ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (151)
  • Aircraft Propulsion and Power  (126)
  • AERODYNAMICS  (25)
  • Cell & Developmental Biology
  • Chemistry
  • General Chemistry
  • Limnology
  • 1945-1949  (151)
  • 1920-1924
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-06-28
    Description: An investigation has been conducted in the NACA Cleveland icing research tunnel to determine the aerodynamic and icing characteristics of several recessed fuel-vent configurations. The vents were investigated aerodynamically to obtain vent-tube pressures and pressure distributions on the ramp surface as functions of tunnel-air velocity and angle of attack. Icing investigations were made to determine the vent-tube pressure losses for several icing conditions at tunnel-air velocities ranging from 220 to 440 feet per second. In general, under nonicing conditions, the configurations with diverging ramp walls maintained, vent-tube pressures greater than the required marginal value of 2 inches of water positive pressure differential between the fuel cell and the compartment containing the fuel cell for a range of angles of attack from 0 to 14deg at a tunnel-air velocity of approximately 240 feet per second. A configuration haying divergIng ramp sldewalls, a 7deg ramp angle; and vent tubes manifold,ed to a common plenum chamber opening through a slot In the ramp floor gave the greatest vent-tube pressures for all the configurations investigated. The use of the plenum chamber resulted in uniform pressures in all vent tubes. In a cloud-icing condition, roughness caused by ice formations on the airfoil surface ahead of the vent ramp, rather than icing of the vent configuration, caused a rapid loss in vent-tube pressures during the first few minutes of an icing period. Only the configuration having diverging ramp sidewalls, a 7 ramp angle, and a common plenum chamber maintained the required vent-tube pressures throughout a 60-minute icing period, although the ice formations on this configuration were more severe than those observed for the other configurations. No complete closure of vent-tube openings occurred for the configurations investigated. A simulated freezing-rain condition caused a greater and more rapid vent-tube pressure loss than was observed for a cloud-icing condition.
    Keywords: AERODYNAMICS
    Type: NACA-TN-1789
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: An altitude-test-chamber investigation was conducted to determine the operational and performance characteristics of a McDonnell afterburner with a fixed-area exhaust nozzle on a J34 engine. At rated engine speed, the altitude limit, as determined by combustion blow-out, occurred as a band of unstable operation of about 6000-foot altitude in width with minimum altitude limits from 31,000 feet at a simulated flight Mach number of 0.40 to about 45,500 feet at a simulated flight Mach number of 1.00. Considerable difficulty was experienced in attempting to establish or maintain balanced-cycle engine operation at altitudes above 36,000 feet. The fuel-air ratio for balanced-cycle operation and lean blowout of the afterburner, the augmented-thrust ratio, the total specific fuel consumption, and the afterburner combustion efficiency for balanced-cycle operation are summarized in a table. Satisfactory afterburner ignition was obtained over a range of flight Mach Numbers from 0.32 to 0.60 at altitudes from 10,000 to 30,000 and engine speeds from 10,000 to 12,500 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9D19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: A method for calculation of a counterrotating propeller which is similar to Walchner's method for calculation of the single propeller in the free air stream is developed and compared with measurements. Several dimensions which are important for the design are given end simple formulas for the gain in efficiency derived. Finally a survey of the behavior of the propeller for various operating conditions is presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1208 , ZWB Forschungsbericht Nr. 1752
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Results of measurements on a shrouded propeller are given. The propeller is designed for the high ratio of advance and high thrust loading. The effect of the shape of propeller and shroud upon the aerodynamic coefficients of the propulsion unit can be seen from the results. The highest efficiency measured is 0.71. The measurements permit the conclusion that the maximum efficiency can be essentially improved by shroud profiles of small chord and thickness. The largest static thrust factor of merit measured reaches according to Bendemann, a value of about zeta = 1.1. By the use of a nose split flap the static thrust for thin shroud profiles with small nose radius can be about doubled. In a separate section numerical investigations of the behavior of shrouded propellers for the ideal case and for the case with energy losses are carried out. The calculations are based on the assumption that the slipstream cross section depends solely on the shape of the shroud and not on the propeller loading. The reliability of this hypothesis is confirmed experimentally and by flow photographs for a shroud with small circulation. Calculation and test are also in good agreement concerning efficiency and static thrust factor of merit. The prospects of applicability for shrouded propellers and their essential advantages are discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: The requirements on gas turbines for aircraft power units, namely, adequate efficiency, operation at high gas temperatures, low weight, and small dimensions, must be taken into consideration during the design of the blading. To secure good efficiency, it is necessary that the gas flow past the blades as smoothly as possible without separation. This is relatively easily obtainable in the accelerated flow of turbine blading, if the blade spacing is chosen small enough. A small blade spacing, however, is detrimental to the other requirements outlined above. Operation at high gas temperatures usually calls for blade cooling. This cooling is associated with a power input that lowers the turbine efficiency. Since the amount of heat that must be carried off for coding a blade can be influenced rather little, the gross power input for a turbine stage can be reduced by keeping the number of blades to a minimum, that is, with blades of high spacing ratio. But here also a limit is imposed, the exceeding of which is followed by separation of flow. Hence the requirement of finding blade forms on which the flow separates at rather high spacing ratios .
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: An investigation was conducted to determine the performance characteristics of the rotor and inlet guide vanes used in the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. Outlet stators used in the engine were omitted to facilitate study of the supersonic rotor. The extent of the deviation from design performance indicates that the design-shock configuration was not obtained. A maximum pressure ratio of 2.26 was obtained at an equivalent tip speed of 1614 feet per second and an adiabatic efficiency of 0.61. The maximum efficiency obtained was 0.79 at an equivalent tip speed of 801 feet per second and a pressure ratio of 1.29. The performance obtained was considerably below design performance. The effective aerodynamic forces encountered appeared to be large enough to cause considerable damage to the thin aluminum leading edges of the rotor blades.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9G19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-11
    Description: As part of the performance investigation of compressors for the J33 turbojet engine, the A-21 model and the A-23 model with a 17- and a 34-blade impeller were operated with water injection at their respective design equivalent speeds of 11,500 and 11,750 rpm. Inlet conditions of pressure of 14 inches of mercury absolute and of ambient temperature correspond to those of the investigation of these models without water injection. The water-air ratio by weight ranged from 0.05 to 0.06. By the use of water injection, the peak pressure ratio of the A-21 compressor and the A-23 compressor with a 34-blade impeller increased approximately 0.38, whereas that of the A-23 compressor with a 17-blade impeller increased only 0.14. The decrease in maximum efficiency for the three compressors ranged from 0.12 to 0.14. The highest increase in maximum equivalent weight flow of air plus weight flow of water was 10.90 pounds per second obtained with the A-21 compressor. The increase in air weight flow alone was approximately 5.70 pounds per second for the A-21 compressor end the A-23, 17-blade compressor, which exceeded the increase of 3.15 pounds per second for the A-23; 34-blade compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9G13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: A single-stage modification of the turbine from a Mark 25 torpedo power plant was investigated to determine the performance with two nozzle designs in combination with special rotor blades having a 20 inlet angle. The performance is presented in terms of blade, rotor, and brake efficiency as a function of blade-jet speed ratio for pressure ratios of 8, 15 (design), and 20. The blade efficiency with the nozzle having circular pas- sages (K) was equal to or higher than that with the nozzle having rectangular passages (J) for all pressure ratios and speeds investigated. The maximum blade efficiency of 0.571 was obtained with nozzle K at a pressure ratio of 8 and a blade-jet speed ratio of 0.296. The difference in blade efficiency was negligible at a pressure ratio of 8 at the low speeds; the maxim difference was 0.040 at a pressure ratio of 20 and a blade-jet speed ratio of 0.260.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9H09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: The J33-A-27 compressor was operated at an inlet pressure of 14 inches of mercury absolute and ambient inlet temperature over a range of equivalent impeller speeds from 6100 to 11,800 rpm. At the design equivalent speed of 11,800 rpm, the J33-A-27 compressor had a peak pressure ratio of 4.40 at an equivalent weight flow of 105.7 pounds per second and a peak adiabatic temperature-rise efficiency of 0.745. The maximum equivalent weight flow at design speed was 113.5 pounds per second.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9F30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: An investigation was conducted to determine the effect of turbine-disk cooling with air on the efficiency and the power output of the radial-flow turbine from the Turbo Engineering Corporation TT13-18 turbosupercharger. The turbine was operated at a constant range of ratios of turbine-inlet total pressure to turbine-outlet static pressure of 1,5 and 2.0, turbine-inlet total pressure of 30 inches mercury absolute, turbine-inlet total temperature of 12000 to 20000 R, and rotor speeds of 6000 to 22,000 rpm, Over the normal operating range of the turbine, varying the corrected cooling-air weight flow from approximately 0,30 to 0.75 pound per second produced no measurable effect on the corrected turbine shaft horsepower or the turbine shaft adiabatic efficiency. Varying the turbine-inlet total temperature from 12000 to 20000 R caused no measurable change in the corrected cooling-air weight flow. Calculations indicated that the cooling-air pumping power in the disk passages was small and was within the limits of the accuracy of the power measurements. For high turbine power output, the power loss to the compressor for compressing the cooling air was approximately 3 percent of the total turbine shaft horsepower.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-12
    Description: An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ-55-FF-1 turbo Jet engine. The test unit consisted of a row of inlet guide vanes and a supersonic rotor; the stator vanes after the rotor were omitted. The maximum pressure ratio produced in the single stage was 2.28 at an equivalent tip speed or 1814 feet per second with an adiabatic efficiency of approximately 0.61, equivalent weight flow of 13.4 pounds per second. The maximum efficiency of 0.79 was obtained at an equivalent tip speed of 801 feet per second.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9A31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9J14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 399-411
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 341-353
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 307-322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 127-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 29-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 355-365
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 151-166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 109-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 325-340
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 377-395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 367-376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 167-183
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 3-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: A theory has been developed for resetting the blade angles of an axial-flow compressor in order to improve the performance at speeds and flows other than the design and thus extend the useful operating range of the compressor. The theory is readily applicable to the resetting of both rotor and stator blades or to the resetting of only the stator blades and is based on adjustment of the blade angles to obtain lift coefficients at which the blades will operate efficiently. Calculations were made for resetting the stator blades of the NACA eight-stage axial-flow compressor for 75 percent of design speed and a series of load coefficients ranging from 0.28 to 0.70 with rotor blades left at the design setting. The NACA compressor was investigated with three different blade settings: (1) the design blade setting, (2) the stator blades reset for 75 percent of design speed and a load coefficient of 0.48, and (3) the stator blades reset for 75 percent of design speed and a load coefficient of 0.65.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-915 , NACA-ACR-E6E02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: The results of wind tunnel tests at NASA Langley targeted at the performance and configurational characteristics of 0.1 and 0.13 scale model spanwise blowing (SWB) jet wing concepts are reported. The concept involves redirection of engine compressor bleed air to provide SWB at the fuselage-wing juncture near the wing leading edge. The tests covered the orientation of the outer panel nozzles, the effects of SWB operation on the performance of leading and trailing edge flaps and the effects of SWB on lateral stability. The trials were run at low speeds and angles of attack from 24-45 deg (landing). Both lift and longitudinal stability improved with the SWB, stall and leading edge vortex breakdown were delayed and performance increased with the SWB rate. Lateral stability was degraded below 20 deg angle of attack while instabilities were delayed above 20 deg due to roll damping.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 84-2195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-16
    Description: A wind tunnel investigation was conducted to determine the performance of a 4000-pound-thrust axial-flow turbojet engine with a high flow compressor. Pressure altitudes included 5000 to 40000 feet with ram pressure ratios from 1.00 to 1.82. Altitudes included 20000 to 40000 feet and ram pressure ratios from 1.09 to 1.75. A comparison is made between engine performance with high flow and low flow compressors.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-16
    Description: A wind tunnel investigation was conducted to determine the performance of a turbine operating as an integral part of a turbojet engine. Data was obtained while the engine was running over full operable range of speeds at various altitudes and flight mach numbers, and with four nozzles of different outlet areas.A maximum turbine efficiency of 0.875 was obtained at altitude of 15 thousand feet, Mach number 0.53, and corrected turbine speed of 5900 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8A23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-08-16
    Description: Temperature and pressure distributions for an original and modified 3000 pound thrust axial flow turbojet engine were investigated. Data are included for a range of simulated altitudes from 5000 to 45000 feet, Mach numbers from 0.24 to 1.08, and corrected engine speeds from 10,550 to 13,359 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8C17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-11
    Description: This report presents the results of the tests of a power-plant installation to improve the circumferential pressure-recovery distribution at the face of the engine. An underslung "C" cowling was tested with two propellers with full cuffs and with a modification to one set of cuffs. Little improvement was obtained because the base sections of the cuffs were stalled. A set of guide vanes boosted the over-all pressures and helped the pressure recoveries for a few of the cylinders. Making the underslung cowling into a symmetrical "C" cowling evened the pressure distribution; however, no increases in front pressures were obtained. The pressures at the top cylinders remained low and the high pressures at the bottom cylinders were reduced. At higher powers and engine speeds, the symmetrical cowling appeared best from the standpoint of over-all cooling characteristics.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SL7L10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-11
    Description: The effect of rotor-blade length, inlet angle, and shrouding was investigated with four different nozzles in a single-stage modification of the Mark 25 aerial-torpedo power plant. The results obtained with the five special rotor configurations are compared with those of the standard first-stage rotor with each nozzle. Each nozzle-rotor combination was operated at nominal pressure ratios of 8, 15 (design), and 20 over a range of speeds from 6000 rpm to the design speed of 18,000 rpm. Inlet temperature and pressure conditions of 1OOOo F and 95 pounds per square inch gage, respectively, were maintained constant for all runs.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9G20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-11
    Description: Flow-metering devices used by the NACA and by the manufacturer of the J33 turbojet engine were calibrated together to determine whether an observed discrepancy in weight flow of approximately 4 percent for the two separate investigations might be due to the different devices used to meter air flow. A commercial adjustable orifice and a square-edge flat-plate orifice used by the NACA and a flow nozzle used by the manufacturer were calibrated against surveys across the throat of the nozzle. It was determined that over a range of weight flows from 18 to 45 pounds per second the average weight flows measured by the metering device used for the compressor test would be 0.70 percent lower than those measured by the metering device used in the engine tests and the probable variation about this mean would be +/- 0.39 percent. The very close agreement of the metering devices shows that the greater part of the discrepancy in weight flow is attributable to the effect of inlet pressure.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8H03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the NACA Cleveland altitude wind tunnel to evaluate the performance characteristics of the X24C-4B turbojet engine over a range of simulated altitudes from 5000 to 45,000 feet,simulated flight Mach numbers from 0 to 1.08, and engine speeds from 4000 to 12,500 rpm. Performance data are presented to show graphically the effects of altitude at a flight Mach number of 0.25 and of flight Mach number at an altitude of 25,000 feet. The performance data are generalized to show the applicability of methods used to determine performance at any altitude from data obtained at a given altitude. A complete tabulation of performance data, as well as lubrication- and fuel- system data, is presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE7L26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-11
    Description: Investigations were made of the turbine from a Mark 25 torpedo to determine the performance of the unit with three different turbine nozzles at various axial nozzle-wheel clearances. Turbine efficiency with a reamed nondivergent nozzle that uses the axial clearance space for gas expansion was little affected by increasing the axial running clearance from 0.030 to 0.150 inch. Turbine efficiency with cast nozzles that expanded the gas inside the nozzle passage was found to be sensitive to increased axial nozzle-wheel clearance. A cast nozzle giving a turbine brake efficiency of 0.525 at an axial running clearance of 0.035 inch gave a brake efficiency of 0.475 when the clearance was increased to 0.095 inch for the same inlet-gas conditions and blade-jet speed ratio. If the basis for computing the isentropic power available to the turbine is the temperature inside the nozzle rather then the temperature in the inlet-gas pipe, an increase in turbine efficiency of about 0.01 is indicated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8B04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: At the request of the Air Material Command, Arm Air Forces, an investigation was conducted at the NACA Cleveland laboratory to determine the performance characteristics of the XJ-41-V turbojet-engine compressor. The complete compressor was mounted on a collecting chamber having an annular air-flow passage simulating the burner annulus of the engine and was driven by an electric motor. The compressor was extensively instrumented to determine the overall performance of the compressor, the characteristic performance of each of the compressor components, the state of the air stream in the simulated burner annulus, and the operation of the compressor bearings. An initial investigation at an equivalent compressor speed of 8000 rpm was made to determine the performance of the compressor and the collecting chamber and to determine the similarity of the air stream at the entrance to the simulated burner annulus. The mechanical performance of the compressor over a range of actual compressors speeds from 3300 to 8000 rpm is reported.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7A17a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: Measurements on three tubes with flow regulated by suction at the trainling edge of the tube are described. It was possible to vary the mass of air flowing through the tube over a large range. Such tubes could be used for shrouded propellers.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1191 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters; 1945
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-15
    Description: A preliminary investigation of an axial-flow gas turbine-propeller engine was conduxted. Performance data were obtained for engine speeds from 8000 to 13,000 rpm and altitudes from 5000 to 35,000 feet and compressor inlet ram pressure ratios from 1.00 to 1.17.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-15
    Description: A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8J29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-15
    Description: Operating characteristics of the 11-stage 4000-pound-thrust axial-flow turbojet engine were determined. A standard compressor and a compressor with the blade angles of the rotor and stator blades increased 5 degrees to obtain greater air flow, were investigated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09c
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-15
    Description: Combustion chamber performance properties of a 3000-pound-thrust axial-flow turbojet engine were determined. Data are presented for a range of simulated altitudes from 15,000 to 45,0000 feet and a range of Mach numbers from 0.23 to 1.05 for various modifications of the engine.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8B19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the NACA Cleveland altitude wind tunnel to determine the operational characteristics of the Westinghouse 19B-2, 19B-8, and 19XB-l jet-propulsion engines. The 19B engine is one af the earliest experimental Westinghouse axial flow engines. The 19XB-1 engine is an experimental prototype of the Westinghouse 15 series, having a rated thrust of 1400 pounds. Improvements in performance and operational characteristics have resulted in the 19XB-2B engine with a rated thrust of 1600 pounds. The operational characteristics were determined over a range of simulated altitudes from 5000 to 30,000 feet for the 19B engines and from 5000 to 35000 feet for the 19XB-l engine at airspeed from 20 to 380 miles per hour. The affects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, starting, acceleration, and functioning of the fuel-control system are discussed. Damage to the engines that occurred during the investigation is also briefly discussed. The changes made in the combustion-chamber configuration to improve the operating we are described.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8J28-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-11
    Description: A theoretical investigation has been made of various methods of thrust augmentation for turbojet engines. The method investigated were tail-pipe burning, water injection at the compressor inlet, a combination of tail-pipe burning and water injection, bleedoff in conjunction with water injection at the compressor inlet, and rocket assist. The effect of ratio of augmented-to-normal total liquid consumption, flight conditions, and design compressor pressure ratio on the augmentation produced by each method were determined. A comparison was also made for a given time of operation of the weight of an augmented engine plus fuel and additional liquids to the weight of a standard engine plus fuel producing the same thrust.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8H11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-11
    Description: The Allison model 400-C6 compressor was operated at an inlet pressure of 12 inches of mercury absolute ana ambient inlet temperature at equivalent impeller speeds of 6000, 7000, and 8500 rpm. Additional runs at an equivalent speed of 7000 rpm and ambient inlet temperature were made at inlet pressures from 7 to 22 inches of mercury absolute. The results of this investigation are compared with those of the 533-A-23 compressors. For the speeds investigated, the Allison model 400-C6 compressor had a maximum adiabatic temperature-rise efficiency of 0.768 at an equivalent speed of 7000 rpm; the corresponding equivalent weight flow was 45.0 pounds per second and the pressure ratio was 1.83. At an equivalent impeller speed of 8500 rpm, the maximum equivalent weight flow was 61.6 pounds per second and the peak pressure ratio of 2.38 occurred at an equivalent weight flow of 52.2 pounds per 1 second and an adiabatic temperature-rise efficiency of 0.714. At an equivalent speed of 7000 rpm, increasing the compressor- inlet pressure increased the maximum equivalent weight flow and the pressure ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8L15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-11
    Description: The production-model 333-A-23 turbojet-engine compressor with a 17-blade impeller was operated at ambient and 0 F inlet temperatures and at inlet pressures of 14 and 5 inches mercury absolute for equivalent impeller speeds from 6000 to 12,750 rpm. The results of this investigation are compared with those of the 533-A-21 compressor. At the design equivalent speed of 11,750 rpm the maximum pressure ratio was 4.39. This occurred at the surge point at which the equivalent weight flow was 80.8 pounds per second, ana the adiabatic temperature-rise efficiency was 0.757. The maximum flow at the design equivalent speed was 88.0 pounds per second. The maximum adiabatic temperature-rise efficiency of 0.799 was obtained at an equivalent speed of 10,000 rpm, and equivalent weight flow of 62.9 pounds per second, and a pressure ratio of 3.20. At the maximum equivalent speed investigated (12,750 rpm), a peak pressure ratio of 4.90 was attained at an equivalent weight flow of 85.4 pounds per second and an efficiency of 0.680.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8F15-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-11
    Description: In an investigation of the J-33-A-21 and the J-33-A-23 compressors with and without water injection, it was discovered that the compressors reacted differently to water injection although they were physically similar. An analysis of the effect of water injection on compressor performance and the consequent effect on matching of the compressor and turbine components in the turbojet engine was made. The analysis of component matching is based on a turbine flow function defined as the product of the equivalent weight flow and the reciprocal of the compressor pressure ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8A19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the NACA Cleveland altitude wind tunnel to evaluate the performance and windmilling drag characteristics of an original and a modified turbojet engine of the same type. Data have been obtained at simulated altitudes from 5000 to 45,000 feet, simulated flight Mach numbers from 0.09 to 1.08, and engine speeds from 4000 to 12,500 rpm. Engine performance data are presented for both engines to show the effects of altitude at a flight Mach number of 0.25 and of flight Mach number at an altitude of 25,000 feet. Performance of the original and modified engines is compared for a range of simulated flight conditions. The performance data are generalized to show the applicability of methods used to estimate performance at any altitude from data obtained at a given altitude. Engine-windmilling-speed and windmilling-drag data are presented for a range of simulated flight conditions.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8B26 , Rept-928
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-11
    Description: An investigation was conducted in an altitude test chamber to determine the effects of inlet airflow distortion on the compressor steady-state and surge characteristics of a high-pressure ratio, axial-flow turbojet engine. Circumferential-type inlet flow distortions were investigated, which covered a range of distortion sector angles from 20 deg to 168 deg and distortion levels up to 22 percent. The presence of inlet airflow distortions at the compressor face resulted in a substantial increase in the local pressure ratio in the distorted region, primarily for the inlet stages. The local pressure ratio in the distorted region for the inlet stages increased as either the distortion sector angle decreased or the percent distortion increased. The average compressor-surge pressure ratio was much more sensitive to inlet airflow distortions at lower engine speeds than at engine speeds near rated. Hence, compressor-surge margin reduction due to inlet airflow distortion was quite severe at the lower engine speeds. Although the average compressor-surge pressure ratio was generally reduced with inlet flow distortion, local pressure ratios across the distorted sector of the compressor were obtained during surge and were significantly greater than the normal compressor-surge pressure ratio. This was a result of increased loading of the inlet stages in the distorted region.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-11
    Description: An altitude-test-chamber investigation was conducted to determine the operational characteristics and altitude blow-out limits of a Solar afterburner in a 24C engine. At rated engine speed and maximum permissible turbine-discharge temperature, the altitude limit as determined by combustion blow-out occurred as a band of unstable operation of about 8000 feet altitude in width with maximum altitude limits from 32,000 feet at a Mach number of 0.3 to about 42,000 feet at a Mach number of 1.0. The maximum fuel-air ratio of the afterburner, as limited by maximum permissible turbine-discharge gas temperatures at rated engine speed, varied between 0.0295 and 0.0380 over a range of flight Mach numbers from 0.25 to 1.0 and at altitudes of 20,000 and 30,000 feet. Over this range of operating conditions, the fuel-air ratio at which lean blow-out occurred was from 10 to 19 percent below these maximum fuel-air ratios. Combustion was very smooth and uniform during operation; however, ignition of the burner was very difficult throughout the investigation. A failure of the flame holder after 12 hours and 15 minutes of afterburner operation resulted in termination of the investigation.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8G02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-11
    Description: With the further development of axial blowers into highly loaded flow machines, the influence of the diameter ratio upon air output and efficiency gains in significance. Clarification of this matter is important for single-stage axial compressors, and is of still greater importance for multistage ones, and particularly for aircraft power plants. Tests with a single-stage axial blower gave a decrease in the attainable maximum pressure coefficient and optimum efficiency as the diameter ratio increased. The decrease must be ascribed chiefly to the guide surface of the hub and housing between the blades increasing with the diameter ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-11
    Description: As part of an investigation af the application of nuclear energy to various types of power plants for aircraft, calculations have been made to determine the effect of several operating conditions on the performance of condensers for mercury-turbine power plants. The analysis covered 8 range of turbine-outlet pressures from 1 to 200 pounds per square inch absolute, turbine-inlet pressures from 300 to 700 pounds per square inch absolute,and a range of condenser cooling-air pressure drops, airplane flight speeds, and altitudes. The maximum load-carrying capacity (available for the nuclear reactor, working fluid, and cargo) of a mercury-turbine powered aircraft would be about half the gross weight of the airplane at a flight speed of 509 miles per hour and an altitude of 30,000 feet. This maximum is obtained with specific condenser frontal areas of 0.0063 square foot per net thrust horsepower with the condenser in a nacelle and 0.0060 square foot per net thrust horsepower with the condenser submerged in the wings (no external condenser drag) for a turbine-inlet pressure of 500 pounds per square inch absolute, a turbine-outlet pressure of 10 pounds per square inch absolute, and 8 turbine-inlet temperature of 1600 F.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8C23 , Rept-952
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-11
    Description: The J33-A-23 compressor with a 34-blade impeller was operated at ambient inlet temperature and an inlet pressure of 14 inches mercury absolute over a range of equivalent impeller speeds from 6000 to 11,750 rpm. Additional runs at equivalent speeds of 7,000, 10,000, and 11,750 rpm and ambient inlet temperature were made at inlet pressures of 5 and 10 inches mercury absolute. The results of this investigation are compared with those of the J33-A-23 compressor with a 17-blade impeller. At the design equivalent speed of 11,750 rpm the 533-A-23 compressor with a 34-blade impeller had a peak pressure ratio of 4.49 at an equivalent weight flow of 82.4 pounds per second and an adiabatic temperature-rise efficiency of 0.740. The maximum equivalent flow at design speed was 91.8 pounds per second. The peak efficiency at design speed (0.757) occurred at an equivalent weight flow of 85.5 pounds per second. The maximum adiabatic temperature- rise efficiency of 0.773 was obtained at an equivalent impeller speed of 10,000 rpm, an equivalent weight flow of 65.8 pounds per second, and a pressure ratio of 3.27. At equivalent impeller speeds of.l0,000 and 11,75O rpm a decrease in inlet pressure resulted in a decrease in maximum equivalent weight flow, peak pressure ratio, and peak adiabatic temperature- rise efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8H13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-12
    Description: An investigation of the XJ-41-V turbojet-engine compressor was conducted to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the original compressor indicated the compressor would not meet the desired engine-design air-flow requirements because of an air-flow restriction in the vaned collector. The compressor air-flow choking point occurred near the entrance to the vaned-collector passage and was instigated by a poor mass-flow distribution at the vane entrance and from relatively large negative angles of attack of the air stream along the entrance edges of the vanes at the outer passage wall and large positive angles of attack at the inner passage wall. As a result of the analysis, a design change of the vaned collector entrance is recommended for improving the maximum flow capacity of the compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE7L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-12
    Description: The performance of an annular combustion chamber from a 24C turbojet engine was investigated over a range of simulated altitudes from 20,000 to 55,000 feet and corrected engine rotor speeds from 6000 to 13,000 rpm at a simulated ram-pressure ratio of 1.04. The purpose of the investigation was to determine the effects on the altitude operational limits, combustor-outlet gas temperature distribution, combustion efficiencies, and combustor inlet-to-outlet total-pressure drops of two changes in the 24C-4B basket air-passage arrangements that were designed to improve combustor-outlet temperature distribution. These changes were: (a) replacement of the downstream secondary air holes with large rectangular slots further upstream (rectangular-slot basket), and (b) enlargement of anticoking holes in the rectangular-slot basket (modified rectangular-slot basket). The results indicate that improved outlet-gas temperature distribution of each succeeding combustor basket investigated was attained at a sacrifice in the altitude limit of operation. The altitude limits of operation of the combustor with the original basket ranged from 34,000 feet at a corrected engine speed of 6000 rpm to a maximum of 52,000 feet at 12 ' 500 rpm. The altitude limits of the rectangular-slot basket were about 2000 feet lower throughout the engine speed range than those of the original basket. The altitude limits of the combustor with the modified rectangular-slot basket were about equivalent to those of the other baskets in the corrected-engine-speed range from 12,000 to 12,500 rpm but were about 10,000 feet lower than those of the original basket in the corrected-engine-speed range from 6000 to 9000 rpm. For the same inlet-air conditions, the combustion efficiencies were highest for the original basket and progressively lower for each of the other two baskets. The combustor inlet-to-outlet pressure drops of all three combustor baskets at the same operating conditions were within +/- 10 percent of the pressure drop of the original basket.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8G13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-12
    Description: Compressor operation at low air flows for a given speed is limited by unstable flow conditions, commonly called surge. An investigation of surge in centrifugal compressors (reference 1) showed that the pulsation of pressures and velocities occurred when the slope of the compressor characteristic curve was positive and that the magnitude and frequency, as well as the incidence of surge, depended on the capacity and resistance of the total system. Although the theory presented in reference 1 is applicable to axial-floe compressors, little experimental information is available on the surge characteristics of the individual stages of axial-flow compressors, or on the variation of the surge characteristics with operating conditions. During the investigation to determine the performance of the X24C-2 compressor (references 2 and 3), instrumentation was added to study the surge characteristics and to determine the effect of speed and inlet pressure on the frequency, amplitude, and phase relation of the pressure pulsations behind each stage.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8H06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-15
    Description: Compressor performance properties for two 11-stage compressors of 3000-pound-thrust axial-flow turbojet engines were determined. Data are presented for a range of simulated altitudes and a range of Mach numbers for various modifications of the engine.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8A26a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-15
    Description: Wind tunnel investigations were performed to determine the performance properties of an axial-flow gas turbine-propeller engine II. Windmilling characteristics were determined for a range of altitudes from 5000 to 35,000 feet, true airspeeds from 100 to 273 miles per hour, and propeller blade angles from 4 degrees to 46 degrees.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F10a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-16
    Description: A simulated altitude performance of a 25 1/2-inch-diameter annular-type turbojet combustor was performed to determine the effect of the distribution of basket-hole area on the altitude operational limits of the engine as imposed by the combustor.Total pressure drop was recorded, as well as the effect of fuel-nozzle flow capacity,and fuel-nozzle spray angle for one basket configuration. General observations were made for all configurations regarding flames, extent of afterburning, and durability of the baskets.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8A02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-16
    Description: An investigation was conducted to evaluate the operational characteristics of a 3000 pound thrust axial flow turbojet engine over a range of simulated altitudes from 2000 to 50,000 feet and simulated flight Mach numbers from 0 to 1.04 throughout the operable range of engine speeds. Engine operating range, acceleration, deceleration, starting, altitude, and flight Mach number compensation of the fuel control system, and operation of the lubrication system at high and low ambient air temperatures were evaluated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8B19a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-12
    Description: An investigation is being conducted to determine the altitude performance characteristics of the Nene II engine and its components. The present paper presents preliminary results obtained using a jet nozzle of 18.41 inches in diameter, giving an area equal to 96.4 percent of the area of the standard jet nozzle of this engine. The test results presented are for conditions simulating altitudes from seal level to 50,000 feet and ram-pressure ratios from 1.00 to 2.70. The ram pressure ratios correspond to flight Mach numbers between zero and 1.28.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: At the request of the Air Material Command, Army Air Forces, an investigation was conducted by the NACA Cleveland laboratory to determine the performance characteristics of the compressor of the XJ-41-V turbojet engine. This report is the second in a series presenting the compressor performance and analysis of flow conditions in the compressor. The static-pressure variation in the direction of flow through the compressor and the location and the cause of the maximum flow restriction at an equivalent speed of 8000 rpm are presented. After the initial runs were reported, the leading edges of the impeller blades and the diffuser surfaces were found to have been roughened by steel particles from a minor failure of auxiliary equipment. The leading edges of the impeller blades were refinished and all high spots resulting from scratches in the diffuser and the accessible parts of the vaned collector passages were removed. The initial overall performance and that obtained with the refinished blades are presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7E05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-12
    Description: An extended analysis was made of the previously reported performance investigation of the original compressor from the XJ-41-v turbojet engine and a similar compressor revised a to obtain a 33-percent increase in the geometric passage area at the vaned-collector entrance. This analysis was based on the concept of the vaned-collector entrance as the throat section of a nozzle. Because of nonuniform air distribution at the vaned-collector entrance, approximately 90 percent of the available flow area was utilized in the original compressor and 94percent in the revised com$ressor. The increase in maximum weight flow obtained with the revised compressor was disproportionate to the increased effective critical throat area because. the air density at the revised vaned-collector entrance for maximum flow was lower than that obtained in the original compressor. This reduction in density resulted from the large pressure losses near the impeller inlet of the revised compressor, which is indicative of impending flow choking in the impeller, The.calculated maximum corrected weight-flow capacity of a compressor consisting of the revised vaneless diffuser and vaned collector with a theoretical impeller that combined peak impeller pressure ratio and peak impeller efficiency at the . maximum flow point would be 112 pounds per second for an equivalent impeller speed of 11,500 rpm;
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8C12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-16
    Description: Performance properties and operational characteristics of an axial-flow gas turbine-propeller engine were determined. Data are presented for a range of simulated altitudes from 5,000 to 35,0000 feet, compressor inlet- ram pressure ratios from 1.00 to 1.17, and engine speeds from 8000 to 13,000 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F10b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-05
    Description: Charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of the pressure losses in the inlet duct and combustion chamber, the variation in the physical properties of the gas as it passes through the cycle, and the change in mass flow by the addition of fuel are included. The principle performance charts show the effects of the primary variables and correction charts provide the effects of the secondary variables.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 49-52
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Ames Aeron. Lab. NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 21-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 53-57
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Ames Aeron. Lab. NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 3-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 95-100
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Ames Aeron. Lab. NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 43-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA Conf. on Aerodyn. Probl. of Transonic Airplane Design; p 15-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: The performance of hypothetical turbojet systems, without thrust augmentation, as power plants for supersonic airplanes has been calculated. The thrust, thrust power, air-fuel ratio, 1 specific fuel consumption, cross-sectional area, and thrust coefficient are shown for free-stream Mach numbers from 1.2 to 3. For comparison, the performance of ram-jet systems over the same Mach number range has also been calculated. For Mach numbers between 1.2 and 2 the calculated thrust coefficient of the turbojet system was found to be larger than the estimated drag coefficient, and the specific fuel consumption was calculated to be considerably less than the specific fuel consumption of the ram-jet system. The turbojet system therefore appears to merit consideration as a propulsion method for free-stream Mach numbers between approximately 1.2 and 2.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-L7H05a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-WR-E-241 , NACA-ARR-E6E14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-06-27
    Keywords: AERODYNAMICS
    Type: NACA-TN-1292 , NASA-TM-79866
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: A theoretical analysis of the radial temperature distribution through the rotor and constant cross sectional area blades near the coolant passages of liquid cooled gas turbines was made. The analysis was applied to obtain the rotor and blade temperatures of a specific turbine using a gas flow of 55 pounds per second, a coolant flow of 6.42 pounds per second, and an average coolant temperature of 200 degrees F. The effect of using kerosene, water, and ethylene glycol was determined. The effect of varying blade length and coolant passage lengths with water as the coolant was also determined. The effective gas temperature was varied from 2000 degrees to 5000 degrees F in each investigation.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7B11c
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7B11F
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-17
    Description: The performance at inlet pressure of 21 inches mercury absolute and inlet temperature of 538 R for the 10-stage axial-flow X24C-2 compressor from the X24C-2 turbojet engine was investigated. the peak adiabatic temperature-rise efficiency for a given speed generally occurred at values of pressure coefficient fairly close to 0.35.For this compressor, the efficiency data at various speeds could be correlated on two converging curves by the use of a polytropic loss factor derived.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7G11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-16
    Description: On the basis of the investigations so far completed on the behavior of PTL power plants under various operating conditions, in which the influence of the propeller characteristics is of considerable importance, the most important aspects of a control system for turbine-propeller jet power plants are deduced. A simple possible means for its concrete realization, which is also applicable to TL [NACA comment: TL, jet] power plants, is presented by means of examples. A control device of this kind is now being developed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1172
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-16
    Description: A theoretical analysis of the temperature distribution through the trailing portion of a blade near the coolant passages of liquid cooled gas turbines was made. The analysis was applied to obtain the hot spot temperatures at the trailing edge and influence of design variables. The effective gas temperature was varied from 2000 degrees to 5000 degrees F in each investigation.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7B11d
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-16
    Description: Axial blowers are gaining importance as aircraft engine superchargers. However, the pressure head obtainable per stage is small. Due to the necessary great number of stages, the physical length of the blower becomes too great for an airworthy device. This report discusses several types of construction that permit a reduction in the length of the blower.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1132 , Tech. Berichte ZWB; 4; 130-133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-16
    Description: An altitude-wind-tunnel investigation of a TG-100A gas turbine-propeller engine was performed. Pressure and temperature data were obtained at altitudes from 5000 to 35000 feet, compressor inlet ram-pressure ratios from 1.00 to 1.17, and engine speeds from 800 to 13000 rpm. The effect of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on pressure and temperature distribution at each measuring station are presented graphically.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7J02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-16
    Description: Rim cracking in turbine wheels with welded blades was evaluated. The problem is explained on the basis of the occurrence of plastic flow in the rim during transient starting conditions when thermal compressive stresses resulting from high-temperature gradients exceed the proportional elastic limit of the material.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E6L17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-11
    Description: While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1141 , Zeitschrift des Vereines Deutschere Ingenieure; 245
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-11
    Description: After defining the aims and requirements to be set for a control system of gas-turbine power plants for aircraft, the report will deal with devices that prevent the quantity of fuel supplied per unit of time from exceeding the value permissible at a given moment. The general principles of the actuation of the adjustable parts of the power plant are also discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1143 , Deutsche Luftfahrtforschung; Rept-1796/2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-11
    Description: The performance of the 11-stage axial-flow compressor, modified to improve the compressor-outlet velocity, in a revised X24C-4B turbojet engine is presented and compared with the performance of the compressor in the original engine. Performance data were obtained from an investigation of the revised engine in the MACA Cleveland altitude wind tunnel. Compressor performance data were obtained for engine operation with four exhaust nozzles of different outlet area at simulated altitudes from 15,OOO to 45,000 feet, simulated flight Mach numbers from 0.24 to 1.07, and engine speeds from 4000 to 12,500 rpm. The data cover a range of corrected engine speeds from 4100 to 13,500 rpm, which correspond to compressor Mach numbers from 0.30 to 1.00.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE7L22A-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: Requirements of an automatic engine control, as affected by engine characteristics, have been analyzed for a direct-coupled turbojet engine. Control parameters for various conditions of engine operation are discussed. A hypothetical engine control is presented to illustrate the use of these parameters. An adjustable speed governor was found to offer a desirable method of over-all engine control. The selection of a minimum value of fuel flow was found to offer a means of preventing unstable burner operation during steady-state operation. Until satisfactory high-temperature-measuring devices are developed, air-fuel ratio is considered to be a satisfactory acceleration-control parameter for the attainment of the maximum acceleration rates consistent with safe turbine temperatures. No danger of unstable burner operation exists during acceleration if a temperature-limiting acceleration control is assumed to be effective. Deceleration was found to be accompanied by the possibility of burner blow-out even if a minimum fuel-flow control that prevents burner blow-out during steady-state operation is assumed to be effective. Burner blow-out during deceleration may be eliminated by varying the value of minimum fuel flow as a function of compressor-discharge pressure, but in no case should the fuel flow be allowed to fall below the value required for steady-state burner operation.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-17
    Description: The present treatise reports on theoretical investigations and test-stand measurements which were carried out in the BMW Flugmotoren GMbH in developing the hollow blade for exhaust gas turbines. As an introduction the temperature variation and the stress on a turbine blade for a gas temperature of 900 degrees and circumferential velocities of 600 meters per second are discussed. The assumptions onthe heat transfer coefficients at the blade profile are supported by tests on an electrically heated blade model. The temperature distribution in the cross section of a blade Is thoroughly investigated and the temperature field determined for a special case. A method for calculation of the thermal stresses in turbine blades for a given temperature distribution is indicated. The effect of the heat radiation on the blade temperature also is dealt with. Test-stand experiments on turbine blades are evaluated, particularly with respect to temperature distribution in the cross section; maximum and minimum temperature in the cross section are ascertained. Finally, the application of the hollow blade for a stationary gas turbine is investigated. Starting from a setup for 550 C gas temperature the improvement of the thermal efficiency and the fuel consumption are considered as well as the increase of the useful power by use of high temperatures. The power required for blade cooling is taken into account.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1183 , Forschungsbericht-1879 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters Berlin-Adlershof
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-17
    Description: Computations were made to determine the temperature distribution and cooling of solid gas-turbine blades.A range of temperatures was used from 1500 degrees to 2500 degrees F, blade-root temperatures from 100 degrees to 1000 degrees F, blade thermal conductivity from 8 to 220 BTU/(hr)(sq ft)(degrees F/ft), and net gas to metal heat transfer coefficients from 75 to 250 BTU/(hr)(sq ft)(degrees F).
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7B11h
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-17
    Description: Effect of inlet-air pressure and temperature on the performance of the X24-2 10-Stage Axial-Flow Compressor from the X24C-2 turbojet engine was evaluated. Speeds of 80, 89, and 100 percent of equivalent design speed with inlet-air pressures of 6 and 12 inches of mercury absolute and inlet-air temperaures of approximately 538 degrees, 459 degrees,and 419 degrees R ( 79 degrees, 0 degrees, and minus 40 degrees F). Results were compared with prior investigations.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7H22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-17
    Description: A calulation of the flow in turbine blading is reported that includes the calculation of effect of centrifugal force. Frictional losses on the stator blades and rotor blades are allowed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1118 , Forschungsbericht-1750 , Deutsche Luftfahrtforschung; 1-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-17
    Description: An investigation of the antiknock effectiveness of various additive-water solutions when used as internal coolants has been conducted at the NACA Cleveland laboratory. Nine compounds have been previously run in a CFR engine and the results are presented. In an effort to find a good anti-knock-coolant additive with more desirable physical properties than those of the nine compounds previously investigated, water solutions of four alkyl amines, three alkanolamines, six amides, and eight heterocyclic compounds were investigated and the results are presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E6L05a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-15
    Description: An investigation was conducted to determine the operational and performance characteristics of the TG-100A gas turbine-propeller engine II. Windmilling characteristics were deterined for a range of altitudes from 5000 to 35,000 feet, true airspeeds from 100 to 273 miles per hour, and propeller blade angles from 4 degrees to 46 degrees.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7G25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-15
    Description: The sea-level performance of I-16 turbojet engine at zero ram was investigated to determine the effects of an intake duct, shroud, and tail pipe intended for installation in an XFR-1 airplane. Engine speeds ranged from 8000 to 16,500 rpm for several variations of the intake duct and tail pipes.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7G24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-15
    Description: The performance of a mixed-flow impeller in combination with a semivaneless diffuser were experimentally investigated. The diameter of the impeller was 11.0 inches and a maximum tip diameter of 14.74 inches. The semivaneless diffuser had an overall diameter of 28.00 inches. The performance properties of the mixed-flow impeller were also investigated with a 34.00 inch vane loss diffuser having a transition section of the same geometry as the semivaneless diffuser.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7C05a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1100
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-15
    Description: The Russian AM 35 and AM 38 aircraft engines have superchargers with a swirl throttle, which appears to be a purely Russian development. This paper gives the results of test runs of the two engines, including the effects of the swirl throttle on engine performance.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1169
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-15
    Description: A study was made of heat transfer in turbine blades and the effects on blade temperature of cooling the blade root and tip, changing the dimensions of the blades, raising the cycle temperatures, insulating with ceramics, and cooling by circulation of air or water through hollow blades.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7B11g
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-15
    Description: Four methods of boundary-layer control were tried during an investigation to improve the flow in the impeller passages of a V-1710-93 engine-stage supercharger. The boundary layer along the impeller front shroud was removed by suction. In one method the removal was accomplished by recirculation of the air to the impeller inlet; in another method, by external removal. In the other methods, slots were cut through the impeller-blade faces first at 30 percent and then at 30 and 70 percent of the mean-flow-path length measured from leading edges of the rotating inlet guide vanes to introduce air from the high-pressure side of the blades into the region where stagnation and separation were suspected. A slight improvement in performance was obtained when the boundary layer was removed through the impeller front shroud. In general, this improvement become more pronounced as the amount of air removed was increased even though the excessive impeller frontal clearance maintained for these tests, together with an exaggerated negative pressure gradient, apparently induced flow separation on the diffuser front and rear walls as well as on the impeller front shroud. The use of slots in the impellers at the locations selected had a detrimental effect on the supercharger performance characteristics.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E6L19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...