) = |3.3) 5. —3) = 75(11.0) +10,0)
HaplK) = |3, 4[5, —3) = f(|2 0) + [1,0)). (4.196)

From the result obtained in Problem 4.15,

12, 1)

7 ([ + [ )

1L 1) = 55 (|7 73) = [wmy)) (4.197)
we see that the final state of the decay K+ — 7+ 7% must be either of the isospin
states |2, 1) or |1, 1). But from angular momentum conservation, 7770 must be

in a relative orbital angular momentum L = O state, which is symmetric under
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the interchange of 7+ <> 7. Thus we must use the symmetric combination as in
|2, +1) and only the I = 3/2 of the Hamiltonian can contribute:

(O Hy K ) = (170U = D[ HaplKY) = (2. 1H3p0ld. 3). 4.198)

The Wigner—Eckart theorem can then be used to relate it to a reduced matrix
element As,

(2.1 [Haa| 3. 3) = (2 1[3, 55 5. 3) Asjp = s (4.199)

Namely, the decay amplitude is evaluated in terms of the reduced matrix element
as

T(K* - 777%) = LAy, (4.200)

0

As for the decays K — 7+7~ and K° — 7°7°, we have from Problem 4.15

12,0) = o (|7 77 ) + 2 7 73) + |77 75 )

7
11.0) = 75 (7 my ) = |7y 7))
10,0) = - (|7 7y ) = |7} 73) + |7 7)) (4.201)

which shows that the I = 1 state is antisymmetricin 7+ <> 7 ~, which is forbidden
by angular momentum conservation and Bose statistics. We then have

L (i) + ) = 312,00+ /210.0)
|im) = \/§|2, 0) — \@0, 0). (4.202)

Thus
(T MW 1K) = J5((2, 01 + v/2(0, 0)H,, [ K )
= 55 (2, 01132 K®) + V20, 01H1 21K ) )
= 5 [2.0]3. 3153, —3) 432
+/2(0,03, 5: 5. =5) A ]
= \/% (\/%Ayz A1/2>
= J=Aspp — A (4.203)
Or
T(K'—> ztn™) = %Am %Am, (4.204)

and similarly,

— L Ay (4.205)
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Remark. Experimentally, it has been observed that
T(KY - 17’ « T(K* - nfn7) (4.206)
and
T(K° - ntn7) /3
— L~ 2. 4.207
T(K° — 7070) ( )

This can then be translated through eqns (??), (??), and (??) into the amplitude
relation of

Azpp < Ay (4.208)
This is the celebrated Al = % rule of non-leptonic weak decay.

(b) Forthe A — pm~ and A — nx® decays, we have the isospin structure of A
being an isosinglet, and

3431
oty = 313 -4+ 14 -4 (4200
Thus

(™ [HulA) = 1 (3 =4 Hanl ) — 2 {3 =2 Hial)

= \/gAa/z - \/gAuz,

(4.210)
(nn1018) = 33, ~3] Hal) + L (3 ~4| 1)
= \/gAyz + \/;Auz- (4.211)

where Az, = (3, —3| HapalA) and Ay = (3, —3| Hij2|A). Again the exper-
imental data are in agreement with the Al = % rule A3, < A, prediction
of

T(h=pr) _ 5

T S 4.212)



5 Chiral symmetry

5.1 Another derivation of Noether's current

Consider a system of scalar fields {¢;}, i = 1,2,...,n, with a Lagrangian
depending on ¢; and 9,¢; : L = L(¢;, 9,¢;). Under an infinitesimal space—time-
dependent (local) transformation on ¢;:

$i(x) — ¢ = ¢i + ¢ = ¢ + €(x) fi($) (5.1

where €(x) is some infinitesimal space—time-dependent parameter and f;(¢) is a
function of the scalar fields {¢y}.

(a) Show that the coefficient of 9,.€ in L is just the Noether’s current as displayed
in CL-eqn (5.15):

oL
9(3.i)
(b) Show that the coefficient of € in §L is then the current divergence 9* j, (x).

Ju(x) = Ji- (5.2)

Solution to Problem 5.1

(a) Consider the variation of the Lagrangian:

SL = oL Sp; + oL 5(0,,¢:) 5.3)
AT Bt '
Because variation and differentiation commute, and because §¢; = €f;:
8(0,9:) = 0,(8¢;) = (3,€) fi + €0, f; (5.4)
we have
oL oL
SL=¢|—fi+ ——0, ,}—I—ae[ i]. (5.5)
[8¢,- / I (Dui) Ji|+ a(a,m)f

Noether’s current (for 8, = 0) in CL-eqn (5.15) is just the coefficient of the 9,,€
term in eqn (5.5).

(b) The divergence of Noether’s current can be evaluated directly:

oL d oL
j(x) =" ——— ,-:|:8“ i| i + ot f;. (5.6)
o 1000 =" 3000 ) " 300" T
Using the Euler—Lagrange equation of motion,
oL oL
=0, 6.7

-0
i " 0(3u0)
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we have
oL oL
9", (x) = + 8" £, (5.8)
S TS

which is just the coefficient of the € term of eqn (5.5).

5.2 Lagrangian with second derivatives

Consider the case where a Lagrangian depends on ¢; and 9,,¢; as well as the second
derivatives:

L= L(¢i, i, 9,0v0i). (5.9

(a) Derive the Euler-Lagrange equation of motion for this case.

(b) Derive Noether’s current for a global transformation:

$i(x) — ¢ = ¢ + ¢ = ¢; +€fi($) (5.10)

where € is some infinitesimal space—time-independent parameter.

(c) Show that the current derived in (b) is the same as the coefficient of 9,¢ in
88 =8 [ Ld*x for a local transformation. Hint: The higher order derivative terms
0,,0,€ can be reduced to 9, € upon integration-by-parts.

Solution to Problem 5.2

(a) The variation of the action

S= / L(Bi, 3ui, 3,0, d*x

being

oL oL
58S = —3,(8¢) + ———0,0,(8¢)) | d*x, 5.11
/[acp, 3000 P T S ane ("”} ro 64D

where we have used the property that differentiation and variation commute,
8(0uepi) = 0, (8¢h:) and 8(0,0v¢i) = 9,0, (8¢), (5.12)
we can obtain the Euler—Lagrange equation of motion through integration-by-parts:

P T
i " I@ug) " 8(000h)

(b) For the global transformation, §¢; = €f;(¢), the variation of the Lagrangian
becomes

(5.13)

8£:e|: £t oL 0 fi + oL

9,0, fi |. 5.14
d¢; 3(3,) ) , ] 19

el (au 8u¢i
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After using the equation of motion, and combining terms with the same number
of derivatives:

oL L
8L = €dy—— fi — €00y ——— f;
”3(3M¢i)f 8 3(3u3v¢i)f
oL oL
te— 0 fi + €00, f;
3(3,1) S (3 dv) /

0 |: 9 fi i| + €0 |: 0 oL fi+ oL
=€ a7 o Ji € —0Oy i

: a(au¢l) a a(auav‘pi) a(auau¢z)

If £ is invariant under the global transformation, the conserved Noether current
can then be identified through 6 £ = €9, j* = O:

oL oL aL
= ——— fi — 0, i + oy fi. 5.16
g 9(9,9:) / 9(9,.0v6i) / 9(9,,0v¢:) / 10

avf,-]. (5.15)

Remark. After applying the equation of motion 6L can always be written as the
divergence of some 4-vector (which is the essence of Noether’s theorem) because
the equation of motion follows from 8§ = [§Ld*x = 0 which comes about
because terms having the same number of derivatives combine into a total diver-
gence so that it vanishes upon integration-by-parts.

(¢) Here we consider the local transformation

8¢i = e(x) fi(P) and 0, (8¢i) = (9y€) fi + €0, fi- (5.17)
In the variation of the action,
’5 = / [aqs, a(§f¢,) %u(000) + a(aiaﬁuqbi)a"a”(‘s‘pi)] o
_/|: €fi + oL (Ou€fi + €0, fi)
0 9(9.¢i)
—BVL(BMEﬁ—FeaMﬁ)} d*x, (5.18)
9(0,0vi)

the very last term can be rewritten upon integration-by-parts

L L
—/av—eaufi d*x = — / By ————ed, f; d*x

a(auavd)i) a(auav¢1)
a( Ui)uvl uavldx

so that all terms are either proportional to € or 9,€:

oL Y
’= / { |:3¢l 8(8u¢>, Oufi + mauavﬁ} €(x)
oL

oL oL
———fi — 0, i 3y fi|duepdix. (520
+[a<aﬂ¢i)f 500 T 5000 f} "6} 020

From this, we see that the coefficient of d,.¢ is precisely Noether’s current.
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5.3 Conservation laws in a non-relativistic theory

Consider a non-relativistic system described by a Lagrangian L = L(qg;, ¢;) with
qgi, i = 1,2,...,n, being the generalized coordinates. Suppose L is invariant
under the infinitesimal transformation

qi — CI,-/ = q; + i€tijq;. 5.21)
(a) Show that the quantity (Noether’s charge) given by

JL
0 = 35t (5.22)

is conserved, dQ/dt = 0.

(b) If the Lagrangian is given as L = %mv2 — V(r), where v = dr/dt with
r = (x1, X2, x3) and r? = x% + x% + x32, show that L is invariant under the

infinitesimal rotations
X; —> Xl», =Xx; + €ijXj (523)

where €;; = —¢;. Explicitly construct the conserved charges.

1

(¢) For the case where L = Emvz, show that L is invariant under the spatial

translations
r—r=r+a (5.24)

where a is an arbitrary constant vector. Find the conserved charges.

(d) Consider a system of two particles interacting with each other through a poten-
tial which depends only on the relative coordinates V (r; —r,). Show that the total
momenta p = m V| + m,Vv, are conserved.

Solution to Problem 5.3

(a) The variation of the Lagrangian is given by

oL oL .
8L = —38q; + —4q;. (5.25)
8q,~ Bq,
Using §g; = (d/dt)(8q;) and the equation of motion
oL d 0L
— — —— =0, (5.26)
dq;  dt 9q;
we get
8L—d8L +8Ld(6)
T dr0g, T agiar
d (0L d (0L
=—\|—9bq |=ie— | —tiq;]). 5.27
dr <aq,- q) R <8qi ’q-’> (5:27)

Thus the invariance of the Lagrangian §L = 0 implies the charge conservation
dQ/dt = 0, with the charge being Q = (dL/34;)t;;q;.
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(b) We can see that

1 V()

SL = —mdv* sr=0 (5.28)
2 ar
follows from ¢;; = —¢;; because
ar X 1
or = —8)6,' = —(S)C,' = —Xi€jjX; = 0 (529)
0Xx; r r
and
8V = 2%;8%; = 24;€;% = 0. (5.30)
We can use the expression in eqn (5.27)
d (JL . d (0L oL
L = E,'j— —_Xj = Eeij_ —,.Xj — —X; (531)
dt \ 0x; dt \ 0x; 8Xj
to find the conserved charge for this rotational symmetry,
oL oL . .
Qij = B_Xixj — Exi =MmXiX; —mXx;jX; = piX; — pjXi (532)

which are just the familiar angular momenta.

(¢) Because a is a constant, we have v/ = v and thus § L = %mév2 = 0. To obtain

the charge of this spatial translational symmetry, we note that, for an infinitesimally
small a, one has x; = a; and thus

d (0L d (0L d
SL=—(—"6x; ) =a,— [ — ) = a;—(mx)). 5.33
dt(f)fc,» x) adt(&x,») @i g (m31) (5:33)
Consequently §L. = 0 leads to the conserved charges mx;, which are just the
familiar linear momenta.
(d) The Lagrangian for this case is given by
1 2 1 2
L= Em]Vl + Emzvz — V(l’] — 1'2). (534)

Clearly, L is invariant under the spatial translation of the form
rp—r,=ry+a, r,—r,=r;+a. (5.35)

For infinitesimal translations, we have dr; = ér, = a and

d (oL JaL
SL <—8r1i + —51’21')

= dr \ oy .
d . .
= a;—(m 7y + maiy;). (5.36)
dt
Thus the total momentum
P =mvy +myVvy (5.37)

is conserved.
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5.4 Symmetries of the linear 6 -model
The Lagrangian for the linear o-model is given by
L£=1[0@,m)+ (3,0)*] + Niy"a,N

2
+gN(o +iysT-mN + %(02 + %) — %(02 + 1) (538

where N = (5) is an isospin—% nucleon field, w=(my, 7, 3) an isospin one pion
field, and o an isospin zero scalar field. It is convenient to use a 2 x 2 matrix to
represent the spin O fields collectively:

YX=0+it- T (5.39)

(a) Show that the Lagrangian is invariant under the isospin transformations:
N — N =UN, Y — Y =UxU", (5.40)
where U = exp(% & - T) is an arbitrary 2 x 2 unitary matrix with o = (aty, 2, &3)

being a set of real constants. Find the corresponding conserved isospin vector
currents V;lu i=1,2,3.

(b) Show that the Lagrangian is invariant under the axial isospin transformations

N_>N':exp<iﬂ;ys)zv, ¥ — ¥ =Vvizv’, (5.41)

where V = exp(% B- 1') is an arbitrary 2 x 2 unitary matrix with g = (8, B2, 83)
being a set of real constants. Find the corresponding conserved axial-vector cur-
rents A),.

(c) Calculate the charge commutators
(0.0’ 12,01 10" QY] (5.42)
where
0 = / d*>xV{(x)  and 0% = f d*x Al (x).
(d) Calculate the commutators of particle fields with the vector charges:
[Q. N, Q7]  [Q'.0] (5.43)
and with the axial-vector charges:

[0, N°],  [Q%, ], (07, o]. (5.44)
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Solution to Problem 5.4
(a) Itis useful to define the left-handed and right-handed chiral nucleon fields:
1 1
Thus N = N; + Ng, ysNL = —N;, and ysNg = +Ng. Also,
s =(o+it-mo—it-m) =0+ (1 - 1) ="+, (5.46)
where we have used the Pauli matrix identity
(t-A)(t-B)=(A-B)+it-(A xB). (5.47)
We can then write the Lagrangian as
L£=1tr(3,29"=%) + Npiy"9, N + Ngiy"9,Ng
2
Y R J2% ¥ A 12
+g (NLENR + NgXZ NL) + Ttr(ZE ) — R[tr(EE )7, (5.48)
For the isospin rotations, we have

Ny —> N; =UN;, N — Ny =UNg, and ¥ — X' =UZU".

(5.49)
Thus,
tr(Z'YN) = tr(UZUNHYUZUY)) =tr(227) (5.50)
and, in the same way, (9, X'0" £'") = tr (3, 20" >7). Also,
N;iy"*3,N; = N U iy"8,UN, = N iy"d,Ny (5.51)
and, similarly, for the N riy"9, N term. Furthermore,
N;¥'Np = NNU'USU'UNg = N X Ng. (5.52)

Thus £ is invariant under the isospin rotation. To get the conserved current, we
need to work out the infinitesimal transformations:

, T K- T
N—)N:exp(z )N2<1+l : )N (5.53)
or
sN =i TN, (5.54)
Also,
o-T

E—>E’:(1+i )(a+ir-n)(1—i°‘;)

LA ,,] , (5.55)

2
. D KA
~ o4it-w+1 [

2
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From [7;, 7;] = 2i€;j, T we can work out the last commutator to be

[“ér, T~7t] =i€jomT =i(a X ) - T. (5.56)
Thus,
Y=0¢'4+it-n 2o+it-m—it(ax m (5.57)
or
oc'=0, T=m—axm. (5.58)
Namely,
o =0, dm=—ax m. (5.59)

The conserved isospin vector current V,, is simply the Noether current for this
symmetry transformation:

—o- V4 = a(ng)(SN + a(gfa)(Sa + 8((;;7[)8”
= Ny IN (e x ). (5.60)
Or
\ = Ny"%N —dlmx (5.61)

(b) The axial transformation of the nucleon field

, BT
N — N =exp|i > ys | N (5.62)

takes on a simple form when expressed in terms of its chiral components
N, =V'N, and  Nj=VNg (5.63)
where V. = exp (z%) It is then easy to see that both NLiyﬂaﬂNL and
Ngiy*"d, N are invariants. Similarly, both
r(E'EN =tr(VIZVHVEV)) = tr(ZZT) (5.64)
and tr(d, X 9* % 7) are also invariants. For the Yukawa couplings,
N;%'Np = N, V(VIZEV)VNg = N. T Ng. (5.65)

Hence L is invariant under the axial isospin rotations. To get the conserved current,
we need to work out the infinitesimal transformations

N — N’ =exp (zﬁ T)/5)N ~ (1 —i—iﬁz-r)g)N (5.66)
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or the infinitesimally small change of the nucleon field under axial transformation

being

ssN =BT

ysN

and

!~ _.ﬂ'r . _,,B-T
E—>E_<l i 5 >(O‘+l‘l’ n)(l i 3 )

-~ o+ir-n—i(ﬂ~r)0+{ ,r-n}+-~.

From (7;, 7;} = 24;; we can work out the last commutator to be

{ﬁ'r, r~n}=ﬂ~7t.

2
Thus,
Y=04it-n >0+ (B m)+i(t m)—ioc(B- 1)
or
oc'=0c+B-w, A =m-08.
Namely,

6s0 = B-m, &sm=—0p.

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

The conserved isospin axial-vector current A, is simply the Noether current for

this symmetry transformation:

oL oL oL

—B-A* = ——" 5N b )
A 30" T 30,00 T

B

= —NyH ysN + "o (B - ) —od"m- B.

Al = ]\_Iy“y5§N — (%o — od* m).

Remark. We can combine the transformations in (a) and (b) as follows:

NR—)N;Q:RNR
NL—>N£=LNL
Y — ¥ =LZR'

(5.73)

(5.74)

(5.75)
(5.76)
(5.77)
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where we have introduced the right-handed and left-hand transformations

S -
R = exp (i 4 T) and L =exp (;TT) (5.78)

with y = § = « for the vector transformation, and y = —3§ = f for the axial
transformation. Under the infinitesimal transformation, R >~ (1 + i %):

5iNgk =iX- SNz and  SgNL =0 (5.79)
and

E’:(U—l—irn)(l—iyér)

:o+ir-n—iyéro+y.2”+in;y-r (5.80)
or

y- TXYy y
Sgo ==,  Spmw= Y, 5.81
RO =T RE="5""77° (5-81)

From these field variations, we can immediately work out the corresponding con-
served current

_ 1
R* = NR;/"%NR — ga”a — 5@ % x 109" ). (5.82)

Similarly for the left-handed transformation, L ~ (1 + %6 - T):

é-T

(SLNR =0 and (SLNL = lTNL (583)
and
$-
E’:(1+iTT>(a+it-7t)
d- g - )
~o+it-x+i Zra— 2n+in; T (5.84)
or
-1 TxXd &
8La:—T, S = 5 +§0’ (5.85)

leading to the conserved current

) 1
L= NLy"gNL n ga“a — 50" x o0 m). (5.86)

The vector and axial-vector currents are then given as

VE=RA+L* and A* =R* — L~ (5.87)
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(¢) Let us first consider the vector charges
0 = / d*xVi(x). (5.88)

Because of current conservation, BMVI’; = 0, the charges Q' must be time-
independent. We can then choose to work with equal-time commutators:

[0, Q/yy=y, = /d3xd3y [NT%N — €™, NT%N — ejnkﬁon”nk]
(5.89)

which can be evaluated, see Problem 4.6, as

T

(NG, N L _ v [ D] s —
[N @INONOIND] =N w3 L vesa-y)

Xo=Y0
. Tk
= iei (NTEN) Fx—y (590
and

€im€ni[ 07 ()" (x), 37" (NI ()5 = 3o
= €imejni (—i8% 3" ()" (x) + i8™ 7! () 7" () 8 (x —y)
= —i (€tm€jnk 0°T" " — €itme i’ 7F) 83 (x — y)
= —i(@7ind — 879" 7" + 879 n! — %7 nH)S}(x — y)
= —iEijka[m(aojTl)iTm83(X —-y). (5.91)

After substituting the results of eqns (5.90) and (5.91) into (5.89):
[0, Q/)y—y, = ieijk/dSX (NT%N —eund' 7’7" ) =iep 0t (592)
In a similar manner, we can verify the other commutation relations of
[Q". Q¥ =ieuQ™  and [0, QY] =i Q" (5.93)
Remark. If we define the right-handed and left-handed charges as
Qr=0"+0%, 0, =0-0% (5.94)
the algebra becomes
(00, 0f] =ien0l, [0k 0] =ien0l (595)
and
[Q"L, Qé] =0. (5.96)

Namely, each set of { QiL} and {Qiz} separately form an SU(2) algebra. This is why
it is referred to as the SU(2), x SU(2) algebra.
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(d) Here we calculate the commutator of the various fields with the isospin charge

0 = /d3x (N*(x)%lN(x) —e"-f"aonf(x)n"(x)) (5.97)
For the isodoublet nucleon field,
'L'i bc
[Q', N“(y)] = / d’x [N”Wx) (;) Ne(x), N“(y)} , (5.98)
we can use the identity
[AB,C]= A{B,C}—{A,C})B (5.99)
to get
[0, N*(y)] = — (%) Ne(). (5.100)

For the isotriplet pion field,

[0, n'(y)] = —€'* / d*x[3°77 (x)mk (x), 7' ()]

= —effk/d3x( — it ()8 (x —y) (5.101)
= ie'* 7k (y). (5.102)

For the singlet o -field,
[Q',0(»]=0. (5.103)

By comparing these results with the eqns (5.54) and (5.58) obtained in Part (a), we
note that these charge-field commutators just yield the variation of the field under
the isospin transformation with some parameter '

[e-Q, d(x)] =id¢(x), (5.104)

where ¢(x) = N(x),7(x), or o(x). Similarly, for the axial charge, we have

[B-Q.¢(x)] =ids¢p(x):

[Q”, N“()] = — (%) YsN° (), (5.105)
(0%, 7' (»)] = —iso(y), (5.106)

[0, o(] =in'(y). (5.107)
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5.5 Spontaneous symmetry breaking in the o -model

In Problem 5.4 the effective potential for the scalar fields has the form of
2
A
V= —%(02 + 1)+ S0+ ). (5.108)

For the case of /1,2 > 0, the minimum of this potential is at [see CL-eqn (5.168)],
o 1/2
O+t =0, wv= (%) : (5.109)

In the text, we chose the vacuum configuration to be

Ty = (%) = (7% =0, (0)=0. (5.110)

Ty =@} =(0)=0, (7°)=nv. (5.111)

(a) Show that the charges which do not annihilate the vacuum are 0', 02, and
0>3, and the Goldstone bosons are !, 72, and o fields.

(b) Show that the remaining charges, Q51, Q52, and Q3, form an SU(2) algebra.

(¢) Show that the fermion bilinear £,, = guNiyst® N generated by (7*) = v can
be transformed into the standard fermion mass term of £,, = myN'N’ by some
chiral rotation. Find this transformation.

Solution to Problem 5.5

(a) Given that (%) # 0, we seek charge-field commutators eqns (5.100)—(5.107)
which are proportional to the 73 field:

[0\, 7%= —[0% 7' 1=[0, 0] =in’. (5.112)

We see that the charges Q', 2, and Q> do not annihilate the vacuum [otherwise
the above equation would imply that (73) = 0], and 7', 72, and o are Goldstone
boson fields.

(b) From the charge commutators calculated in Problem 4 we have
(07, 071=i0Q°, -0, 0"1=i0” [07 Q'1=iQ".  (5113)
This means that the charges Q°', 02, and Q3 form an SU(2) algebra.

(c) To find the chiral rotation it is useful to decompose the fermion field into its
chiral components, N = N + Ng. In this way we have

L, = guNiyst’N = gv [Nit’Ng — Npit’N,]. (5.114)
Consider the chiral transformation

N.=LN,,  Ng=RNp, (5.115)
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where L and R are unitary transformations. To turn
L, =gv[N,LTit’ RNy, — NxR'itT’ LN/ ] (5.116)
into the standard fermion mass term of — (]\_/ I N+ NpN i), we require
LTit®R = —1, RYiT’L =1, (5.117)

which is actually one condition as (LTit3R)" = —RTit?L = —1. One simple
solution to this condition, hence the required chiral rotation, is

3
L =—itd=exp (-m%), R=1, (5.118)

where we have used the identity of
07 — cos & 4 ixsin (5.119)
exp | i6—- | =cos 5 +it sin 5. .

Remark. In spontaneous symmetry breaking, the choice of the vacuum expecta-
tion value (VEV) direction is a matter of convention. All different choices yield-
ing the same symmetry-breaking pattern are physically equivalent. In the example
under discussion, both choices of (7%) # 0 and (o) # 0 give the same symme-
try breaking, SU(2) x SU(2) — SU(2) or equivalently SO(4) — SO(3), and have
exactly the same physical content.

5.6 PCAC in the o0 -model

Suppose we introduce a symmetry-breaking term into the o-model Lagrangian
Lsp = —co(x) (5.120)

where c is a constant.

(a) Find the new minimum for the effective potential,

2
A
V= —%(02 1) + S0+ 1) 4 co (5.121)

(b) Show that in this case, pions are no longer massless and, in the tree level, their
masses are proportional to the constant c.

(c) Show that the axial-vector current A, derived in Problem 5.4 is no longer
conserved. Calculate the divergence 9*A,, and show that it is proportional to the
pion field .
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Solution to Problem 5.6

(a) We have the minimization conditions

vV
5 = [—u? + 10’ + 7))o +c=0 (5.122)
o
and
Vv ;
5T = [—1? 4+ Ao+ 7d)r' = 0. (5.123)
7-[!

Since it is not possible to have [—u? + A(o? + m?)] = 0 for a non-vanishing c,
we must have 7/ = 0 and the o -field satisfying the cubic equation:

—plo + 10 +c=0. (5.124)

Remark. In this case the vacuum configuration is unique because the symmetry-
breaking term of eqn (5.120) has singled out a direction.

(b) To discover the physical content of the model, we shift the fields

x =, o' =0 —v, (5.125)

where v is the solution to the cubic equation —u?v + Av? 4 ¢ = 0. The terms in
the effective potential become

o+ m’ =0+ 7%+ 2vo' +0? (5.126)

(0% + 7%)? = 4v°6"? + 2v* (6 + 7'*) + non-quadratic terms.

We then have the mass terms in the effective potential

2
A
Vv, = _% (o’z—i—n’z)—i—z[4v20’2+2v2(a/2+n’2)]
— 3_)‘1)2_/“‘_2 O'/Z—i- &UZ_H“_Z n/z
2 2 2 2
(232 C (5.127)
M T 2v '

3
m? =2 — 25 (5.128)
v
m2 =<, (5.129)
v

If we pick ¢ < 0, then both m2 and mi are positive. That all three components
of  have equal mass means that the explicit breaking Lsp = —co (x) still leaves
isospin SU(2) symmetry unbroken.
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(¢) The divergence of the axial current is related to the variation of the Lagrangian
as [see CL-eqn (5.14) or Problem 5.1]

B-3"A, =5sL. (5.130)

The right-hand side would vanish were it not for the presence of the symmetry-
breaking term Lgg = —co (x). Thus

L
8sL =85L5p = —L8s0 = —cB - T, (5.131)
d(o)

where we have used a result obtained in Problem 5.4, eqn (5.72). In this way we
find

A, = —cm. (5.132)
Remark 1. The constant ¢ can be related to the pion mass and the pion decay

constant, m, and f;. For the m — pv, decay, the amplitude is proportional to the
axial current matrix element, which defines f,; by

(O1A% )" (p)) = i8” fr pp. (5.133)
Thus the matrix element of the divergence is given by

(010" A% (0)|"(p)) = 8 frm? = —c (0|7 (0)| 7" (p)). (5.134)

—c = fym?. (5.135)
In this way, the divergence has the PCAC form
a 2 __a
Ay = frmyme. (5.136)

The specific value of the pion decay constant is fixed as follows. The amplitude
for the 7+ — ptv, decay can be written as

=5

(OJAL (O) | (p))y* (1 — ys)v (5.137)
with
(01A, (0| *(p)) = iv2fepyu. (5.138)

With this definition, one finds from the decay rate that [see Problem 11.3(c) for
the calculation]
_ 093

fa =~y = 92MeV. (5.139)
NG

Remark 2. Comparing eqns (5.129) and (5.135) we see that the VEV of the o -field
is simply the pion decay constant:

v = fa. (5.140)
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5.7 Non-linear o -model |

In the o-model of Problem 5.4, the combination £ X7 = o2+ #2 is invariant under
the SU(2) x SU(2) transformation. The non-linear o-model is obtained from the
linear o -model by imposing the constraint of

o>+ a*=f>  f =constant. (5.141)
‘We can solve for o as in
o=(f-=)" (5.142)

which is interpreted as a power series
1> 1=
o=fll-=z——c—+--]. (5.143)

(a) Show that the linear o-model Lagrangian eqn (5.38), after eliminating the
o -field through eqn (5.142), is of the form

1 1 _
L=3 |:(8Mn)2 T 8u7r)2] + Niy"9,N

f
+gN [\/fz—zrz—i—iyyrn] N. (5.144)

(b) Calculate the scattering amplitudes, in the tree approximation, for the
reactions:

(i) N(p1) + N°(p2) — N(p3) + N¥(pa),
(i) ' (k1) + N(p1) — 7/ (ka) + N*(p2).

Solution to Problem 5.7

(a) We have the basic relation

o= (f*—nH2 (5.145)
To obtain an expression for 9,0, we start by differentiating 0>+ x> = f to obtain
00,0 = —m - 3, 7, which can be written as
1 1
Bﬂaz—;naunz—mni)ﬂn. (5146)

Substituting eqns (5.145) and (5.146) into the Lagrangian for the linear o-model
1 _
L=y [@.7m)* + (8,0)*] + Niy"3,N

2
_ A
+gN(o +iysT-m)N + %(02 + %) — Z(o2 +75)?  (5.147)
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we get

(-9, m)?
f2 _ 11'2

+gN[(f* =)' P +iyst-wIN + - (5.148)

1 _
L= 3 [(aﬂn)z + } + Niy"*9,N

1 2 NTE
=§(8M7t) + N(@y"d, —my)N
e (Sl L NERCAL . (5.149)
—_——— l T.n —_— cee .
8 27 Vs 272

(b) () N*(p1) + Nb(p2) — N(p3) + N(pa).

FIG. 5.1. NN scatterings with pion exchanges in the - and u-channels, respectively.

In the tree diagrams for these two processes, the basic pion nucleon vertex is
the same as in the linear o-model. For the first diagram with a pion exchanged in
the 7-channel:

L la(pa)iys(apu(p)]  (5.150)

Ti = g [#(p2)iys (M) eatt (P1)]-——

where t = (p; — p3)?. Use the identity of CL-eqn (4.134),
k k 1
2 ea®)an = 2 8rdaa — 58eadba ) (5.151)
T

to reduce the above amplitude to

i

1 - ) - )
T =2¢* <3cb5ad - §5ca3bd> u(p3)iysu(pi) u(pa)iysu(p2).

(5.152)

— m?2
t—m2

For the second diagram with the exchanged pion in the u channel, we have

i

s u(p3)iysu(p2)

2 1 N
T = =28 | 8apbac — =84abvc | U(pa)iysu(py)
T
(5.153)

2

u—m

where u = (p; — p4)? and the extra minus sign in front is required by Fermi
statistics.
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i J i J i J
\ / IS s N/
\ / SN N4
\ / N \/
a b a b a b
() (b) (©)

FIG. 5.2. Tree diagrams for 7 N scatterings.

(i) 7' (k1) + N(p1) — 7/ (ko) + N”(p2).
Here we have three tree diagrams

VO i .
My = Zk:M(Pz)lgVS(T G (T uigysu(p1)

= A(p2igys g iy (P T (5.154)

My = ﬁ(Pz)igJ/smigysu(m)(fafb)ﬂ, (5.155)

M; = ﬁ(pz>§u<p1>8“"s,-,». (5.156)

5.8 Non-linear o -model Il

The constraint (5.141) can also be satisfied by parametrizations other than
eqn (5.142) resulting in different versions of the non-linear o-model, to be studied
in this and the next problem.

(a) Show that the constraint o>+ m?> = f> can also be satisfied by the
parametrization

E=U+ir~n=fexp<iT d’) (5.157)

where ¢ = (¢1, ¢», ¢3) are arbitrary functions.

(b) Show that the Lagrangian in this representation is of the form

2 _ _ . _ - -
L= fTTr (0,Z*E7) + Niy, 0" N + gf (NLENg + h.c.) (5.158)

with

_ )
Y= j 5.159
o) o

being the same as X of eqn (5.157) except for the overall factor of f, and L is
invariant under the transformations

¥ - ¥ =LEZR", N, — N, =LN;,, Ng— Np=RNg. (5160)

(¢) Calculate the scattering amplitudes for the same reactions as those in
Problem 5.7(b).
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Solution to Problem 5.8
(a) From
2=a+ir-n=fexp<irj'c¢> (5.161)
st = Fexp (—i Tj'f"s) —o—it-m, (5.162)
we get

SE =0+ 22 = flexp <—i i 4’) exp (i T}d’) — 2. (5.163)

(b) Since
2 2 1 T
(0,0)* + (9, m)* = ETr(E)MEB“Z ) (5.164)
and
Nlo +iyst- TIN = N.ENg + NN, (5.165)

the Lagrangian can be written, using ¥ = f %, as

2 _ _ o
L, = fTTr (3, 0"EY) 4+ Niy, 0" N + gf (NLENg + h.c).  (5.166)

If we write Niyua*‘N = NLinE)“NL + NRiyuaf‘NR, it is easy to see that £, is
invariant under the transformations

Y —> LERT, N;, — LN, Nz — RNg. (5.167)

(¢) Expanding ¥ in powers of ¢

%TV (0, 9" E7) — %(aﬂqnz +oee (5.168)

f 212
=myNN 4+ gN(iyst- §)N

. 2
¢f(NLENg 4+ h.c) =gf |:NL <1+”'¢ —‘L+~-->NR+h.c}

_ & N(&?
2fN(¢)N+ . (5.169)

Comparing with the interaction given in Problem 5.7, it is clear that the ¢ fields
play the same role as the  fields as far as their couplings to N (x) are concerned.
Hence we recover the same scattering amplitudes as calculated in Problem 5.7.
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Remark. Problems 5.7 and 5.8 are equivalent ways to realize the chiral SU(2) x
SU(2) symmetry without the scalar field o (x). For example, in Problem 5.8 we

have, under the axial transformations, L = R" = exp (#)

z - i’:exp(ﬂ>exp <it.¢>exp <it.ﬁ) = exp <it.¢/)
2 f 2 f)

For the case | 8| < 1, we can write

(1475 (7)1 757) = (5°)

‘We can write the left-hand side as

B s

We then see that

¢’=¢+§ﬁ+m. (5.170)

Clearly, the relation between ¢ and ¢’ is quite complicated and is, in general,
non-linear. Thus the theories discussed in Problems 5.7 and 5.8 are referred to
as non-linear realizations of the chiral symmetry. In Problem 5.9 we will study
another non-linear representation.

5.9 Non-linear o-model Il

Suppose we redefine the fermion field of Problems 5.7 and 5.8 by a local axial

transformation
N, — N; = LN, Ng — Np = RNg, (5.171)
with
L=R =exp <—i Tz'f‘b) =gt sothat £2=%. (5.172)
(a) Show that the Lagrangian can be written as

2 _ — -
Ly = fTTr (8, £8"S") + Nyiy, [, +£78,6] N,

+ Npiyy [0, +£8,E | N+ 8f (NL Ng + NpNp).  (5.173)

(b) Calculate the scattering amplitudes, in the tree approximation, for the
reactions:

(i) N(p1) + N°(p2) — N¢(p3) + N(ps),

(i) 7' (ky) + N“(p1) = 7/ (ko) + N®(p2).
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Solution to Problem 5.9
(a) From
Ng = R'Ny = " Np, N, =L'N, =¢N;, (5.174)
we get
N ENg +h.c.= N E'SETNL +h.c. = Ny Ny + h.c. (5.175)

where we have used

ETfJéT = exp <—i 12.f¢> exp <i * ¢) exp (—i t ¢) =1. (5.176)

9, Ng = (3,6") N + 670, Ny,  8,NL = (0,6)N; +£0,N,,  (5.177)

From

the Lagrangian (5.158) then becomes

2 - _
L5 = fTTr (8,29"E7) + myN'N’

+ Nyiy [0, + £, Nj + Niiyy [0, + £0,ET| Ng.  (5.178)

Remark. In this Lagrangian, the coupling of the Goldstone boson ¢ to the N
fermion always contains a derivative,

tn e (1_ T ), T W
gaus_<1 i 57 + )z 2f (5.179)
and
E _ sz < M,_'i' NT/ /. /
v= r(0,20"E") + N'(iy, 0, — my)N
7/ -0 ’
+NVMV5(‘[2;¢>N
o (t-9)(T-0.¢)
+N y#—(zf)z +o-e (5.180)

() ) Ni(p1) + N/(p2) = N*(p3) + N'(ps). The matrix element for the first
diagram in Fig. 5.1 is given by

. _ 1
T = [ﬁ(P3)VuV5(fa)ki“(p1)]%

X [ﬁ(Pzt)VuJ/s(fa)Zju(pz)]% <l;) )
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Using the Dirac equation we have

(pr—p3)"  —2my

[ii(p3) Y, vsu(p1)]- [t (ps)iysu(p)]

2f 2f
= —glu(p3)iysu(pi)].
Similarly
[ﬁ(m)msu(pm% = —glit(pa)iysu(py)]. (5.181)

Thus we see that this is the same scattering amplitude as obtained in Problem 5.7
(hence also Problem 5.8). Clearly, this is also true for the other diagram for the
NN scattering.

(ii) 7%(k;) +Ni(p1) — 7P (ky) + N/ (p>). The matrix element for the diagram
in Fig. 5.2(a) is

;- Kays i Kiys b_ay
M —M(Pz)( 2 )ﬂz-l-kz—mzv ( T, )M(Pl)(f )i (5.182)
Write
Koys =[—ys(P2+¥o—my) — (P2 —mun)ys —2myysl. (5.183)
Then

;o (bea)ji

PToen?

Also using

ysu(pr). (5.184)

_ I
u(p2) |:—V5k1 - 2mNV5mk 1]

Kiys=11+¥i—my)ys +ys(p1 —my) +2myys] (5.185)

for the second term, we get

bray ..
1= %{ﬁ(pz)(lll —2mp)u(p1)
—ﬁ(Pz)(ZmNVS)m(ZmNVS)M(Pl)}- (5.186)

The second term is seen to be the same as the amplitude M, obtained in Problem 5.7
after using the relation my = gf. Similarly, for the diagram in Fig. 5.2(b)

a_ by ..
= { — (P W 2+ 2myu(p)
—ﬁ(Pz)(ZmNys)m(2mN7/5)M(P1)}- (5.187)
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For the seagull graph in Fig. 5.2(c) we have

, 1

M; = (2f)2ﬁ(pz) [ i (=K D) + )ik 2] u(py). (5.188)

The first terms in M and M, combine with M to give

- 1
My = G B[ ey = 2ma) = @)k 2+ 2my)

+ (@) i (=) + TP ik 2]'4(171)}

1
= Wﬁ(m)(—zmmubr“ + ") u(py)

= _Tgﬁ(pzw"ai,u(m). (5.189)

This is precisely the amplitude M3 given in Problem 5.7.

We have demonstrated in Problems 5.7, 5.8, and 5.9 that these different ways to
define the pion field all give the same on-shell S-matrix elements. The differences
are in the off-shell behaviour. For example, in the realization of Problem 5.9,
the pions couple to N fields through derivative coupling and will vanish in the
soft pion limit (k;, — 0). Since off-shell matrix elements are not measurable
quantities, all these different realizations are physically equivalent. However, if
one approximates some measurable quantities by some off-shell matrix element,
then the difference in these realizations become significant. Which of these is the
best approximation can only be decided by experiment and clearly will depend on
the physical quantities of interest. For example, the realization given in Problem 5.9
seems to work quite well in the low-energy processes involving slow pions.

5.10 SSB by two scalars in the vector representation

(a) Show that a set of scalar fields ¢ which transform as a vector representation
in an O(n) group can break the symmetry from O(n) — O(n — 1).

(b) Show that for the case with two vectors in an O(n) model, the spontaneous
symmetry breaking (SSB) is at most

O(n) - O(n —2). (5.190)

Solution to Problem 5.10

(a) The ¢(x) fields belonging to a vector representation in O(n) means that under
O(n) rotations we have

¢ — ¢ = Rijp; with RRT =R"R =1. (5.191)
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R;; are matrix elements that are real. The scalar product ¢ - ¢ is invariant under
O(n),

bib; = Rij Rk = 8jxdjbr = ¢, (5.192)
The effective potential V (@) which is O(n) invariant can depend only on ¢ - ¢.
For example,

w? A 2
V(¢)=—7(¢-¢)+Z(¢~¢) . (5.193)
In other words, V depends only on the magnitude ¢ = |¢| of the O(n) vector,
V(g)=V(e). (5.194)
This means that the minimum of V (¢) depends only on ¢,
¢2=¢2=¢f+¢§+...+¢3=1)2, (5.195)

We can then choose the vector ¢ to be in an arbitrary direction. For example, the
choice

¢=(0,0,...,v) (5.196)
will have the property that it is invariant under the rotation among the n — 1
coordinates ¢y, ¢, ..., o1,
/ , R 0
R;¢; = ¢i, R; = (O 1) , (5.197)
with R, (n — 1) x (n — 1) orthogonal matrix. Thus the symmetry breaking is of
the form

O(n) — O — 1). (5.198)

Remark. In this case, the pattern of the symmetry breaking does not depend on
the fact that V (¢) is a fourth-order polynomial in ¢.

(b) Itis easy to see that the O(n) invariant effective potential V can depend only
on the magnitudes of the vectors ¢? = ¢, - ¢, ¢5 = ¢, ¢,, and the scalar product
of the two vectors ¢, - ¢,, which can also be written as ¢, - ¢, = ¢1¢> cos6. The
effective potential V can then depend on three variables, ¢, ¢, and cos 6,

V = V(g1 ¢2, cosb). (5.199)

The minimization of V determines the values of these three variables, ¢ =
V1, P2 = vy, cosO = cosa. Clearly, these three variables define a plane, which
can be taken to be the (¢,_1, ¢,) plane. Two vectors ¢, and ¢, can have non-zero
entries in the last two components. For example, one simple choice is

¢, =(0,0,...,v), ¢, =12(0,0,...,sina, cosa). (5.200)

These configurations have the property that they are invariant under the rotations
of the first (n — 2) components. The pattern of the symmetry breakings is then

O(n) - O(n —2). (5.201)

Note that it is possible that as a result of minimization, we have « = 0 as the
solution. (This can happen if V depends on the even powers of cosf and the
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coefficient of the cos? @ term is negative.) This means that two vectors are parallel
and the plane degenerates into a line. The symmetry breaking is then O(n) —
O(n—1).

Remark. For the case of k vectors in O(n), the symmetry breaking is
O(n) — O(n — k). (5.202)

The generalization to unitary groups is straightforward and the result is that for
the case of k complex vectors in SU(n) the symmetry breaking is

SU(n) — SU(n — k), k < n. (5.203)



6 Renormalization and symmetry

6.1 Path-integral derivation of axial anomaly

For the fermions, the generating functional can be written as a path integral of the
form (see Fujikawa 1979)

Zn. 7l =/[dw][d¢]exp [i/(£+ﬁw+¢n)] ©.1)

For simplicity, we will take the Lagrangian to have the form £ = i Py with
D, =0, —igA, being the covariant derivative and A, the U (1) gauge field. One
way to define the integration measure of the path integral is to expand ¥ and v in
terms of a complete set of orthonormal functions, ¢, (x),

Y@ =Y anpe. @) =D Gr(X)an, (6.2)
where
f G () () x = S (6.3)
and define
[dv][av] =]]dan ] | dan. (6.4)
(a) Compute the Jacobian for the axial transformation

U — Y =y, (6.5)

Show that for an infinitesimal ¢, the Jacobian is of the form
J=1+iaTr(D) where Tr(D) = Z / d*x (¢;‘y5¢,1). (6.6)

(b) TrD is quite singular. If we take ¢,(x) to be the plane wave ¢,(x) =
u(p, s)e='P*, we get

TrD = /d4x eP u(p, )ysu(p, s)e P+

= 8*Ou'(p, s)ysu(p, s) (6.7)

which is not well defined because §*(0) — oo, while u'(p, s)ysu(p,s) — 0. It
has been suggested by Fujikawa (1979) that we can regulate 7r (D) by Gaussian



6.1  Path-integral derivation of axial anomaly 137

cutoff

)\’2
Tr(D) = li d*x (¢ - ) @, 6.8
/)= Jim 3 [t (e (-5 ) ) ©8)
where A, is the eigenvalue of the operator i D,

ian = AnXn- (69)

Calculate Tr (D) in the limit M — oo.

(¢) Calculate the divergence of axial vector current A, as generated by the axial
transformation (i.e. the anomaly equation).

Solution to Problem 6.1

(a) Expand the transformed field ¢/’ = e 1 ina complete set of basis functions,

V=) bugu(). (6.10)

The coefficients of expansion can be projected out by using the orthogonality
relation

b, = fd4x GrOY (x) = /d“x G (x)e” Y (x)

= / d*x 5 ()€Y " anpn(x) = Y Comtin (6.11)
where
Con = [ 5 810067 6,00, 6.12)
Similarly,
&/ = Z 5n¢:(x)’ I;n = Z Cumm. (6.13)
Thus the Jacobian of the transformation (a,, a,) — (b, l;n) is
J = (det C)°. (6.14)
For infinitesimal «, we have
Cnm ~ Snm +ia / d4x ¢Z(X)V5¢m(x) (615)

or in matrix form

C~1+iaD  with D,, = /d4x & () YsPm (X). (6.16)
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Thus we get for the determinant:
det C ~ det(1 +iaD) ~ 1 +iaTrD ~ exp(iaTrD) (6.17)

where

TrD=7) / d*x ¢}, (0) s (x), (6.18)

and we used the identity det (¢*) = e”"*. Thus we can write the Jacobian as an
exponential:

J = (det €)% ~ TP = exp [Zia > / d*x qb:(x)ygqﬁn(x)} . (6.19)

This means that the effect of an axial transformation can be included as an extra
term in the Lagrangian,

8Ly =20 $r(xX)yshu(x). (6.20)

(b) Here we calculate the trace in eqn (6.18) with Gaussian regularization

2

A
TrD = Z / d*x ¢ (x)ysexp <_ﬁ”2) @n(x) 6.21)

where M is some regulator mass, and A, is the eigenvalue of the operator i P,
iDxn = Mo, D, =09,—igA,. (6.22)

For the special case of g = 0, we have A, = ¥, and

22 K2
exp (— MHZ) = exp <_W) (6.23)

and the integral over k is convergent. For the general case we choose ¢, (x) to be
the eigenfunctions of the operator i [) and write Tr D as

2
TrD = Z/d4x ¢, (X)ys exp (%) &n (x). (6.24)

Since the trace is invariant under the change of basis (unitary transformation), we
can now use the plane wave state

4
¢n(x) = ¢, and (Z—> / (%4) (6.25)
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to compute the trace. Simple algebra gives the result

DD = y,y,D"D" = y,y, (5[D*, D'1+ 3 {D", D"})
= 1Y wHD", D"} + Lyuy (—igF™)

o 18 v g w
= 38D, D"} = Sy RIF" = D = Zou F™ - (6.26)

where
FHM =" AY — 9V A*, Oy = % [yﬂ, )/V] . (6.27)
Also,

D* = (3, —igA,) (3" —igA") = 3* — 2igA"d, — igd, A" — g A" A,

D et = [— (ku + 84,)" — ig8uA“] e, (6.28)
Thus we have
2
D>\ .. ky+gA g0 A" | iy

Putting all these together, we get

d*k 4 p? 4 d*k
TrD = (27[)4 d*xTr VY5 €Xp W = d’x W
2
k., +gA g 1 ig
x Tr (ys exp [—u - EU,WF’“’W - WZ)MAM .
Changing the integration variable, k, — gA, = k;/l.M ,

d*k' e 1 i
TrD = /d“xM4 (2n)4e_k Tr (VS exp [-%GWF“”— _ 185 A“i|> .

It is clear that the last term in exponential, not containing any y -matrices, will not
contribute as Trys = 0. We can expand the exponential

g , 1 ig , 1
exp [—5 MF“ W} = exp [_EVMVUFM Wi|
ig 1
=l

1 /ig\? 1
Al A5 vV FMVFO[B_ ... (6.30
+2<2> YuYvYaVB M4+ ( )

Only the first term and the M ~* terms will survive as the M~2 term will vanish
after taking the trace, while the higher-order terms vanish in the limit M — ooc.
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Using the relation

Tr (VsYuVoVaVp) = 4i&puvap (6.31)
we get
2 d*k
TrD = —‘% / d*x / mmgﬂmﬂF”“F“ﬂe—kZ. (6.32)
From
Pk i
e’ T 1o (6.33)
we get
g2
D = 2 — f d*x eyuap F" FP. (6.34)

(c) Thus the effective term in the Lagrangian is of the form

2

5L = 2a$gwﬁFﬂ“F“ﬂ. (6.35)

Since the divergence of the axial vector current is just the coefficient of «(x) in
8L under the axial transformation, we see that the Jacobian here will contribute to

9, A" as
g2
a}LAH = @guvaﬁFﬂvFaﬂ~ (6.36)
Or, if we define
~ 1 of
F;w = EglwotﬂF s (637)
this can be written as
g -
9, A" = WF’“’FW, (6.38)

which is just the axial anomaly equation.

6.2 Axial anomaly and n — yy

The decay 5 — yy is very similar to 7° — yy. Suppose that the process also
proceeds, like the case for ¥, through the axial anomaly. Parametrize the matrix
elements for the decays, as in CL-eqns (6.61) and (6.63),

A[P(q) = vy (ki e)) y (k. £2)] = &) (k1) ) (k2) i ek kST p (7)  (6.39)

where P stands for either of the pseudoscalar mesons 7 or 7°.
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(a) If we assume 7 is a pure octet, n = ¢%, show that

r0)

= (6.40)
I, (0)
from the theory of anomaly.

(b) Show that the ratio of decay rates is given by

L’ —vyy) _ <ﬂ>3 [M]z 6.41)

C(n—yy) ny Fr] (m%)

Assume that

Ty (m3)  Tx(0)

A , (6.42)
r, (mfl) I, (0)
compute the decay ratio and compare it with the experimental results.
Solution to Problem 6.2
(a) From CL-eqns (6.69) and (6.72), we see that
e’ ) e? )
.0 = T A d I'0) = T Ag) .
O = o Tr(Q%) and Ty(0) = 3577 (%)
Using
(0] (2 1 A 1 1 A L 1
= — — 3 = j— § = ——=
3 ~1 0 V3 —2
we get
;) Tr(xQ?
<O _Tr( 3Q)=J§. (6.43)

L,0)  Tr(rs02)

(b) The amplitude is proportional to f ! and the decay rate is proportional to
f.%. This means that we need mi in the decay rates to get the right dimension,

(P — yy) o mplp (m3). (6.44)

Then we have

C'm—vy) my,

L’ —vyy) _ (&)3 [M]z (6.45)

If we assume

T (m2)  T0)
o 2 =3, 6.46
T, (m2) — T,(0) (6.46)
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we get

0 3
L~ yy) _ (ﬂ) x 3 = 0.045. (6.47)
I'(n—yy)

my

Experimentally, this ratio is about 0.0165. The discrepancy is probably due to the
assumption (6.42). As mi ~ 0.02 GeV? which is quite close to 0, the approx-
imation I'; (m,zr) ~ TI';(0) should be fairly good, while m% ~ 0.3GeV? and
T, (m3) & I',(0) is probably not a reliable approximation. Another possibility is
that the n meson does not transform as a pure member of the SU(3) octet.

6.3 Soft symmetry breaking and renormalizability

Consider the Lagrangian given by

1 2 5
L= 2[00 + (8] - 5 @1 40D -5 010D ©4®)

(a) Show that £ is invariant under the transformation
¢ — ¢ = cosb¢; +sinb¢,
¢ — ¢y = —sinO¢; + cos O¢ps. (6.49)

Use this symmetry to construct all possible counterterms.

(b) Suppose we add a symmetry-breaking term of the form
Lsg =c (o7 — 7). (6.50)

Construct all possible counterterms and show that £ 4 Lgp is still renormalizable.

Solution to Problem 6.3

(a) This transformation is simply a rotation in the (¢, ¢) plane, and it leaves the
combination ¢ + ¢ invariant just like the ordinary rotation on the plane. The
superficial degree of divergence is given by

D=4—B, —B, 6.51)

with B; and B, the numbers of external ¢; and ¢, lines. Note that owing to the
symmetry ¢; — —¢1, or ¢ — —¢», By and B; have to be even.

(@) By =2,B, =0,0r Bj =0, B, =2, implies that D = 2. We need the
symmetric counterterms of the form,

(Bur)” + (0u2)”s (8] +93). 652)

(ii) By =4, B=0,0rB; =0, B, =4,0r Bl = B, =2 implies that D = 0.
The counterterm which respects the symmetry is

(07 +¢2)°. (6.53)



6.4 Calculation of the one-loop effective potential 143
(b) Lsg =c (¢12 — ¢%) The index of divergence is § = —2, and the superficial
degree of divergence is

DSB =4 - B1 — Bz — 2}153 (654)

where ngp is the number of times Lgp appears in the diagram. For diagrams with
ngg = 0, we need only the counterterms given in Part (a). For diagrams which
contain one symmetry-breaking vertex, the degree of divergence is improved by 2:

Dsgp =2 — B; — Bs. (6.55)
Thus only the two point functions are divergent: By = 2, B, = 0 or
By = 0, B, = 2. The counterterms we need are ¢7 and ¢3. The combination

(¢7 + ¢3) can be absorbed in the mass term 1 1> (¢7 + ¢3) while the combination
(¢7 — #3) can be absorbed in the symmetry-breaking term Lsg = ¢ (¢7 — $3).
This implies that the theory with £ + Lgp is still renormalizable.

Remark. This is an explicit example which illustrates the Symanzik theorem,
which states that if the symmetry breaking term has dimension dsg < 4, we only
need asymmetric counterterms with dimension < dgg.

6.4 Calculation of the one-loop effective potential

As given in CL-eqn (6.121), the effective potential is of the form

1
— i O} n
Vg == —TP0,....0) 4] (6.56)
where '™ (0, ... , 0) is the 1PI n-point Green’s function in the momentum space
and ¢, is the classical field. For simplicity of notation, replace ¢, by ¢. At the tree
level we have

W, hoy
V=W@® =—7¢"+ ¢ (6.57)
2 4!
which gives
r2(0) = —p?, r$,...,) = -1 (6.58)

Suppose we define a shifted field ¢’ by
p(x) =¢'(x) + o (6.59)

with w an arbitrary constant, the Green’s functions can then be expressed in terms
of ¢’ and T™(0, ... ,0).
(a) Show that the effective potential has the property

V(o) = % lp=w =-TL(0) , (6.60)
where "1’ (0) is the one-point Green’s function (the tadpole graph).
(b) Calculate I’ fol) (0) at the tree level and integrate it to get V (w).

(¢) Calculate '’ (0) in one-loop and integrate it to get V (w).
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Solution to Problem 6.4

(a) The effective potential can be written in terms of the shifted field as

Vig)

1
=Y =T"0,...,0)[4]"
n!

1 ) 0
—Zaﬂ")(o,...,m [¢ + o]

1 n
—ZEFg”(O,...,O)[q&]

1 (n) n
:_Z—'rw ©,...,0)[¢ — »]". (6.61)
n!
Thus it is clear that
v
—  =-TP0) = V(o). (6.62)
99 | p—er

This means that we can calculate the tadpole diagram’s one-point function I"{" (0)
in the shifted field ¢', and integrate I'{1(0) over w to get the effective potential

V(o).
(b) Expanding the potential in terms of the shifted field

2 2
K A 4 _ M ’ 2 A ’ 4
A
= Vo(w) + (pﬂw + §w3) ¢+ (6.63)
we get
A AV,
rD0) = — (1o + —~o’ ) = ——. (6.64)
3! dw

Integrating this relation we can get

AV, A 2 A
Vo(w) = / 8—0)" do = /da) (,uza) + §w3> - %wz + 50t (669

or
u? A
Vo(g) = 7¢>2 + de‘. (6.66)

This calculation, of course, is trivial. But it serves to illustrate the relation between
'™ and 0™
u .
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(¢) From
V@) = Vo) + (1ot 20? ) o + (1 1 20 g2 4 220 4 R s
A i The 2 T4 31 41
(6.67)
we can calculate the tadpole graph
" i [ d*k i
r,’0) = (6.68)

2 Qm)*k? — (12 + (w?/2)

Note that I'{’(0) is the 1PI one-point function and there is no propagator for the
external line. Integrating this, we get

d*k rodw
— (1 =_1
Vit = / Fo Ondo==3 | oy / k2 — (12 + (0?/2)
1 d'k 2 ), M ;
=—3 ) In|k”—|u +T +ie|+C (6.69)

where C is independent of w. If we choose C such that V|(w) = 0 in the limit
A =0, we have

2
Ao7/2 i| (6.70)

Vi) : f —d4k In|l— ———
= - n f—

! 2] @n)* K2 — 2 +ie

which agrees with the result given in CL-eqn (6.139).

Remark. Itisnothard to see that different choices of the w-independent C corres-
pond to different choices of counterterms and will not affect the properties of
Verr(¢) once the parameters in V, s (¢) are fixed by the renormalization conditions.



7 The parton model and scaling

7.1 The Gottfried sum rule

In the parton model, if we assume that the proton quark sea has the same number
of up and down quark pairs, i.e. in terms of the antiquark density #(x) = d(x),

show that
/1 T
_— X) — X = —.
, x L2 2 3

Solution to Problem 7.1

From the parton model, we have for the proton structure function

Ff(x) = x (3l + ul + 5ld +d] + §[5 + 5]).

(7.1)

(7.2)

The neutron structure function can be obtained from the proton structure function

by the substitutions u <> d and u < d,

F(x) = x (5@ + ul + 3[d + d] + 5[5 + s1) .
The proton and neutron difference is then

F{(x) — F}(x) = x [ +u) — $(d +d)] .

Since the total isospin of proton is %, we have the sum rule

1
%=%/0 [(u — @) + (d — d)]dx.

Combining eqns (7.4) and (7.5), we get

Vdx ! L
/ T[sz(x) - F ()] 5/ [(u—d)+ (u—d)]ldx
0 0
1 —_
=§+§[0 (it —d)dx.
Thus if we assume i = d, the result is

X

"d 1
/ S [FP(x) — FL()] = 3
0

which is known as the Gottfried sum rule.

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)
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Remark 1. This sum rule can also be obtained with a weaker assumption,
1 1
/ u(x)dx = / d(x)dx. (7.8)
0 0

Remark 2. The assumptionit(x) = d(x) follows naturally from the simple picture
of the quark pairs in the sea being created by the flavour-independent gluons and
the up and down quarks having similar masses. However, for light mass quarks
in the long-distance range, perturbative quantum chromodynamics (QCD) is not
applicable. Since the proton is not an isotopic singlet, there is really no reason to
expect its quark sea to be symmetric with respect to the # and d quark distributions.

7.2 Calculation of OPE Wilson coefficients

Consider the composite operator J (x) = :¢>(x): in A¢* theory. Write the operator-
product expansion (OPE) as

T'(J(x)J(0)) = Ci1(x)01(0) + C2(x) 02(0) + - - - (1.9)

where C;(x)s are c-number functions and O; (0)s are local operators.

(a) Write out the first three local operators, having the lowest dimensions, in terms
of ¢(0) and 9,,¢ (0) in this expansion.

(b) Define the Fourier transform by
/d4x e T (J(0)J(0) = Ci(q) 01(0) + C2(q) 02(0) + - - - . (7.10)
Use the Feynman rule to calculate the matrix element
T(p.q) = fd“x ¢ (pIT(J (x)J (0))|p) (7.11)

to order A°. Then take the limit g> — —oo to identify the coefficients
Ci(q), C2(q), C5(q).
(¢) Draw Feynman diagrams which will contribute to C;(q) to order A.

Solution to Problem 7.2

(a) Since J(x) is symmetric under ¢ — —¢, we need to consider only operators
which are even in ¢:

dim operators

0 1

2 02 (0):

4 :$*(0):, :0,00,p:, :$0,0,6:

(7.12)

T(J(x)J(0)) = C1(x)1 + C2(x):¢*(0): + C3(x):¢*(0):
+C4(x):0,40,¢: + CL" (x):¢p0,0,p: - . (7.13)
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From dimensional analysis, we see that

1 1
i) ~ G~ 3 C34(x) ~ O(D). (7.14)

PR

(b) The first term in the OPE is a c-number and get its contribution from the
disconnected graph, as shown in Fig. 7.1(a), with contribution

A i
Qo2 —p2 (I +q)* —

In coordinate space, this corresponds to

TO(p,q) = (7.15)

k. 1
et .
2m)4 k2 —u?+ie

Ci(x) =[iAr(x)]*  where  Ap(x)= /

For the connected graphs, there are two contributions to order A’; they are displayed
in Fig. 7.1(b) and their matrix elements are

i I
+
P+q?—n* (p—q)P—un?
i i

TV (p,q) =

(7.16)

= + .
*+2p-q q*—2p-q
For ¢? large,

1 1 1 2p-q  (2p-q\°
2 =2 n=a |-t 2 T
g*+2p-q q*(0+2p-q/q*) ¢ q q

and

2i 8i(p~q)2
TO(p,q) = 5 + 10
q q

On the other hand, from the operator-product expansion,

SR (7.17)

/ d*x " T(J(x)J(0)) = C1(q)1 + C2(q):¢*(0): + C3(q):¢*(0):

+ CI(@):0,00,0: + CL(q):p3, 0,7 - - .

(7.18)
i K-
//+\\ p ’// p+q \ P
/ \ // \\
® ®
\ /
\\*//
l+q /®__+__®\
p Pg > 7P
———————— //’ \ N
B .
(a) b)

FiG. 7.1. Feynman diagrams for the operator-product expansion of two currents.
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The matrix elements between one-particle states are given by
/ d'x '™ (p|T(J (x)J(0)|p) = C2(g)(pl:¢*(0):]p)
+C3(q)(pl:p* (0):Ip)
+Cy (@)(pl:3,93,¢:| p)
+C5 (@) (pl:gddugilp) -+ (T.19)

To order A°, we have free field theory and ¢ (x) can be expanded as

d’k . .
@(x) Z/W[a(k) e +a' (k) ] (7.20)

Then the composite operator :¢>(0): can be written as

50y — / &k f &K
A [@m)32w]"? ) [@r)200]?

x [a(k)a(k) + a' (K)a® (k) + at(K)ak) + a’ (kK)ak)]. (7.21)

Using

P = [@0)20,] 7 ' (pI0)  and  [a(p).a’ k)] =53 (p — k)

we get

(pl:p*(0):|p) = 2. (7.22)
Similarly, a straightforward calculation gives
(pl:¢*(0):p) =0 (7.23)

because each term in :¢*(0): will have at least two destruction operators on the
right or two creation operators on the left. For the derivative of ¢ (x), we have

d’k : :
8M¢><x>=/ W@im)[a(/«)e—”‘*+af<k>e””] (7.24)

and
:0,6(0)0,¢(0): = / Ik : / K (—kpky)
[@r)20]? ) [r)20p]"
x la(k)a(k) +a’(k)a" (k') — a’ (k)a(k') — a* (K')a ()],
(7.25)
¢(0)9,0,¢(0): :/ ak : / dx (—kyky)
[@m) 2] ) [r)200]"
x [a(k)a(k'y —a’(k)a™ (k') + a’ (k)a(k) — a' (K" a(k)].
(7.26)

From these we get

(Pl:0,¢0,¢:Ip) = 2pupy, (pl:¢0,8,¢:p) = 0. (7.27)
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Remark 1. The calculation of the matrix elements of the local operators is done in
free field theory for illustrative purpose (to show how this can be carried out). For
more general cases with interactions, these matrix elements are more complicated
than those in free field theory. However, from Lorentz invariance it is not hard to
see that the Lorentz structure of these matrix elements remains the same but the
coefficients will have more complicated dependence on the coupling constant A,

(pl:¢*(0):|p) = ai, (pl:¢*(0):p) = aa, (7.28)

(Pl:0,90u¢:|p) = azp.pv, (Pl:¢0,0,¢:|p) = aspupy (7.29)

where ay, a;, as, a4 are constants which depend on p? = m? and the coupling
constant A. If the perturbation theory is applicable, we can expand these coefficients
in powers of coupling constants A,

a;, = afo) + )»ai(l) + kzaim + .- (7.30)
Our simple calculation gives the first terms in this expansion,
a’=2, a¥=0, 4”=2 =0 (7.31)

To this order, we can use these matrix elements to read out the c-number coefficients
from eqn (7.19),

i ; 4ighq’
C@=— @)= ‘22‘]. (7.32)

q

Note that because a,” = 0, we do not get any information on C2"(¢) from this

simple calculation. To get C” (¢) we need to use more complicated external states,
e.g. two particles in the initial and final states.

Remark 2. The basic idea of calculating the Wilson coefficients is to use the fact
that they are c-numbers and are process-independent. Thus we can choose some
simple external states to simplify the matrix elements of the local operators and
extract the Wilson coefficients.

(c)

-~ -~ .

/N /N /N
! \ ! \ ! \
I \ \
I I I
| I I
\ 1
/ /

SR S\ WA - S OVAY: SR Y7 S - S

FIG. 7.2. Feynman diagrams for one-loop contribution.
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7.3 010:(ete™ — hadrons) and short-distance physics
Consider the process eTe™ — hadrons through one-photon annihilation.

(a) Show that the total hadronic cross-section (summing over hadronic final states)
can be written as

2a2

0,0:(eTe™ — hadrons) = % / d*x 7 (O1[J (%), J*(0)]]0) (7.33)

where J,,(x) is the electromagnetic current and g* the four-momentum of the
intermediate photon.

(b) Suppose that J, (x) is made of free quarks:

Ju() =G0y, Qq(x): = Y :Gi(X)eryugi (x): (7.34)

where Q is the charge matrix and i is the flavour index, calculate the commutator
[J,.(x), J*(0)] and show that

o.01(eTe™ — hadrons) =

(7.35)

(c) Suppose that the current J, (x) is made out of free elementary scalar fields,
=13 [0/ ijoue; — 0.8 0105 (7.36)
Calculate the commutator [J,L (x), J "(0)] and o;,,(eTe™ — hadrons).

Solution to Problem 7.3

(a) The amplitude is given by

( g/tv)
T = v(—k')(—iey)u(k) (nJ,10) (7.37)
and the cross-section is
1 1 L d*p 1
R P O y — - ) T
o= InaE 28 P kT p)H(zn)*zp, (4;.;' ')

The spin sum of |T|? is
1 2
—Zm2 Tr [#'vk 7] D (01T n)(n] J#10) (;) . (138
spin n

The leptonic tensor is

Ay = Tr (' vik vi] = 4 (K ko + kK, — gk - k) (7.39)
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where we have used the approximation k* = k> = m2 = 0. The hadronic tensor
is given by

(q) = / d*x 001, (x), 1, (0)]0)

- Z/d4x (0], |n) (n] J,|0)e P

—(014y1n)(n]J,|0)e'P] (7.40)

Asusual, the second term does not contribute for the case qO > (0 (because p, > 0).
Then we can write

- d317i
T(q) = Z 1"[ M(z”)484(q — pu)(01J,,|n) (n|J,]0) (7.41)

and the differential cross-section is

1 1 n d?p;
do = >— 27)*6*(q — pa) [ | o e*1,1, (017" |n) (1] J*|0
7 2E 2F’ ;( )6 g —p )ll_[ (2”)3217[06 w (01" n) (n]J*|0)
1 —et )
= 3EE (7) T (7.42)

From Lorentz invariance and current conservation, we can write the hadronic
tensor as

v

(@) = (@ 8uv — quq)™(g®),  which gives ) = ¢"'m,, = 3¢°7 (7).

Straightforward calculation yields
@ 8ur = 4ug)"™ = 4> (=2k - k) = 2k - gk’ - q = ¢*k - k) = —¢".

The total cross-section is then

4 7.[20[2
O = =——— % ¢*n(g?) = ol (7.43)
SEE/ q4 3q4 12
or
82’ -
i = 32 / d*x &1 0|1, (), 7 (0)]]0). (7.44)

(b) In CL-eqn (7.146), the c-number singularity in 7'(J,(x)J,(0)) is given by

x2g, — 2x,x g 1 1
Co(x)=—Sm =wv _J2  ow  dga |~ (lrp?—.
w) = T ey et el /L e pneecl f ELA
From the substitution rule for going from T-product to the commutator

o — 2ma(xo)5<"*1>(x2);(—1)” (7.45)
(x2 —ig)n n—1! ’
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we get

Cuv = 2711'{ — 18,08(x0)8" (x?) — 58,0, [e(x0)8' (x?)] }Tr QZ% (7.46)

and
1
g Cpy = 2m'{ — 2e(x0)8" (x?) — 507 [e(x0)8' (D] }TrQZF. (7.47)

The total cross-section is then

—8m2a? (iTrQ?
3(q2)2 3

Using the relation

Otor =

)/d4x e [Be(x0)8" (%) + £9° [e(x0)8' (x)]] -

2—2n
/ dhx &6 (e (x0) = 75 i(@7)" 0(g7)e(q0) (7.48)
n — .
we get for the first term
. 7'[2
/ d*x 978" (xHe(xg) = Tiqz (7.49)

and for the second term
/d4x eiq-va [8/(.x2)8(.x0)] — _q2fd4x eiq~x6/(x2)8(x0) — _q2ﬂ2i.

The total cross-section is finally

—8ma? (iTrQ*\ . ,(2 , 1,
ETPEE ( ™ )m <§" _€q> (750
or
4+ Ao )
oi0t(e7e” — hadrons) = 322 Tr(Q°). (7.51)
q
(c) Given the scalar field current operator
Ju) =i [6] ity — 0u8] 019 ] (7.52)
i,j

we have, after using Wick’s theorem, for the c-number term in the operator product
expansion,

T (0 (1) 010, (0):0{ (") Qudur (7))
=i Ap(x — y)id) Ap(y —x)TrQ?
= i Ap(x — y)id]Ap(y —x)TrQ’
= I AF(x)3; Ap(—x)Tr Q7. (7.53)
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Similarly,

T (9] (¥)01j0u9; (1)::0,6{ (0) Qutr(0):) = [0,0,Ar()IAF (=) Tr Q%

Using the relation

(7.54)

_ 4
aVaMAF(x)zz[ Su Aty }

(x2—ie)?  (x2—ig)’

it is straightforward to get the OPE for the whole current

TULAO) =2 S 2 B, }(LYT ”
AT Tl @ =it T W =it T —ief \ax?) T

1 (g,wx2 - ZxMx,,) )
=——*TrQ". 7.55
4t (k2 —ie)?t Q (7.55)
Comparing this to the case with the spin-1/2 constituent, we see that the scalar
case has an extra factor of 1/4. Thus the total cross-section in this case is

T
or0t(eTe™ — hadrons) = WTr(Qz). (7.56)
q

Remark. Usually, the ete™ — hadrons cross-section is normalized to the
ete™ — utu~ cross-section which measures the cross-section for the point-
like particle and can be worked out for the tensor 7, (q) as follows. For a final
state with u*(p1)u™ (p2), the tensor 7,0 (q) is given by

d3p1 d3P1 404
v(g) = 27)*8" (g — p1 —
T (q) / n)2E, (Zn)32E1( 7)"8°(q — p1 — p2)

X Z5(—p1)yuu(pz)ﬁ(pz)yvv(—pl) (7.57)
spin
1 d3pld3p2 4

= 8* g — p1 — —4
(271)2/ 1E.E, (g —p1—p2)(=4
X (piuP2v + P2uPiv — P1* P2&uv) (7.58)
and
2 [ d&pidips

m (p1-p2)8* (g — p1 — p2). (7.59)

"
® 7'[2 4E1E2

Use the centre-of-mass frame where p; + p> = 0, we get

2 (&p (¢
Hg) = — T )sq—2E
== | Jm <2> (g )
2 2
q E“dE
q2

=5
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Thus we get

8
olete” - utu™) = Zq“ nl = . (7.60)

For the case where the hadrons are made out of spin-1/2 quarks, we get

o(eTe™ — hadrons)

o(ete — utp)

=Tr (@) =) 0} (7.61)

One simple way to interpret this formula is to treat o,,;(e"e~ — hadrons) as sum
over o(ete™ — ¢;G;) where ¢;; are treated as point-like spin-1/2 fermions.

7.4 OPE of two charged weak currents
The weak charged current at low energies is given by
Jlfv(x) =uy, (1 —ys)(dcosh +ssinf) = :q(x)y, (1 — y5)Cwq(x): (7.62)
where Cy is the weak coupling matrix

0 cosf sin6
0 0 0

(7.63)

L Q<

Use Wick’s theorem to work out the operator expansion for the product
T (7Y ()77 () (7.64)

in the free field theory.

Solution to Problem 7.4

Using Wick’s theorem, we get
T (1) (x) " (0))
T(:G(x)yu(l — y5)Cwq(x):g(0)y,(1 — y5)Cyyq (0):)
TrliSr(—=x)yu(1 = y9)i Sr @)y (1 — y5)Cw Cyy ]
+:3() (1 = y5)Cwi Sp(x) (1 — y5)Clrg (0):
+:GO0) (1 = y5)Cli Sp(—x)y (1 — y5)Cwq (x):
+:7() (1 — y5)Cwq ()3 0y, (1 — y5)Ciyq (0): (7.65)

Assuming the fermions are massless, which is valid for |x| < %, we have

i1}1x

—_—— | = 7.66
472 (x2 —ie) 212 (x%2 —ig)? (7.66)

Sp(x):iy-8|:
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The first term is then

1
(m) Tr (CwCly) Tr[=¥ vl = vk 1 = 9)]

1
(x%2 —ig)?

2
X“gu — xﬂxu)

—2Tr (CWC;,) (ﬂ4(x2 —r (7.67)

The second term is

1§ (X)y (1 — y5)CwCyy [Q—jﬂﬁ] (1 = 5)q(0):
— e | Gt i) G0V = ) CuCla O] (768)
where we have used the relation [see CL-eqn (7.145)]

Vi vo(1 = v5) =i (Suavs + ipanp) ¥ (1 — y5)x°. (7.69)

Similarly, the third term is
AN &) (0) 7P (1 — y5)Cly Crq (x): 7.70
s { o + i3 @Y (1 = p)Cl Cug ). (2.70)
Thus we can write the operator product expansion in the free field theory as

T (7Y (x) ) (0)

(¥* g — Xu%0) ix®
= 2Tr (CWC&,) 7T4(l;2 _ 12)4 2()62 _ 18)2 {(Sp,avﬁ + lé‘uavﬂ)
x [:@00y (1 = y5)CwClya(0):: = GO (1 = 7)€, Cwax):] |
+:4@)7 (1 = 7 Cwa(F OR (1 = 75)Clq (). (.71)

7.5 The total decay rate of the W-boson

Use the operator-product expansion derived in the last problem to calculate the
total decay rate for W* — hadrons.

Solution to Problem 7.5
The amplitude for W¥ — hadrons decay is given by

8

22

where J, /fV is the weak charged current. The total decay rate is

n d ;
Z/(Zn)454(k pn)l_[ (271)32170 ( Z|T|2> (7.73)

spin

T =

" (k)(n|J,}10) (7.72)
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The spin sum is

k*kY
-Zmz ( §+ )Z<0|JUW*|n><n|J,fV|0>. (7.74)
w n

spin

Define the weak hadronic tensor by
(k) = f d*x ™01 [ 1V (x), 17 (0)] |0)

= Z/d“x e 101} |n) (n] 2V |0) e P

—(014," [n)(n17,""10) 7]

Zn(znm Q@r)*8* (k — py — -+ = pa) (014, ) (n]4,"10)

n i=1

(7.75)

where we have used the fact that ko > 0 to eliminate the term proportional to e,
The total decay rate can then be written as

- 4831; - <_glw + ';:[ 1‘2; )n;"v(k). (7.76)
From the Lorentz invariance, we can write
T (k) = =1 P g + 7 ki (7.77)
and the decay rate is then
e
r= —M2 . (7.78)

16

The weak charged current is generally of the form
IV =iy, (1 = ys)Uuid; + ¢y (1 = y5)Uqid; (7.79)

where Uy;s are the Kobayashi-Maskawa (KM) matrix elements. It is easy to see
that we can simply replace

Tr(CwCly) =3 Y (Ul +[Ual?) (7.80)

i=d,b,s

in the operator product expansion for the weak current worked out in the last
problem. The factor of 3 is due to the summation over colour. Then following the
same calculation as in the case for the electromagnetic current we get

LC(W* — hadrons)
N(W* — e*v)

=3 Y (Uul +1UaP). (7.81)

i=db,s
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8.1 The gauge field in tensor notation

The SU(n) groups consist of n x 7 unitary unimodular matrices, U'U = UUT = 1.
For infinitesimal group transformations, we can write

Ui =8 + i€ @.1)
where € is hermitian

€jk = € (3.2)
It is more convenient to use upper and lower indices so that

er=e (8.3)
and complex conjugation interchanges upper and lower indices

ef = () (8.4)

The hermiticity relation (8.2) can then be written as

el =¢. (8.5)

This means that the ordering of the upper and lower indices contains non-trivial
information.

The n-dimensional vector ¢; and its complex conjugate ¢’ have the following
infinitesimal transformation law,

¢ = b +ie'en ¢ — ¢ —ie'ioh, (8.6)
where
e =(h)" and ¢ =" 87)
For the fields in the adjoint representation ¢, /. we have
o) — ¢ +ielo, —ielg". (8.8)

(a) Construct the covariant derivatives for ¢; and ¢, respectively. Show that the
transformation law for the gauge bosons is

. , , ‘ . 1 .
/ . . k
w,/ > w,/=w/+ig'W,/ —ie W, - Eaﬂsi/. (8.9)

(b) Construct the field strength tensor F W} for the gauge fields Wm.j .

(c) Construct the covariant derivative for scalar fields in the adjoint representation.
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Solution to Problem 8.1
(a) The covariant derivative acting on ¢; should be of the form
(Duo)i = 0upi +ig(Wy), i (8.10)
with (D, ¢); having the same transformation as ¢,
(Dug); = (Dyd)i + i, (D). (8.11)

The left-hand side (LHS) and right-hand side (RHS) of this equation can be written
out as

LHS = 3,9, +igW, !¢/ = 0, (¢i +ic/d) +igW: (b + ig, ¢v)
= 0ui +i0ue/py +igl 0 +igW, (& +ie P) (8.12)

RHS = 3, +igW, ;¢ +ie,' (9, +igWy ) - (8.13)
By equating these two expressions, we get
idue' o +igW! (¢ +ief ) = igW, iy + el g W) . (8.14)
Since ¢;s are arbitrary, we can cancel them on both sides,
ide] +igW . (8 +igl) =ig (W), +ig/W),). (8.15)
Multiply both sides by (8/ — ielj ) and drop the terms of order &2, we get

. . - L,
W, =w,] +ig'w, —ie/ W, — Eaﬂei’. (8.16)

(b) To find the field strength tensor F' Mw.j we calculate the combination (D, D, —
D,D,).

(D;Dy¢)i = [Dy(Dy)]; = 3, (D) +igW,[ (Do),
= 0 (9o +igWyidh) +igW,i (v +igWyin)
= 0,000 + g0 Wit +ig (W, . + Wy, 0,01)
+ ()W), Whir. (8.17)
Then we have for the antisymmetrized combination,

(DuD, — DD = ig [0, W}, — 0, Wy, +ig (W,/ W, — W,/ W, )] .
(8.18)

This means that the field strength tensor should be of the form

Ff=0,W =W,/ +ig(W,/W,* —w,/'W,[). (8.19)

uvi
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(¢) From the global transformation, itis easy to see that the combination W¢ = ¢y
which transforms as an adjoint representation is given by

@w), =W, o) —w k. (8.20)

This can be seen as follows. Under the global transformation, we have

(8w),” =Wt — W ol*
= (W} +ie/W,}f —iefw,") (&) +iel"d, —ie, o")
(Wl +ig!W, —ie, /W, M) () +ie",k —iele")
=W,/ - Wﬂszi’ik +iw, [ (=&, /8) +i (&' W,[) &
_Wukj (igimfpmk) - (igkl Wuzj)‘bik
= (ow), +ig,' @w)/ —ig,l ($w)". (8.21)
Therefore, the covariant derivative should be of the form

(Du#) = 0,0 +ig(W, ko) — W iok). (8.22)

Remark. If we expand q&ij and WW(‘ in terms of the hermitian traceless n x n
matrices A%,

¢’ =099 W, =0 W, (8.23)
we have
(D) = A, Dydba = 3,84 01,
+ ig (Was GO0 = Wan 00609 91 )
= 0,00, +ig (12 271, Wats)
= 0,901, +ig (iF ), Wahs) (8.24)
and
Dy¢a = duba — 8f " Wi e (8.25)
Or, if we write i f%*° = (t%),., the adjoint representation matrix, then
Dy = 8u¢a +i8(1")ac Wiy e (8.26)

which is the standard form for the covariant derivative.
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8.2 Gauge field and geometry

Under the local gauge transformations, fields at different points transform differ-
ently.

Y (x) = U)y(x), V() = UMY (y) (8.27)

with U (x) # U (y). Thus the usual derivative, being proportional to the difference
of fields at different points,

Y (x) o [P (x +dx) — ¥ ()], (8.28)

does not have a simple transformation property because U(x + dx) # U (x).
Suppose we introduce the gauge fields A, such that we can define

V(x4 dx) = Y (x +dx) + A, ()¢ (x) dx (8.29)
so that IZ(X + dx) transforms the same way as ¥ (x), i.e.
U (x +dx) = U@y (x + dx). (8.30)

(a) Show that if we define the covariant derivative by [see CL-Section 8.2 for
discussion of the concept of a covariant derivative in connection with parallel
transport of a field]

V(x4 dx) — ¥ (x) = D,y dx* (8.31)
then
DY = (0, + AWV (8.32)
(b) Show that the gauge field has the following transformation property:

A, =UAU" = 3, U)U". (8.33)

Solution to Problem 8.2

(a) From the definition of

V(x +dx) =y (x +dx)+ A ()P (x)dx"
=Y(x)+ 9, ¥ (x)dx" + A, ()Y (x) dx” (8.34)
we see that the field difference is
¥ (x +dx) — Y (x) = 3P (x) dx” + A, ()Y (x) dx”
= (0, + A )Y dx". (8.35)

Then the covariant derivative, being directly related to the left-hand side of this
equation through the definition (8.31), D, ¥ dx*, can be expressed directly in terms
of the gauge field as given on the right-hand side:

Duw = (8/L + Au)l/f- (8.36)
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(b) By construction, the combination ¥ of ¥ and gauge field A « as givenin (8.29)
has a simple local transformation:

V' (x +dx) = UX)Y(x + dx). (8.37)

From this we can discover the required transformation property of the gauge field
by substituting in the relation (8.29) on both sides of the equation:

LHS = ¢/'(x +dx) + A} dx"y" = U(x + dx)y¥ (x + dx) + A} dx"U (x)¢
= U () + 0,UY + Udy) dx + AL dxU (x)y (8.38)

RHS = U (x) [¢(x) + 9, ¥ dx" + A, dx"y]. (8.39)
Equating these two expressions, we get
(8MU)W+A;Uw =UA.Y. (8.40)
Eliminating vy which is arbitrary, we have
A, =UAU" = @, U)U". (8.41)

Remark 1. Because the transformation is position dependent, we have the term
(0, U)U T in the transformation of the gauge field. This means that A, does not
transform homogeneously as the ordinary field, being in some definite representa-
tion of the symmetry group. But this extra term is of the same form but of opposite
sign so as to cancel the corresponding term in the transformation of the ordinary
derivative. In this way the gauge field is just the compensating field needed to
enforce the invariance of the theory under transformations that differ from point
to point.

Remark 2. In this derivation of the transformation property of the gauge field we
have emphasized the geometric aspect of a local transformation as discussed in
CL-Section 8.2. In Section 8.1 we have already provided a derivation by explicitly

using the covariant nature of the covariant derivative: the covariant derivative is
defined to transform in the same way as ¥ (x), i.e.

Dy (x) = [Duyy ()] = U)[Dyupr (x)]. (8.42)

The gauge field A, having been introduced as the difference between the covariant
and ordinary derivatives

Dy (x) = 0,9 (x) + A ()Y (x), (8.43)

can easily be shown to have the transformation as given in (8.41).
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8.3 General relativity as a gauge theory

In general relativity, one studies the general coordinate transformation

dx" — dx" = U%(x)dx", 9, — 8}2 = [Ufl(x)]"uav (8.44)
which can be viewed as a local transformation with
ax'* v ax"
U™ — , U! = —. 8.45
(=20 U], =0 (8.45)

Following the same procedure as suggested in Problem 8.2, we can choose to view
general relativity also as a gauge theory. Just as in eqn (8.44), a vector field £/ (x)
and a (mixed) tensor field 7% (x) have the transformation properties of

EM(x) = UL (0)E" (), (8.46)
T/ (x) = UL)U ™ @)1, T (). (8.47)

Consider the differentiation of a field having a non-trivial transformation
property—the simplest case would be the vector field £#(x). Clearly, the ordinary
derivative 9, & does not transform homogeneously, as in eqn (8.47), because the
transformation is local, 9, U* # 0. Or, stated more geometrically, this is because
&M (x+dx) transforms differently from £ (x). As in Problem 8.2 we can introduce,
as in eqn (8.29), a modified vector field

EM(x 4 dx) = E"(x + dx) — Thp&®(x) dx” (8.48)
which transforms identically as £#(x):
EM(x +dx) = U (x)E"(x + dx). (8.49)

A comparison of eqns (8.29) and (8.48) shows that the compensating field r{;;,
plays the same role as the gauge field A*. The rgﬂ field is called a connection in
geometry or the Christoffel symbol.

(a) Show that if we define the covariant derivative by
E%(x +dx) — £%(x) = D,E* (x) dx* + O((dx)?), (8.50)
then
D E" = 9,6" — T} g". (8.51)
(b) Show that the connection has the following transformation property:
Il =Usw =, w g, + 0w, (0,U%). (8.52)

Namely, besides the usual homogeneous term (first one on the right-hand side),
there is an inhomogeneous term (the second one).

(c) Show that the Lagrangian for the vector field £#(x) given by

L =13 (Du&") (DEP) " gup (8.53)

is invariant under the general coordinate transformation. g,g(x) is the position-
dependent metric tensor.
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Solution to Problem 8.3
(a) From the definition of

E*(x +dx) = &%(x +dx) — T dx"&"
=E%(x) + 0,E% (x) dx" — T, (x)§” (x) dx” (8.54)

we see that the field difference is

E%(x +dx) —&%(x) = 9,6 (x) dx" — '} (x)§” (x) dx"
= (aﬂg“ — Ff‘mé") dx*. (8.55)
Then the covariant derivative, being directly related to the left-hand side of this

equation through the definition (8.50), D,,§* dx*, can be expressed in terms of the
gauge field in the right-hand side:

D,&% =0,8% — T} &". (8.56)
(b) Under the general coordinate (gauge) transformation, we have
EM(x +dx) = U (x)E"(x + dx). (8.57)

We can extract the transformation property of the connection field by writing out
the components on both sides of this equation:

LHS = §"(x +dx) — T}, dx"&"
= U (x +dx)&" (x +dx) — T}, U%, dx“U"LEP
= UX (x)E"(x) + U" dxPage" + 3,U" dx“g"

— LU, dx*U " (8.58)
RHS = U% (x) [£"(x) + dxPopg” — T}y dx“E"]. (8.59)

Equating these two expressions, we get
0 U"y dx“&P =T U, dx®U"EP = —U' T}, dx*EP (8.60)

Since dx® and &7 are arbitrary, we have
9 Uy =T U U = —UNT oy (8.61)

or, written in the form as shown in (8.52):

=@ -H,whrunre, + U w, (sU%). (8.62)
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Remark. We have derived the transformation rule of the Christoffel symbols by
starting with the combination (8.48) having a simple transformation property as in
eqn (8.49). This approach emphasizes the geometric aspects of gauge transform-
ation. Alternatively, we could have started with the definition a covariant deriva-
tive D, & as in (8.51) which has the definite transformation property as a mixed
tensor [cf. in eqn (8.47)]:

(D" = U )IUT (0] (DY) (8.63)

The same transformations of the Christoffel symbol can be extracted.

(¢) Asthe covariant derivative D,&* and the metric g, transform as tensors under
the general coordinate transformation, it is easy to see that the Lagrangian given by

L= = (D.&%) (DvE") 8" gup (8.64)

1
2
is invariant because all the tensor indices are contracted.

Remark. Just as the field tensor Fyg in gauge theory can be defined through the
commutator of covariant derivatives,

(DyDp — Dy Do)y = Fop, (8.65)

the corresponding field tensor in general relativity can be defined in a similar way:

(DyDp — DgDy)B" = R)j5 B". (8.66)
The field tensor R” 5 Where
Ri, = 3T}y — 9gTL, + Thyl0, —Th TV, (8.67)

is called the Riemann curvature tensor. From this, an invariant action of the gravi-
tational field can be constructed.

8.4 O(n) gauge theory

Consider two sets of scalar fields, ¢,, ¢,, which transform as vector representations
under the O(n) group.

(a) Show that under infinitesimal O(n) transformations we have

()i = (Pa)i + €ij(be);  Whereoa =1,2 (8.68)

and g;; = —¢; are the parameters which characterize the infinitesimal O(n) trans-
formations.

(b) Construct the covariant derivative for ¢,.
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Solution to Problem 8.4
(a) O(n) transformations are characterized by n x n orthogonal matrices O;;,
0, O = 8. (8.69)
For infinitesimal transformations, we write
O;j = 6ij +¢&ij, with g; <1 (8.70)
and the orthogonality relation implies
Sik + (gjx + &) =6jx = &ij = —¢€ji. (8.71)

Thus infinitesimal O(n) transformations are characterized by %n (n—1) parameters.
In general, O(n) vectors transform by n x n orthogonal matrices,

¢ — ¢ = 0ijd;. (8.72)
For the infinitesimal transformations, we have
O = ¢ + €ijb;. (8.73)

(b) For the covariant derivative we need the adjoint representation of O (n). It is
not hard to see that they are just the second-rank antisymmetric tensors,

bij = ¢i; = bij + (eudyj + ejpix)  With ¢y = —j; (8.74)

This gives the global transformation law for the gauge bosons W,;;. Write the
covariant derivative of ¢ as

D, ¢ = 0,¢; + gWuikdr  with Wy = =Wy (8.75)
Then by requiring the covariant derivative of ¢ to transform in the same way as ¢;
(Du9i) = Dydi + €i;Dyd; (8.76)

which can be written out as

LHS = 3,¢; + gW, .0, = 3. (@i +£ij¢;) + W, (D + exj9))

= 0u¢i + (3,8:))9; + €0, Pj + W, (B + xj9)) (8.77)
RHS = 0,0 + gWpixdr + €ij (0,0; + gWojxdr). (8.78)
Combining these two expressions and cancelling out ¢; we get
dueij + gW i (rj + exj) = §Woij + geu Wk - (8.79)
Multiplying by (§;; + €;;) and using the property ¢;; = —¢j;, we get
dueit + 8W,y = Wit + 8Wyijeji + geixWun (8.80)
or
Wit = Wit + Wyijeji + e Wy — é(augil)' (8.81)

This is the transformation law for the gauge bosons.
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8.5 Broken generators and Goldstone bosons
Let ¢; be the scalar fields in the vector representation of the SU(n) group.
(a) Write down the SU (n) invariant scalar potential for ¢;.

(b) Work out the possible pattern for the spontaneous symmetry breaking for ¢;.
How many Goldstone bosons are there in this case ?

(c) Discuss the possible spontaneous symmetry breaking pattern for the case where
there are two such scalar fields ¢;; and ¢»;.

Solution to Problem 8.5

(a) As we have seen in Problem 8.1, the vector ¢; and its complex conjugate ¢’
have the following transformation laws,

b — ¢ =¢ +ie'p, P — ¢ = —ic P~ (8.82)
Thus the SU(n) invariant combination is of the form
¢id' — djo" = (i +ie'd) (6" —ic' ")
= ¢’ +ie' 4o —ie' " b = did’ (8.83)

which is just the scalar product in the n-dimensional complex vector space. The
SU(n) invariant scalar potential can depend on this combination ¢; ¢’,

i, A i\2
V(@) = —1’¢ig’ + 5 (9i9') - (8.84)
(b) Let ¢’ = ¢} = p?. We can write the scalar potential as
A
Vig)=—up’+ 5" (8.85)
Then
aV 2
P20 =0 = p=y /= (8.86)
ap A
or
2
¢ = p* = - (8.87)

Without any loss of generality, we can choose
(@i)o = Binv. (8.88)
Clearly, the symmetry-breaking pattern is
SUn) — SU@n — 1). (8.89)
To get the Goldstone bosons, we write the fields as

¢i = ¢,/ + (Sinv
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so that ¢/ have zero VEV. It is easy to see that

(¢'¢) = (¢} + 8inv) (¢ +8™v) = ¢" ¢ + (¢ + @) v +0? (8.90)

(@'¢5)" = [6"0) + (dn + &7) v + 2]
= 0% (¢ + ) + 207 (9] + - (8.91)

and the quadratic terms in V (¢) is

. A .
Va@) = =k (¢"4)) + 5 [v* (60 +91)" +20% (8"9))]

2
" 2

= > (¢,, + ¢:{) . (8.92)

This means that ¢y, ¢, ..., ¢,_1 and Im ¢, are massless Goldstone bosons. Since

each of ¢, ¢», ..., ¢,—1is a complex field and has two degrees of freedoms, the

total number of Goldstone bosons is (2n — 1). This is precisely the number of
broken generators, (n> — 1) — [(n — 1)*> — 1], in the symmetry-breaking pattern
SU(n) — SU(n —1).

(c) For the case of two vectors, it is easy to see that the SU(n) invariant combin-
ations are of the form

D", Gud”. ¢ue”. dug". (8.93)
We can parametrize them as
ud" = pi, ¢ud* =p3. PudY =i,z Pud" = pi,zt. (8.94)

Then the scalar potential V (¢, ¢») can depend on p;, p», and z. The minimization
of V (¢, ¢,) will fix the value of these three variables. Without loss of generality,
we can choose the VEV to be

0 0
0 0
(dryo=1:1. (P2)o = : . (8.95)
0 pa(1 — |z[H)1/?
01 022"

The symmetry-breaking pattern is
SU@m) — SU(n — 2).

Note that just like vectors in SO(n), we can generalize this to the k vectors to get
the symmetry breaking

SU(m) — SU(n — k).
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8.6 Symmetry breaking by an adjoint scalar
Suppose ¢>ij are scalar fields in the adjoint representation of an SU (n) group.
(a) Write down the scalar potential for ¢, J,

(b) Work out the possible pattern for the spontaneous symmetry breaking for ¢, i,

Solution to Problem 8.6
(a) From the SU(n) transformation properties for the adjoint representation,

o) — o = ¢ +ie'9) —ie ¢, . (8.96)
Note that ¢, = 0 and (¢,”)" = ¢ ;. We have the following quadratic and quartic
invariants (obtained by contracting the tensor indices):

A .\ 2 . .
bl6) =Tr@). (#/6)) =1Tr@IP. @/ololol =Tr")  (3.97)

where we have written ¢, as an n x n matrix. The scalar potential takes the form
V(@) = =i’ Tr@) + MlTr@)P + haTr@?. (8.98)

For simplicity, we have imposed a discrete symmetry ¢ — —¢ to remove the term
of the form Tr¢3.

(b) Itis clear that ¢ is a traceless hermitian matrix, which can be diagonalized by
the SU(n) transformation. Thus without any loss of generality, we can take ¢ to
be real and diagonal,

1
b2

¢ = with ¢y + ¢+ -+ ¢, =0. (8.99)

®n

The scalar potential is then of the form

2
V(g) = —M2Z¢?+/\1 [Zqﬂ} + qu;‘. (8.100)

Since not all ¢;s are independent, we need to introduce the Lagrange multiplier to
take into account the constraint ¢; + ¢2 + - - - + ¢, = 0:

2
V(g)=—1> Y ¢] + [Z ¢?} +hay ¢ —& (Z ¢f> (8.101)
and & is determined at the end by the condition

d+¢r+-+ ¢, =0. (8.102)
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For the minimum of V (¢), we have

37‘; = —2u’¢; +4h (Z ¢,2»> ¢ +40p) —E=0 (8.103)
' j

which means that each ¢; is a solution of the cubic equation
—2p’x +4hax + 4o’ —£ =0, with a =) ¢}. (8.104)
i
Since the cubic equation can have at most three different roots, the most general
form for ¢; is
X1

¢

@2
X

X3

bn

with
nixy +nyx, +n3x3 =0, n;+ny,+n3=n. (8.106)
Thus the general pattern for the symmetry breaking is
SU(n) — SU(ny) x SU (ny) x SU(n3) with ny +ny +n3 =n. (8.107)

In other words, the SU(n) group with scalars in the adjoint representation can
break at most into products of three SU(n;) groups. A more detailed calculation
(Li 1974) shows the following symmetry-breaking patterns:

SU(n) — SU(ny) x SUm —ny) x U(1) for A, >0 (8.108)
with
1
n; = g, n even, n; = n—;— ,  nodd, (8.109)

and for A, < O,

SU(n) — SU@R — 1) x U(1).

Remark. For the special case where A; = 0, and the constraint Tr¢ = 0 is absent
(so that & = 0), we have

V()= (-1 +2ad]) = ) f(¢0). (8.110)

1
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This means that ¢;s decouple from each other. Thus each f (¢;) is minimized
independently, and it is easy to see that all ¢;s should take the same value at the
minimum of f (¢). Then the V EV is of the form

1

{Pro=v| - | (8.111)
1

This situation is realized in the spontaneous symmetry breaking of QCD in the
large N, approximation (see Coleman and Witten 1980).

8.7 Symmetry breaking and the coset space
Suppose the scalar potential V (¢) is invariant under the symmetry group G.

(a) Show that if ¢ = ¢; # 0 is a minimum of V (¢), then other ¢;s, which are
related to ¢; by symmetry transformations of G, also minimize V (¢). (Vacuum
is necessarily degenerate.) Show that the symmetry operations that relate these
¢;s form a subgroup, call it H, of G. The pattern of symmetry breaking is then
G — H.

(b) Because of the unbroken symmetry H, the minimum of V (¢) is a degenerate
one, i.e. there is more than one value of ¢ which minimizes V (¢). Denote by M (¢y)
the set of ¢s which minimize V (¢). Show that for a given pattern of symmetry
breaking, G — H, M (¢o) can be identified with the coset space G/H.

(¢) For the case G = SO(n) and the scalar fields in the vector representation,
the coset space is SO(n)/SO(n — 1) = §"~!, which is the surface of a sphere in
n-dimensional real space.

Solution to Problem 8.7

(a) V(¢) is invariant under G means that

V(g) =V(ge) VgeG

where g¢ is obtained from ¢ by the transformation ¢ — g¢ with g € G. Then
if ¢; # 0 is a minimum of V (¢), g¢; is also a minimum of V (¢). It is clear that
those group elements which leave ¢ invariant form a subgroup, call it H. This can
be seen as follows. If h1¢| = ¢1, ho¢py = ¢y, then h1hy¢py = ¢y and hflqﬁl = ¢y.
Thus if hy, h, € H, then (hhy) € H and hl_',hz_' € H. In other words, H is a
subgroup. The pattern for the symmetry breaking is then G — H.

(b) Recall from group theory that the coset space G/H is made up of (left) cosets
of the form g; H, i.e. the collection of elements obtained by left-multiplying g; ¢ H
with the whole subgroup H. The cosets obtained this way have the property that
either they are completely different (no elements in common) or they are identical.
In particular, if g; ¢ H and g; ¢ H, but g,-g;1 € H,then g;H = g;H,ie. two
cosets are identical. But if g; gj_1 ¢ H, then g; H and g; H have no elements in
common.
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Now let us look at the set M(¢o). Clearly, for each ¢; € M(¢y), we have
H¢; = ¢;. Suppose we choose an arbitrary ¢; € M(¢o). Then by the action of
the coset g; H we have (g; ¢ H)

giH® = gip1 # ¢1. (8.112)

This means that the action of the coset g; H on ¢; will generate another element
¢ = giH¢y, which is different from ¢;. Since the potential V (¢) is invariant
under the group G, the new element ¢, must also be in M (¢y). Furthermore,

giH¢ #gH¢  if gig' ¢ H. (8.113)

Namely, different cosets generate different ¢;s in M (¢g). Thus if we identify ¢,
with H and the image g;¢; with the coset g; H, we have a one-to-one mapping of
the ¢s in M () with the coset G/H . This mapping is onto if M (¢o) is transitive,
i.e. every element in M (¢y) can be obtained from a given ¢; by the action of a
group element in G.

(c) For vector representation in SO(n), the scalar potential V (¢) depends only on

- b=0i+--+0; (8.114)
and it is minimized for a particular value of this combination
PL+- -+ gy =07 (8.115)
where v is related to the parameters in V (¢). Thus
M) = {dl ¢- ¢ =07} (8.116)

and it is just the surface of a sphere in an n-dimensional real space, S"~!. Therefore,
we have the result

SO(n)/SO(n — 1) = s~ (8.117)

Remark. Itis easy to generalize this to the unitary group to get

SU@m)/SU(n — 1) = s>~ 1. (8.118)

8.8 Scalar potential and first-order phase transition

Consider the case of one hermitian scalar field ¢ with scalar potential

2 A
Vo) = —%qbz + 70" (8.119)

We have shown in the CL-eqn (5.134) that V;(¢) has a degenerate minimum at
¢ = v, with v = (u?/1)"/2. Suppose we add a cubic term to Vo (¢)

2
3
Show that the degeneracy in the minimum of Vj(¢) is now removed. Find the true
minimum of V{j(¢). Also, show that, as a function of the parameter &, the VEV
(¢)o changes discontinuously from (¢)y) = —v to (¢)o = v as & changes from

positive to negative values going through 0.

/ u? 2 3, A
V0(¢>)=—7¢ + =9 +Z¢' (8.120)
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Solution to Problem 8.8

The minimization condition leads to the equation

EAA

yr 0 = ¢(—u’+2£¢+1rp?) =0. (8.121)
The non-trivial solutions are
1
p=¢s=[-¢+ E +auH'?]. (8.122)
The two minima no longer have the same value for the potential V{j(¢). For small
&, we have
_ § 2 §
qbi_:i:v—x—l—O(é)—qbo—x (8.123)
with ¢y = v or —v, and
u? u?
Vo (@) = Vo(v) + (7 - 2¢>§> $o§ = Vo(v) — Tqﬁoé. (8.124)

Then for £ > 0, Vjj(¢) has minimum at ¢_, while the minimum is at ¢; for £ < 0.
This means that as & varies from & < 0 to & > 0, ¢ changes from —v to v
discontinuously. This is usually referred to as a first-order phase transition.

8.9 Superconductivity as a Higgs phenomenon

Consider the scalar QED with Higgs phenomena with the Lagrangian

. 2 1
L= (D,¢")(D"¢) + %dfcb - %(a%)z = F" F (8.125)
with
D¢ = (0, —ieA,)o, FM = 3"A” — 9" A", (8.126)

Consider the static case where 3% = 3°A = 0 and A, = 0.

(a) Show that the equation of motion for A is of the form
VxB=J with J=ie[¢p"(V —ieA)p— (V +ieA)p'p].

(b) Show that with spontaneous symmetry breaking, in the classical approxima-
tion ¢ = v = (u?/1)'/2, the current J is of the form

J=e%A (the London equation) (8.127)
and thus
V’B =¢’v”B  (the Meissner effect). (8.128)
(¢) The resistivity p for the system is defined by
E = plJ. (8.129)

Show that, in this case of spontaneous symmetry breaking, o = 0, and we have
superconductivity.
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Solution to Problem 8.9

(a) In the static limit, Maxwell’s equations are of the form

—,F"" =J" = §F'=—j or VxB=] (8.130)

where

9L : i i
Ju = By ie[(Du¢") ¢ — ¢"(Duo)]
"
=ie[(d, +ieA ) ' — ¢ (3, —ieA,)p]. (8.131)
Thus

J=ie[¢p"(V —ieA)p — (V +ieA)p’o]. (8.132)

(b) Spontaneous symmetry breaking gives ¢ = v = (u?/A)'/?, which in turn
gives the London equation:

J = e*’A. (8.133)
From Maxwell’s equation, V x B = J, we get
Vx(VxB)=VxJ o V(V-B)—VB=—-¢"’V xA
or
V?B = ¢*v’B (8.134)

where we have used V - B = 0. It is not difficult to see that this equation implies
the Meissner effect because it implies a solution for the magnetic field of the form

n-x . 1
B(x):exp(T) with [ = —. (8.135)

This means that the magnetic fields decays in a distance of order of [ ~ (ev)~!.

(c) Since 3°A = 0 and A° = 0, we get E = 0. On the other hand, we have J # 0.
This means that the resistivity must vanish (superconductivity) p = 0.
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9.1 Propagator in the covariant R: gauge

The free field generating functional in the generalized covariant gauge is given in
CL-eqn (9.82) as

WiJ] = /[dA,L]exp{i/d“x [%A‘;K;‘;(x)Aﬁ + J;‘A"“} } ©.1)

with
1
K}y (x) = 8ap [g’”82 - <1 - §> a“a”} . (9.2)
& is an arbitrary constant. If we define the Green’s function GZ ; (x —y) by
/d4y Kl (x = y)Go(y —2) = gl 858" (x — 2) 9.3)
where
Kjy (x —y) = 8*x — »K},) (), 9.4)
show that
d*k ktkY k*kY ] 1
nv _ —ik-(x—y) v
G, (x —y) =0dap W@ Y [— (g“ s )—%' 2 :Iﬁ 9.5)

is the propagator for the gauge field.

Solution to Problem 9.1

The definition of the Green’s function can be written as
KL ()G (x — 7) = gh'858* (x — 2). 9.6)

For the internal symmetry indices, we have G” oc §°. We can thus define the
Fourier transform as
d*k

e T k). ©.7)

Gbc —z :Sbc
(Y —2) (2n)*

We then get

[—g’“’kz + (1 — é) k“k”] Zun(k) = gl 9.8)
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From general covariance, we can write
gun(k) = a(k®)gu + bk )k, k. 9.9)
Then we get
1 1
a(k?) [—gsz + (1 - E) k“kk] + b(k?) (—§> Pkt k= gl (9.10)

By identifying independent tensors on both sides, we get

2 1 2 1
a(k ):_ﬁ’ b(k ):F(I_E)' 9.11)
Thus,
- 1 k" kY k" kY
g (k) = ﬁ |:_ (g“” - 2 ) - %-—kz ] . (9.12)

9.2 The propagator for a massive vector field

For a massive vector field V,, the free Lagrangian is given by

1o, M .
Eo:—Z MVV +7V VM with Vﬂpzauvv_avvpx

Show that the propagator is given by

—i (g;w _ (kukv/Mz))
k2 — M?+ie '

i Ay (k) = (9.13)

Solution to Problem 9.2

We can write the generating functional as (see Problem 9.1),
W[ = /[dVM]exp {i / (Lo+J"V,) d4x}

= /[dVM]exp {i / d*x [JV,.(0OK" () V,(x) + "V, ] } (9.14)

where K*¥ can be calculated from L as follow:
M2
/d4x Lo = /d4x [—i(aﬂvv — 3, V)@V’ =3 VM) + 7wv,l}
M2
= /d4x [%(VVEJZVV - V,3"3"V,) + 7V“v,l} ) (9.15)

Comparing it to

/d4x Lo = /d4x TV @)K (x)V, (x), (9.16)



9.3 Gauge boson propagator in the axial gauge

we can conclude that

K" (x) = (g"9% — 8"9" + M*g").
Define the Green’s function G, (x — y) by

K" ()G (x —y) = g8 (x — ),
and introduce the Fourier transform

d*k

it e

Gon(x — )’) =
to get

(—g"k* + k'K + M?g"") g (k) = gl
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9.17)

(9.18)

(9.19)

(9.20)

From the tensor structure g,; (k) = a(k?)g,, + b(k*)k,k;, this equation can then

be written as

[—&"" (K — M?) + kK] [a(k®)gun + bk, K, ] = g,

which fixes the scalar function to be

1 1
= -, b = — .
a 2 — M2 M2k — M?)
Thus we obtain the result
~ 1 kvkk
gvh(k) = 2 — M2 —8vx + _M2 .

9.3 Gauge boson propagator in the axial gauge

The axial gauge condition is given by

n“AZ =0

9.21)

(9.22)

where n* with n> < 01is a space-like vector. Show that the gauge boson propagator

in momentum space is of the form

(ak? — n?)

Sab 1
Al (k) = | =g + —— (" k" + k'n”
a» () kz[g o (K k) + T

where « is an arbitrary parameter in the gauge-fixing term.

k"k”} (9.23)
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Solution to Problem 9.3

Omitting the unimportant non-Abelian indices a, b, the free Lagrangian with gauge
fixing term is given by

1 1
Lo=—7(0uA - AL+ 70 A% (9.24)
Then
4 4 1 " 2 v 1 2 v
So= [ Lod’x= | d°x EA (8,00 — 9,0,)A" + EA nyny A
4 1 v
= | d'x-A"K,, A
2
with
2 1
K;w = (g;wa - 8,uav) + &nunv.
The gauge boson propagator A, (x) is defined by
KA (x — y) = ghd*(x — y). (9.25)
In momentum space, this corresponds to
. 1
KA (k) =gl with Ky, = (—guk” + kuky) + T

It is straightforward to solve for the coefficients a, b, c, and d in the tensor decom-
position of the propagator

AV (k) = ag" + b(n,k, + kyn,) + ck,k, +dnyn, (9.26)
and the results are
1 b 1 1 n? — ak? J=0 ©9.27)
a = —_, =, C = —_——, = U. .
k2 n-kk? k2(n - k)?

We obtain the stated form of
n?* — ak?)

1 1
Avkk — | v - kv k L) —
“ kz[ e P e

kuku} . (9.28)

9.4 Gauge boson propagator in the Coulomb gauge
Calculate the gauge boson propagator in the Coulomb gauge:
d-A=0, (9.29)

where we have ignored the internal symmetry index. To solve this problem we
suggest rewriting this gauge condition as

A, —c,d"(cyA") =0 where ¢, =(1,0,0,0).
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Solution to Problem 9.4

The Lagrangian with the corresponding gauge-fixing term is given as
1 1
Lo=——F,,F"" + —[0-A—c-d(c- A (9.30)
4 200

Thus,
1
/ d*x Loy = / d4x{§ [A" (@70 — 3,0,)A"]
1
—Z—A" [8,8, — A™(c- 3)(cvdy + cudy) + (- ) cuey] A”}
o

and

1
[0y — (- 3)(cydy + cudy) + (¢ 3)cpcy] .

Kﬂv(x) = (82guv - 8p,8u) - a

In momentum space, this gives
K;w(k) = (_kzguu + kp,kv)

1
+- [kuky — (¢ - &) (coky + cuky) + (¢ - k) *cpey]
1
= (_kzg//_v + kukv) + E [ku —(c- k)cu.] [kv —(c- k)cv]

1
= (_kzgp_v + kukv) + Enunv (931)
where
n, =k, —(c-k)y. (9.32)

Since K, (k) now has the same structure as in Problem 9.3, we can take over its
result to write

A (k) = 1 [—g,w + L(nﬂkv +kun,) — Mk#kv} . (9.33)

k2 k-n (n - k)2

From
n? =1[k—(c-k)c]> =k> = (c-k), k-n=k>=(c-k)?,

nuky 4 kyny, = 2k, k, — (k- ) (c ik, + kyey),

we get
Ap(h) = —l{ G+ ek + Kucy)
k> k2 — (k- c)?
k, k. ak?k,k,

- - : 9.34
k2= (c-ky? [k2—(c.k>2]2} O3
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9.5 Gauge invariance of a scattering amplitude

In the non-Abelian gauge theory with fermions the Lagrangian is of the form

L= =g FUFL + Dy Dy —myy (9.35)
with
D,y = (9, —igt" Ay (9.36)
Show that, to the lowest order in the gauge coupling g, the fermion scattering
amplitude

Yyt > Yy

is the same in the covariant, the axial, and the Coulomb gauges.

Solution to Problem 9.5
A typical amplitude, to order g2, has the structure
Med.ap = [@(pe)vutiyu(pp)] A (k) [@(pa) oty u(pa) ]

= Ju(Pes Po) A (K)o (Pa> Pa) Tyt (9.37)

with
k= pa — pa = pec — Do, Ju(pes pp) = u(pe)yuu(ps)-
It is easy to see that J,, has the property
K" (pes po) = (pe — pp)*u(p)yuu(py) = u(p) (P e — P a)u(ps)

= (me —ma)u(pu(py) = 0. (9.38)

Similarly,
k" Jy(pa, Pa) = (Pa — pa)"u(pa)yvu(pa) = 0. (9.39)

Vector boson propagators A*V(k) in different gauges differ from each other by
terms of the form k,k, or (k,n, + n,k,). Since k*J,, = k"J, = 0, these terms
do not contribute to the amplitude M, .. We get the same answer in all these
gauges. Note that it is essential that the term proportional to n,n, is absent in order
to get the gauge independence results.

9.6 Ward identities in QED

The generating functional for QED in the covariant gauge is of the form (see Ryder
1985)

Z(J,n,n) = N/[dAM][dlﬁ][dl/_f]eXp (i / Leoss d4x> (9.40)
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where
1 nv I : n 1 m 2
ngf = _ZF Fo+vi(0, —ieA)Yy —myyr — 5(8 AL
+JH A+ U+ .

(a) Show that if we require the generating functional Z(J, , ) to be invariant
under the (infinitesimal) gauge transformation

Ay —> A +0,A  and ¢ — Y —ieAY, (9.41)

we get the relation called the Ward—Takahashi identity:

i Ok d ", 50 8 Z(J,n,7) =0 (9.42)
— —_— = —e\n— —n— ,n,n) =0. .
o 8J, " "an nﬁﬁ G

(b) This identity (9.42) can be translated into an equation for the generating func-
tional for the connected Green’s function W by Z = ¢'%. Furthermore, we can
write this in terms of the Legendre transform of W{n, 1, J,]

Ty, ¥, A= Win, i, J,] — /d“x(]"AM + Uy + qy) (9.43)
where
SW - SW SW
= -, = —-—, A, = —_—. 944
¥ 57 ) 5 "= 5, (9.44)

are usually called the classical fields.

(c) Show that by differentiating the result in part (b) with respect to ¥(x;) and
¥ (y1) and setting Y = ¥ = A, = 0 we can derive the familiar form of the Ward
identity:

¢"Tuw(p.q.p+q) =Sz" (p+ ) — S5 (p). (9.45)

where the vertex function T',, and the propagator S;l in momentum space are
related to I" in (9.44) by

3
/d4xd4xld4ylei(P'X1*P.V1*qx) _ §°r
8P (x1)8Y (y1)8 AL
= ie2n)*s*(p' = p —Tu(p, q. P) (9.46)

and

8°r

I —— Y (o ] 484 o .S_l . 9.47
TGy @RS = piSE (). 047)

/d4x1 d4y1 el (P xi=py)
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(d) From part (b) show that

' o il 9% g,,8%( ) (9.48)
——0, = v X — N .
a " sy80, " x8m Y
which in momentum space gives
LRk (k) = ky (9.49)
(07
with
82w d*k N
_— = / e HNG L (k).
84, (x)8J,(y) (2m)*
Solution to Problem 9.6
(a) Write
1 _
Lopp =L = =@ A + T Ay + Y+ i1y = L+ Ly (9.50)

where L is the original Lagrangian without the gauge fixing and source terms.
Recall that £ is invariant under the gauge transformation. Thus the changes of
L.¢¢ under the gauge transformation all come from £,

S/Eeffd4x =5/£1 d4x

4 1 : - _
= | d'x|——("A)0OA + J', A —ieA(=yYn+0¥)|.
o
9.51)
The change in the generating functional due to the gauge transformation is then
8Z(J,n,i) =N /[dAM][dlp][d&] exp <i f Lerr d4x> 8 f Leprd*x
=N f [dA,[dy][d V] exp <i / Lerr d4x>
1 -
X { /d4x [——D(a"AM) — 3, " —ie(—yn + ﬁlﬁ)] A(x)}.
o

Gauge invariance implies that §Z = 0. Since A (x) in § Z is arbitrary, its coefficient
must vanish:

Lol 2 — gt —e (=02 +il )| zumm=0.  ©52)
o 8]” 12 Uan }787’_] 577977_ . .



9.6 Ward identities in QED 183

(b) Insert Z = ¢’V into the above equation and perform the differentiation to get

1 W W 14
—o(*— ) -0, J" —ie|-n—+7—]|=0. (9.53)
o sJn 8n on
In terms of Legendre transform:
Ty, ¥, Ayl = Win, 7, J,] - /d4x (JEA, + U +7Y) (9.54)
where
swW - W sW
1ﬂ=—_, 1//:_: Ap.z_'
én &n 8J,

Then we have
8T 8T §T

—]’]:—_, —7_]:— —Hz—

Sy sy’ SA,

and we can write eqn (9.53) as

1D8“A 3 or o, por =0 9.55
I:& ( w — um_le<_1//w+1pﬁ>i|— . (9.55)

(¢) Differentiating eqn (9.55) with respect to 1/_/(x1) and ¥ (y;) and setting 1} =
Y = A, =0, we get the relation

8’r , 8’r
-l — =ied(x —x|)————
Sy (x1)8Y (y1)d A+ Y (x1)8¥ (y1)
. 82T
—ied(x — yp) (9.56)

Y (x1)8Y (y1)

Multiplying by exp i (p’x — py; — gx) and integrating over x, x|, and y;, we get

- 8r
—/d4xd4x1 d4y1 et(pX]*Pyqu)a;t _
3P (x1)dy (y1)dA»
. 4o A A i(pxi—pyi—qx) g4 8°T
=ie | d'xd’x1d"y; " P TP TSN (x — x))————
3 (x1)dy (»1)
8r

—ie | d*xd*x d4y1 ei(p,xlfpy‘qu)tsé‘(x VW=
/ Y (x1)dY (y1)

This gives
a"Tu(p.q, p+49) =S (p+9) — S (p) (9.57)

which is the usual form of the Ward-Takahashi identity.
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(d) From Part (b),

1 SW % W
. | (P VA N T Y (LA LAA | )
[ a ( W) g ’e< ”an”aﬁ)]

Differentiating this with respect to J, (y) and setting = n = J,, = 0, we get

1 82w
N 123 __aM 4 _
aD (8 8]“(x)8]”(y)> =0gund " (x —y). (9.58)

Recall that the gauge field propagator is related to W by

Guv(x —y) = (01T (A, (x)A,(0)[0) = (i)z(w(i+(y).
The Ward identity is then of the form
—lmxagﬂ =3"g8'(x —y) (9.59)
o 87,87,
or in momentum space
ékzkﬂéw(k) =k,. (9.60)

Remark. This relation is true to all order in e and gives the result that the longi-
tudinal part of G, is not modified by the interaction. This can be seen as follows.
Write G,w (k) as
A kyuky 2y, Kuky 2
G;w(k) =\8w — k_2 Gr(k®) + k_ZGL(k ). 9.61)
Then the Ward identity implies that
LGNk, =k, or G (k%) = —=Z.
o k2

This is just the lowest order result as seen in Problem 9.1 (with & — «).

9.7 Nilpotent BRST charges

The BRST (Becchi—Rouet—Stora—Tyutin) charge Q is defined through the BRST
transformations of a field

8¢ = wQ¢ (9.62)

where o is an arbitrary anticommuting Grassmann variable. From the BRS trans-
formations given in CL-eqn (9.132), show that the BRST charge has the property
of being nilpotent Q%¢ = 0 for (i) a gauge field ¢ = Af,, (ii) a fermion field
¢ = ¢, (iii) the ghost fields ¢ = p* and o“.
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Hint. For the case of ghost fields we need to use the equation of motion for the
o to show 0%p® = 0.

Solution to Problem 9.7

From the BRST in CL-eqn (9.132), we can extract the properties of the BRST
charges:

8A}, =wDyo® = QAj =D,0" =9,0° — ge“bCUbAfL (9.63)
8y =igo(Tc )y = QY =ig(Te")y (9.64)

5" = —%‘”(a“A;) = Qp' = —é(a“AZ) (9.65)

8o = —%we”b"aba‘ = Qo= —gs“b"aboc. (9.66)

(i) Gauge field
Q%A% = 0(QA%) = 0 (9,0 — ge™ 0" AY)
= 0,(Q0") — ge™(Qo") AS, + ge 0" (QA). 9.67)
We now examine each term in turn:
Ist term = 9,(Qc“) = 9, (—ge"”“obac)
— _ggabc' (auabac 4 Gbauo‘c) — —ga“b"aﬂaba"
2nd term = ge?*° <§ebefcreaf> A},
3rd term = ge“*“o”(QAY) = ge*“o” (9,0 — ge«/0¢Al).
The derivative terms cancel, we then have
&

2pa _ S _abc bef _e f pc _ 2.abc cef b _epf
QA"_ZS e ol A, — g e e 0" A (9.68)

Using the anticommuting property of the ghost field, the last term can be written,
after relabelling indices, as

2
§
gZSaecscbe_eO_bAlj; — S (Sabcgcef _ 8aececbf) UbO_eAf
2 H
g2 . . g2 . )
— ——8be€8ac‘f0'b0'eAZ_ — ——8feb8abCUerA;,

where to reach the last line, we have used the Jacobi identity

l‘;abcé\cef _ eaecgcbf — _8becgacf.
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Finally we get
e 2
024° = 2 sbeehef oot AC — g2 665 60 AC = 0. (9.69)
(ii) Fermion field
Q™ = QigT 0"y) = igT* (Qo®) ¥ —igTc“ QY
— igT® (—%s“bcaboc) v —igT%(igT s ). (9.70)
The second term can be shown to cancel the first term because it can be written as
ST Tl y = g [Ta Tb] by = g 18 gabeegaghy, 9.71)
where we have used the fact that o's anticommute with each other.

(iii) Ghost fields

a i L Ad i a [ a abc c
0% = Q (—ga* AM) = _ga“(QAM) = _ga”« (9.0 — ge®a" AC)

i . c
i [0%0 — ge®* 3" (o A%)]. (9.72)
The right-hand side vanishes because of the equation of motion for the o“ field as
implied by CL-eqns (9.128) and (9.129) so that
0%p¢ =0. (9.73)

To show that Q%c® = 0:
20_(1 — Q (—géﬂbcﬁbﬁc) — _ggahc [(Qo_b)o_c _ O’b(QGC)]

:_ggab(,-l:( 8 befaeo,f)a _O_b< g Lefo‘eaf)]
2 2 2

2 , : :
= (%) gabe [sbefaeofo” —0o¢ (ebe-faeaf)] =0. (9.74)
Remark. Since we have only used the antisymmetric property of the structure
constant £%¢ of the SU(2) group, the same calculation will go through if we
replace £%¢ by the more general structure constant £ which is also totally
antisymmetric.

9.8 BRST charges and physical states

Suppose an operator Q is nilpotent, i.e. it has the property Q% = 0 and commutes
with the Hamiltonian [Q, H] = 0.

(a) Show that we can divide the eigenstates of H into three subspaces,

Hi = {Y1; QY # 0}, Ho = {Y2; Yo = Qyywith ¥y € Hy},

= {¥3; QY3 = 0 but Y3 # Qv }. 9.75)
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(b) Show that the scalar product between any two states in H; is zero:

(Voal¥op) =0 if Y4, Yo € Ha. (9.76)
This implies that the states in H; all have zero norm.

(¢) Show that the scalar product between states in H, and states in H3 is also zero.

Remark. If we select the physical states by imposing the condition

Q|wphys> =0 (977)

then the physical state is generally of the form

[Vphys) = 1¥3) + [¥2)  where |¥3) € Hs, |¥2) € Ha.

The results in (b) and (c) will imply that

Wy Wonys) = (W3] + (W31) (¥3) + [¥2)) = (Y3193). 9.78)

This means that the zero norm states in H, will not contribute to physical matrix
elements and all important physics are contained in the space H3. The presence
of H; and H; is to maintain the Lorentz and gauge invariance. This is exactly
analogous to the Gupta—Bleuer quantization formalism of QED.

Solution to Problem 9.8

(a) We can always separate the eigenstates of H into two categories: (i) Q¢ # 0
and (ii) Q¥ = 0. The first category (i) is just the space H;. In the category
(ii), we have two possibilities: it can be written in the form ¢ = Qv/’, so that
Qv = Q%Y = 0 (this corresponds to space H,), or it cannot be written as Q'
but has the property that Qv = 0 (this corresponds to space H3).

(b) (V2al¥2) = (Y14l QlY2p) =0 9.79)

because

OlYw) =0 and  [Y2a) = QlY1a)- (9.80)

(0 (V2a¥3) = (V14 Ql¥r3) = 0. (9.81)



10 Quantum chromodynamics

10.1 Colour factors in QCD loops

In QCD loop calculations we often encounter the some SU.(3) group theoretical
factors. In this problem you will be asked to calculate such factors for the general
case SU(n) rather than the n = 3 special situation of three colours.

In the quark loop diagram of Fig. 10.1(a), we have the trace factor for the
quadratic product of

Tr(TETP) = tr(F)Sap (10.1)

wherea = 1,2,..., (n*> — 1) and Ty stands for the SU(n) generator in the rep-
resentation R. For the present case of the quark loop, R is the fundamental repre-
sentation F,

77 = al (10.2)
F — 2 ’ .
with {A?} being the usual n x n hermitian traceless matrices, and the above trace
becomes
Z(’\> <’\b> Ls (10.3)
- - = —O0gph- .
s 2/;\2/); 2
wherei = 1,2, ..., n. Thus the trace factor t, (F) = % normalizes the (bare) QCD
coupling g.

(a)

(b)

(©)

FiG. 10.1. Quark and gluon loops in QCD.
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In the quark self-energy diagram of Fig. 10.1(b), we encounter the group theo-
retical factor of

Z (TETR),; = C2(F)8;; (10.4)

a

where C,(R) is the eigenvalue of the quadratic Casimir operator in the represen-
tation R. For the present case of quarks in the fundamental representation, we
have

1Y (i = Gy (10.5)

[Here we are following the more commonly used notation of C,(F), rather than
s2(V) as in CL-text.]

In the gluon loop of Fig. 10.1(c), the sum over colour indices can be represented
either as a trace, like eqn (10.1),

Tr (TJTS) = 6(A)Sp, (10.6)
or as a Casimir operator, like eqn (10.4),

D A(TATY),. = Ca(A)dpe, (10.7)

a

where T is the generator in the adjoint representation A, as is appropriate for the
gluon gauge field,

(T4),, = Cabe (10.8)

where C,p. 1S the structure constant of the SU(n) algebra. Since C, . is totally
antisymmetric, it is clear that the above two expressions are equivalent:

n(A) = C2(A). (10.9)
(a) Show that for SU(n) the value for C,(A) is
Co(F) = %(n2 - 1. (10.10)
(b) Show that
Cy(A) =n (10.11)
which is denoted by #, (V) in CL-text.

Solution to Problem 10.1
(a) From the identity CL-eqn (4.134),

1
Z()»d)ij A =2 <5i15jk - ;8ij3kl> , (10.12)
P
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we get
1
§jmmm=§jmmwm=2@mﬁ—yw@@k
a a
1 2 —1
=2 (I’l(gil - —5,7) = M(S .
n n
Thus
(n
Z [TlgTI?]ij = zlt Z()‘a)‘a)ij =
Namely,

Lo
Co(F) = - (n* = 1),

(b) From the SU(n) Lie algebra

)"a Ab . ~ab )"c
Za Th — joabeZS
[2 2} )

and the normalization Tr(A,Ap) = 28,5, We can write
€ = = Trhclg, 1))

Then we have

acd ~bed 1
cacd obed _ —RTr(kd[)»b, A DTr(hala, AcD)

1
=16 A@)ij[Ap el ji A ralAa, Aelik-

Using the identity (10.12), we get

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

acd bed 1 1
C C = _gTr([)"bv )‘c][)\a’ )\'C]) - ;Tr([)"b» )\c])Tr([)\a’ )‘c]) (1019)

The second term vanishes because 7r([A, B]) = 0 for any two matrices A and B.

Thus

acd ~bed 1
C C = _gTr[()"h)"c - )"c)\b) ()"a)\c - )"c)"a)]

1
= =g T Cwhekade = Mphakehe = Mphedeka

+ Aehpherg) -

(10.20)
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The first term can be calculated as

Ist term = Tr()\h)\c)\akc) = ()"b)ij ()\c)jk ()"a)kl ()"c)li
1
= (Ap)ij (A2 (Sijfskl - ;3,/1431'1)
2 4
=2Tr(Ap)Tr(Ay) — —Tr(ApAy) = ——8ap, (10.21)
n n

and the second term is

2nd term = Tr(ApAarcric) = (Ap)ij (Aa) jr (A (Ae)ii

1
= (Ap)ij (Aa) ji2 (5115ki - ;5“51’1)

2 1
= Tr(Apha) — —Tr(Aphy) = 4 <n - —> Sap. (10.22)
n n

Similarly,
1 4
3rdterm =4 (n — — ) 84p, 4th term = ——3§,,,. (10.23)
n n
‘We then have
. . 1 4 1
cacdcbed — __p [—— —4 (n — —ﬂ Sap = Nbap (10.24)
8 n n
Namely,
Cr(A) =1(A) =n. (10.25)

10.2 Running gauge coupling in two-loop

In QCD, the B-function in two-loop is of the form,

B(g) = —Pog’ — Pi1g” + - (10.26)

where

Show that the effective coupling constant g defined by (with t = % In Q%/u?)

dg(g, _ . _
%a@(g) with 7(5.0) = g (10.28)

can be written as

22 ! [I_EMJF...]

e — 10.29
& T pm(Q/AY) | 2 In(Q2/A2) (10-29)
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Solution to Problem 10.2

The effective coupling is defined by the equation

dg _ _ _
L=p@ = —pg - piE. (10.30)
Let us introduce A = g2, then
dx
=2 (Bor?> + 1Y) (10.31)
or
1 (¥dn 1
dt = —— S (10.32)
2 Jg A% (Bo+ BiA)
or
171 bat
t:——l:———i-ﬁ—]zln M] : (10.33)
2L por B g
Write t = % In Q?/u?, then we get
11 + B18* + B1&?
Boln Q% — Byln p* = _—2——2—& In (ﬂo _fhg ) —In (ﬂo flg ) .
g &  Bo g g
Combining all the Q? independent terms, we define the scale parameter A by
1 + Big?
Boln A2 = Boln ji® — —2+ﬁlnw (10.34)
8> Bo g
so that we have a simpler relation,
2 1 + =2
Boln Q—2 =—- P M. (10.35)
AZ gt fo g
We can solve this for g2 by iteration. To lowest order in g,
1 0?
<?)0 = foln e (10.36)
The second factor in eqn (10.35) can be approximated as
(Bo + B18?) Bo\ _ ) 2
IHT=ln ﬁl—l-? ~In ﬂl—i—ﬂolnp
2 2
~ Inln % for large % (10.37)

To next order in g, we have

10 B0 0? Bi Inln(Q2/A?)
B e = () [ g
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or

2 2
7 : [1 _ piinIn(@/A )] (10.38)

8 T Bom0AY | T B In(Q2/A2)

10.3 Cross-section for three-jet events

Consider the process (see Peskin and Schroeder 1995 for further discussion)
e (p) + e (p) = qlk) + q(ky) + g(k3). (10.39)
(a) Show that the three-body phase space can be written as

A3k d*k, d’ky

= 404 _ _ _
= | @y 20, @) 2m, Gryze, ) 8@ TR —k = k)

0

7
= —— | dx;d 10.40
128713/ x1dx; ( )

where x; = 2k; - q/q*, with i = 1,2,3 and g, = p, + p,,- Find the region of
integration for x; and x,, for the case where quarks are massless but gluon has a
mass (L.

(b) Show that the amplitude for this process can be written as

M = g[o(p)y"u(p)] [ (kD) Az v (ko) (k3) Qg (10.41)

(q* +ie)
with the fractional charge of the quark Q, = 2/3 and O, = —1/3, etc., and
A St . (10.42)
= YutY Vi :
e Akl-i-/{z g “Es+ ko *

(c) Show that, in the limit of massless quarks and gluon, the differential cross-
section can be written as

d*c 47 o o X2+ x2
= 80 ()| ——L 2 10.43
dxdx, 3s 2 (2n> |:(1 —x)(1 — xz)i| ( )

where s = (p + p')%.

(d) Show that in the integration over x; and x; there are infrared divergences as
u — 0, corresponding to configurations where the gluon is collinear with the
quarks, g or g—the collinear divergence.

Solution to Problem 10.3

(a) Integrating over the three-dimensional §-function, we get

d’ky d’ky

p= (27‘[)52601 2(022&)3

3(qo — w1 — w2 — w3). (10.44)
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Choose a frame such that q = 0, which gives k| + k; 4+ ks = 0. The gluon energy
can be written as

w3 = [+ (2] = [ + (I +k)?]

(10.45)
or

wy = p> +ki + k3 +2kikacos® = widws = kikod(cosf)  (10.46)
with 6 the angle between k; and k;. Also,

d*ky d*ky = (4m)(27) d(cos 0)k? dk k3 dky = 8% w3 dwsw) dwywy dwy
(10.47)

where we have used w; dw; = k; dk;. It then follows that

82 / w3 dwsw dwjwy dwy

= 2ny 8(qo — w1 — w2 — w3)

P 20)1 2(1)22603

1
= ﬁ/dc% 5(6[ — w1 — Wy —a)3)da)1 da)2 = m[da)l da)2

For q = 0, we have

2k1 - q 2w 4
XNj=—s5—=—— = dxidxy = —2da)1 dw, (10.48)
q q0 q0
and
PE
= —— | dxidx;. 10.49
P = 12873 / x1dxy ( )

From w, = (m?+ k%)l/z, the minimum for xis 2m /gy which goes to O for m = 0.
Similarly, w3 has a minimum at k3 = k; + k, = 0, which implies that w; = w,,
and recall, for a massive gluon, the minimum is at w3 = . Itis easy to see that this
configuration gives a maximum value for w;, or w,. From energy conservation,
the maximum for w; is

go=w1+wy+w3=u+2w; or 2w =qy—pn

or
a=1-HK_1_ £ (10.50)
q0 q*
Thus the range of integration is
n
0<x<1—-—, 0<x=<1- (10.51)
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(b)

FIG. 10.2. Gluon bremsstrahlung in e*e™ annihilation.

From the Feynman rule, the amplitude is given by

M = —i[v(p')(—iey)u(p)] [ﬁ(kl)(—igw)

1
(q* +ie)

X J’rk (—iey™)v(ka) + ii(ky) (—iey™)

k +k — (= lgy)»)v(k2):|Qq8 (k3)

2
= eq—f[ﬁ(p/)yﬂu(p)][ﬁ(kl)va(kz)]e%)Qq

with

—1 1
N, =V ——
L T e T

(c¢) We can write

y Ki+¥s Vot y Ko+ U5 y
Ml 4 k)2 T ey + k)2

The denominators can be simplified:

(i +k)* =@ — k) =q> =2k g = ¢*(1 — x2)

Ay =—

and
(k2 + k3)* = ¢*(1 — xp).
Then

L+ K3y, +

—1 1
Apy=—— S —
T g2 = xy) g>(1 —x1)

The differential cross-section is then

Z M d’k d’ky d’ks
4(p )20) 27)32w; 27)3 2w, 27)32w3

vpm

X <2n)454(q — ki —ky — k3)

2
2 . q
z(q)Z ( ZLMI ) with p = m/dxl dx;.

spin

Vulk 2+ K37

195

(10.52)

(10.53)

(10.54)

(10.55)

(10.56)

(10.57)
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The calculation of the matrix element is straightforward but tedious. After using

the relation

k3yksg
k2

st(s k3)ep(s. k3) = —gup + (10.58)

(the k33k3p term in the photon polarization sum will not contribute because of
gauge invariance) we have

2
n Z |M|2 <e > Tr (ﬂ y;l.¢ yu) Ir (k IAM/.k ZAVA)

spm

e'y’
-2 €8 G (10.59)

where
Liw =Tr (B vub ) =4(Pypv + Pupy — gup-pP')  (10.60)
le =Tr (k ]A)L”I,é ZAUA) . (1061)

Writing the three-body phase space as

2
q
=L | axidx, = | dos. 10.62
P 128713/ x1dx; /P3 ( )

we have

fd,o3—2|/\/l| /G’“’dp3 with « =S8 (10.63)

4
spin 4q
The gauge invariance implies that
q,G"" =0, q,G"" =0, qul"" =0, gl*" =0. (10.64)

The tensor G*, after the integration, can depend only on g,,. Thus,

/ G dps = <g,w — ng”) G(g?) (10.65)

or
2 1

and

v ] (07
l/w / G" dp; = l;w (g;w - ng > G(q ) = l/wg 3 /G 'Bgotﬂ dps.

From eqn (10.60) we have

Lwg"' =—=8p' - p=—4q>. (10.67)
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The quark tensor is somewhat complicated:

G = Ggup = Tr (K 1 A3l 2AM)

—1 1
= Tr{kl [m%\(% + ¥y + 2—_x1))/u(k2 +k3)yx}

q-(1

-1
sz[m)/“(%-f-ks)yk-f-qz J/'\(k2+k3)3/”]}~

(I —x1)
(10.68)
The trace in the term containing (1 — x2)? in the denominator is
Trik vyt + )y oy By + K 3)y")
= 2Tr{f (K + K3yl (K + K 3)}
= A4Tr(k (K 3K 2K 3) = 16Q2(k; - k3) (ks - k3))
=8¢*(1 —x))(1 — x») (10.69)

where we have set k3 = 0 and used the relations

1 1 q2 q2
ki ky= (ki +k3)* = =(q — k)’ = =(1 —x2),  hky-ky = (1 —x).
ks =Sl 4 k)" = 2(g — k)" = (1 —x) 2 ks =Z(1—x)

It is clear that the trace in the term containing (1 — x;)? in the denominator is
exactly the same as above. The trace in the term containing (1 — x,)(1 — x) in the
denominator is

—Tril 1y (K1 + KDy 2y Ko+ K 3)y")
=2Tr{ik Koy B+ H3) K2+ K3)yH)
= 8(k1 +k3) - (ko + k3)dk; - k
2
= 320k1 -k ks + ks ) T (1 = )
=8¢ [(1 — x3) + (1 — x) + (1 — x](1 — x3)
= 8g*(1 — x3) = —=8¢*(1 — x| — x2) (10.70)
where we have used
2(ki +ka+k3) g 2¢°
q* TP

X1+ x+x3 = =2. (10.71)

Putting all these together, we get

G- 8{(1 —X1) n I-x) 2(0-x1 —x) }
(I-x) (I-x) (1=x)-x)
= #{(1 —x)?+ (1= x)* —2(1 —x; —x2)}
(1 =x)(d —x)
_ 8(x12+x§)
T (I=x)(1—x)

(10.72)
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The differential cross-section is then

g 2 S(xl—i—x%) ‘12 2
do = 52 dxy dxy——
7 2 4g* 73 /(1—x1)(1—x2) Xrdxr e
20702 8(x7 + x3)
= dxy dx,. 10.73
0 /(1—x1)<1—x2) de (1073)

Remark. There should also be a colour factor of

ZT (A A”) Zaw — 4. (10.74)

We then have
d%c _ 80{20[3 Q2 8()612 + x%) ' (10.75)
dx;dx; 32 T (1 =x)(1 = x2)
(d) The range of integration is
"
0<x,x<1l-—. (10.76)

\/C?

Thus as u — 0, the upper limit approaches 1 and the integrations over x; and x, are
infrared divergent. [For the case  # 0, this gives terms of the form (In ?/g>)?].
Theregion x; — 1 corresponds to a configuration where the quark ¢ has maximum
energy while g and gluon both are moving in the same direction, i.e. ¢ and gluon
are collinear.

10.4 Operator-product expansion of two currents

Consider the operator of the form

tw(q) = /d4x T (J,(x),(0)) (10.77)

where J,,(x) is the electromagnetic current. The operator-product expansion can
be written in the symbolic form as

(@) ~ Y CI(@)0'(0) (10.78)

where C!* "(g)s are the Fourier transform of the Wilson coefficient in the coordinate
space and the local operator has the general form of

A (1) (10.79)

which is completely symmetric and traceless in (@5 - - - ). The dimension of
the operator is d, and spin is 7.
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(a) From dimensional analysis, show that we can write the forward matrix ele-
ments as

(p. IOV ()| p, s) = M 2S[p* p*2 - pPrlay (10.80)

(p, s|OL 12" (0)|p, s) = MO 2S5 p - pFr o (10.81)
where subscript V means that the operator O}'}*"""(0) has the same parity as the

product of n polar vectors, e.g. x*'x*2 ... x" while A denotes the axial type of

operator 05%‘2“'“ " (0) which has the same parity as the product of one axial vector

and (n — 1) polar vectors. The state | p, s) has momentum p* (p?> = M?) and the
polarization is described by a polarization vector s* and is normalized as

(P, 5|, s) = 2E,8,¢ 21)°8* (p — p). (10.82)

The operation S[- - - ] projects out the completely symmetric traceless components.
Also a,y, o, 4 are dimensionless constants.

(b) Show that the corresponding Wilson coefficients, which give the leading con-
tribution in the scaling limit, have the structure

CIMT(g) = =" SIgM g™ - g1 (=gH) T ECL(g)  (1083)
for the F; structure function (see CL-Chapter 7 for the definition),
CyM (g) = g g e SIg g - g (=g T Ca(g) (1084
for the F5 structure function, and
CyPT (g) = S [qug" - g" ] (=g PR Ca(e)  (10.85)

for the g; spin-dependent structure function. C; ,(g)s are dimensionless numbers
depending only on the coupling constant g.

(¢) Show that

1" —q2 (2—d+n)/2
CI™ () (p. 5104y (O)p. s) = g™ (;) <_M2 ) (10.86)

prpY (1 n—2 —612 (—=d+n)/2
CM @) Py 10z O)lp, ) = <_) (W)

M? \x
(10.87)
Solution to Problem 10.4
(a) From the normalization of state
(p.slp’.s'y = 2n)’8*(p — p')2E, (10.88)
we see that the physical state |p, s) has dimension —1. Thus the matrix element

(p.s|OfV7 7" (0)| p, s) has dimension (d — 2). Since p,, is the only polar vector
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this matrix element can depend on, the Lorentz indices p; - - - i, in Oy, y are taken
up by p#'p*t ... p#. The term of the form g#'#2 p#3 pH4 ... pt» is not traceless
and will give a non-leading term in the scaling limit. From these considerations,
we see that the general structure for the matrix element is

(p. IOV ()| p, s) = M 2S[p™ p*2 - pFriay (10.89)

where o,y is a dimensionless constant. The matrix elements of the axial operators
can be obtained similarly.

(b) The Wilson coefficient of the operator O}/ " (0) must have the Lorentz
structure Cpup, po-p, - Since Jy, (x) has dimension three, we see that 7,,(g) has
dimension two. Since O)'*"""(0) has dimension d, the Wilson coefficient
C v 1121, (@) Will have dimension (2 — d). The structure functions Wy, W5, and

G, are defined by

1 PuPv o B
m([’a S|f;w|PaS> = _ngTl + M2 T2 +8uva/35 q Gl + .- (1090)
and
1
Wi =—ImT,; and g1 =ImG;. (10.91)
T

Thus for structure function Wy, the Wilson coefficient is of the form
CIMT(g) = =" SIgM g™ - ") (=gH) T RCL(g)  (1092)

where C), is a dimensionless constant and can depend only on the coupling con-
stant g.
Similarly, for the structure function W5, the Wilson coefficient is of the form

Céwm'““” (q) = {gwtlg/mzs[q/tzqm . ,qu,x](_q2)(4—d—n>/2
+ permutations}CZn (g). (10.93)

For the spin-dependent structure function G; we have

Céwltl-vll«n (q) — {EMVM&S[C]QCIMZ . qp.,,](_qZ)(Zfdfn)/Z
+ permutations } C3, (). (10.94)

(¢) Combining the results in (a) and (b), we have
CI (@) (p, s|OF T (O) p, 5)

= —g" S[g" g™ - " 1(—g) M2 Py Pus - Py Jetv Cin

N Q—d+n)/2
_ _g/w |:< _qz ) <W) —+ trace terms:| o,y Cip

1\" _q2 2—d+n)/2
I (; <M2) vy, (10.95)
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Thus for twist-2 operator (recall twist is difference of spin and dimension, d — n),
we have

l n
Wi(g*,v) = Fi(x,q%) = Xn: <;) ayyCiy. (10.96)

Similarly,

CyM (@) (py s1OYF T (O)p, s)
p,upu 1 n—2 _q2 (=d+n)/2
= M2 (;) ( M2 > O[nVCZn

10.5 Calculating Wilson coefficients

Since the Wilson coefficients are independent of processes, we can choose some
simple external physical states, e.g. free quarks, to calculate these c-number coef-
ficients.

The quark Compton scattering to lowest order in «; is given by the diagrams in
Fig. 10.3.

(a) From these diagrams, compute for massless quarks the amplitude
M//-v = (1’,S|l‘;w(61)|17,s) (10.97)

where
tiw(q) = / d*x T (1,(x) ], (0)). (10.98)

(b) For the operator-product expansion in the form

tun(g) ~ Z C"(9)0'(0), (10.99)

there are two sets of flavour-singlet twist-2 operators,

n—1
Oy§™™"" (x) = 5~ {g(x)y"' D" - D" (x) + permutations)
in—1

04 (x) = 3 {g(x)y"'ysD"? ... D*g(x) 4+ permutations} .

n!

FiG. 10.3. Quark Compton scattering.
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Show that the matrix elements of these operators between quark states are given,
to lowest order in o, by

(@(p, IOV " q(p,s)) = (p™ -+ p')
(@(p, 90K " q(p, s)) = h(p"' --- pH") (10.100)

where £ is the helicity of the quark state g (p, s) and is related to the polarization by

u(p, )yuysu(p,s) =s, = 2hp,. (10.101)

(¢) If we write the operator-product expansion as
tun(q) = —g"(g" - q") ! cs)
wlq) = q (_qg)n V.1

1
(g g raghs ... gh)
(_q2)n71

cyy) + permutations:| oyl

+ [s‘“’“""qaq“z cooghn c + permutatlons] oL }

(=g 4

compute the Wilson coefficients to lowest order in «; (i.e. in a free field theory).

Solution to Problem 10.5

(a) From the Feynman diagrams in Fig. 10.3 we can write the amplitude

i +q) u(p,S)+iﬁ(p,S)yu1j—?2Vuu(p,S)

Mp,v = lb_‘(PvS)Vu ( + )2 Vv (
(10.102)

We now want to express this in terms of ¢? and w = 2p - ¢/(—¢?%) = )lc We can
expand the denominator as follows:

1 l 1 1 o0 .
T N EY Ay ) =;n;w. (10.103)
Similarly,
1 o0
(p— q)z = ;Z —D". (10.104)

In the first term we have
u(p, )vu(# + ) rvu(p,s) =u(p, )yud vo + 2yupolu(p,s).  (10.105)
Using the identity CL-eqn (A.17), we get

Yl Vo = 4% (8ua Vo + 8vaVu — GuvVa + 1€0ar " ¥5). (10.106)
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From the properties of Dirac spinors, we get

Q(p. )uu(p.s) =2pu,  @lp.$)yuysu(p.s) = s, =2puh,  (10.107)
where s, and £ are the polarization and helicity of the quark state. Then

u(p, )y (P +4)vou(p,s) =4pupy +2puqv + 29,y — 280 (P - q@)
+ 2i€u01q® ph (10.108)

and the first term in M, is

g B )

M;(le) = ? Z o" [Zpupv + pudv +qupy — &u(p-q) + wuvakqapxh] .
n=0

(10.109)

To obtain the second term from M ;(le) by the substitution 4 <~— v, ¢ - —q,

2 X ]
M;(LZ\;) = ? Z(_l)nwn [Zp//,pv — Puqv — 4upPv + g;w(p . CI) + lSuua/\anxh] .
n=0

(10.110)
The total amplitude is then

_2 o o0

My, = ?{zwv D+ (=D"0" + gu(p-q) Y 11— (=1)']o"
n=0 n=0
oo
+ieparg®pt Y [+ (=1)"e" + - } (10.111)
n=0

(b) Consider the simplest case n = 1, where we have the operator Oy, ¢ = %cjy“q.

To the zeroth order &?, the free field theory limit, we can expand g(x) as

d3p . ; .
1) = / g, 7 P2u(p, 5)+dt (p, )eP v(p, ).
11 »

(10.112)

It is then easy to see that
(@(p, )10V sla(p, ) = 5(q(p, )Gy qlq(p, 5))
= i (p, )y u(p,s) = p". (10.113)

Also to order oz_?, the covariant derivative D,, is the same as the usual derivative 9,
and each gives a factor of p,. Thus we get

(@(p. )0V " q(p, s)) = (p" - p'n). (10.114)

For the axial vector current it is easy to see that

5(a(p. )1ay" ysqlq(p.s)) = 3i(p, )y ysu(p,s) = hp" (10.115)

and

(g(p. )0 " "1g(p. $)) = h(p"'--- pH"). (10.116)
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(¢) Taking the quark matrix element of 7,,,(g), we get

(qg(p, HNtw(@lg(p, s))

1
= [—guu(q’“q‘” gt —) C(v",‘?

n ( ;
+ 8uu 8vinq" 4" Cvn,sz) + permutat10nsi| PuiPus = P

+ I:E,wﬂla(qaq’“ gt - Cixns) + permutations:| hpu,Pus *+* Pu

(=% "
1 n 1 n—2 1
(ns) (ns)
A ORI O M=
+ hevasq® p? ! 1 c (10.117)
el x) (=)t '

Comparing this with the Compton amplitude given in (a), we see that
€I = =200+ (-1 (10.118)
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11.1 Chiral spinors and helicity states

The Dirac spinor in momentum space can be written as,

1
u(p, i):«/%( o-p )Xi (11.1)
E+m

where (0 - P)x+ = *x+ with p = p/|p|. Show that the left-handed and right-
handed spinors given by

ur(p) = 11— ys)u(p, -), ur(p) = 21+ ys)u(p, +) (11.2)

are eigenstates of the helicity operator A = s - p in the massless limit, where the
spin operator is of the form
1 o O
s=§(0 a). (11.3)

Note that the same calculation should also show that the other two combinations

YA+ ys)u(p, -, L= ys)u(p, +) (11.4)

are identically zero in the same limit.

Solution to Problem 11.1

In the standard representation, we have

0 1
y5=<1 0). (11.5)

Thus

I I
—_— =
- 7/
—_ (-
SN——— —

i

— |
—_
N——
S
ST
SNS—
i
I
=
N
m‘
N——
N
I
—_
N————"
i

(11.6)
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where we have used E = p for the massless particle. Similarly,

1
ug(p) = (1 + ys)u(p, +) = (1> Xt

Then

b 0
m(p)=%<g b 6.13>(—11)X
= (_11) (o P)x_ = —Lus(p).

Similarly, we have

Aug(p) = Jur(p).

11.2 The polarization vector for a fermion

(11.7)

(11.8)

(11.9)

For a particle described by a spinor u(p, A), we can define the polarization four-

vector s, (p, A) as

1 _
su(p,A) = %u(p, M Yuysu(p, A).
(a) Show that
s-p=0.

(b) Calculate s, for the particle at rest (p = 0), with

Q) ()

2 =—1.

(¢) Show that

(d) Suppose for a particle at rest the polarization vector is given by

st = (0, p) with »° =1.

(11.10)

(11.11)

(11.12)

(11.13)

(11.14)

Show that in the frame where the particle moves with momentum p, the spin vector

sH is given by

So=n~p’ s=n+ p(n-p) _
m (E+m)m

(11.15)



11.2  The polarization vector for a fermion 207

Solution to Problem 11.2
(a) Through a simple application of the Dirac equation, we have
1 _ 1_
§-p= %u(p, MPysu(p, r) = zu(p, Mysu(p, 1) (11.16)

or, alternatively,

1 1
s-p= z—ﬁ(p, Nys(=pu(p, ) = —zu(p, V) ysu(p, 1). (11.17)
m 2
Thuss - p =0.

(b) For a particle at rest, where we have u(p,A) = +/2m <(1)> X pt o=
(m,0,0,0),and s - p =0, we get

so=0 (11.18)

and

1
s = —u(0, M) yysu(0, 1)
2m

+ 1 1 +
—xa.0 (% 5)(7 6)(0)m=rion. a1

Thus s; = 5o = 0 and

s 11 for e (11.20)
—1 for yx_

This means s is in the direction of the spin. In this simple frame we have

s =1(0,0,0, 1), s?=—1. (11.21)
(¢) The spin vector
1 _
su(p,A) = %M(P, A Yuysu(p, A) (11.22)

transforms as a four-vector under Lorentz transformations. Thus s = s*s, is a
Lorentz scalar and s> = —1 in all frames.

(d) Since 5 and p are the only vectors in the problem, we can write
s =an+ bp, a and b are constants. (11.23)

Since we are given s = 5 when the particle is at rest at p = 0, we musthavea = 1.
Froms - p = 0, we get

i I
so=7 (1+bp) - p=—(1-P+bp?) (11.24)
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and the condition s> = —1 can now be written as
sg —s* =5t — (n+bp)? = —1. (11.25)

Using eqn (11.24), this leads to

%(ﬂ~p+bp2)2=(n+bp)2—1 (11.26)

or
b*(E* — m*)m* +2b(y - pym* — (3 - p)*> =0, (11.27)

or
[m(E —m)b + (y - p)lIm(E +m)b — (5 -p)] = 0. (11.28)

This gives the solution

__-p (11.29)
m(E + m)
(The other solution does not go to zero as p — 0.) Thus we have
p(n - p)
= —_. 11.30
" (E 4+ m)m ( )

11.3 The pion decay rate and f

The decay 7+ — u* + v, is described by the effective Lagrangian for the four-
fermion interaction

G
Lop = ——= cos b, [ay" (1 — ys)d] [Ayu(1 = y5)v.]. (11.31)

V2
(a) Show that
(Olay,d|z™*(p)) =0 (11.32)

because parity is conserved in the strong interaction.

(b) Show that the general form of the axial vector current is given by
Oliyysd|n ™t (p)) = ivV2frpy (1133)

where f; is the pion decay constant.

(c) Calculate the decay rate for 77 — ut 4 v, and use the measured lifetime
T = 2.6 x 107% s to determine the constant f,.

(d) Show that as a consequence of the V—A theory, the amplitude for the decay
nt — utv, is proportional to m,,, and to m, for 7+ — et v,.
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Solution to Problem 11.3
(a) The parity conservation of the strong interaction implies that

Py )P~ =ay"d,  Pla*(p)=—|7*(-p)). (11.34)
Thus the matrix element

(Oliy,dlz (p)) = (OIP~' Py, )P~ Plx ™ (p))
—(Olay"d|mt (—p)). (11.35)

This means that for the time component, we have
(Olayod|m ™ (p)) = —(Oliyod | ™ (—p)) (11.36)
or
(Olayod|m ™ (p = 0)) = 0. (11.37)
For the spatial components, we get
(Oliyd|m ™ (p)) = (Ol yd|m ™ (—p)). (11.38)

This matrix element is a three-vector under rotation and the only three-vector this
can depend on is p, which changes sign under parity. Thus

Olayd|x™(p)) = 0. (11.39)

In essence, this argument simply says that since " is a pseudoscalar, the matrix
element of vector current (0|iy,d|m(p)) is an axial-vector while the only vector
itcan depend on, p,,is a polar vector. Therefore, this matrix element must vanish.

(b) Using the same argument, we see that (0|ity, ysd |7 (p)) is a polar vector and
has to be proportional to p,:

Olay,ysdlt ™ (p)) = ivV2 fr pp. (11.40)

(¢) The matrix element for the decay is of the form

M= —i%cos 6. Oliy, ysd |z ()5 ka)y™ (1 — y)utky)
_ G;g” cos6, (k)™ (1 — y)uky)
— Gg” c08 6, m, 5 (ka) (1 — ys)u(ky) (11.41)

where p = k; + kp, with k, being the momentum of the muon. Note that this
matrix element is proportional to the lepton mass m,. The decay rate is then
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given by

1

2my

I' =

4’k d*k
A4 ki — k 1 2 2
[enrst i -k~ gt S S M

spin

and

D IMPP = G f7 cos m Tr{ (K2 — my) (1= y)k 1 (14 y5)]

spin
= G} f7 cos” O.m’,8(ky - k»)
= 4Gy f7 cos” O.m’, (m%. —m?,)

where we have use the relation

20k ko) = (ky + ka)? — k3 — k3 = m%: —m?.

)
The phase space can be calculated easily to yield
d’k, d’ky
= [ (p—k —k
P f( O =k ) G S ok, Gy 2
/ 8( E, — E)) K,
=— my, — E; — e e —
()2 ' 2m)4EE,

For the pion at rest

Po =My, k; +ky =0, d’ky = 4nkidk, = A E}dE,,

12
Ey=(m} + k)" = (m), + E}) ",
and

1 1,27 E1dE;
p:;/S[mﬂ—El—(mi—i—E]z) ] 15,

Letx = E; + (mi + Elz)l/z, then

dx = dE; + ﬂll/z
(mi—i—Elz)
_ dE, ) ) 1/2] _ xdE,
R A oy

and

1 /8( VE dx 1 E;
= — my; —x)Ej— = ——.
P 47 "y 4w my,

(11.42)

(11.43)

(11.44)

(11.45)

(11.46)

(11.47)

(11.48)

(11.49)

(11.50)
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For x = m, we get m, = E\ + (m;, + E})"/* or E; = (m — m7,)/2m. The
phase space is then

1 mjzr —m?
p= ETM' (11.51)
b s

The decay rate is

1 (mfr—mi) 242 2 2 2 2
I' = 2m7_[ W“-J“HGF COS GCmM (I’I’17r - m#)

2
G2 m? 1
=—L2m’m, (1 — —5) cos’f, = —. (11.52)
T mz2 Tr

Substitute in the pion lifetime, the Fermi constant, and the Cabibbo angle, etc.,
and we can deduce f,; = 0.66m, >~ 90 MeV.

(d) In the V-A theory v, is left-handed and u™* is right-handed. In the limit
m, = 0, u™ has helicity % Thus in the rest frame of 7+, p* and v, come out
back-to-back and the total spin along the direction of ptis +1 (see Fig. 11.1).
However, 7 has spin zero. Thus this decay is forbidden in the limit m = 0and
the decay can proceed only if m,, # 0, see eqn (11.41), in which case right-handed
w' is not a pure helicity state.

INC A +1, AN (1= m2/m? 2
w _ (’"_> [((—/ﬂ)z —123% 104 (11.53)
F@™ — puho) mu (1= @m2/m2))

Thus, pions decay predominantly into muon leptons rather than electron leptons.

Remark. If we use the same analysis for the charm meson decays, the results are
very similar:

T(Ft = ttu,) m\>[ (1 = m2/m2))*]

T = ( ) — >, (11.54)
PET = ww) - Amu/ | (1= (m?/m3)” ]

LD+ — tty,) :<&>2_(1—(m$/m§)))2_ ~25 (11.55)
ro+ — I»LJFV/L) my _(1 _ (mi/sz))Z_ — :

Note that leptonic decays of Ds are suppressed by sin® 6.

pt v

- -«

FiG. 11.1. m — p*v decay would be forbidden in the m,, = 0 limit.
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11.4 Uniqueness of the standard model scalar potential

The usual SU(2)y x U(1)y scalar potential for the standard model is of the form

V(p) = —1*¢'¢ + r(p9) (11.56)

(T _ (o
¢_<¢0>_(¢2), (1157)

(a) In principle, one can also have an SU(2)y x U(1)y quartic invariant of the
form

with

Vi(g) = 19" 1) - (9" 70). (11.58)
Show that this quartic term can be reduced to that in V (¢) of eqn (11.56).

(b) Show that another quartic term

Vi@) =22y (¢7t"0) (¢72"1"0) (11.59)

a,b

is also reducible to that in V (¢) of eqn (11.56).

Solution to Problem 11.4

(a) Writing out the components

@ 70)- (@ Td) = Y (870;) (¢idr) Y (T (T (11.60)
ijkd a
and using the identity
1
Z(Ta)ij(fu)kl =2 (5jk351 - §3ij5k1> , (11.61)

we obtain (¢ 1) - (¢ 19) = (97¢)*.
(b) We can use the identity in eqn (11.61) to derive

Z(t“ ) () = Z(T“)im @)t (Tin (Tt
a,b a,b

1 1
=2 <5mk8in - zaimakn> 2 <5jn8mil - Eamjanl)

1 1 1
=4 <5k15ij - 55i13,jk - 55,/1<5i1 + ZSij(Skz)
= (58k16ij — 48i18 1) (11.62)
Thus we have

Y (@'t Tt p) = ($T9)%. (11.63)
a,b
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Remark. Clearly we can generalize this result to the more general case of vector
representation in SU(n), e.g.

1 2m—1) .
wuwwum=ﬂ[@%f—;@%f}=ii—lwvf (11.64)

n

by using the identity

1
Z()»a)ij A =2 <5jk5iz - ;5i,j5k1> : (11.65)

11.5 Electromagnetic and gauge couplings

In the more general case, the interaction of neutral gauge bosons can be written in
the form

Ly=) gl"A, (11.66)
i=1

where g1, ..., g, are gauge coupling constants, J lu . J™ are various neutral
currents, and A; are the neutral gauge boson fields, which are gauge eigenstates.

Suppose AL is written in terms of mass eigenstates as
Al =S W (11.67)
i=1
where S is an orthogonal matrix with property
D SiSip =08 D SiaSja = - (11.68)
i=1 a=1

(a) Show that the electric charge e is related to the gauge couplings by
! —i(cf)z (11.69)
e? TI\8j .

where ¢;s are the coefficients of J i in the electromagnetic current: J" =
>i¢ JJ, or in terms of the charge operator, Q = YY) with Y= [dPxJg.
(b) Use the result in eqn (11.69) to derive, in the standard model, the relation

e = gsinfy. (11.70)

Solution to Problem 11.5

(a) The neutral current coupling can be rewritten as

Ly=Y) gJ" AL =) gl "SWi=) e "W, (11.71)
i,a a=1

i=1
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where e,J;; = > &id L Siq- For the case where Jj = J™, the electromagnetic
current, we get

el =" gl Sio. (11.72)
i=1

Using JJ" =}, ¢;Jj we get

e cjli=>"gllSio. (11.73)
j i=1
Identifying the coefficient of J. ;i (for a given i), we get
ec;
ec; = g,'S,'Q or S,‘Q = —. (1174)
8i

From the fact that § is a orthogonal matrix, X:[(SiQ)2 =1, we get
n c: 2 n c: 2 1
2 4 i
e — ) =1 or — ) =—. (11.75)
2 () >(5) -
(b) For the specific case of the SU(2) x U(1) theory, we have

Ly =gl™A} + ‘%JY"B,L. (11.76)
Namely, g; = g and g, = %. We alsohave ¢y =1 and ¢, = %, because
Y em 3 1 Y
Q=T3+E or JM =JM+§J/J.'
Then the relation in eqn (11.75) becomes
1 1 1
e—2=?+g—/2. (11.77)
Using g’ = g tan Oy, we get
1 1
— =—+cot’fy) or  e=gsiny. (11.78)
e 8

11.6 Fermion mass-matrix diagonalization

Suppose that the fermion mass matrix in the basis of left-handed and right-handed
fields is hermitian,

Ly =ViLMij¥jg +he. M =M. (11.79)

In general, the eigenvalues of M obtained from a unitary transformation are not
always positive:

UMU" = My = diag(m,, m,, ..., m,) (11.80)

where m; can be negative as well as positive.
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(a) Show that one can choose an appropriate biunitary transformation to diag-
onalize M so that all diagonal elements are non-negative.

(b) If the mass matrix is real, show that the matrices in the biunitary transformation
can be chosen to be orthogonal matrices.

Solution to Problem 11.6

(a) For the cases where some of the m;s are negative in the diagonal matrix M, =
UMU?Y, we can always find a diagonal matrix S, consisting of 1 or —1, such that
the product M, S is a positive matrix:

My, = MyS > 0. (11.81)
Then
My=M;S=UMU'S=UMV" (11.82)

with UTS = V7. Since both U and S are unitary, V is also unitary. Then M is
in the form of a biunitary transformation. In this way we can make all fermion
masses non-negative. Clearly, this can also be done even when M is not hermitian.

(b) If M is real then MM is real and symmetric and can be diagonalized by
orthogonal transformation:

2

my
SMMHST = M3 = . m; = 0. (11.83)
m;,
Let us define
mi
M, = and H = SM;ST, (11.84)

my,
then H is real and symmetric. Define 7 by T = H~' M, then
TTT =H '"MM"(H Y =H'SM3S"TH' = H'H*’H ' =1, (11.85)
i.e. T is orthogonal. We have
M=HT =SM;S"T or My;=(STMTS)=S"MR (11.86)

where R = T S, which is also an orthogonal matrix.

11.7 An example of calculable mixing angles

The properties of the mass matrix can be translated into relations between mass
values and mixing angles. Here is an illustrative example of such a model. Consider
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a simple 2 x 2 hermitian fermion mass matrix of the form

0 a
M:(a* b)' (11.87)

Show that the mixing angle 6 which characterizes the 2 x 2 unitary matrix which
diagonalizes M is related to the mass eigenvalues by

mi
tanf = | —. (11.88)
my

Solution to Problem 11.7

The mass matrix can be diagonalized by an orthogonal transformation

SMS' = M, = (”’“ 0 ) or  M=SMS (11.89)
0 ny
with
cosf sinf
S=<—sin9 cosé‘)' (11.90)

From M,; = 0, we get

S5 (Mg)ijSji=0  or  (cos’8)m; — (sin® @)my =0 (11.91)
or
tanf = | L. (11.92)
ny

Remark. Attempts to relate the Cabibbo angle to the strange and down quark
masses have been carried out along such approaches.

11.8 Conservation of the B — L. quantum number

Show that if there were a set of scalars transforming as a doublet under the weak
SU(2) symmetry and as a triplet under the colour SU(3)¢: hﬁx (i=12a=
1, 2, 3), then both the baryon number B and the lepton number L are not conserved.
However, the linear combination B — L is conserved.

Solution to Problem 11.8

As mentioned in CL-p. 355, the presence of &/, will lead to Yukawa couplings of
the form

Ly = fuliLhi,q + finGiarhyqsze®® . (11.93)

In order to conserve the quantum number B, the first term requires the assignment
Bi(h) = —%, while second term requires B, (h) = % Thus the baryon number B
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is not conserved. For the lepton number conservation we have L;(h) = —1 and
Ly(h) = 0, and the lepton number is not conserved. However, the combination
B — L has the values

2 2
B| —L1 = - and BQ—LQZ— (1194)
3 3
and is conserved by these Yukawa couplings.
Remark. This simple example illustrates that the baryon number (or lepton num-

ber) conservation is an ‘accidental symmetry’ due to some special structure of the
Higgs potential.
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12.1 Atomic parity violation

The weak neutral-current interaction mediated by the Z boson in an atom violates
the parity conservation and will generate mixing between levels with opposite
parities.

(a) Show that the parity-violating part of the interaction has the form

2
8
Ly = 57 (ALVE+ VAT (12.1)

where AY and V/* are the axial and vector currents of the electron and AZ and V,f
are the axial and vector currents of quarks.
(b) If we write Ly in the form

G _ B _ _ B _
Ly= 7;[63/#)/56 (Cruityuu + Crady,d) + eyue (Couityuysu + Cogdy,ysd) ]
(12.2)

calculate the coefficients C;, and C; 4.

(c) Using the fact that the momentum transfer is small in the atomic processes,
show that we can write the effective interaction in terms of the nucleon fields

(p, n) as

/

Grr.- _ _ _ _ _
Ly = E[eyme (C1ppYup + Cinityun) + eyue (Coppyuysp + Cznnmysn)]
(12.3)

(d) Show that for the case of heavy atoms, the terms containing vector currents of
the nucleons add coherently and are much larger than the axial vector terms. The
interaction can be written as

G
Ll = ﬁkae* yse (12.4)

where Qi = (1 — 4sin’60y)Z — N is the weak charge of the nucleus with Z
protons and N neutrons.

Solution to Problem 12.1

(a) The neutral current interaction is of the form

gz
JN e (12.5)

Ev=og
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where the neutral current J ;f’ contains lepton and quark currents, and each current
has a vector and an axial vector part. Thus the parity-violating interaction due to
the exchange of a Z boson between electrons and the u,d quarks in the nucleus
must result from the following V-A interference:

2
Ly =-S_[A"VT 4+ verar)] (12.6)
MW

where V¥ and A};? are the electron/quark vector and axial vector neutral currents,
respectively.

(b) The neutral current having the general structure of J, lf’ o' (T 3 — sin’ Oy Q) for
the electron, we have

IN(e) = eLy, (—% +sin® Oy ) e, + ey, sin® Oy eg
= (=1 +sin’Oy) ey, e + 1éy, yse (12.7)
and thus
V;’ = (—}T + sin® QW) ey e and Ai = %éyu yse. (12.8)
For the u and d quarks, we have
TNy =iy, (3 — 3sin®Ow)up — % sin® Owiigy, ug
= (3 — 2sin® Ow) ity — iy, ysu (12.9)
and
IN(d) = dpy, (=3 + §sin®0y) d, + 1 sin® Owdgry,dr
= (—1 + %sin*Oy) dy,d + dy,ysd. (12.10)
Then, using g2/8M€V = Gr/~/2, we can write,
Ly = %{2@)@”/56 [(:- % sin® Ow) dy,u + (—% + % sin Oy) dy,.d]
+ (=1 +sin? 0) éye2 (dy,vsd — iy, ysic) } (12.11)
Reading out the coefficients, we get
Ci =2(%—2%sin*0y), Ciu=2(—1+1isin’0y),
Co = —2(—3+sin’0y), Cou=2(—%+sin’0y).  (12.12)
(c) Itis convenient to write Ly of eqn (??) in the form

Gr(._ _ = . _ =
Ly = TZ{eyﬂyse [(Riyu — Sdy,d) — 2sin” Oy (Giay,u — 1dy,d)]

+ (=4 sint o) 4éye (S — bdvusd) |
= S (e (v — 25000y J37) + (= sin” ) 42, |

V2
(12.13)
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where
V: = % (IZJ/MM — c?yud), Ai = (%ﬁyﬂyw - %c?yﬂ)gd) .
1 2 = 17
I = (uyu — 3dyud). (12.14)

The nucleon matrix elements of these operators are (in the limit of zero momentum
transfer)

(pIV|p) = 5 PYup: (n|VIn) = —3iy,n,
(PIALIP) = 584DVuysP, (n| A} In) = —3gany,ysn,
(plJ;"1p) = PYup, (n|J;"In) =0, (12.15)
Iz "
where (p, n) are the proton and neutron spinors, respectively, and g4 = —1.25 is

the usual axial vector coupling constant of the nucleon. In terms of nucleon fields,
we can write

£x = T2 eyyse [(4py,p — L) — 25in” 64 (pyap)]
V2
+ (= +sin® Ow) 42y,e ga (3 PYiysp — Siivuysn) } (12.16)
and the coefficients are
Cip =11 —4sin*Oy),  Ci,=—1,
Cop =2(—1% +sin?Ow) ga,  Cow = —2(—1% +sin’Ow) ga. (12.17)

(d) In the non-relativistic limit, only the time component of the vector current is
non-vanishing. It counts the proton and neutron numbers in the nucleus, and we
have

D A ZIplpilA, Z2) =2

i

(12.18)
Z(A, Zininj|A,Zy=A—-Z=N
and for the combination that appears in the weak neutral current
(A, Z| [% (1 — 4sin” Oy) Z pipi—3 ZnTni| |A, Z)
=1[(1—4sin’6y) Z— N] = 10w. (12.19)

Thus we get
/ GF
Ly = ﬁQW efyse.

Note that the matrix element of axial vector current N ¥, Y5 N in the non-relativistic
limit is proportional to the nuclear spin operator and is smaller than N or Z.
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12.2 Polarization asymmetry of Z — f f

The polarization asymmetry (or the lefi-right asymmetry) in the decay of the Z
boson into a fermion pair Z — f f is given by

T(Z — fufr) —T(Z — frfrL)

A = - = 12.20
R = TS ot T > fado) (12:20

and the neutral current can be written as
12 =Y e (H) (Fuvute) + er () (Frvifz)]- (12.21)

f

In this problem we wish to express the asymmetry parameter in terms of the neutral
current parameters gz g(f)-

(a) Show that the asymmetry parameter A, can be written as
(8L N* — (gr(f))?
(grL(fN?* + (gr())?*

(b) Calculate the asymmetry parameter A, g for the decays:

Arr(f) =

(12.22)

(i) Z — ee,
(i) Z — bb,
(iii) Z — cc.

For numerical calculation, use sin® Ow = 0.22.

Solution to Problem 12.2

(a) In the calculation of the two decay rates in Ay g, the amplitudes are the same
except for the overall couplings (g, or gg) and (1 — ys) or (1 + ys) projections.
As there are no V—A interference terms in the rates, we have

TZ— fufe)  (gL(f)’

£ = (12.23)
T(Z— frfL) (gr(f)?
and thus
2 2
M) = (B a
) () Z — eé
gr(e) = —3 +sin® Oy = —0.28, ggr(e) = sin® Oy = 0.22,
Arr(e) = 0.2366. (12.25)
(i) Z — bb
grb) = —1 4+ Lsin® Oy = —0.43, gr(b) = Lsin’ Oy = 0.071,
Apr(b) = 0.944. (12.26)

(iii) Z — cc
gr(c) = 1 — Zsin* Oy = —0.353, ggr(b) = —3sin’ Oy = —0.147,
Arr(c) = 0.7. (12.27)
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12.3 Simple T-lepton decays

(a) Show that to lowest order in QCD and the approximation that all the fermion
masses in the final state are negligible we have the following r-decay branching
ratios:

1
B(t — evv) = B(t — uvv) ~ 3

(b) Calculate the decay rate for T — mv in terms of the pion decay constant f;.

Solution to Problem 12.3

(a) The total decay rate of the tau lepton (7) is,
I'(t) =T(t —» evv) + I'(t = pvv) + I'(t = v + hadrons). (12.28)

From p—e universality, we get, with the approximation of neglecting final state
fermion masses,

't = evv) =T'(r —- puvv). (12.29)
To lowest order in QCD, we get
I'(t - v+ hadrons) =T (t > v+du) +T'(t - v +su) (12.30)
and
[(t = v+di) = |Vu|*30(x = pob).
Thus
L@ = 12+ 3(Vual® + [VisHIT (@ — evd). (12.31)

From the experimental fact that

Vil + Vs = 1 (12.32)
we get
_ I'(t — pvv) 1 _
B(t — pvv) = ——— >~ — = B(t — evd). (12.33)
I'(7) 5
(b) The effective Lagrangian for the decay t — v is of the form
Gr s _
L, = 75 [dy" (1 = ysyu] [Deyu (1 = ys)T]. (12.34)

The amplitude is then given by

M = GrVia frq" v () yu (1 = y5)T(p) = G Vg famo V- (k)(1 — y5)T(p)
(12.35)

where we have used

(T(@)|dy"ysul0) = iv2q,f; and g =p—k (12.36)
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The decay rate is given by

1 1 d*k dq
r= Y M) @n)*st(p —k — .(12.37
2m. (2 spZin:| | >( e D (27)32ko (2)32q0 ( )
The phase space is the same as that calculated in Problem 11.3, with appropriate
substitutions
d*k d’q
= [ @ern)*s*(p —k —
R e e
_ L (miom (12.38)
Cdn 2m? ) )

The spin average of the matrix element is given by

Y IMP =3 1G EVia feme P Trlk (14 y5) (B +me) (1= p5)]

spin

=2G7 f2\Vua*mi2p - k) = 2G% f2|ViaPm? (m% — m2) .

T
The decay rate is then

1 2.2( 2 2y | m%_mz
F:m_TGFf”WM' mr(mt—mn)E T%ﬂ

Gt 2.3 my ’
Remark. If we compare this with

2

] T — == —! 12.40
( /J,l)\)) m T ( )
we get

I'(t > mv) FHVia (1 — m2 /m2)*(247?) -
[(t — pvv) m2 -

0.6 (12.41)

where we have used |V,4| ~ 0.975 and f;, >~ 90 MeV. Experimentally, we have
't - mv)

—— ~(.66. (12.42)
I'(t = pvv)

12.4 Electron neutrino scatterings

(a) Show that the threshold energy for the reaction v, + e~ — v, +u~is E, =
11 GeV in the laboratory frame.

(b) Show that in the v, + e~ — v, + e~ elastic scattering, the angle of scattering
0. of the electron with respect to the neutrino beam direction satisfies

2m, T, m.T,
(T.+2m) | E, 2E2

where T, is the kinetic energy of the (final) electron.

sin’ g, =

(12.43)
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Solution to Problem 12.4
(a) Denote the momenta as v, (k1) + e~ (p1) = v.(k2) + ™ (p2), then

s = (ki + p1)* = m> + 2k, - p; = m* +2m,E, (12.44)

in the laboratory frame. In order to produce p~, we require s > mi, or

E, > (m?, —m?) ~ 11GeV. (12.45)

2m, M

This calculation shows that in the laboratory frame it takes lots of energy to produce
a muon by scattering a neutrino off an (extremely light) electron target.

(b) From the momenta assignment, we have in the laboratory frame,

ki =k, +p2 (12.46)

ki +m,=ky+ E (12.47)
From eqn (??) we have (setting m, = m)

k3 = (k; — p2)* = k? + p3 — 2k; py cos 6, = ki + E3 — m* — 2k; py cos .
(12.48)

From eqn (2?),
k3 = (ky +m, — E2)* =k} + m?> + E3 + 2kym — 2mE, — 2k E;.  (12.49)
Combine these two equations, we get
—kypycosO, = m* + kym — (m + k) Ey = (m + k) (m — E»). (12.50)
In order to express p; in terms of E;, we square both sides of this equation:
ki (E3 —m?) (1 —sin®6,) = (m + k))*(m — E»)? (12.51)
or
k2(Ey +m) — (Ey —m)(m + ki)* = k3 (Ey + m)(sin® 6,). (12.52)

The kinetic energy of the final electron being 7, = E, — m, the scattering angle
satisfies

sin® 0, =

2m, T, m,T,
[ } . (12.53)

(T. +2m.) | E, 2E?

Remark. For the usual neutrino beams we have E, > m, and T, > m,: this
formula implies that sin” 6, is small and

02~ <, (12.54)

Thus the electron moves very much in the forward direction and provides a good
signature for ve quasi-elastic scattering.
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12.5 CP properties of kaon non-leptonic decays
Consider the K° — 27, 37 decays.

(a) Show that |7+ ™) and |7°7°) are CP even eigenstates.

(b) Show that |7°7°7°) is CP odd while the CP eigenvalues of the state |7+ ~7°)
depend on the orbital angular momentum / of 7 with respect to the center of mass
of the 77~ system,

CPInTn 7% = (=) izt 7~ =0). (12.55)

Solution to Problem 12.5

(a) Denote the wave function of 77~ by
|77 7) = Y (r), ) (12.56)

where r| and r, are the coordinates of 7 and 7 ~, respectively. We can also use
the centre of mass and relative coordinates,

1
R = E(rl +17), r=r; —ry, (12.57)
to write the wave function as

Y(r, ) = x(R)o(r) (12.58)

where x (R) is just a plane wave describing the motion of the centre of mass and
is of no interest to us. Under the charge conjugation, we have 7+ <— 7 ~, which
corresponds to r; <—> r; or r — —r. The effect on the wave function is then

p) 5 p(—1) = (=D'p () (12:59)
where [ is the orbital angular momentum of the 77~ system. Thus
Clmtn™)y = (=D|z*n7). (12.60)
Under the parity, we have (—1) from each of the pion and r — —r. Thus we get
Plata™)y = (—=DnTn7). (12.61)
Combining these two relations we get
CPlntn™)y= (=D ntn ™y =|ntn"). (12.62)
For the |7%7°) state we have, as before,
Plr’7% = (=) |7%70). (12.63)
But under the charge conjugation,
Cl7°7% = |n°7%) (12.64)

because 7¥ is a C-even eigenstate. On the other hand, the 7%7° system consists of
identical bosons and from Bose statistics we should have symmetric wave function
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under r; <—> r, which corresponds to r — —r. This means that we can only
have [ = even states. Thus we also get

CP|n’7°% = |n°7). (12.65)
(b) For the w770 state we can write the total angular momentum as

J=Jn+J (12.66)

where J |, is the orbital angular momentum of the 7z 7~ pair and J; is the orbital
angular momentum of 7 with respect to the centre of mass of the 7+~ pair.
Since K has spin-0, we have J = 0, which implies

[Ji2] = |J3].

As we have discussed in Part (a), the |77 ~) state is CP even, irrespective of
| = |J12]. On the other hand

CPIn% = (=) (=) 7% = (=) |z°) (12.67)

where (—) comes from the intrinsic parity of |7% and (—)”* from the fact that
under the parity r3; — —rj3, with J3 = |Jj| = [. Then the result is

CPIntn 7 = (=) Y xtn =0 (12.68)

For the 37" state the only difference is that by Bose statistics 277° has to be in the
| = even state. Then we get

CPIn’n%7% = —|n%7%720). (12.69)
Remark 1. From the fact that both K; — 7t7~ and K; — 7%7%79 are seen
experimentally, CP symmetry is broken. The fact that the rate for K; — 77~ is

much smaller than Ks — 7wtz ~ implies that K is mostly CP odd state and K
is mostly CP even state.

Remark 2. Ks — 7%7°7° decay also violates the CP conservation if Ky is a
pure CP even state. On the other hand, 7+ ~7° can have both CP even and CP
odd wave functions.

12.6 Z — HH is forbidden

Show that in the standard model, the decay of the Z particle into two Higgs
bosons, Z — H H, is forbidden by the angular momentum conservation and Bose
statistics.

Solution to Problem 12.6

Because of Bose statistics, the two final-state Higgs particles should be in the
spatially symmetric state. This means that the relative angular momentum has to
be even,l = 0,2,4---. But the initial state Z has spin J = 1, which cannot go
into an even angular momentum state.
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Remark 1. The same argument applies to Z — P P, where P is a pseudoscalar
boson.

Remark 2. There are no symmetry argument to forbid the decay Z — H H H or
Z— PPP.

12.7 Al = % enhancement by short-distance QCD

The effective AS = 1 weak Lagrangian is of the form

4G
Las=1 = T;(VudVM O+ h.c) (12.70)

where

Oy = (ipy"sy) dpyuur)
= Hay" (1 — ys)slldy, (1 — ys)ul (12.71)

Show that in the renormalization of the composite operator O; there is operator
mixing between O; and another operator O, of the form

0> = (i y"ur) (dLyust)- (12.72)

Also, compute the anomalous dimension matrix for the O;—0; system. The result
should indicate a QCD enhancement of the Al = % operator.

Solution to Problem 12.7

The one-loop QCD corrections to O are shown in Fig. 12.1.

For diagrams (a) and (b) in Fig. 12.1, these graphs are just QCD corrections to
current, e.g. (#yy,s;) which has zero anomalous dimension, y = 0 because of
its partial conservation. This means that these contributions will be cancelled by
wave function renormalization which are not shown in Fig. 12.1.

¢
2
X

(a) (b) (©

X
A
X

(d © ®

FIG. 12.1. QCD correction to the (ﬁLy“sL)(c?L YultL) operator.
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For graph (c), we can calculate its contribution by dimensional regularization,
where the gauge coupling is of the form g/(u)>~%/2:

d'k [ ( ig o (—ik)
M /(2ﬂ)4|: < o d/2>7/at k2 yu,SLi|

—l) ig w.a )

< () e ]

) d 2
ig d'k [k s |
e (2n)4< )W vavavus [duty "y Ty un] g
(12.73)

where we have used the replacement ko kg = Z—zga,g. Using the identity displayed
in CL-eqn (A.17),

YaVBYu = 8apVu + 881V — anVp + ieaﬂp.vyv)/Ss (12.74)

we can reduce the Dirac matrices:

VeV (L = ) 1os [V vP v (1 = ¥5)lwe = 1617, (1 — ¥5)1ps [ (1 = ¥5) e
(12.75)

For simplicity we have ignored the complication of defining ys in the general d-
dimensions. For the SU(3) colour matrices, we use the identity in CL-eqn (4.134):

1 1
()it = 3 <5i15jk - §5ij5k1> . (12.76)
The amplitude M, can then be written as

M, — ig? [l d%k 1

G ij] 8 [ (it L Yyuur) (dLyyse)

1 _ -
_g(uLy/LSL) (dLJ/MML) }. (12.77)

Performing the integration over k,

/ Ak 1 i T@-4d/2) 1278
Qmyd k* ~ @m¥d2 1) (12.78)
we get

—g? 1 T©QR-d/2 _
M = ( 2)2g dj2 (47_[)01/2 ( / )(+8) [(ﬁLVuuL)(dLV;LSL)

1 _
_g(ﬁLVuSL)(dLVMML)} . (12.79)

This shows that the operator O, mixes with O; under the renormalization. It is
clear that M, gives the same contribution as M..
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For the graph (e) we have

) de%k k2 _ - 1
- (g> [uLtaVaVﬁVusL] [staVMVaVﬁuL] k6

(12.80)

Me=Gayn | Gy

The ordering of y matrices being different from that of M., we get

VeV (1 = y5)lps [V yP (1 = ¥5)lwe = =41y (1 = ¥5)1ps[¥"™ (1 — ¥5) e
(12.81)

and

g2 _
Mo—_ "8 1 re dd/z)(_z)[

1
¢ (WD) (4 )dl? 0, — —01] . (12.82)

3

For graph (f), giving the same contribution as (e), the total contribution is

—12¢%> T(2-4d/2) 1
M=2M,+2M, = 0, —=-0q]. 12.83
+ (12242 (4m)dl2 d 273l ( )
For d — 4, we have
rQ—d/2) 1 [2 )
GG — Gt | = —y+In(dr) —Inpu (12.84)
with ¢ = 4 — d. The counterterm for O, is then
I +n@m ) (0, - Lo (12.85)
=——(-- n(4m - = . .
1 an) \ & 14 2 3 1
If we write
0,4+80,=2721101+Z1,0, (12.86)
we get
2
g 2
Zi=1-——(Z-y+m@n) ),
1" an ) <5 y + In( 7T)>
z (2, (47) (12.87)
=—|-- n(dmr) ). .
12 @2 \ & 14

It is straightforward to carry out the renormalization for the operator O, and the
result is

0, +80y =720+ Z2»n0, (12.88)
with

Zyy = Zy1, Zy1 = Znp. (12.89)
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To compute the anomalous dimension, we can use the correspondence between
dimensional regulation and the invariant cutoff given in CL-Table 2.1 to write

g2 AZ
Zy=Zp=14+—"—= 1n_2+ >
T 3

(4r)?
Zo=za= =5 (WA (12.90)
= =——=|In—+--- ). .
12 21 (@) 2
Then from the formula for the anomalous dimension matrix
1 9
i =—=——InZ; 12.91
Y T mA Y (1290
we get
2
8 -1 3
= . 12.92
v (4n>2( 3 —1> (1292
The eigenvalues are
2 2
8 8
=-——x2 _ = x (—4), 12.93
"G P T Gy XY (1299
with the corresponding eigen operators being
1 1
0+ = 5(01 + 02)9 o_= E (01 — 02) . (1294)

Or in terms of quarks fields,

1 1 - B -
0, = 5(01 + 0,) = E[(”LVMSL)(dLVuuL) + Uy up)(dryusc)l.

1

1 - _
(01— 0y) = 5[(’/_‘LVMSL)(dLVMuL) — (uryuur)dryuso)l.

O_
2

Remark. The operator O_ which is antisymmetric in it} <> dy is a pure Al = %
operator because I = 0 state is antisymmetric in id. On the other hand, O has
both Al = % and Al = % operators. Thus QCD corrections enhance the O_
operator (y— < 0), relative to the O, operator. [Scale factors are raised to the
negative powers of y, see, for example, CL-eqn (10.148).] But this enhancement
of the Al = % operator does not seem to be numerically large enough for the

explanation of the experimentally observed Al = % rule.

12.8 Scalar interactions and the equivalence theorem

The standard model Lagrangian for the scalar field is given by
Ly = (0,9)"0"¢) + 1’0" — 1@ ¢)* (12.95)

N
¢ = <Z°> . (12.96)

where
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(a) Show that if we parametrize the four independent components of the complex

doublet field as
1 (o1 +ig
= — , 12.97
¢ V2 <¢3 + i¢4> (1297

L, is invariant under O (4) rotations, i.e.
¢l—>¢l’=f,j¢,, with i=1,...,4 (12.98)

where 7 is the four-dimensional rotation matrix 777 = /77 = 1.

(b) Show that if we write

T = (¢17 ¢27 ¢4)9 o =¢3, (1299)
then L; is the same as the SU(2) x SU (2) sigma-model (without the nucleon).

(¢) For spontaneous symmetry breaking, we have

2
bi=c=v+H  with v’= MT (12.100)

Write the Lagrangian in terms of H and x and find the Hr*7~, and Hzz cou-
plings, where 7+ = \/%(m —im) and 7 = 3.

(d) Calculate the scattering amplitudes: 7t7x~ — zz, 777~ — 77—, and
7z —> ZZ.

Solution to Problem 12.8

(a) From the parametrization

¢ = % (ﬁ; i iij) , (12.101)
we get
89 =5 (5 +63 + 93 +9}) = %(«». 9)
0’0" = %(am - oh @) (12.102)
where ¢ = (¢1., d2. 3. ¢4) is a vector in four-dimensional space. Then the

Lagrangian is of the form

2
" A
Li=0.0)+ (b 9)— 7(¢- )’ (12.103)
which is clearly O(4) invariant because only the invariant scalar products appear
in the Lagrangian.

(b) If we break the 4-vector ¢; into a 3-vector and a scalar, # = (¢; ¢2 ¢4) and
0 = ¢3, the 4-scalar ¢ - ¢ corresponds to the sum of

¢ -¢=n"+0" (12.104)
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The Lagrangian is then of the form

2
L= % [0, + (3,0)2] + %(nz +o%) - %(n2 +o?)? (12,105

which is precisely the SU(2) x SU(2) o-model without the nucleon.

(c) To study the consequence of spontaneous symmetry breaking, we write o =
v+ H, then

7’ +o0?=n’+H*+2Hv +? (12.106)
(r* +0H)? = (* + HY)? + 4Hv(x* + H?)
+ 203w + HY) + 40’ H? + 40°H +0v*. (12.107)

The scalar potential is then
2
A
V= —“—(n2 +0%)+ (0 +0?)?

200?
_ ! 2” CM) e b + B+ (n L HY2 (12.108)
The mass of Higgs is given by

m3, = 2%, (12.109)

Note that ms are all massless. It is more convenient to write the Lagrangian as

2 2 2
Ly =~ [@um* + @, H)] - ZEH? - ZE (x4 H?) - ’;%(nz + H?).

2 2v
(12.110)

NI*—*

From n? = 2nt7~ + zz, we can read off the Hwtn~ and Hzz couplings as
being im?, /v and im?, /v, respectively. The decay rate for H — n+m~ is

2\ 2 3 3
o m_H L dgdo o d’k d’k
FH —77n) = < v ) 2mn /(2”) S = k=) G RE Gry2E

301 3G
My . _MuUF (12.111)
2028t 8J2r¢

where we have used the vacuum expectation value v=2 = +/2G . We see that in
the limit mz >> My, this agrees with the decay rate I'(H — W W ™) calculated
in the next problem.

Similarly, we get for the decay H — zz,

3
1

N'H — z2) = —H— = )

V28 2 16V2n

Remark. This is the essence of the equivalence theorem: one can replace Wy, and

Z with the corresponding ‘would-be-Goldstone bosons’ in the limit m g > My

and M.

S

1 m}Gp

(12.112)
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(d) Would-be-Goldstone boson scattering amplitudes

() ntn — zz

(@) (b)

FIG. 12.2. Tree diagrams for 77~ — zz.

The amplitudes for these diagrams are

) .9\ 2 .
M@ = M M<b>:(_”"ﬂ> : (12.113)

v? v

and the sum is

2
M=M®D 4 pm® — ﬂ[ § R :| (12.114)
s —my

v2

Remark. The amplitude M vanishes as s — 0, as expected from the usual low
energy theorem for the Goldstone boson.

(i) zz — zz

P

(2) (© (d)

FIG. 12.3. Tree diagrams for zz — zz.

The amplitudes for these diagrams are

@ (—imy\ o (—imy\" i
M@ = (—1 - MO =1 - (12115
v s —my v t—my

. 2 . .
MO — ("’"H) ! MD = <ﬂ> 24 (12.116)
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and the sum is

.9
M:ZM(z’):_lmH[ 5 ~+ ! -~ + “ i| (12.117)

2
v §—my t—mH u—my

where 1 = (p1 — p3)*, u = (p1 — pa)*.
(iii) 7t~ > 7t~

< XX

(@)

FIG. 12.4. Tree diagrams for r*7n~ — 77 ~.

The amplitudes are

@ (—imy\ i o (—imy\® i
M@ = - MO =1 - (12.118)
v s —my v t—m

im?
MO = 24 0 0 (12.119)
v
and the sum
. 2 t
Mz_”"2H [ S . } (12.120)
v: |s—my  t—my

Remark. These simple results for the scattering of Goldstone bosons can be used,
through the equivalent theorem, to get the amplitudes for the longitudinal gauge
boson scattering.

12.9 Two-body decays of a heavy Higgs boson

Suppose that in the standard model the Higgs particle is heavy so thatmy > 2M.
Calculate the decay rates for the following modes:

(a) H—> Wrw-
(b) H—> ZZ
(¢) H — tt.

(d) Show that in the limit my > My, the decay H — W W™ is dominated by
H — W/ W, where WLi are the longitudinal components of W=,
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Solution to Problem 12.9

(a) H—> Wtw-~
We can read off the H W W coupling from CL-eqn (12.165) and write the amplitude
as

M, = —igMy (e - &). (12.121)
Then

% KK,
S M = 3 Y- = (- + ) ()
w w

spin spin

12
= g’ My, <2+ (kM]j) ) (12.122)
w

From m?, = (k + k)%, we getk - k' = 1 (m% — 2M},). Then

2
S IM? = S (mly — dm M, + 12013

spin 4M€V
2G AM? M
=l (1 - —=+ 12%’) : (12.123)
V2 my my

The decay rate is then

F—L/(zn)“a“( Lk dk S IMP (12.124)
" 2my P (27)2E (27)32E' al™ :

spin
The phase space in the rest frame of H is
4od . dk d’k
p= /(2”) S =k = k) 5 S GuaE
(217)2/8(77111 —E— E/)ZIC:{ZE“ (12.125)
Write
&’k = k*dkdn = 47kEdE. (12.126)
We get
1 kdE k
o= E/S(m;, — ZE)T = pr— (12.127)

The momentum k can be calculated as follows:

E=1imy=®+M)'"* = k=1imj —4aMm;)'> (12.128)
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The phase space is then

:g 5

my
Note that the result here for the two-body phase space is different from that cal-
culated in Problem 12.3, because of the equal masses in the final state here. The
decay rate is then

3G aMpN\'"? (o AME M,
T(H—> WW) = HZF (20w 1= 220 W) (12.130)
2 2 4
8«/57{

my my my
Note that in the limit of my > My, this is the same as eqn (??)—as an expression
of the equivalence theorem.

b) H—> ZZ
The amplitude is given by

1 am\'"?
0 (1— W) ) (12.129)

gM;z
cos Oy

My =—i (e1 - &2). (12.131)

The phase space having an extra factor of %, because of the identical particles in
the decay products, the decay rate is then

3 2\ 1/2 2 4
G aM aM M

F'(H — 27) = 2H7F (1 — 2Z> <1 - =<+ 1272). (12.132)
16\/57[ mH mH mH

This is the same as eqn (??), if mpy > M.

(¢) H— 1t
The amplitude is given by

M, = #a(k’)u(k) (12.133)

and

2
"LTr 0 A mO® — m)
v

D IMP

spin
4m? , )
= v2[ (k~k —mt)
4 2
= 2V2G pm?m?, (1 - ) (12.134)
my

where we have used k - k' = % (m%i - 2’”:2) and v = +/2G . With the phase

space
1 4m?\'"?
p=— <1 - 2’) (12.135)
8 my
we get for the decay rate, which should include a colour factor of 3,
_ 2G am2\""?
T(H — 17) = HMOF (1 — %) x 3. (12.136)
4\/27'[ mH
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Remark. Since m; is now measured to be around 180 GeV, the decay H — 7
is kinematically allowed if mp > 370 GeV. For the case m%, > mtz, the decay
H — WW and ZZ will dominate over H — t1.

(d) As we have mentioned in the text (CL-p. 343), the longitudinal polarization
is of the form

1
g7 (k) = M—W(k,O, 0, E) (12.137)

which, in the high energy limit k > My, takes the form

% M
el (k) = et 0] (TW) . (12.138)

The matrix element for H — W," W, is then

My = —igep (k) - e (k) (12.139)
and
: (k- K
Moo = @My len () - e () = g MG, — 5
w
2 2 2.4
L 2y ~ & "Mu
= [E (m%, — m,)} = o (12.140)

This is exactly the same answer for the decay H — W W™ in the limit my >
My . This shows that H — W*W~ is dominated by H — W, W, .

Remark 1. Since the difference between total decay and the decay H — W, W,
is of the order of M}, /m?,, the decay of the Higgs boson into the transverse modes,
H — W Wy, is suppressed by O (My,/m3,).

Remark 2. We can translate this into a relation between effective coupling con-
stants:

SHW. W, ( my

—) in the limit mpy > My . (12.141)
My

8HW; Wy

This means that in this limit, the Higgs coupling to W is much larger than that
to Wr. On the other hand, W, comes originally from the scalar fields. Thus the
physics of gauge bosons W, and Higgs field H can be described in terms of
scalar self-interaction present in the original Lagrangian. This is the basis of the
Equivalence Theorem (between longitudinal gauge bosons and the scalar Higgs
mode) (see, for example, Cornwall ef al. 1974).

Remark 3. The same argument applies to the decay mode H — Z; Z; which
will dominate over H — ZrZr.
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13.1 Anomaly-free condition in a technicolour theory

Consider the simplest technicolour theory with one left-handed doublet as given
in CL-p. 405. Show that to avoid the anomaly in the SU(2),; x U(1) gauge group,
we need to make the charge assignment of techniquarks:

oUy=1% Q) =-1 (13.1)

Solution to Problem 13.1

Consider the triangle graph in Fig. 13.1 which is the source of the anomaly.
Since there is no anomaly in the SU(2) group, we first consider the case with
only one U(1) vertex, in which the graph is proportional to
Tr(tit;Y). (13.2)

Because of the presence of ts only the doublet members can contribute to this
Tr sum. Y commutes with 7; we can write

Tr(rir_iY) = Tr(‘L’,‘Y‘L'j) = Tr(r_itiY) = %Tr({r,-, ‘L'j}Y) = (S,/T}’(Y) (133)
On the other hand, Y takes the same value for both members of the doublet. This
means that the absence of anomaly requires that ¥ = 0 for the doublet. From the
relation Q = T3 + (Y /2), we see that

QU =35  QDp)=—3. (13.4)
This charge assignment implies that in the right-handed singlet sector

Y(Ug) = 3 = —=Y(Dp). (13.3)

For the case of two U(1) vertices, the coefficient of the triangle graph vanishes
because Tr(t;) = 0. For the case of three U(1) vertices, only the right-handed

FiG. 13.1. The triangle diagram with a fermion loop.
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singlet will contribute and the coefficient is proportional to 7r(Y?3). This vanishes
as Uy and Dy, contributions cancel because Y (Ug) = % = —Y(Dp).

Remark. One way to avoid this strange (unfamiliar) charge assignment is to intro-
duce a technilepton as in the standard model

U N
(2) (%) vepewess 16

with the usual charge assignments:

o) =3, o(D) = —3, Q(N) =0, Q) =-1. (137

13.2 Pseudo-Goldstone bosons in a technicolour model

Consider the case of one generation of technifermions

U N
(D)L<E>LUR7DRaNR,ER (13.8)

where the charge assignment is the same as the ordinary fermions in the standard
model.

(a) If one turns off all except technicolour interactions, show that the model has
an SU(8), x SU(8)x global chiral symmetry.

(b) Suppose the technifermion condensate breaks this symmetry down to
SU(8)r+r- Show that there are 60 new Goldstone bosons besides those which
were removed by gauge bosons.

(¢) Show that these Goldstone bosons will become massive if we turn on the gauge
interaction.

Solution to Problem 13.2

(a) Since U and D are SU(3) triplets, we have eight left-handed and eight right-
handed technifermions. Thus the global flavour symmetry is SU(8); x SU(8)g.

(b) Inthe symmetry-breaking SU(8); xSU(8)r — SU(8)+r, we get 82—-1=063
Goldstone bosons, of which three are removed by gauge bosons to break the gauge
symmetry from SU(2) x U(1) down to U(1),,.

(c) Since the gauge interactions of SU(2); x U(l)y do not have the chiral
SU8), x SU(8)g symmetry, these Goldstone will become massive when the
gauge interactions are turned on. These particles are usually referred to as Pseudo-
Goldstone Bosons. One expects their masses to be of the order of gMy and they
can be as low as a few GeV. If they are as light as a few tens of GeV, they should
have been seen by now. This is one of the difficulties in constructing a phenomeno-
logically viable model based on the technicolour idea.
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13.3 Properties of Majorana fermions

In the standard representation, the solution to the Dirac equation in the momentum
space can be chosen to be of the form

1
u(p, s) =(E+m)”2< o-p )x(S)

Et+m (13.9)

P
v(p,s) = (E+m)'/? ( E Tm ) x(s)

with

x(3)= <(1)> x(—%)=—<(1)> (13.10)

XCG):‘(?) X (=1) = ((1)) (13.11)

Note that for convenience we have changed the spin wave function from y (s) to

x€(s) in the v-spinor. Also there is an external minus sign in x (—%)

and

(a) Show that with these choices, the charge conjugation will just interchange the
u- and v-spinors, i.e.

u‘(p,s) =iyu™(p,s) =v(p,s)
v(p,s) =iyv*(p,s) = u(p,s). (13.12)

(b) If we write the free Dirac field operator as

43 . . .
Y(x) = Z/ [(2)3—1) [b(p, Hu(p,s)e P> +d'(p, s)v(p, S)elp-x]

7)2E,]"
(13.13)
show that the Majorana field vy, defined by
1 :
U =—=W +9°) (13.14)

V2

can be decomposed as

ZEEDY /

(2 )32E Tmamp 1172 I:bM(p» S)M(p, S)e_lpx +bM(p’s)U(p’s)elpx]

(13.15)

with

1
bu(p,s) = ﬁ(b(P,S)+d(P,S)). (13.16)

Also, compute the anticommutator

{bu(p. 5), by (P, 5)}. (13.17)
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(¢) Show that

u(p, $)yu(p', s’y =o(p', sHyuv(p, s)

0(p, $)yuu(p’,s') = i(p', sHyuv(p. s) (13.18)
so that

YuVu¥u =0,  Yyou¥m =0. (13.19)

Solution to Problem 13.3

(a) Write out the conjugate spinor in the standard representation for the y-
matrices:

. 1
c . * 0 Lo * *
u'(p,s) =iyu (p,S)=<_l-(I2 OZ)NE o -p | x(s)
E+m

. o -p . o*-p .
_ NE 10p E+m ) X*(S) — 107 E+m (_102) 102)(*(5)

—iO’z

o-p o-p
= —Ng < E+m ) ioyx*(s) = Ng ( E+m ) x(s) = v(p, s013.20)
1 1
where we have used the relations
(io2)(6")(—ioy) = — 0, —ioyx*(s) = x“(s). (13.21)

(b) From the decomposition of a Dirac field

V@) = }:/

s [b(p. u(p, )™+ d ' (p, )v(p, )¢

(13.22)

[ )32E

we get

Yx) = ipy’(x)

_§:/
—Z/

Thus we find that

(2 )32E 172 [b1(p,s)u (p,s)el[?x +d(p,S)U (p,s)e tp).]

(2 )32E Tn v~ 1172 [d(P, Su(p, S)e—lpx +bT(p, sHv(p, s)esz].

Ym = %[l/f(X) + ¥ (x0)]

—E:f

[@n )32E e 2E,17"? [bM(p’S)”(p’S)eﬂpx +bl,(p, Hv(p, s)elpx]

(13.23)
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with

1
V2

The anticommutator can be computed

by = [b(p,s)+d(p,s)]. (13.24)

Hep. o) +d(p, ). b"(p' s +d"(p'.s)}

= 1 {b(p. ). b* ()} + L {d(p.s). dT (' 5))
= 88> (P — P). (13.25)

{bM(p, $). b (P, S’)}

Thus by, and bL are just the usual destruction and creation operators.
(¢) From part (a), we have
ut(p,s) = v(p,s) =iyu*(p,s) (13.26)
or
v (p, ) =u" (p,$)(=iv)) =u"(p,5)(iya). (13.27)
Then
0(p, )yuv(p',s") = 0" (p, )yoyuv(p', s)
=u"(p, $)(iy2) Yoy (y)u*(p',s)
=u'(p'. iy) (vl v)iv) u(p, s)
=u(p', s (=iv) oy, v iyu(p, s)
=u(p', ) =iy, (iy)u(p,s) = u(p', s)yuu(p, s)

(13.28)
where we have used the relations
WYaYo =V V¥vpgr=v. )y (i) =v. (13.29)
Alternatively, we can write
v(p.s) = u‘(p,s) =iyu*(p.s) = iyayopou*(p.s) = Ci" (13.30)
where
C =iy, cl'=c"=c"=-c, CylC ' ==y (13.31)
Similarly

vip,s) =ul (p,s)iys,  B(p,s) =ul(p,s)iyayo =ul (p,5)C. (13.32)
Thus
v(p. s)yuv(p',s) = u’ (p,s)CyuCa (p's")y =u" (ps)y u" (p'.s")
=u(p',s")yuu(p,s). (13.33)
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More generally,
v(p, HTu(p',s") =u’ (p,s)CTCu’ (p',s") = —u (p,s)CTC'a’ (p’,s")
=u(p,s"Tu(p,s) (13.34)
where
r<=(-crchH’. (13.35)

For the various cases,

F=y, =0 =) =w
F=y05 () = (=Crus'0) = (Wy]) = vsvu = =15

F=ys  yi=(-Cy'c) = —ys

r=1 1°=(-ccHl = -1
i i
=0 of =(-Colc) = —3 (@ D = =S )
(13.36)

=0ou.

From the Majorana field expansion given in eqn (13.23),

Yu(x) = Z/ (2 )32E 72 [bM(p,S)u(p,s)e*lpx -|-b (p, s)v(p, s)e'™” r:|.
(13.37)

d3p/
YmVu¥u —Z/ (27_[)32]5 1/2/[(27”321%]1/2
x [by (p. )b (', s )id(p. ) yu(p', s")e PP
+ by (p. )by (. sHO(p. $)yv(p', s)e! P
+ b, (p. )by (', siA(p. )yuv(p', s e P
+ by (p, )by (p', s)O(p, $)yu(p’, sHe!PHI*]. (13.38)

‘We can write the second term as

S [ [ butp sty it st e

= 3 [ [ o bl oty e
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where we have interchanged (s, p) <—> (s/, p’). Then the first and second terms

combine into
d3 p/
>/

[@n )32E 2 [en)n2E]

x by, (p,5), by (p’ sVi(p, $)yuu(p', se PP

This is a c-number and can be removed by normal ordering. The third term can be
written as

Zf/bjw(va)b (P S)M(p s)yﬂv(p s)e” i(p'+p)x

o )32E —— LA (. ). (13.39)

= Z f / bl (. )by (P s N (P, s yuv(p, e PP =0,
(13.40)
Similarly, the fourth term is also zero. In an entirely analogous way, we can show

that JfMO';wwM =0.

13.4 1 — ey and heavy neutrinos

Consider the decay 4 — ey in the same model as in CL-Section 13.3, but without
the assumption that all neutrinos are much lighter than the W boson.

(a) Show that the branching ratio is of the form

3 ’
B — ey) = (5, (13.41)
32r
where
’ m2
5§ =2 UsU,eg | — 13.42
v Xl: ei 7/ 8 (M%V> ( )
with
' (1 —a)da
g(x) :/ L[Z(l —a)2—a)+a(l +a)x]. (13.43)
0o (I —a)+ax
(b) Show that, for the case ml2 & M2, this reproduces the result in CL-eqn
(13.115).
(c) Show that g(0) # g(oo) and, if m3 > My and m|, < My, the result is of
the form

3
Bl — ey) = 5—{218(00) = g(OIU;, Uy} (13.44)
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\/ W o w
i 1
(a) ()
W ~0 ¢ i o
l ‘l l
© @

FIG. 13.2. © — ey via neutrino mixings.

Solution to Problem 13.4

(a) Wewill carry out the calculation in the t Hooft—Feynman gauge. First, consider
the diagram (a).

8 Nyl — (Hig?)
< (303) vn - gy
(=ig"*)

— % 7 (—jel,
ETEEA

where
Cop = 2k - £)gop — (k +2q)geq — (k — q)atp. (13.45)

‘We can write this as

T()_—'Z'/ d4k[ 1 } 1
CETLG ] et [ p o —m? ] (@ — M)
1

X ———— N*T,,
[k+g2-Mm3] "
where
ge
Ci = TU:iUIU (1346)
and

Ny = tte(p = @Qypy - (P + )y (1 = y)uu(p). (13.47)
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Using the Feynman parameters, we can combine the denominators to get

1 1 1 doaydor 6(1 —a; — an)
X X =2!
(p+k2—m? K—-M}, (k+q9)?— M} A3

(13.48)
where

A=al(p+k)? —mll+alk +q)* — M1+ (1 — oy — ax)[k* — M},
=(k+ap+ag)—ad (13.49)

with
@ =am?+ (1 —a)M3,. (13.50)

‘We have neglect mi as compared to ml2 or M‘ZV. Collecting these factors we get

T(@a) =i Zc,-Z/dal don (1 — ) — aa)

d*k 1

S
Q2m)* [(k+ aip + a2g)* — a2]3

where
S1 = Ny, TH. (13.51)

To simplify the integral, we can shift the integration variable, k — k — o p —a2q.
Under this shift, we get for the p - ¢ term which contributes to u — ey, see CL-eqn
(13.97),

Si— S =(p-e)lu.(1+ ys)u,12m, [2(1 — a1)? + Qo — Day].  (13.52)

Momentum integration yields

k1 (i)
/ 2m)* (k2 — a?)3 = 3072a2" (13.53)

The contribution to the invariant amplitude A is then

m dojday (1 —a; — ap)
Aa) = i / 2(1 —a)? + Qay — Das).
(@ ,ZC 607 | "t anig, 120~ + o = Deol

(13.54)

Integrating over «,, we get

_ omy (1 dOl](l—Oll)z(%—Oé])
A@ =2 eiyen (M%) f [ — ) + a1 (m2/M3)] (13:9)

i
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From diagram (b) we have

o d*k 8 \ e ‘
i( )——IZ/WW(P—CI) <m) vl —Vs)m

1 i
<2\/_MW) Uilmi(1 = ys) —m, (1 + Vs)]MM(P)m
(—ig")

X —[(k T JYE ](ieMwsv)

Z / % X 1 X : e*N
=1
Q) (p+k)2—m K—My T (k+q)?—ME
(13.56)
where
Ny =iie(p — @)va(l +ys) [m] —myu(y -k +my) ] uu(p). (13.57)

Combining denominator and shifting the integration variable, we have

d*k N
T:(b) = ZZlc,/dal dond(1 — oy —Otz)/ e (13.58)

Again, picking out the p - ¢ term,
Ny = Nig* — Ny = =2(p - e)ite(p — ) (1 + ys)up (p)agm,,.  (13.59)

The combination to the invariant amplitude A is then

A(b) — Z (_mp,) dal da2 9(1 - — a2)a2
" 1672 alm% . Olz)M%V

_ .(_m}l.) L dOl](l—O{l)z
_,Zc’ 3272 (M%V) TR 7S M.

Diagram (c) gives the contribution

d*k ]
Ti(c) = —i Z/ P =) (2\/;%) Usi[mi(1+ ys) — me(1 — ys)]

< i (ig )1 (1 = ys)ity (p) e
y (p k) —m \2y2) 2 T T AP G Ty
_ ol
8D GeMyer)

Tk + 92 — M2

E / dk X ! x ! N
— .
(2m)* (p+k)2 —m? KR —ME T (k+qP-ME

(13.61)
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where, after setting m, = 0,

N; = ii.(p — Q)ya(1 + ys)miu,(p). (13.62)

It is easy to see that this does not contribute to the term p - €.
Diagram (d) is of the form

d*k ]
T.(d) = —i Z/ P = (ﬁ) U mi(1+ ys) — mo(1 — ys)]

i —ig
Yk —m; (2«/§MW> Unalms(1 = y5) = mu (L + y9) b (p)

i i
NG ) [k + )2 — My]

(ie)e - 2k + q)

_ ! | 2k - €
——zZ i /(2 iliep )+ Pl

1 1
X X
K2 — M (k+q)?—

m2
= —4Zc,~M—'2(p . 8)[L_te(P - Q)(l + VS)up,(p)]
i w

) /‘do{ld(xze(l—m — o) (@1 + )y < = ) (13.63)

aym? + (1 — ) M3, 3272

Thus we get for the invariant amplitude
(=D doyo (1 —op)(1+ap)
Ald) = i
@) = mﬂZc 3272 (M2 )/ am? + (1 — ) M3,
1 d 1- 1
:muz (— )( 4)/ 0510121( o1)( +011)' (13.64)
- 3272 \ My, o (m?/M3) + (1 —ay)

The total contribution is then

A= Z[Ai(a) + A;(b) + A;(d)]

i

1 1 ! do
. Xi:c" 6472 (M_gv) /0 1 —a+a(m?/M2)

m?
x { —2(1 =)’ 3 =20) = 2(1 —)* = 2a(1 —a)(1 + ) (W) }

w

=D m;
=m, Z o ( >g <M_€V> (13.65)
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where

1 (1 -a)da
glx) = / — R0 —-a)2 —a) + (1 + a)x] (13.66)
o (I —a)+ax

and

2
¢ = % Ui (13.67)

(b) The function g(x) can be calculated as follows:

_ ! (1—a)da
glx) = /0 G- Dt /o= 1)][2(1 —a)2—a)+a(l +a)x]. (13.68)

Lety=1/(x —1)orx =1+ y)/y.

1 ' —a)da 1+y)
g(x)—(x_l)/o @y |:2(1—oe)(2—a)+a(l+ol) ) i|
' —a)da
= — 2y —a)2—a)+a(l + o)1+ y)]
o (@+y)
1
=/ 9 13 + 8y 4 (1 —9y)a+ 4yl (13.69)
0o (@+y)
To facilitate the integration we can write the numerator d(a) = —(1 + 3y)a® +

8ya? 4+ (1 — 9y)a + 4y as
da) =d(a@) —d(—y)+d(—y) (13.70)
where d(—y) = 3y(1 + y)? so that

d(@) —d(—y) = (@ + )[—(1 +3y)a* +3y(y + 3
+(=3y° —9y> — 9y + 1)] (13.71)

and

1
() = / [—(1 433002 4 3y(y + 3 + (=3y° — 93> — 9y + )] da
0

+d( )/1 do
Y 0o a+y

The integration brings about

(13.72)

1 1
Istterm = —(1 + 3y)§ +3y(y + 3)5 +(=3y1=9y2 -9y + 1)

g 15, 112 1373
ST TRy T YT '
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and
14y —3x3
2nd term = d(—y) In = Inx. (13.74)
y (1 —x)*
Thus
) 3 15/ 1 2+11 1), 2 3x3 |
X) = - — — ol nx.
§ 1—xp3 2 \1—x 2 \1—x) 3| a=x¢?
Forx « 1,
15 11 2 )
(@) =3(1430) = (1 +20 + 5 (1 +2) + T+ 0()
5 x
= -4+ 0xD. 13.75
373 + Ox7) ( )
In this way we see that for m; < My, for all i, we get
, 5 1m? m?
5 = 22 UkU,, [5 - 5M—€J = Z UkU,, <M_3v) (13.76)
where we have used the unitary relation

> UsUL =0. (13.77)

This is the same as CL-eqn (13.113) in the text.
(¢) Butform;, my < My and m3 > My, the situation is different:
8, =2 (Ue*l Uu + U U,“) 8(0) +2U;U,38(c0)
=2U%U,;3[g(c0) — g(0)] = —2U3U,3 (13.78)

because

5 2
8(0)=7 and goo)=7. (13.79)

Remark. Since the GIM mechanism is not effective here, the branching ratio will
be very large (compared to the experimental upper limit < 107'9), if the mixing
U}U,3 is not very small. Thus the coupling of electron or muon to any neutral
lepton which is much heavier than a W boson must be highly suppressed.

13.5 Leptonic mixings in a vector-like theory

Consider a simple model of leptons, where there are two left-handed and two
right-handed doublets and, in addition, there are two left-handed neutral leptons:

we () = () me (), = (),
e L M L e R H R

ll =HNsL, l2 =n.L.
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Show thatif the Higgs scalar is the usual SU(2) x U (1) doublet, then the weak eigen-
states, n., n,, ..., can be expressed in terms of mass eigenstates Ny, N, v3, v4 as
follows:

(ne)r = (cos Ny +sin pN2)r
(n,)r = (—sin Ny + cos pN,)g (13.80)

m, me .
(n)r = (— Cos Ny + — sinpNy + Uzvs + Ue4v4)
mi my L

my, . my
ny)p =|———singdN; + —cos¢dNy + U, 3v3 + Uysvs (13.81)
mi my L

where U,;s are elements of the unitary matrix that diagonalize the mass matrix.

Solution to Problem 13.5

Because of the vector-like nature of the theory, we have the bare lepton mass term

—Ly= Z mi(L;R; + h.c.) = m.(ée + i n,) + my(pp +nyn,) (13.82)
i=1,2

and the mass terms arising from Yukawa couplings
£Y = mce”_laLneR + mreﬁaneR + mo’uﬁoL”uR + mruﬁanuR~ (1383)

We can collect the mass terms of neutral leptons in the form

—Lw = VirM;j¥jL + h.c. (13.84)
where
ne
[ ne . o (me 0 me me
Vik = <HM>R ' WJL | ne ’ M” o ( 0 my MmMys m/u:) ’
ne ),

To diagonalize this mass matrix, we use the biunitary transformation

ViMU =M, M= <”(’)‘ n?2 8 8). (13.85)
The mass eigenstates are
Ny
@ =viue=(N0) - @0, =[] =viwa 0380
V4
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In general, the 2 x 2 unitary matrix V can be taken to have the form

[ cos¢ sing
V= (—sin¢ cos¢>' (13.87)
From eqn (13.85)
vimM = MUt (13.88)
we get
cos¢m, —singm, --- ---
singm, cos¢m, .- .-
Uel UeZ Ue3
_(my 0 0 O Uua U
“\0 m 0 0 e e
miUsg mpUuy - -
= . 13.89
<m2Uel maUyn ) ( )

Identifying matrix elements on both sides of this equation, we get (see Cheng and
Li 1977 for more details)

nme my .
U, = —cos o, Uy =——sing,
nmi n;
me . my
Uy = —sing, Uy = —cos ¢. (13.90)
ny ny

13.6 Muonium-antimuonium transition

Compute the effective Lagrangian for the muonium—antimuonium transition p~ +
et — ut+e inthe same model as the standard model but with massive neutrinos.

Solution to Problem 13.6

n N e
“) 3
W w
(1 )
et N pt

F1G. 13.3. The box diagram for muonium-antimuonium transition.

The only diagram contributing to this process is the box diagram. We are inter-
ested in the limit where all external momenta are small compared to My . In this
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approximation, the general box diagram with arbitrary masses for the internal
fermion lines can be calculated in the 't Hooft-Feynman gauge

ig\* [ d*% _
B(x,y) = —i (ﬁ) /W[w@)y“(y k+my)yur(3)]

X [uL2)yp(y -k +my)yur(1)]

5 —i \( —i —i
k2 — M3, k2 —m2 ) \ k> —m?
—ig (K 1 : 1 1
- 3 k| = 2 2 2 _ 2 2 2
64 2 k* — My, k> —my ) \ k* —m3

x [a@®y"y*y" 31 — ys)u] [@Qy,yapv5 (1 — ys)u(D)].
(13.91)

After making the Wick rotation the momentum integration can be reduced to a
simple form that can be carried out explicitly:

o (5) (i —1M5V>2 (e=) (k2 —lmg)

—in? /00 12 dt 1 1 —im?
0

I(x,y) (13.92)

Ta )y Grrcrm Gty A,
where
m? mi
M, M,
The function I (x, y) is of the form
Jx)—J 1 2
Iy = 22O o -2 _mx. (13.94)
X—y 1—x  (1—=x)?2
The Dirac matrices can be simplified by the identity
y'yhy? =gyt + gy — gyt — e ysy,. (13.95)

Thus we have

[i@)y"y*y" 51— y)uB3)] [aQ2)y,varvs (1 — ys)u ()]
=10[a(@)y* 31 — y5)u@] [2)y23(1 — ys)u(1)]
+ 7 e e [ 5o 31— y)u3)] [@2)ysy 31— ys)u(D)]
(13.96)
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Using
€% = =687, ys(1 —ys) = —(1 — y5) (13.97)

we get for the box diagram

B(x,y) = —¢g I(x, y) [a@y* 51 = ys)u3)]

4—
647[2M§V
x [y i1 — ys)uD)].

The effective interaction is then of the form

Lopp(n™ +et = ut+e7) =g [y 31— ys)u] [evas (1 — ys)u]

(13.98)
where
G% J(x) — J(xj)
off = UULU,US) | ——— 13.99
8eff 1672 ;( i ei F pj e])[ X —X; ( )
with x; = m?/M3,.
For the case x < 1,
1 x? 1 2 2
J(x):m—l—mnx—)]—}—x—l—x +x“Inx
Jx)—J x?Inx — y?In
JOZIW) gy =0y (13.100)
X—Yy xX—=y
Then we get for the effective coupling constant
G? . . x?Inx; — x?Inx;
8eff = 16;2 Z(UmUe,-UmUe,-) [(xi +xj) L 1. (13.101)
ij i J
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14.1 Content of SU(5) representations
The SU(3) x SU(2) content of the SU(S) representation S is given by

5=3,1D+@1,2). (14.1)

Show that the SU(5) antisymmetric tensor representation 10 has the following
decomposition

10=3.D+@3,2+11 (14.2)
and the adjoint representation 24 has
24=08.D+13H+1, 1D+ @3.2)+(3"2). (14.3)

Also, find the decomposition of the symmetric tensor representation 15.

Solution to Problem 14.1
From 5 = (3, 1) + (1, 2) we can form the second rank antisymmetric tensor:
x5 =0G D+ @ 2)]x[E, 1D+ 1, 2)D
=(B%x3N-, D+G3,2)+ 1,2 x2)-)) (14.4)

where the subscript (_y denotes antisymmetrization (while 4, will be used
to denote symmetrization). In SU(3), we have 3 x3)—) = 3* and in
SU(2), (2 x 2)—y = 1. Then we get

Bx5Ho=03.D+@3,2)+1,1. (14.5)
On the other hand, as representations in SU(5), we have
S x5)—=10 (5 x5)4) =15". (14.6)
Thus we get
10=3"1+@3,2)+1,1), 14.7)

all of which corresponds to known particles in the standard model. Similarly, we
can work out the symmetric part

ExHH =03 D+ 1,21 x[E. D+ 1A, 2)DH)
=(BxIDu),D+B,2)+ 1,2 x2)1)
=61+@3,2)+1,3). (14.8)
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Namely, the single SU(5) representation having exactly the same number of states
(with the correct quantum numbers) as one generation of standard model fermions
clearly does not correspond to any particles we have observed so far:

15*=(6,1)+@3,2)+1,3). (14.9)

The adjoint representation can be obtained by the product of the fundamental
representation and its conjugate:

5x5=24+1 (14.10)
To work out the SU(3) x SU(2) decomposition we note that

5x5 =[3,1+12)]x[31)+(1,2)]
—(3x3 1D+ 12x2)+@3,2) +(3%2)
=@ D+0LD+M3H+A,D+@3,2)+@32). (14.10)

Subtracting (1, 1) from both sides we get

24=8,1)+ 1,3+ A, 1+ (3,2) + (3", 2). (14.12)

14.2 Higgs potential for SU(5) adjoint scalars

In the Higgs sector of the SU(5) model, if we neglect Higgs in representation 5,
we can write the scalar potential in the form

V(H) = —m*Tr(H?) + M (Tr(H»))? + 2Tr(H*) (14.13)

where H is the Higgs field in the adjoint representation of SU(5) and is repre-
sented as a 5 x 5 hermitian traceless matrix. Here, for simplicity, we have imposed
a symmetry of H — —H to remove the cubic term.

(a) Show that H can be transformed into a real diagonal traceless matrix

hy
ha
H =UH,U' with H; = h3 (14.14)
hy
hs

where hy + hy + h3 + hqy + hs = 0.

(b) Show that at the minimum, the diagonal elements /;s can take at most three
different values. From this result, discuss the most general form of symmetry
breakings that can be induced by a 24 adjoint Higgs field.
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Solution to Problem 14.2
(a) The adjointrepresentation H has the following SU(5) transformation property:

H— H =UHU". (14.15)

Since any hermitian matrix can be diagonalized by a unitary matrix, we can choose
U such that H is the unitary equivalent to a real diagonal matrix:

hy
h
H,=UHU" = hs ) (14.16)
hy
hs
The trace is invariant under unitary transformation, 7r H = 0, which implies that

hi+hy+h3+hg+hs =0. (14.17)

(b) With H in the diagonal form, the scalar potential is simplified:

2
V(H) = —m* Y} + (Zh?) +ha ) k. (14.18)

Since h;s are not all independent, we need to use the Lagrange multiplier u to
account for the constraint ) _, #; = 0. Write

V' = V(H) — uTr(H)
2
=—m? ) hI 41 (Zfﬂ) +a Y k=Y b (14.19)

Then

v’

_ 2y 2 . 3 _ _
T —2m%h; + 4x, (Z h_,) hi + 4rh — = 0. (14.20)

J

Thus at the minimum all %;s satisfy the same cubic equation
Aox +4hax —2m*’x — =0  with a= Zh?. (14.21)

J
This means that /;s can at most take on three different values, ¢, ¢», and ¢3,

which are the three roots of the cubic equation. Note that the absence of the x>
term in the cubic equation implies that

d1+ ¢+ 3 =0. (14.22)
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Let ny, n,, n3 be the number of times ¢, ¢», ¢3 appear in Hy,

¢

®
H; = . with  n1¢) + nag + n3p3 = 0. (14.23)

?3

Thus H; is invariant under SU(n;) x SU(ny) x SU(n3) transformations. This
implies that the most general form of symmetry breaking is SU(n) — SU(n;) x
SU(ny) x SU(n3), as well as additional U(1) factors which leave H, invariant.

Remark. To find the absolute minimum we need to use the relations
nigr +nogy +nzp3 =0, 1+ ¢ +¢3=0 (14.24)

to compare different choices of {n, n,, n3} to get the one with smallest V (H).
It turns out that for the case of interest there are two possible patterns for the
symmetry breaking,

SU(5) — SU3) x SU(2) x U(1) (14.25)
or
SU(5) — SU) x U(1) (14.26)

depending on the relative magnitudes of the parameters, A; and A;.

14.3 Massive gauge bosons in SU(5)

For the adjoint representation H, written as a 5 x 5 traceless hermitian matrix,
construct the covariant derivative D,, H. Calculate the mass spectra of the gauge
bosons from the covariant derivative if the vacuum expectation value is given by

(H)y=v 2 . (14.27)

Solution to Problem 14.3

In the SU(n) group we have the following transformation for the fundamental
representation ¥; with j =1,2,..., n:

Vi = V= Uit = (8 +ief) n (14.28)
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where we have also written out the form for an infinitesimal transformation. The
conjugate representation transforms differently. For ¥/ = (y;)* we have

v >yl = (5;’ — is,{) vk, (14.29)
The adjoint representation H jk transforms in the same way as the product /;y:
H} = (8 +ie\) (85 —ieh) H" = HS +i' Hf —ick H". (14.30)

The covariant derivative is obtained by the replacement of e, — g WX in the above
expression:

(D, H), =0, H; +ig(W,)\ Hf —ig(W,)kH. (14.31)
Or in terms of matrix multiplication
D,H =0,H+ig(W,H—HW,) = 0,H +ig[W,, H] (14.32)

where W, H are 5 x 5 traceless hermitian matrices. The gauge boson masses
come from the covariant derivatives

Ly =Tr [Dy(H)(Du(H)'] = & Tr(W,,, (H)IIW", (H)D).  (14.33)
It is easy to see that
(W, (H)I, = (W)L (Hy — H)) (14.34)
where
(H)] = Hi8]  (no sum). (14.35)

Equation (14.34) implies thatif H; = H, the gauge field (WM),{ is massless, and if
Hy # Hj, then the corresponding gauge field is massive. From the VEV given by

2

(H)o=v 2 (14.36)

the gauge boson fields (Wﬂ){ havingi = 1,2,3 and j = 4, 5 are massive, M? =
25g%v?, while i, j = 1,2,3 and i, j = 4, 5 are still massless. In other words, the
symmetry-breaking pattern is given by,

SU) — SUB) x SU2) x U(1). (14.37)

The remanent U(1) corresponds to a generator which has the same diagonal form
as that given in eqn (14.36). The number of massive gauge bosons is then

24 —-8+3+1)=12. (14.38)
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14.4 Baryon number non-conserving operators

Write down all possible dimension-6 operators which are invariant under the stand-
ard model group SU(3)¢ x SU(2), x U(1) and violate the baryon number (B)
conservation.

Solution to Problem 14.4

In order to form a colour singlet state out of quark fields we need gg or ggq. But
the quark—antiquark combination does not violate baryon number conservation.
Hence we are interested in composite operators that contain three quarks in the
form g, qpq, €7 orequivalently g<qp q, e#Y where a, B, y are the colour indices.
Thus these dimension-6 operators have the generic structure (g°q)(g€l). As for
the SU(2), symmetry, it is clear that there are three possibilities: 4 doublets, 2
doublets, or all singlets.

For simplicity, we take only one generation of fermions. SU(2) indices are
written in the Latin alphabet.

(i) 4 doublets
o = (éic;qujﬂL) (‘jlgyLl"L) €apy€ij€kn
0P = (Gurajpr) iy 1lne) eapy (T8)ij - (TE)kn (14.39)

where q1o1 = ttor and gagr = dgr.
(ii) 2 doublets

0% = (dgupe) (a5 ulse) ey
0® = (q5.q6L) (it glar) Eapy€ij- (14.40)
(iii) 4 singlets

0 = (d_;R”ﬁR) (ﬁ;RlaR) EaBy

09 = (1 gupr) (dSplar) Eapy- (14.41)

14.5 SO(n) group algebra

Consider a real n-dimensional space with vector x = (xi, ..., Xx,). A rotation in
this space can be represented as

xXi = x| = Rjx; (14.42)
where R is an n x n orthogonal matrix, R” R = RRT = 1.

(a) For infinitesimal rotation, show that R;; can be written as

R,‘j = 8,‘] + Ejj with Eij = —€&ji. (1443)
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(b) For any function of x, this infinitesimal rotation induces a transformation
which can be written as

LEjj
f®) = fx)=fx+ TJJijf(X)- (14.44)
Show that the operators J;; can be written as
Jij = —i(x;0; — x;0;) i,j=12,...,n. (14.45)

(c) Show that J;;s satisfy the commutation relations,
[ij, Jul = i Gudit — 8 ji — 8 judin + 8 i) (14.46)

(d) Show that in the group SO(n) with either even n = 2m or odd n = 2m + 1,
we can find m mutually commuting generators.

(e) For the simple case of n = 3, if we define
Ji = Seijidjk (14.47)
then the commutators in (c) reduce to the usual angular momentum algebra
[Ji,J;] = igijiJr. (14.48)
(f) For n = 4, define K; = J;4, show that
[Ki, Kj]l =isgijudi and [Ji, Kj]l =ig;ji K (14.49)
where J;s are defined in part (e). Also if we define
Ai=3Ui+K),  Bi=30i—K) (14.50)
show that

[Ai, Aj]l =igijxAx, [Bi, Bjl =igiBx, [Ai, B;j]=0. (14.51)

Solution to Problem 14.5

(a) Write the matrix equation RRT = 1in components, we have R;;j Rjx = §ji.
For R;; = &;j + &, with ¢;; < 1, it becomes

(8ij +€ij)Bik +&ik) =8jk = €jx = —&xj- (14.52)

Thus we have %n(n — 1) independent parameters for the orthogonal matrices R.

(b) X; —> xi/ = R,‘jx]‘ =X;+&;jX;. (14.53)
Then

af

8xi

Of i)

Xi
/ 8x,~ Bx_,-

f(xl/) = f(xi +8inj) = f(xi) + EijXj

= f) + %J <x (14.54)
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If we write the left-hand side as
FO) = fxa) + 5ieiJij f () (14.55)
we get
Jij = —i(x;0; — x;0;). (14.56)
(¢) From the simple commutator
[0;, x;1 = &ij, (14.57)
we get
[xi0j, xx 0] = X84 0; — x181;0;. (14.58)
From this it is straightforward to get the commutators for J;;s:
[ij, Jul = =i judis — SirJj1 — 81 ik + 8ud ji). (14.59)

(d) Ifindices (i, j, k, 1) are all different, the commutator is zero. Thus the follow-
ing generators will commute with each other:

{J12, J345 Is6, -« o s Ju—1.n} for n even

{J12, J34, 156, ey ‘11172,n71} for n odd. (1460)

Remark. This setof n/2 (or (n — 1)/2 for odd n) mutually commuting generators
is said to form the Cartan subalgebra.

(e) To recover the familiar angular momentum commutation relations from
eqn (14.59), we use the identification

J1=Ju, h=J1, Sh=Jn (14.61)

(1, 2] = [Ja3, Ja1] = —iJo1 = i J5. (14.62)
Similarly, we can obtain
[Jo, sl =iJy, [J3, 1]l =ils. (14.63)
(f) From K; = Ji4, we get, from eqn (14.59),
(K1, K2l = [J1a, Jal = —i(=J12) =i J5. (14.64)
Similarly,
(K2, K3l =iJi, [K3, Kil=iJy, or [K;, K;l=igijiJk. (14.65)
For the other commutators, we have

[J1, Kol = [J23, Joa] = —i(=J3) = iK3. (14.66)
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Similarly,
[, K3l=iKi, [J3, Ki]l=iKy, or [J;,K;]l=1ie&xKy. (14.67)
These commutators can be simplified by defining
A =3 +K), Bi=3(—K) (14.68)
which gives

[Ai, Bjl= )i+ Ki, J; — K;1= Yieiu (Do + Kk — Jk — Ki) =0

[A;, A;] = %[Ji +K;,J;+K;]= %iEijk(Jk + Ky + Ji + Ki) = igji Ay
Similarly,
[B,', Bl] = igijkBk~ (1469)

This means that SO(4) algebra is isomorphic to SU(2) x SU(2), generated by A;s
and Bjs separately. Also this implies that the SO(4) group contains three distinct
SU(2) subgroups, namely those formed by {A;}, {B;}, or {J;} generators.

14.6 Spinor representations of SO(n)
Consider the n-dimensional real space with coordinates (xj, X2, ..., X;).

(a) Show that if we write the quadratic form x12 + x% + - -+ x? as the square of
a linear form

AR txn =@yt ar o+ ) (14.70)
then the coefficient y's satisfy the anticommutation relation
{vi, vit = 28;;. (14.71)

This is usually referred to as the Clifford algebra.

(b) Show that if we take ;s to be hermitian matrices, then y;s have to be even-
dimensional matrices.

(c) For the even case, n = 2m, show that the following set of matrices satisfies
the anticommutation relations in (14.71):

) 0 1 ) 0 —i
m = 1, yl =T = (] 0) s y2 =T = (l O> (1472)
and for the iteration from m to m + 1 we have

(m)
y D = <”i 0(,”)) . i=1,23,...,2m (14.73)
0 -y

(m+1) 0 1 (m+1) 0 —i
Vami1 = <1 o) o) = <i 0>. (14.74)
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(d) Consider a rotation in space (x1, ..., X;)
xi = xi' = Oix (14.75)
which induces a transformation on the y;s
vi' = Ouve. (14.76)
Show that {y/} satisfy the same anticommutation relations (14.71):
vl v} =28 (14.77)

(e) Because the original {y;} form a complete set of matrix algebra, they are
related to the new {y/} by a similarity transformation

v =S80)y;ST(0)  or  Ouy =S(0)y; S (0) (14.78)

where S(O) is some non-singular 2" x 2" matrix. If we write these transformations
in the infinitesimal form

Oix = 8ix + &ir, S(0)=1+1iS7e;,  with &y = —ey,
show that
i[Sij, vil = Bixyj — 8xvi) (14.79)
and that such S§;; can be related to the y matrices by

i i
Sy = F0u =7 [ m] - (14.80)

(f) Show that for the matrices given in part (c), we have

(m)
0 o;;

m+1) . 0 " m+l) 0 y "
0’i,2m+1 =1 _y'(m) 0 O’i,2m+2 =1 _y‘(m) 0
! ! (14.82)
(m+1) _ -1 0
Oom+12m+2 = o 1/)°

(g) Show that S;; = ﬁ[yk, 1], as given in part (e), satisfies the commutation
relation for SO(n), as given in Problem 14.5:

(m)
m
oD _ ("w ) i, j=1,2,3,...,2m (14.81)

[Sij, Sl = —i(8jxSi + 8uSjx — SikSji — 8;1Six). (14.83)

{Si;} then form the spinor representation of the SO(n) group. Clearly it is a
2™ = 2"/2 dimensional representation. (In Problem 14.8, we shall study its decom-
position into two sets of 2"~ ! spinor states.)
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Solution to Problem 14.6

(a) To solve for ys from the equation ), xi2 = (x1y1 + -+ + x,,)? it is clear
that y;s cannot be the usual real or complex numbers. The simplest possibility is
that y;s are hermitian matrices so that y;y; # y;y;:

2
Y oxf= (me) = xixpviyi = ) %X 5y +viv). (14.84)
i i ij ij
Thus we need to have
vivi tvivi = 268i;. (14.85)
(b) From eqn (14.85) we see that, because yjz =1,

vitivi +vivi) = 2y; or VYV = Vi nosumon j.  (14.86)

Taking the trace of this final relation we get

Tr(yjvivi) =Tr (). (14.87)
But for the case i # j, eqn (14.85) implies that
Tr(yjvivi) = Tr(=viv;v;) = Tr(=y). (14.88)
Thus combining eqns (14.87) and (14.88) we have
Tr(y;) =0. (14.89)

On the other hand, yi2 = 1 implies that the eigenvalues of y; are either +1 or —1.
This means that to get 7r(y;) = 0, the numbers of +1 and —1 eigenvalues have
to be the same. Thus y; must be even-dimensional matrices.

(¢c) The m =1 case Because the 2 x 2 Pauli matrices

{Ti, 7j} = 24y (14.90)
satisfy the anticommutation relation of (14.85), we can choose yl.(l) = 1; with
i=1,2.

The m > 1 case Using the recursion relation (14.73) we get (i, j = 1,2,
3,...,2m)

my _(m
{ (m+1) (m+l>}_ {V" Y } 0
Vi Vi = 0 { (m) <m>}
yi 7y'
_ (28 0\ _ ¢
- < 0 25,-_,-) =26 (14.91)

(m) (m)
m+) _m+n] _ (O 1Z 0 =\ _
{Vi > Vomt1 } = (_Vi(m) 0 ) + <)/i(m) 0 > =0, (14.92)

(y“"“))z —1. (14.93)
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Similarly,

2
_ m+1) _ (m+D)| _ m+D\~ _
=0, Yom+1 > Vom+2 ] =0, <V2m+2 ) =1

(14.94)

(m+1) (m+1)
[yi s 2m+2 ]

(d) To compute the anticommutator of the transformed gamma matrices:
Vv +vivi) = OOyt + viv) = O 028 = 28, (14.95)

where we have used the fact that O is an orthogonal matrix.

(e) From O;; Ojk = (S,’j, we get for Oij = (S,‘j + &;j with & K 1
OBix + i) Sk + &j1) = 8 or & =—¢j. (14.96)

Thus if we write S(O) =1 + %iS,-jsij, then §;; is also antisymmetric in i < j.
From Oy = S(O)y,-S’l(O), we get

@it + &) vk = (14 3iSavean) vi (1 — 3iSuswn) (14.97)
or
€kl
Viteuvk =Vvi+ l?[skl» Vil (14.98)
Write
eikVi = envidit = 3eu(Vedit — vidix). (14.99)
Thus we get
i[Su, vil = Vidjx — vidjr). (14.100)

‘We now show that
i i

S = zon =

, 14.101
> 4[Vk vl ( )

will satisfy the commutation relation (14.100). Since k& # [, in Sy, the above
relation can be written

I i
Sy = Z(kal — YV = SV (14.102)

Then

ilSu, vil = =2 vil
—3dy vid — (v Vi) = b — vidin). - (14.103)
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(f) From the definition of o;; and the recursion relation (14.73), we have for the
caseof n =m + 1

(m+1) _ 1 (m+1) (m+1)

L [yi(m)’ ngm>] 0
= 0 %[_%_(m)’ _y;m)]
- ("{fj) 0&) (14.104)
ij -

The remaining results stated in part (f) can be demonstrated in a similar manner.

(g) From the relation (14.102), the commutator can be evaluated:
[Sij» Sl = i 50Sij, vivil = i5(LSij» il + vl Sij, mi)

= 2((vj8ik — vidi)vi + v (Vi — vidj)
—1(8xSit + 81 Sjx — SixSji — 8j1Six)- (14.105)

14.7 Relation between SO(2n) and SU(n) groups

The U(n) group consists of transformations that act on the n-dimensional complex
vectors, leaving their scalar product (w - z) = ), w'z; invariant.

(a) Show that the SU(n) transformations which leave Re(w - z) invariant can be
identified as those in an SO(2n) group. Thus, the SU(n) is a subgroup of SO(2n).

(b) If we write the SO(2n) matrix in the form R = ¥, where M is an antisym-
metric 2n X 2n matrix in the form

M= (_; g) (14.106)

where A, C are antisymmetric matrices and B is an arbitrary n X n matrix, show
that R = e also belongs to U(n) if M has the specific form

M= (—AB i) with A antisymmetric and B symmetric. (14.107)

(¢) The 2n-dimensional representation of SO(2n) decomposes as n + n* under
SU(n). In other words, if we write the 2n-dimensional real vector in the form

r=(a,....an by, ....by) = (a;, b)), (14.108)

show that, for the unitary matrices written in the form as given in (b), the combi-
nation a; + ib; transformed into themselves and so did the combination a; —ib;.

(d) Work out the decomposition of the adjoint representation of SO(2n) in terms
of the irreducible representations of SU(n).
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Solution to Problem 14.7

(a) In the scalar product (w - z) = ) ; wz; we can write w; and z; in terms of
their real and imaginary parts

w; =a; +ibj, zj = a; +ib]. (14.109)

The scalar product can then be put in the form

w-2) =Y (a;a;+b;b;)+i Y (a;b —bja}) (14.110)
j=1 j=1
which gives
Re(w -2) = Y (a;a; + b;b}) (14.111)
j=1

If we collect a; and b; to define a 2n-dimensional real vector r =
(a,...,ay, by, ..., b,) then Re(w - z) can be written as the scalar product of
2n-dimensional real vectors

n

r-r = Z(aja} +b;b). (14.112)

j=1

The transformations which leaves this scalar product invariant are just the SO(2n)
transformations

r; —r/=Ryr;  where RR" =R"R=1. (14.113)

From this we see that the SU () group is a subgroup of SO(2r) whose transform-
ations leaves both Re(w - z) and Im(w - z) invariant.

(b) and (c¢) By definition a U(n) transformation on the n-dimensional complex
vector space is of the form

zi— 7, =U;z; with UU'=UU=1 (14.114)
where the unitary matrix U can be written as
U =el with H = —H being an antihermitian matrix. (14.115)
For infinitesimal H, we have U ~ 1 4+ H and
=z +Hjz; = "=z +Hjz. (14.116)

Thus

i+ =@ +z)+ %(H,‘j + H;;)(Zj +Zj) + %(Hij - H,‘j‘)(zj - Zj)
(14.117)
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and
a; = a; + Ajja; + Bjjb; (14.118)
where a and b are the real and imaginary parts of z:
a; = 3z + ). b =—il(z —2)),
Ajj = 3(Hij + H}), Bij = i3(Hj — H}}) (14.119)

are all real. Since H is antihermitian, we have

H = —Hj;. (14.120)
This implies that
Ajj=—A; and B = Bj. (14.121)
Similarly,
b; = bi — Bija; + Aijb;. (14.122)

‘We can combine these two transformations as

()-6)en)

where M is an antisymmetric matrix of a specific form

(A B . T T
M—<_B A) with A=-A", B=B". (14.124)

(d) From (b) and (c) we have learned that the vector in SO(2n) decomposes into
n + n* of SU(n). The generators in SO(2n) can be associated with second-rank
anti-symmetric tensors. This implies the decomposition of SO(2n) generators as

[m+n*) x (m+0n%)]-) =@ xn)—)+ (mxn*)+ 0 xn*)_,
_ nn-—1) 2 nn — 1)*
=—5 dm —1)P 169—2

where the subscript (_y means antisymmetrization. For example, we can decompose
the 45 generators of SO(10) in terms of the irreducible representations of SU(5):

45=10+24+1+10". (14.125)

14.8 Construction of SO(2n) spinors

The y-matrices given in Problem 14.6 can also be written as a tensor product in
the form (Note: the integer m of Problem 14.6 is being called n in this problem)

yi("H) = yl.(") X T3, i=1,2,...,2n,
+1 +1
V2(Z+1) = 1" x 1, V2(2+2) =1"xn

where 1 and y,"s are 2" x 2" hermitian matrices.
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(a) Show that
yz(,?)zlxlx-~-xrzxr3x~-~r3

J/z(/?)_1=1><1><-~~><7:1xr3x--~r3 (14.126)

where the 2 x 2 identity matrix 1 appears (k — 1) times and t3 appears (n — k)
times and

oy =X Ix o x T3 Ix o1 (14.127)
(b) For the chirality matrix, we define

veve = (=) " (1y2 -+ van)- (14.128)

Show that ygyg can be written as the direct product of n Pauli T3 matrices:

YFIVE=T3 X T3 X -+ T3 (14.129)
and
win _ (Vim 0
Veve = ( e @) ) (14.130)
—YrIvE

(c) Since the natural basis for Pauli matrices are spin-up |+) and spin-down |—)
states, we can take as the basis for the y-matrices the tensor product of such states

le1, €2, ..., &0) = |&1)|82) ... |&n) with g = +£1. (14.131)

Show that 2" such states in the SO(2n) spinor representation decompose irre-
ducibly into two set of 2"~ states, called ST and S~. They have the property
of

n 1 +
1_[8[2 +1 for g_states. (14.132)

(d) For the case of n = 2, suppose we embed the SU(2) group into SO(4) by
identifying 1 of SU(2) generators with B; generators of SO(4) as defined in
part (f) of Problem 14.5. Show that spinor representation S* and S~ reduce with
respect to the subgroup SU(2) as

ST 1+1, S —2. (14.133)

(e) Show that for the case n = 3, the spinor representation ST and S~ of SO(6)
reduced with respect to the subgroup SU(3) as

ST — 3*41, S™—>3+1. (14.134)

(f) Show that under SU(5), the spinor representation ST ~ 16 of SO(10) reduces
as16 =10 +5+1.

For more details of SO(2r) spinor construction, see Wilczek and Zee (1982).
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Solution to Problem 14.8

(a) and (b) Let us work out the tensor product expression of a few low-
dimensional y ™ matrices:
For the n = 1 case:

1 1 1 .
W=u, n'’=n yip=-iun=rmn. (14.135)
For the n = 2 case:
2 2
)/1():‘[1X‘L'3, )/2():‘[2X‘[3,
7/3(2) =1xr1, ;/4(2) =1Xx 1,
2 2. 2.2, @
%én)/E = (=) 1’1( )Vz( )V3( )V4( "= —(nn) x (BUn)
=13 X T3. (14.136)
For the n = 3 case:
3) _ 3) _
Y =T X173 X713, Y, =T X173 X713,
y3(3)=1><rlxt3, y4(3)=1><r2><r3,
P =1x1x1, YD =1x1x1,
(3) 33,3, 3. ,3.,,3, 3
Yeve = (D°Vi V2 Vs Ve Vs Ve
=173 X T3 X T3. (14.137)

From these it is not hard to obtain the general (n) case by induction

(n) (n)
Voo =1X1IX g XT3 X X173, Yy =1X1X- T XT3 X - X713,

where the identity matrix 1 appears (k — 1) times and 73 appears (n — k) times.
We can also explicitly calculate the commutators:

Oy ok = lz [ ] =1 U x e x (14.138)
and deduce
Ve = T3 X T3 X T3 X -+ X T, (14.139)

(c) Itis easy to see that y;';‘),E anticommutes with y's. For example,

y}’,"),Eyzk,l =13 XT3 X %X (13T]) X 132 cee X ‘1,'32 (14.140)
Vo1V = Ty X T3 X -+ X (T1T3) X T2+ X T2 (14.141)

which gives

{vie. v} =0. (14.142)
Since o;; is quadratic in y;s,
[Vﬁ\)@ O'ij] =0 (14.143)

which implies that yg‘),E commutes with the generator J;;, which are represented

2
by Jij = %oi_,- in the spinor representation. From (y}}"),E) = 1, we can decompose
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the 2"-dimensional spinor into two 2"~!-dimensional representations S* having
yF(';‘),E eigenvalues of &1 (Schur’s lemma). It is clear that

yF(7\)/E|81752’ e ) = (3 X T3 X - X T3)|E1, 82, ..., &)
n
= ]_[si €1, €2, + -+ En). (14.144)
i=1
Thus S+ states have []/_, &; = 1 and S~ states [[/_, & = —1.

(d) Applying the above results to the SO(4) group which has the irreducible
spinors

St: 2t~ (' ++>) and  ST:2 ~ (' + _>) (14.145)
|——) | —+)

and embedding SU(2) into SO(4), we can identify the SU(2) generators with a

subset in the SO(4):

‘T’ = By = Ji — K = ewijJij — Jia (14.146)
For example,
‘73 > Jip— Ju = 3(0—om) = 3(-3 x 1+ 1 x13). (14.147)
In ST, we have | + +), | — —) and both have a zero ‘13’ eigenvalue, e.g.
‘4 +) =2(=D 1+ 1- (D] ++) =0 (14.148)
Similarly, for the | — —) state
. (:f_;) —0. (14.149)

Namely, both members of the S* spinor transform trivially under SU(2). This
implies that 2" — 1 + 1 under SU(2). For the S~ states it can be similarly worked
out and the result can be written as

‘g (: J_F J—r; ) _ (—Ol ?) <: J_F J—r;) (14.150)

Thus we have 2~ — 2. Namely, the SO(4) spinor S~ is simply an SU(2) spinor.

Remark. The identification of the SU(2) generators TEE‘ with those in the SO(4)

can also be carried out through the identification of their respective indices: a=
1,2 for SUR) and i = 1, 2, 3, 4 for SO(4).

1=1+i2, 5—=34i4

TQZ = Jayissoia =iz —iJsg = —2iJ3y = — 503
=—1(lx1w) (14.151)
Similarly, we have Tii = —%(13 x 1), so that we check with the above result,

‘o =T T =lnx1+1xm). (14.152)
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(e) We can embed the SU(3) group into SO(6) with the identification

1=1+i2, 2 =344, 3=5+i6, with & = SU(3) index.

The SU(3) generators W(f are related to J; 55 by these relation of indices, e.g.

Wii =Jiini-n =ity —iJp==2iJp=—3on=—3( x 1 x ).
(14.153)
Similarly,
Wi=-lxuxl), W=-ldxlxm. (14.154)
For ST, we have the states | +++), | +——), | —+—), | — —+), and their quantum

numbers are given by

State wl—-w; W+ wi—2w;]
l[+++) 0 0

+-=) = -1

|—+=) +; -1

|——+) 0 2

(It may be helpful to think of W} — W} as the third component of isospin and
W] 4+ W} — 2Wj as the hypercharge operator.) Thus we see that the states | +——),

| — 4+—),| — —+) form the triplet 3* representation under SU(3)
|+ —-)
| —+—) ] ~ 3" (14.155)
|——+)

This means that ST decomposes under SU(3) as 47 — 3* + 1. Similarly, S~
decomposes as 4~ — 3+ 1.

(f) In the spinor representation S* for SO(10), we can denote the states by

€1, €2, €3, €4, €5, 8¢)  with ]—[gi =1. (14.156)

We can identify the first two ¢; s as the spinor states of SO(4) which contains SU(2),
and the last three ¢;s with SO(6) which contains SU(3)¢. Then the SU(2); x
SU(3)¢ quantum numbers of spinor representation S* are given by

|+ =)
(: ffi) X 1 =+=) | = 2(,3) = ux, dr (14.157)
| ==+

(' J_r 3) X |+ ++) = 2(1, 1) — vg, er (14.158)
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[+—) v
<| _ +>) X[+ ++) - 2,1~ <6>L (14.159)
|+ —=)
<:J_r:r;> Xl=+=)] 23— (Z) . (14.160)
| ——+) L

It is easy to see that these are just 5+ 10" + 1 representations of SU(5),
see Problem 14.1. The SU(5) singlet can be identified with the right-handed
neutrino vg.



15 Magnetic monopoles

15.1 The Sine—Gordon equation

Consider the Lagrangian for a scalar field ¢ in two-dimensions (respectively, one
space and one time)

1

1
L= §<ao¢>2 -3 (3:9)* — ;1[1 — cos(bp)] (15.1)

where a and b are constants.

(a) Show that the equation of motion for this Lagrangian is of the form

3 — 32¢ + asin(bp) =0 (15.2)
which is called the Sine—Gordon equation.
(b) Verify that the field configuration

4 (x —vr)
d(x, 1) = 5 tan ! {exp [i(ab)l/zm“ , (15.3)

with v being an arbitrary constant, is a solution of the Sine—-Gordon equation.

(¢) Show that the effective potential V (¢), given by V(¢) = a(l — cosb¢)/b,
has degenerate minima at

. 2
" =n—" (15.4)

where n is an integer, and the field configuration, given by eqn (15.3 ), interpolates
between two such minima of V (¢):

¢(x = —o0, 1) = p™"
P(x = +oo,1) = ™. (15.5)

(d) Show that the energy carried by the configuration (15.3) at# = 0 is

E=8 (:—3)1/2. (15.6)

(e) If we write the Lagrangian £ in powers of ¢, find the mass and the quartic
coupling constant in terms of @ and b. Express the energy E = 8(a/b*)!/? in terms
of the mass and coupling constant.
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Solution to Problem 15.1

(a) The equation of motion which follows from

oL oL
=" 90,8 (1>
is the Sine—Gordon equation:
3"9,¢ +asinbgp =0, (15.8)
ie.
32p — 3¢ +asinbg = 0. (15.9)

(b) We will show that the field of the form
4
P(x) = Etan & (15.10)

where

£ =exp[(ab)'y(x —v1)], (15.11)

and y = (1 — v?)~!/2 with v being arbitrary, satisfies eqn (15.9).
Using the formula

a 1 9
—tan”! y J

ox = T4y 0x (15.12)
we obtain
¢ 4 1 9 4 & 1
9 _4 5 _2_ 8 15.13
ox bliEax  bpipe (15.13)
and
82 4 2 1 — 2
¢ _day’6(1—¢) (1.1

axr (1422

Because the function ¢ (x, t) has the space—time dependence through the combi-
nation of (x — vt), the second derivatives must be related (as in the conventional
wave equation) 3¢ — v?32¢ = 0. The above result can then be written as the first
and second terms of the Sine—Gordon eqn (15.9):

P’ 0%  —dat(1 —£?)
o ax2 - (14822 (19

Now calculate the third term in the Sine—~Gordon equation:

sinbg = sin4(tan"' £) = sin 40 with 6 =tan'£. (15.16)
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With the help of the formula sin 46 = 2 sin 26 cos 26, and

2tan 6 2 1 —tan’6 1 —&2
sin26 = an = 5 and cos 20 = an = 5 ,
I +tan?6 1+ &2 1 +tan?0 1+ &2
(15.17)
the sine term can be evaluated,
4E(1 — &2
asinbg = asin4f = M (15.18)
(1+&2)?
which just cancel the first two terms calculated in eqn (15.15):
3¢ — 82¢ +asinbgp = 0. (15.19)

Remark. This solution has the space—time dependence through the variable £ =
exp [(ab)l/ 2y (x — vt)]. One simple way to understand this is to note that if we
write
o _FTY 15.20
x_(]_v2)l/2 (15.20)
then x’ is related to x by a Lorentz transformation. Thus in this variable x’, so
that £ = exp[(ab)'/?x’], the function ¢ (£) is expected to be a solution to the
time-independent equation of

32¢ = asinbg. (15.21)

Letus demonstrate this. To solve this static equation by integration, we can multiply
both sides by 9, ¢ so that it becomes

1 d (dp\* ad
or
l(d_¢>2+ﬁ( be) — (15.23)
S\ 7 b cosbp) = c. .

If we use the boundary condition of d,¢ = 0 and b¢p = 2nm, as x — o0, then
the integration constant is fixed to be ¢ = a/b. We have

dop\*> 2 4 b
(d—f) = 7"(1 — coshp) = 7“ sin? 7¢ (15.24)
or
do a2 be
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Integrate over the equation

dp  __ra\1»
i/m _2<b) /dx (15.26)
or
by 2y = L 'M —In <tan @> (15.27)
2 |1+ cos(bg/2) 4
which just checks with our result of
¢ = gtan_l {exp [£(ab)'*x']} . (15.28)

Thus we can get the general solution by boosting this static solution in the x-
direction by a velocity v. In other words, the general solution is moving in the
x-direction with a velocity v.

(¢) From V(¢) = a(l — cosb¢p)/b we have
oV .
% = asinbg, (15.29)

so that 9V /d¢ = 0 can be satisfied by b¢p = mmx withm =0, 1, £2,.... Such
extremum points are minima if

%V
W =abcosbgy > 0. (15.30)

Thus if we take ab > 0, then cosmm > 0, only for even m = 2n. Thus the minima
of V(¢) are located at

2
pmin — ”T” n=0,+1,42,.... (15.31)

We now study the extrapolation of this ¢ (x, ¢) from x — oo to x — —oo. Taking
the x — oo limit, we have

4 2 -
£ = exp[(ab)'*y (x — vt)] — o0, ¢ = Etan’IS = 771 = ,(llilf).

(15.32)
Taking the x — —oo limit
4 )
£ =exp[(ab)?y(x —v1)] — 0, ¢ = - tan"'E =0=¢™". (15.33)

Thus, the configuration

4 (x —vt)
d(x, 1) = 5 tan ! {exp [i(ab)l/zm:“ (15.34)

interpolates between two minima of V (¢).
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(d) The conjugate momentum is given by

oL
=—=9 15.35
T b0t ¢ ( )
and the Hamiltonian density is then
H=ndop — L= 3000+ 50:0)° + V(@) (15.36)

The total energy E for the time-independent field is then

E = fdx E(zw)z + V(d))]. (15.37)

Because eqn (15.9) can be written via eqn (15.29) as
A%
82 — 92 — =0, 15.38
(% — )¢ + 55 (15.38)

for the static case dyp¢p = 0, we get

1% 3% 9 vV a 1%
~32p+— =0 or Y999 _ % _

— = — = —. (15.39)
d¢ 0x29x  0¢ 0x  Ox

This implies that

2 2
i[l (%) _V}zo . 1<%> V= (15.40)
ox | 2 \ dx 2 \ 0x

To calculate the constant ¢; we can set x = oo which gives £ = 0, ¢ = 0, hence
d¢/0x = 0 and V = 0, leading to ¢; = 0. This means that for the field which
satisfied the equation of motion, we get

1 (a¢>2 dx ( 1 )‘/2
— | —= =V or — = — (15.41)
2 \ox dp ~ \2v

and the total energy is then

=}

E= /dx [% (0:0)* + V(¢>)] = /deV(¢) = /2V(¢)d—xd¢

a9
2/b 2a\ /2 2/
_ / QV @) dp = (7) / (1 — cosb)' dg
0 0
a2
—38 (ﬁ) . (15.42)

(e) From the power series cos) = 1 — 16% + 16 4+ - .- we get

_ 4 _ 1 2 _ ab® ,
V(p) = E(l —cosbgp) = Eab¢> TQS +--e (15.43)
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Comparing this to the standard form given by

2
Wy Ay
V()= —¢° — — 15.44
(®) 5 ¢ 4!¢ ( )
we have
w? =ab, A= ab’. (15.45)
The energy is of the form
a\1/? w?
E=38 <E) =85 (15.46)

Note that in a two-dimension fields theory, the parameters A and > have the same
dimension because ¢ is dimensionless.

15.2 Planar vortex field

Consider the Higgs Lagrangian in two space and one time dimensions (1 = 0, 1, 2)

1 A
L= =2 FuF"™ +(Du) (D"9) + 129" — ~(#"¢)° (15.47)

where F,, =9, A, —9,A, and D¢ = 0,¢ +ieA, .
(a) Work out the equations of motion from this Lagrangian.

(b) Show that the time-independent field configurations A and ¢ with Ay = 0 and
having the » — oo asymptotic behaviour (in the two-dimensional polar coordi-
nates)

1 . 2\ 1/2
A(r,0) > =V (@nb), ¢, 6)— ae’ with a = <MT) (15.48)
e
will satisfy the field equations worked out in (a) upto o@r?).

(¢) The magnetic flux ® = [ B - ds is related to the gauge field A of eqn (15.48)
on a large circle C at infinity as & = 550 A - d1. Show that this flux must appear in
quantized units:

2
®, =n-". (15.49)
e
Solution to Problem 15.2
(a) From the Euler-Lagrange equation for the ¢ (x) field:
oL oL

_ 15.50
36"~ 3,07 (1550

we obtain

D"(D)¢ = e — rp(dpd™), (15.51)
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while the equation of motion for the A, field

oL oL

—— =, 15.52
dA,  "3(3,A,) ( )

works out to be
ie ($9,0" — ¢*0.¢) +2e*A,(¢*P) = 3" F,. (15.53)
(b) In the polar coordinate system, we have V = (td/dr, 36 0 /7). Thus for large
r, the asymptotic form we want to use can be written as
~ina

. 1 A
Vo =01 ARG = -V =10  as r—oco. (15.54)
r e er

Since Ag = 0 and ¢ is independent of ¢, the full covariant derivative is given by
the spatial part, which vanishes asymptotically as

D¢ = (V —ieA)p — |:9—ma — ie—na @] - 007 as r — oo.
r er
(15.55)

Also from ¢ (r,0) = a " we have

1P — (@ )¢ =0 (15.56)
where we have used a®> = u?/A. Thus eqn (15.51) is satisfied up to terms of order
or2).

We now show that eqn (15.53) is satisfied by these field configuration. The
right-hand side vanishes to O (r~2) because the field tensor F,,, — O (r~2) as the
gauge field can be written as a pure gauge, eqn (15.48)

no

A, =0, with x =— as r — oo. (15.57)
e
The left-hand side also vanishes to O (r~2)
. 2 s 2 R R
ie [”m R 0} + 262 (ﬁa) a® = 0(r ). (15.58)
r r er

Equations (15.53) and (15.51) are satisfied because both sides of these equations
vanish, at least to O(1/r?).

(¢) From Stokes’ theorem, we get

CI>=/B-dS=¢‘A~dl (15.59)
N c

where C is the boundary of the surface S. In the limit of r — o0, we have
A(r,0) — (1/e)V (n0), thus the components

1
A —0 and Ag > — (15.60)
er

and the flux quantization condition follows:

2 21 2
@ :/ Agrdf = ’1f do =n=. (15.61)
0 € Jo e
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15.3 Stability of soliton

The equation of motion for a scalar field in two dimensions can be written as

v
O¢ + i 0  where O=3a]—3d>% (15.62)
Consider a small perturbation around the time-independent solution ¢ (x),
G (x, 1) = ¢o(x) +8(x, 1) (15.63)

where §(x, t) is a small quantity.

(a) Show that, to the first order in §, the perturbation §(x, ) satisfies the equation

v
O8(x, 1) + —5 3(x, ) =0. (15.64)
¢ d=do
(b) Take §(x, ¢) in the form of a superposition of normal modes:
S(x, 1) = ReZan € Y (x). (15.65)
Show that
d*y,
—LYn Vo = w2 (15.66)
dx

(¢) Show that if ¢y(x) is a monotonic function (i.e. has no nodes), then all
eigenfrequencies are non-negative.

Solution to Problem 15.3
(a) The unperturbed static solution ¢ (x) satisfies the equation
Ogo + V'(¢g) =0 or — a§¢0 + V'(¢) = 0. (15.67)

Substitute ¢ = ¢ + § into the field equation, O(Py + 8) + V'(¢p + 8) = 0. For
small § we can expand V'

V'(go +8) = V'(¢o) + V" (¢0)3. (15.68)
Then the equation of motion is, for small 4,
Ogo + V'(¢o) + 38 + V" (¢h9)8 =0 (15.69)
or
08 + V" (¢0)8 = 0. (15.70)

(b) Substituting the normal mode expansion §(x,7) =Re >, a, e’ 7, (x) into
the above equation, we get

d*y,
dx?

which can be viewed as a Schrodinger equation, ¥, being the eigenfunction with
eigen-energy E, = w?.

+ V' (@0) ¥ = 0 (15.71)
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(¢) From the equation for ¢y,
—37¢0 + V'(¢h) = 0, (15.72)

we get, by differentiating with respect to x,

2
_8_ <%) + V”(@)% = 0. (15.73)

ax2 \ 9x 0x

This can also be viewed as a Schrodinger equation with % being an eigenfunction
with zero energy E, = w? = 0. Then if ¢, is monotonic it has no nodes. It
is a well-known theorem that for a one-dimensional Schrodinger equation with
arbitrary potential the eigenfunction with no nodes has the lowest energy. Since
this eigenfunction has zero energy, all other eigenvalues are positive. Note that
with normal mode frequencies all positive for the perturbation §, the solution ¢
is stable.

15.4 Monopole and angular momentum

For a charged particle moving in a monopole field, the Hamiltonian is given by
1, .
H = —2—D + V(r) where D=V —icA (15.74)
m
where A is the monopole vector potential given in CL-eqn (15.25).
(a) Show that
; . Tk
[D;, r;] = 6y, [D;, Dj] = —iegeiji 3. (15.75)
(b) Show that the angular momentum operator L defined by
r
L=—-irxD—eg- (15.76)
r
will have the usual commutation relations for the angular momentum operators,

[Li, D;] = ig;ji Dy, [Li,r;] =igijir,

[Li, Lj] = igijiLy, [Li, H] = 0. (15.77)

(¢) From the Heisenberg equation of motion show that

dr _ D (15.78)
dr lm ’

which implies L = mr x dr/dt — egr/r.
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(d) Using the identity
1 1
D-D=D-r)5;D-1)—Dxr)=Dxr) (15.79)
r r
and the relation
L-L=—( xD)?+¢%g?, (15.80)

show that the Hamiltonian on a subspace of states for a given total angular momen-
tum is of the form

PR U R I e e Y (15.81)
YT om a2 T v ar 2mr? ’ ’

(e) Show that the quantum number / can take only values of the form,

I =legl, legl + 1, leg| + 2, .... (15.82)

Solution to Problem 15.4

(a) The vector potential for the monopole, according to CL-eqn (15.25), has the
form

1 —cosf
A= ag=0, a,=80=c0s0) (15.83)

r sin 0

which has a string on the negative z-axis. Expressed in Cartesian coordinates, it
has the form

—y Y - *

X

. Aj=g—  A.=o0 15.84
8rir+2) Y =812 ( )

Since A depends only on the coordinates (not on the derivatives), it is easy to see
that

[Di,rj] = [3,‘,}”j] :8,'j (1585)

[Di, DJ] [8l — ieAi, 8j — ieAj] = —ie[ai, A]] — ie[Ai, 81]

= —ie(}A; — 0,A;) = —iee;j By = —iegsijk:—l; (15.86)

where we have used the fact that the monopole field is given by By = gri/r>.

(b) Given the definition of (15.76) L = —ir x D — egf we now compute the
commutators involving L;s:

ri
[Li, Dj] = [—igirDy, Dj] — eg [7, D;]. (15.87)
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The first term on the right-hand side is

. . . r’l
—igi (re[ Dy, D1+ [rx, Dj1Dy) = —igin [Vk(—leg)8ljnr—3 - (Sjle]

é rir.,-

= —eg (i — —3> + iEjlel. (15.88)
r r
The second term on the right-hand side in eqn (15.87) is
1 1 y g
—eg—lr;, Dj] —egri| -, D; | = eg— —eg—" (15.89)
r r r r

where we have used [D;, f(r)] = f'(r)dr/dr;. Combining these two terms, we
get the result
[Li, DJ] = iEijka. (1590)

This means that D; transforms as a vector under the rotation.
The next commutator to compute is

. Ti
[Li,rj] = [—iciuriDi. r;] — eg [7, rj]
= —ie,»klrk[Dl, rj] = ie,-jkrk (1591)

which just confirms that r; is a vector.
We now need to check the basic angular momentum commutation relation

[Liv Lj) = —iejulLi neDil = eg [ Li 2. (15.92)

The first term on the right-hand side can be calculated using the commutation
relations of (15.90) and (15.91):
—igju([Li, re] Dy + ri[Li, Di])
= —igju (i€t Dy — ireinDy)
= (8ij0n — 61184j)1n Dy + (=8 8nk + 8ik8jn)ri Dy
= 8ix0ju?k Dy — 8i18pj1n Dy = 18ijim (—i&mpntx Dy) (15.93)

where we have used the identity e,pc€400 = Spadece — SbeSeas the second term on
the right-hand side in eqn (15.92) is

rj 1 LTk
—eg [L,-, —] = —eg[L;,rj]- = —egig;jx—. (15.94)
r r r
Combining them, we get the expected result
(L1 L1 = igyjn (—iemari Dy — 2eg) = isiinLm, (15.95)
< < ,

showing that L;s, as defined in (15.76), are indeed the angular momentum
operators.
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The Hamiltonian is of the form
1
H=—-——D>+V(r) (15.96)
2m
and the commutator with the angular momentum operator is

_ 1 > _ Y 5.
[LivH]_%[LivD]—i_[LisV(r)]_%[LHD]D]]

1
= %(l.é‘,‘jkaDj + i8[jijDk) =0. (15.97)

This means L is conserved by the Hamiltonian which describes the motion of
particle in a monopole field. These calculations verify quantum mechanically that
the monopole’s contribution to angular momentum is indeed given by —egr/r.

(c) From the Heisenberg equation of motion:

Wit =i (e ) D2 = =2 (15.98)
—_— = Sl = - Sl = .
dt : ! 2m m
Thus we can write the angular momentum L of eqn (15.76) as
d
L=mrx 2 _egl. (15.99)
dt r

The first term is the familiar particle angular momentum. This again confirms the
interpretation of the second term as the angular momentum of the electromagnetic
(monopole) field.

(d) In the identity

D-D:(D-r)rlz(r-D)—(Dxr)rlz(rxD) (15.100)
we have
r-D:r-(V—ieA):r-V:raa—r (15.101)
where we have used A, = 0. Also
D'r=r'D+3=raa—r+3. (15.102)
Then the first term of the identity (15.79) is
(D~r)l(r-D)= (ri+3>l<ri> =8—2+%i. (15.103)
r? or r2 \ or orz  ror

From [D;, r;] = §;;, we get D x r = —r x D and
[(r x D)y, r?] = [r2D3 — r3Ds, ri+r; —I—r32] =213 — 23, = 0. (15.104)

The second term of the identity (15.79) is then

—(D x r)lz(r x D) = iz (r x D). (15.105)
r r
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Combining them, we get
2 29 1
D D=—+-"——— D)>. 15.106
8r2+r8r rz(r>< ) ( )

The last factor can be related to L? because the definition (15.76) leads to

L-L=—(r xD)?+ g% (15.107)
We then have
92 20 L? —e%g?
D'D:W—i_;a_r—i——rz . (15.108)
The Hamiltonian is then
I
H=——D"+4+V(r)
2m
1 92 20 L? —e2g?
:_% m—i-;a—r — + V() (15.109)

and for states with orbital angular momentum /, we can replace L? by [(/ 4 1) to
get

1 92 20 I(4+1) —e2g?
H="—""—4+-—+— V(). 15.110
! 2m |:3r2 ror + r2 +V) ( )
(e) We can write the usual spherical harmonics as

Y0, ¢) = (0, ¢ll,m) (15.111)

where |/, m) is the eigenstate of the angular momentum operator and |9, ¢) is the
eigenvector of the particle with angular position at polar angle 6 and azimuthal
angle ¢. Under the rotation characterized by Euler angles «, 8, and y, we have

et e P Tk |1 my =" DY) (o BLy)ILm) (15.112)

where D) (@, B,y) = ¢™%d") (B)e=™ and d) () can be found in books

mm

on rotation group. A particular case of the above relation is, for« = y = 0 and
ﬂ = _07
e m) = Zd,ﬁ?m(—e)u,m’). (15.113)

m’

On the other hand, |6, ¢) can be obtained from |6 = 0) by rotations
0, ¢) = et e 100 = 0). (15.114)
Thus we can write the spherical harmonics as
Y6, ¢) = (6. ¢ll.m) = (6 = 0l &<, m)
- Ze*”wd;f?m(—e)(e = 0|, m'). (15.115)
This means that we can construct ¥, (6, ¢) from (60 = 0|, m').

The constraint on the eigenvalue [ can now be obtained by investigating the
structure of (6 = 0|/, m’).
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The special case of eg = 0: L is the same as the usual rotational operator, and it
is easy to see that

e il@g = 0y = |9 = 0) (15.116)

because a particle in the z-direction (6 = 0) is invariant under rotation about the
z-axis. From this we get

@ =0le'l |1, m'y = (0 = 0|l, m). (15.117)

On the other hand, ¢':%|I, m') = ¢™?|l, m’) and (¢™'? — 1)(6 = 0|l, m’) = 0.
This means that

O =0|I,m')#£0 only when m’ =0, (15.118)

which implies that the allowed values for / are 0, 1, 2,3, ....

The general case of eg #~ 0:
r
L6 =0)= [—i(r x D), —eg (—) } |6 = 0). (15.119)
r’z

Since 8 = 0 corresponds to x = y = 0 and z # 0, we have

(r x D).|0 = 0) = (xD, — yD)|6 = 0) =0 (15.120)
(5) e=0y=10=0). (15.121)
r’z

Thus we get
L.|0 =0) = —eg|0 = 0) and e %9 = 0) = /*4%|6 = 0). (15.122)
Then
0 =0T, m) =e O =0|l,m') =" =0|l,m)  (15.123)
or
e~ m=ed g — 0|1, m'y = 0. (15.124)

This implies that the matrix element (§ = 0|/, m’) # 0 only if m" = eg. Since
[ > |m’|, we have

[ > leg| or Il =legl|, leg|+1,.... (15.125)



16 Instantons

16.1 The saddle-point method

The transition amplitude for a particle moving in a one-dimensional space, when
written as the path integral, is of the form

(xst1x,0) = (xple/0x;) = N f [dx] e/ (16.1)
where
pz
H= T V(x) (16.2)
and

S—ftdt’ m (dx)* v 16.3
—0 §<ﬁ>—()€)~ (16.3)

N is the normalization constant,

(a) Show that in the Euclidean space t — —it, we can write

(xsle 7y = N [ taxe 5

S / ar| (Y F V)
= | = — x)|.
£ 0 2 \drt
(b) One can use the saddle-point method to obtain a semi-classical result. Show
that in the limit 7 — 0, we have

where

N / [dx]e /" = Ne™5:00/" [det(—9? + V(xo)]_” ?

- Ne—sa<xw/ﬁ1:[ ()\,,1)1/2 (16.4)
where x( () is the classical solution, obeying the equation of motion
8S d’xg ,
v =-m_ + Vi(xp) =0 (16.5)
and A,s are the eigenvalues of the second derivative operator,
_dzx" + V" (x0)Xn = AnXp. (16.6)

drt?
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(c) Show that the matrix element (x s le=H7/"|x;) for large t is of the form

(eple™ M) = B /Nx10)(01x;) (16.7)

where |0) is the ground state with eigenvalue E, of H,
H|n) = E,|n) and Ey < E, n # 0. (16.8)

(d) Show that for xy which satisfies the equation of motion (16.5), the combination

T(dﬁ)z—w ) (16.9)
2 \ dr 0), '

interpreted as the ‘energy’, is conserved.

(e) Show that if x((7) satisfies the equation of motion (16.5), then (dxy/d7) is an
eigenfunction of the second derivative operator, with zero eigenvalue,

dz dX() d.X()
—— | — v — ] =0. 16.10
dtz(dt)+ (x0)<dt) ( )

Solution to Problem 16.1

(a) Making the replacement ¢t = —it in eqn (16.3), we get

) © o m fdx\?
SE:—zS:/O dt |:E (ﬁ) +V(x):|. (16.11)

(b) We are interested in calculating the transition amplitude, which is proportional
to [[dx]e=St/". Thus we need to compute Sg and [dx].

In the semi-classical limit 4 — 0, we can use the saddle-point method to evaluate
the integral for Sg. The saddle point x( of Sg satisfies the first derivative equation

dz)C()

dr?

0SE

—_— + V'(xo) =0. (16.12)
Sx

=—-m

X=X

Thus, near the saddle point the leading correction to the classical action is the
second derivative term. We can write Sg as (see, for example, Problem 1.6)

Sp(x) = Sp(xo + 1)
T d27’]
= Se(xp) +/ di'n|—— +V"(xo)n|+---. (16.13)
0 dt?
Write

x(t) = x00) + ) caxa)  or  n=) e (0) (16.14)

with x0(0) = x;, xo(7) = x, and x,(0) = x,(7) = 0. Also x,s are chosen to be
orthonormal,

/ Xn (TN X (TNAT" = 8. (16.15)
0
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Then we can take the integration measure to be

dx] = [dn] = ! d 16.16
[X]—[T)]—UWQ (16.16)
and
) o d*n %
Sy’ = ; dt'n —P-i-V (xo)n
’ dzxn "
= chcm Cdvn, |- T V0 | (16.17)
We can choose x,s to be eigenfunctions of the second derivative operator
d2
T + V" (x0) X0 = Apxp (16.18)

to carry out the integration,

T
S =" cucm / X (D)X () dT' 0y = D oy (16.19)

n,m

and

_ dcy, Anc?
/[dx]e Se/h = l_[/(znh)l/Z |:_Z A :|

! 1
- 1:[ 02~ (et 0)172 (16.20)

with O being the operator:

d2
”
0= +V'(x). (16.21)

(¢) From H|n) = E,|n), we have
(xple™ M Mx) = (xple™ M n) (n)x) Ze Ect/h(x pln) (nlx;).  (16.22)

n

Since E,, > E, for n # 0, the ground state will dominate the sum for 7 large,
(xple ™ My — e BT/ (x 110)(0]x;). (16.23)

(d) By multiplying dx/dt to both sides of eqn (16.5), we get,

d | m [(dxg 2
2 2) - =0. 16.24
dtL((h) V(m)} 0 (16.24)
We can thus interpret
PO V (xo) (16.25)
2 \dr o '

which is a constant of motion as the ‘energy’ of the particle in the Euclidean space.
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(e) By differentiating with respect to T both sides of the equation of motion (16.5),

we get
d2 d.X()
m—
de? \ dr

This means that dx,/dt is the zero mode of the second derivative operator.

d
—y <ﬁ> =0. (16.26)
dt

16.2 An application of the saddle-point method

(a) Show that for the case of a free particle, Hy = p?/2m the transition amplitude
is given in the Euclidean space by

(x101xi0) = (xple™H7/M]x;) = L7 exp _Gy—x)’m] (16.27)
2T 2th

(b) Compare this amplitude with the formula derived in Problem 16.1(b) to show

that
N2 ma
N |det [ ——— = . 16.28
[e< dﬂﬂ (27”0) (16:28)

(c) Use the above results to find the ground state eigenfunction vy(x) and energy
E for the case of a simple harmonic oscillator,

2

14 m w2,
H=— 16.29
” + = i ( )
Solution to Problem 16.2
(a) (xgle™ "m0 M x fz— (xs1p) (ple™” 2 x,)
/ Ap. —preoomh ip(e =)/
2

d 2 ,x_f—x,-
/z [2 Wt p]

mh \ (xr —x;))%m
= <2m0) exp [—sz] (16.30)
C

where we have used the formula for the Gaussian integral,

+00 TN1/2
/ dx exp(—ax? + bx) = (5) exp(b?/4a). (16.31)

(o]
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(b) From the result (16.4), obtained in Problem 16.1, we have
(7, folxi, 0) = N exp[—Sg (x0)] [det (—02) + V" (x0)] "/ (16.32)
where x( () is the classical trajectory with the boundary condition
x0(0) = x;, xo(T0) = x7. (16.33)

In the case of free particle V (x) = 0, we have d’x(/dt> = 0. Thus, taking into
account the boundary condition, we get

xo(2) = x; + (xf —x,»)rio. (16.34)

The classical Euclidean action is then

S ( ) \/Iod | m dx 2 m /‘Tod /( )2 1 m(xf - -Xi)2
To) = T || —=—\\— = — Ty —x) 5= ————
EL0 0 2 \dt’ 2 Jo Y -[3 219

and

2 -
(xf, folx1, 0) = N exp _mly = xi) [det (—02)] 2. (16.35)
' 21’0ﬁ

Compare this with Part (a), we get

N mh \'"?
[det(—ag)]“/2=<2mo> : (16.36)

Eigenvalues of —% can be obtained as follows:
d2
—oEE =X = X = Asin(e,) T (16.37)
T

Then the boundary condition (16.33) requires

2
() =0 = g, = <”T—”> . (16.38)
0

Thus we have to choose the normalization constant in such a way that

NT] (ﬂ) _ < mh )1/2 (16.39)
J\nw 2 ' ’

(¢) For the case V(x) = %ma)zxz, we get V" (xo) = mw?. The eigenvalues are:

& ?
<_d_2 +w2) Xy = Ex, S £, = (ﬂ) + o (16.40)
T 7o
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Thus

N N[
[det(—d?/d> + o?)]"/? R CORE

SN ——

W [14 (wto/nm)?

_ (wmﬁ>1/2 ! (16.41)
“\ 27 (sinh wtp) /2 )
where we have used the identity
o] 2 . h
I1 (1 +y—2> _ Ay (16.42)
n n 7Ty
The classical action can be calculated as follows.
dZX 0 14 2 T —w

Using the boundary condition we get

. . (xp —x;)
X = Asinhwt + x; with A= ——=. (16.44)
sinh w1y
The Euclidean Lagrangian is then
Lo = (XY 4 Lx = L 2 cosn2 (16.45)
=—|— —mo = —mw"A” cosh 2wt .
F7 2 \dr 2 2
where for simplicity we have set x; = 0. The Euclidean action is then
T A2 mwx>
Sp = / Lpdt = 222 sinh 20t = — coth wr. (16.46)
0

Substituting the expressions derived in eqns (16.41) and (16.46) into the transition
amplitude:

(xf = x|e_Hr/h|xi =0)=N [det (—83) + V(xo)]71/2 e~ SeGo)/h

<mﬁa)>1/2 1 [ mwx? " ]
= exp | — cothwt | .
2w (sinh wt)!/? P 2h

(16.47)

As 1y — 00, this amplitude has the limiting value of

—Hrt/h mhw 2 —wt9/2 —mwx?/2h
(x|e '10) — o e e " (16.48)
/g
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Compare with the formula in (16.23)

(x|e” 7m0y — e EoTM(x|0)(0lx = 0) = e B My (x)Y(0),  (16.49)
we get,
ho mhw\ —meox® 2
E() = 7 and 1//0(x)1ﬂ0(0) = 2— e mer (1650)
T

Set x = 0, we get ¥ (0) = (mwh/2mw)"/* so that the ground state eigenfunction
for an SHO system is

maoh\ /4 28
Y(x) = (2_) e mex /20, (16.51)
T

16.3 A Euclidean double-well problem

In Chapter 15 we considered the double-well potential in Minkowski space—time:
here we consider its Euclidean counterpart.

Vi(x) =r(x? —a?)? (16.52)

with minimum at x = =+a. This is an example of the instanton solution (with
non-trivial space and time dependence) in a field theory in one space and one time
dimensions.

(a) Show that the solution to the equation of motion (set m = 1 for simplicity)

dle
-7 V'(x) =0 (16.53)

with boundary conditions x;(tr) — Za as T — £00 has zero energy

_l dx1 2 _
E=3 (E) —V(x) =0. (16.54)

Integrate this equation to show that the solution is of the form

o(t—r1
X1 = atanh% (1655)
with t; some arbitrary constant. (This solution is usually referred to as the instanton

centred at 7.) Also show that the Euclidean action for this solution is

w3

So = — 16.56
0= 175 ( )

where w? = 8Aa>.

(b) From the zero-energy condition (16.54), show that for large v we have
(x; —a) ~ e~®". This means that instantons are well-localized objects, having
a size of the order of (1/w).
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(¢) The zero-mode eigenfunction x; () from the translational invariance is related
to the classical trajectory x(7) by

=N—. 16.57
X1 T ( )

Show that the normalization constant N is given by

=\ 2
1 ) dx
N = W with Sy = /d‘L’ (E) . (16.58)
0

(d) Show that in the path integral [dx] the integration over the coefficient ¢, of this
zero mode can be converted into an integration over the location of the centre t:

1 So \'"?
— —dey = (22 ) dn. 16.5
Qrhy 24! <27rﬁ> 0 (16:59)

(e) Show that the one-instanton contribution to the transition matrix element is
given by

S 1/2
(ale ™ 7| —a)|;=; = Nt (%) e %/ (det' [-07 + V" (xD])  (16.60)

where det’ means that the zero eigenvalue has been taken out.

Solution to Problem 16.3

(a) Given that x;(t) — a as T — 00, we must also have dx;/dt = 0 in that
limit; otherwise, x; (t) will not stay at x; = a. Thus as t — 0o, we have x; = a
and dx;/dt = 0, which implies that both the kinetic and potential energies must
vanish:

1 (dx\*
E=—-—) - V() =0 at 17 — oo. (16.61)
2 \ drt

Since E is independent of 7, we have E = 0 for all values of t. Using
V(x1) = Mxi — a)? (16.62)

we get from E = 0,

d)C1
(E) =@V )2 =20 (x] —a?). (16.63)
The minus sign is chosen because we are interested in the region |x;| < a.
Integrating this equation we have
d 1 _
/%:—/(2)\)1/%11 or —In n-4d
(x; —a?) 2a

= —20"2(t - 19).
xta 1) 7 (t — 10)

(16.64)
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Or, with @? = 8Aa?,

x1(t) = a tanh @ (16.65)

For the zero-energy solution the classical action is

1 2
SO=/|:§ <%> +V(X1):| dt
=/2V(x])dr =/2V(x1)571dx1 =/(2V(X1))1/2dx1
1

= (0" / (—xi +a*) dx; = 21)'*5a’. (16.66)

—a

From o? = 8ia?, we get

3 3
_ 1/24 @ _ Y
So = (21?4 (2(%)1/2) = o1 (16.67)

Having the coupling in the denominator shows that the classical action for the
instanton is intrinsically a non-perturbative contribution.

(b) We are interested in

(%> =2V = -0 (xF — ). (16.68)

For 7 large, because of the feature of x; — a,

dx 172 —ot
e ~2A) 7" 2a(a@a—x1)) ~w(@—x;) or xy—a>~e “". (16.69)

(c) Substituting into the normalization condition, for [x1(z)]?>dt’ = 1, the trans-
lational relation between the zero mode and the classical solutions, we get

2 “ldx 2 /
N 7 dt' = 1. (16.70)
0 T

On the other hand, the classical trajectory x(t) has an action

T di\?
S0=/ <d ) dt'. (16.71)
0 T

Thus we get N2Sy = 1, or

1

N = G (16.72)
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(d) Expanding x(7) in terms of eigenfunctions x, (t), having eigenvalues E,
x(t) = c1x1(t) + crxo(t) + - - - (16.73)
we get for the zero mode E| = 0
dx(t) = x1(t)dcy. (16.74)

On the other hand, the change induced by a small change in the location of the
centre 1 is

di
dx = Zar, (16.75)
dt
Thus we get
dx 1 dx
Edl’o =dx = xl(r) dCl = WEdCl. (1676)

Cancelling dx /dt on both sides, we get

R 1 So 172
decy = (SO)I/ dry or Wdcl = (ﬁ) dry. (16.77)
(e) In the usual formula

<a|e—Hr/h| —a) = Ne Sen/h [det (_aTZ + V//(xl))]fl/Z (16.78)

we can remove the zero mode in the determinant by integrating over the location
of the centre of instanton,

So \'2 [t So \'2
— dyy=1t|=— 16.7
(27171) /0 =T <2nﬁ) (16.79)

§ S 1/2 _
(ale™ 7" —a) = Nt (ﬁ) =S/ et (=02 + V)] 2. (16.80)

Then we have

Note on the multiple instanton solution

Since instantons, for large t, are well-localized objects, there are also approximate
solutions consisting of strings of widely separated instantons and anti-instantons,
centred at 7y, ..., 7, where

T>T>T>->71, > 0.

We will now evaluate the functional integral by summing all such configurations.
Since these n objects are widely separated, the classical action is just S = nSp,
where Sy is the action for one instanton. Recall that for a single-well (harmonic
oscillator) potential we have,

N [det (=02 + )] = (%)'/2 et/ (16.81)

for large 7. If it were not for the small intervals containing the instantons and anti-
instantons, V” would be equal to w? over the entire time axis and give the result
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(16.81) for the single-well potential. The small intervals containing instantons and
anti-instantons correct this formula and can be written as

N [det (=92 + 0?)] "% = (nﬂﬁ)l/ze—wfﬂl(" (16.82)

where the factor K can be determined by demanding that this formula yields the
right answer for one instanton. The zero-mode integration is again converted to
integration over the centres, 7, T2, ..., Ty,

T 7] 23 Tl n
f dn/ dn/ a’r3~-/ dr, = = (16.83)
0 0 0 0 n!

For transition from —a to a, the integer n is odd and from —a to —a, it is even,

(_a|e—Ht/h,| _ a)

n=-even

o2 ] _
(5=t

+exp (—Ke %/7)]. (16.84)
Similarly,

fafe™e] )

12 (Ke=So/h )
_ a)r/2
(nh> n_Xev:en
w \1/2 1
_ (= —wt/2 ~ —So/h
_(nfi> e 2[exp(Ke r)
—exp (—Ke %/"7)]. (16.85)
Clearly, the one-instanton contribution is
i 12
(a|e™ | —a),_, = (%) e (Ke™50/he) (16.86)

Compare this with the result in Problem 16.3(e),

<a ‘eer/h| _ > Nt <2~:;0h) e SEGD)/h [det’ (_arz + V//)]—I/Z (16.87)

we see that

w \1/2 —wt/2 ’ 2 n1-172 [ So 2
K(ﬂ—ﬁ) e = N [det’ (<02 + )] 5 (16.88)
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or

—12

(16.89)

So "/ [det’ (=02 + V" (x))]
k= (ﬁi) [d 2 4 2\
et (—02 + ?)]

Note that by taking  large in (=a|e~7%/"|a), we can see that the lowest two energy
eigenvalues are given by

i
Ey = 7“’ + K e S/, (16.90)
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anomalous dimension 63
composite operators 77
antiquark density, see Gottfried sum rule 146
asymmetry
polarization or left-right asymmetry in Z
decays 221
atomic parity violation 218
coherence effect 218
axial anomaly
in a technicolour theory 238
path-integral (Fujikawa) derivation 136
n— yyand 7% — yy 140

B — L conservation 216
B-non-conserving operators 260
B-function 63
QCD two loops 191
QED 67
2¢* theory 66
Yukawa 72
zeros 69, 70
biunitary transformation, see mass-matrix
diagonalization, 215
BRST transformations 184
Gupta—Bleuer formalism 187
and physical states 186
nilpotent charges 184

Cabibbo mixing angle 211
and quark masses 216
Callan—Symanzik equation 64
Cartan subalgebra 262
chiral algebra SU(2); x SU(2)r 120
chiral symmetry
linear realization with o-field 115
non-linear realization without o -field 126,
128, 130
Clebsch—Gordon coefficients 90, 93
Clifford algebra 263
collinear divergence 193
covariant derivative
adjoint representation 158
fundamental representation 158
O(n) vector representation 165
parallel transport of a field 161

cross-section
ete™ — three jets 193
ete™ — hadrons 151
k¢4 scattering, 1
Cutkosky rules 62
A theory 59

decay rate
n— yy 141
H—> WtW~, ZZ, 11234
7t — pty, 125,208
at — ety 208
W* — hadrons 156
Al = §rule 227
see non-leptonic weak decays
dimensional regularization 46
arbitrary mass scale 63
QED vacuum polarization 49
disconnected diagram 8
cancellation via Wick’s theorem 8

ete™ — hadrons
from short-distance elementary scalars 151
from short-distance quarks 151
effective potential
one-loop 143
electroweak gauge couplings
and electric charge 213
neutral current coupling 213
equivalence theorem 230

fermion masses and mixing angles 214, 215
leptonic mixings in a vector-like theory 250
field strength tensor 158
commutator of covariant derivatives 165
Riemann curvature tensor Rgﬁ 5 165

gauge field
as compensating field 161, 162
Christoffel symbols I‘gﬂ 163
the connection in geometry 163
tensor notation 158
transformation property 161, 163, 166
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gauge invariance
local symmetry 162
scattering amplitude 180
Ward identity 180
Gaussian integrals 12
Gaussian wave packet 16
general coordinate transformation 163
general relativity as a gauge theory 163
generating functional for a scalar field 32
Goldstone bosons
broken generators 167
o-model 122
Gottfried sum rule 146
Green’s function
Feynman propagator 32
four-point function 7
gauge boson propagator 175
involving composite operator 2
one-point (the tadpole diagram) 56, 143
two-point function 1, 8

harmonic oscillator
path integral 17, 23
helicity state 205
pion decay 211
Higgs boson
decays H - WTW~—, ZZ, ti 234
Z — H H forbidden in the standard model
226
Higgs Lagrangian in 2 + 1 dimensions, see
planar vortex field 280
Higgs phenomenon
and superconductivity 173
Higgs potential, see scalar potential 212

ie prescription 33
instanton
Euclidean double-well problem 295
one-dimension field theory 289
invariant couplings
SU(2) vector representations 89
SU(3) octet baryon-meson 100
isospin
breakings 90
non-leptonic weak processes 107
two-pion system 105

A¢* theory
counterterms 37
renormalization constants 64
symmetry factors 1
left-right asymmetry, see asymmetry 221
London equation, see superconductivity as
a Higgs phenomenon 173

Majorana fermions 239
bilinears 240
charge conjugation properties 240

Index

creation and annihilation operators and
their anticommutators 240
mass-matrix diagonalization, see fermion
masses and mixing angles 214
Meissner effect, see superconductivity as
a Higgs phenomenon 173
monopole
angular momentum operator 283
particle moving in a monopole field 283
[ — ey and heavy neutrinos, see muon num-
ber non-conservation 244
muon number non-conservation
n— ey 244
muonium-antimuonium transition 252

n-dimensional space 53
Feynman integrals 46
infinitesimal volume 43
‘spherical’ coordinates 43
neutrino electron scatterings
Ve +e~ — v, +e” 223
vy +eT = v+ 223
neutrino, right-handed, in SO(10) theory 274
Noether’s current
conservation laws 113
isospin axial-vector current 118, 123
isospin vector current 117
Lagrangian with second derivatives 111
scalar fields 110
non-linear o-model, see o-model, chiral
symmetry 39
non-leptonic weak decays 107
CP properties of KO — 27, 37 225
Al = 1 rule 109, 227
enhancement by short-distance QCD effects
230

O(n) gauge theory 165

operator-product expansion
of two charged weak currents 155
of two electromagnetic currents 198
Wilson coefficients 147, 150, 199, 201

parity violation
atomic 218
weak neutral current 218
partition function, see path integral for
partition function 23
path integral
axial anomaly 136
free particle 11
general quadratic action 13
harmonic oscillator 17
non-standard representation 25
partition function 21
permutation symmetry 95
spin and isospin 96
phase space, see cross-section, decay rate 193
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three-body 193

two-body 2, 210
pion decay constant fr 125, 128, 208, 222
planar vortex field 280

magnetic flux quantization 281
polarization asymmetry, see asymmetry 221
polarization vector for a fermion 206
propagator, gauge boson

in the axial gauge 177

in the Coulomb gauge 178

in covariant R; gauge 175

longitudinal part and Ward identity 184

massive vector boson 176

QCD loops
B-function at two-loop order 191
colour factors 188
AT = } rule 227
QED
B-function 67
renormalization power counting 38
vacuum polarization 49
Ward identity 180
quark
SU(3) algebra 83

renormalization
composite operators 57
counterterm 37
composite operators 58
power counting 37
low-dimensional field theory 41
non-linear chiral theory 40
QED 38
renormalized mass 57
renormalization constants 64
renormalization group equation
homogeneous 63
¢ theory 71
solution by Coleman’s method 75
Yukawa coupling 72
running coupling 64, 67, 69
in two QCD loops 191
near a general fixed point 70

saddle-point method 289

scalar potential
first-order phase transition 172
SU(5) grand unified theory 256

SU(n) gauge theory with adjoint scalars

169
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scalar potential
SU(n) gauge theory with vector scalars 167
uniqueness of the standard model potential
212
short-distance physics
AT = } rule 227
ete™ — hadrons 151
W=* — hadrons 156
o-model, linear
broken generators 122
chiral symmetry 115
commutators 115
Goldstone bosons 122
PCAC 123
spontaneous symmetry breaking 122
o-model, non-linear
divergences 39
exponential form 128
square-root form 126
square-root of the exponential form 130
Sine—Gordon equation, see soliton 275
SO(10)
spinor representation 16 and vg 274
SO(2n) and SU(n) groups 267
SO(n) group algebra 260
Cartan subalgebra 262
SO4) ~ SU(2) x SU(2) 263
spinor representations 263
construction of SO(2n) spinors 269
soft symmetry breaking and renormalizability
142
soliton
scalar field in two dimensions 282
stability against small perturbation 283
spin states addition
isospin wave functions of two pions 105
three spins 93
two spins 85
two SU(3) fundamental representations 97
spin vector, see polarization vector for a
fermion 206
spontaneous symmetry breaking
broken generators 122, 167
by an adjoint scalar 169
by scalars in the vector representation, 133
O(n) — O(n — k) 135
SU(n) — SU(n — k) 135, 167, 168
coset space 171
in large N.QCD 171
o-model 122
SU(5) — SU@B) x SU(2) x U(1) 258
SU(5) — SU#) x U(1) 258
SU(2) representations 82
adjoint representation 87, 88
invariant couplings 89
real representation 79
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SU(3) algebra
invariant octet baryon—meson couplings
100
quarks 83
SU(s)
Higgs potential for adjoint scalars 256
massive gauge bosons 258
representation content with respect to
SU(@3) x SU(2) 255
SU(n) group
parameters and generators 79
SU(n) group 158
subtraction schemes
minimal (MS) 52, 56
modified minimal (W} 53, 56, 65, 68
momentum 56
superconductivity as a Higgs phenomenon
173
Symanzik theorem, see soft symmetry-
breaking and renormalizability 143
symmetry factor 1

T-lepton decays

T — evb, T — uvv 222

T — mwvand f; 222
technicolour theory

anomaly cancellation 238

pseudo-Goldstone bosons 239
transition amplitude

and energy eigenfunction 18

Hamiltonian representation 12

Index

transition amplitude
harmonic oscillator 17
path-integral (Lagrangian) representation
12, 14
prefactor 13, 15
harmonic oscillator 19

unitarity
S-matrix and 7'-matrix 62
unitary matrix
and hermitian matrix 78
Baker—Hausdorff relation 81
SU(n) 79, 158

vacuum polarization 49, 67

W* — hadrons 156
‘Weyl ordering of operators 27
Wick’s theorem 1
disconnected diagram cancellation 8
Wigner—Eckart theorem 90, 108
Wilson coefficients, see operator product
expansion 147
would-be-Goldstone boson
longitudinal gauge boson component, see
equivalence theorem 232
scattering amplitudes 233

Z boson decays
into fermions, see asymmetry 221
into Higgs bosons 226



