ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters  (4)
  • Windenergie  (2)
  • Copernicus  (4)
  • Akadémiai Kiadò  (2)
  • MDPI Publishing
Collection
Years
  • 1
    Publication Date: 2021-01-27
    Description: In this work we report new data on He abundances and isotope ratios (3He/4He) from gas associated to some thermal and CO2-rich mineral waters in N-Portugal. Collected gas samples are mainly CO2-dominant except two sites where gas is N2-rich. All the sampling sites are characterized by exceptionally high helium contents with 3He/4He ratios, corrected for air contamination, varying considerably from 0.09 to 2.68 Ra. In all sites, the 3He/4He ratios are higher than that typical for stable continental areas thus indicating a variable but not-negligible (up to 30%) contribution of mantle-derived primordial He. In all the CO2-rich waters, CO2/3He ratios and 13CCO2 are comparable with mantle values, thus suggesting a magmatic origin also for CO2. On the contrary, in the N2-rich waters He is mainly radiogenic, and CO2 is organic in origin. Since no recent volcanic activity is observed in NW Iberia, high 3He/4He values could be due, at least, to three processes: a) releasing of gas from the local upper mantle through deep extensional fault systems; b) releasing of magmatic volatiles from crustal reservoir(s) formed during past volcanic activity; c) degassing of a subsurface emplaced magma body. Mantle He flux in N-Portugal has been estimated to be up to 3 orders of magnitude higher than that typical for stable continental areas, thus suggesting, in this area, the presence of a tensional tectonic regime. This implies that mantle gases could migrate upward probably through inherited tectonic structures reactivated by neotectonic activity. The third possible scenario seems to be less plausible since seismic surveys carried out in NW Iberian did not find any significant evidence of mantle intrusion in the crust. The observed spatial variability in mantle-derived contribution could reflect the geometry of the granitic plutons in this area, thus supporting the hypotheses of an upper mantle degassing. Alternatively, it could be the result of a lateral migration of magmatic volatiles stored in a crustal reservoir.
    Description: Published
    Description: Budapest, Hungary
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: Helium isotopes ; NW Iberian peninsula ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-03
    Description: The Azores archipelago is made of nine islands all of volcanic origin and a few islets located in the North Atlantic Ocean, about 1800 km west of Portuguese mainland at the triple junction of the Eurasian, North American and Nubian plates (Azores Triple Junction = ATJ). Graciosa Island is part of the Central Group of Azores archipelago and is located on the Terceira Rift, a major tectonic feature of the ATJ. The main hydrothermal manifestations at Graciosa Island occur in the Caldeira volcano (SE part of the island), and particularly inside the huge (150 m wide, 80 m high) Furna do Enxofre lava cave located in the Caldeira, where a bubbling mud pool releases steam and gases, leading to the accumulation of CO2 at the bottom of the cave, filled by a coldwater subterranean lake. Three field work campaigns were carried out at Graciosa Island and 14 water samples have been collected, from boreholes, springs and the subterranean lake for isotopic (18O, 2H and 3H) and chemical analysis. The groundwater samples were plotted along the GMWL, and two water groups were identified in the 18O vs. 2H diagram. The splitting up of the samples is even more visible when the O-18 content is plotted as a function of the temperature or as a function of the electrical conductivity. Besides the differences in mineralization and temperature observed in the groundwater samples from Graciosa Island, an isotopic shift towards more enriched values is also observed. The salinity and isotopic content seems to indicate not a simple mixture between two end-members, i.e. seawater – fresh water: another process of mineralization and isotope enrichment must be considered in this active volcanic environment. A hypothesis to be formulated is that the source of salts could be associated to mixing with boiling seawater, that by evaporation will be able to: i) increase groundwater salinity, ii) strongly change the 2H content to more enriched values, and iii) absent or limited variation in d18O content.
    Description: Published
    Description: Budapest, Hungary
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: restricted
    Keywords: Water isotope ; Graziosa Island ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Journal cover
    Unknown
    Copernicus
    Online: 1.2016 –
    Publisher: Copernicus
    Corporation: European Academy of Wind Energy, EAWE
    Print ISSN: 2366-7443
    Electronic ISSN: 2366-7451
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Keywords: Windenergie ; Erneuerbare Energien
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Journal cover
    Unknown
    Copernicus
    Online: 1.2016 –
    Publisher: Copernicus
    Corporation: European Academy of Wind Energy, EAWE
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Keywords: Windenergie ; Erneuerbare Energien
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...