ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (518)
  • Aerodynamics  (215)
  • Aircraft Propulsion and Power  (142)
  • Aircraft Stability and Control  (94)
  • Seismicity  (34)
  • AERODYNAMICS  (33)
  • Cell & Developmental Biology
  • General Chemistry
  • Limnology
  • 1945-1949  (389)
  • 1940-1944  (123)
  • 1920-1924
Collection
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    California Institute of Technology Pasadena
    In:  Seismological Laboratory Bulletin, Milano, California Institute of Technology Pasadena, vol. 1948, no. 6, pp. 129, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1949
    Keywords: Earthquake catalog ; Seismology ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Trans., Am. Geophys. Union, Milano, California Institute of Technology Pasadena, vol. 30, no. 6, pp. 595-597, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1949
    Keywords: Seismology ; Seismicity ; EOS
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Red Cross, 2 pp.
    In:  Princeton, New Jersey, 7 + 273 pp., 1. ed., American Red Cross, 2 pp., vol. 34, no. XVI:, pp. 385-389, (ISBN 0-12-305355-2)
    Publication Date: 1949
    Keywords: Seismology ; Seismicity ; Earthquake precursor: prediction research
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Princeton Univ. Press
    In:  Princeton, New Jersey, 7 + 273 pp., 1. ed., Princeton Univ. Press, vol. 34, no. XVI:, pp. 385-389, (ISBN 0-12-305355-2)
    Publication Date: 1949
    Keywords: Seismology ; Seismicity ; Textbook of geophysics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L9C04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived at. The solution is of a simple form and is expressed by means of an auxiliary parameter K.
    Keywords: Aerodynamics
    Type: NACA-TR-496
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: An investigation has been conducted in the NACA Cleveland icing research tunnel to determine the aerodynamic and icing characteristics of several recessed fuel-vent configurations. The vents were investigated aerodynamically to obtain vent-tube pressures and pressure distributions on the ramp surface as functions of tunnel-air velocity and angle of attack. Icing investigations were made to determine the vent-tube pressure losses for several icing conditions at tunnel-air velocities ranging from 220 to 440 feet per second. In general, under nonicing conditions, the configurations with diverging ramp walls maintained, vent-tube pressures greater than the required marginal value of 2 inches of water positive pressure differential between the fuel cell and the compartment containing the fuel cell for a range of angles of attack from 0 to 14deg at a tunnel-air velocity of approximately 240 feet per second. A configuration haying divergIng ramp sldewalls, a 7deg ramp angle; and vent tubes manifold,ed to a common plenum chamber opening through a slot In the ramp floor gave the greatest vent-tube pressures for all the configurations investigated. The use of the plenum chamber resulted in uniform pressures in all vent tubes. In a cloud-icing condition, roughness caused by ice formations on the airfoil surface ahead of the vent ramp, rather than icing of the vent configuration, caused a rapid loss in vent-tube pressures during the first few minutes of an icing period. Only the configuration having diverging ramp sidewalls, a 7 ramp angle, and a common plenum chamber maintained the required vent-tube pressures throughout a 60-minute icing period, although the ice formations on this configuration were more severe than those observed for the other configurations. No complete closure of vent-tube openings occurred for the configurations investigated. A simulated freezing-rain condition caused a greater and more rapid vent-tube pressure loss than was observed for a cloud-icing condition.
    Keywords: AERODYNAMICS
    Type: NACA-TN-1789
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.
    Keywords: Aerodynamics
    Type: NACA-TM-1217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley stability tunnel to determine the low-speed static stability and control characteristics of a model of the Bell MX-776. The results of the investigation indicated that the basic model configuration was longitudinally stable in the angle-of-attack range from about -16 deg. to 16 deg. but that the stability was a minimum near O deg angle of attack. The data indicated an aerodynamic-center position about 0.64 body diameters behind the center of gravity at low angles of attack. Reduction in the size of the front horizontal fins increased the longitudinal stability. With 20 percent of the span of the normal front horizontal fins cut off the aerodynamic center was about 1.04 body diameters behind the center of gravity, and with front horizontal fins having the same area as the front vertical fins, the aerodynamic center was 2.26 body diameters behind the center of gravity (at low angles of attack).
    Keywords: Aerodynamics
    Type: NACA-RM-SL9G08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9H31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-11
    Description: The present report of Mr. Dupleich is the summary of a very extensive experimental study of the well-known mechanical phenomenon: the rotation in free fall (* air, for instance) of more or less elongated rectangles cut out of paper or pasteboard. This phenomenon, the conditions for existence of which depend chiefly on the elongated of the small plate and its weight per unit area, is essentially an aerodynamic phenomenon and as such, raises questions of a certain interest to our department.We believe that the modern concepts of the mechanics of fluids do not have the range attributed to them.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1201 , Scientifiques et Techniques du Secretariat d'Etat a l'Aviation; Rept-178
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-11
    Description: Rocket-powered models were flown at high-subsonic, transonic, and supersonic speeds to determine the zero-lift drag of fin-stabilized parabolic bodies of revolution differing in fineness ratio and in position of maximum diameter. The present paper presents the results for fineness ratio 12.5, 8.91 and 6.04 bodies having maximum diameters located at stations of 20, 40, 60, and 80 percent of body length. All configurations had cut-off sterns and all had equal base, frontal, and exposed fin areas. For most of the supersonic-speed range models having their maximum diameters at the 60-percent station gave the lowest values of drag coefficient. At supersonic speeds, increasing the fineness ratio generally reduced the drag coefficient for a given position of maximum diameter.
    Keywords: Aerodynamics
    Type: NACA-RM-L9I30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: The spin and recovery characteristics of the Northrop XF-89 airplane, as well as the spin-recovery parachute requirements, the control forces that would be encountered in the spin, and the best method for the crew to attempt an emergency escape are presented in this report. The characteristics were mainly estimated rather than determined by model tests because the XF-89 dimensional and mass characteristics were such as to make this airplane similar to several others, models of which have previously been tested. Brief tests were made on an available model of similar design to augment the estimation. The results indicate that the recovery characteristics will be satisfactory for all airplane loadings if recovery is attempted by use of rudder followed by moving the elevator down. The rudder pedal forces will be within the capabilities of the pilot but the elevator stick forces will be beyond the pilot's capabilities unless a trim tab, or a booster is used. A 9.5-foot-diameter flat-type tail parachute or a 5.0-foot-diameter flat-type wing-tip parachute with a drag coefficient of 0.7 will be a satisfactory emergency spin-recovery device for spin demonstrations and if it is necessary for the crew to abandon the spinning airplane, they should leave from the outboard side of the cockpit.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9B28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-12
    Description: An altitude-test-chamber investigation was conducted to determine the operational and performance characteristics of a McDonnell afterburner with a fixed-area exhaust nozzle on a J34 engine. At rated engine speed, the altitude limit, as determined by combustion blow-out, occurred as a band of unstable operation of about 6000-foot altitude in width with minimum altitude limits from 31,000 feet at a simulated flight Mach number of 0.40 to about 45,500 feet at a simulated flight Mach number of 1.00. Considerable difficulty was experienced in attempting to establish or maintain balanced-cycle engine operation at altitudes above 36,000 feet. The fuel-air ratio for balanced-cycle operation and lean blowout of the afterburner, the augmented-thrust ratio, the total specific fuel consumption, and the afterburner combustion efficiency for balanced-cycle operation are summarized in a table. Satisfactory afterburner ignition was obtained over a range of flight Mach Numbers from 0.32 to 0.60 at altitudes from 10,000 to 30,000 and engine speeds from 10,000 to 12,500 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9D19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-12
    Description: A supersonic compressor design having supersonic velocity at the entrance of the stator is analyzed on the assumption of two-dimensional flow. The rotor and stator losses assumed in the analysis are based on the results of preliminary supersonic cascade tests. The results of the analysis show that compression ratios per stage of 6 to 10 can be obtained with adiabatic efficiency between 70 and 80 percent. Consideration is also given in the analysis to the starting, stability, and range of efficient performance of this type of compressor. The desirability of employing variable-geometry stators and adjustable inlet guide vanes is indicated. Although either supersonic or subsonic axial component of velocity at the stator entrance can be used, the cascade test results suggest that higher pressure recovery can be obtained if the axial component is supersonic.
    Keywords: Aerodynamics
    Type: NACA-RM-L9G06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-13
    Description: In the Institute for Flight Mechanics of the DVL a reactor arrangement with a maximum output of 100 kg was investigated as an expedient for the termination of dangerous spins on an airplane of the FW 56 type. reproduce the influence of a disturbance of the steady spin condition by a pitching or yawing moment. The tests were meant to reproduce the influence of a disturbance of the steady spin condition by a pitching and yawing moment.
    Keywords: Aerodynamics
    Type: NACA-TM-1221 , Zentrale fuer Wissenschaftliches Berichtswesen bei der Deutschen Versuchsanstalt fuer Luftfahrt Nr. 1027
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-13
    Description: To determine the trim range in which a seaplane can take off without porpoising, stability tests were made of a Plexiglas model, composed of float, wing, and tailplane, which corresponded to a full-size research airplane. The model and full-size stability limits are in good agreement. After all structural parts pertaining to the air frame were removed gradually, the aerodynamic forces replaced by weight forces, and the moment of inertia and position of the center of gravity changed, no marked change of limits of the stable zone was noticeable. The latter, therefore, is for practical purposes affected only by hydrodynamic phenomena. The stability limits of the DVL family of floats were determined by a systematic investigation independent of any particular sea-plane design, thus a seaplane may be designed to give a run free from porpoising.
    Keywords: Aircraft Stability and Control
    Type: NACA/TM-1254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: A method for calculation of a counterrotating propeller which is similar to Walchner's method for calculation of the single propeller in the free air stream is developed and compared with measurements. Several dimensions which are important for the design are given end simple formulas for the gain in efficiency derived. Finally a survey of the behavior of the propeller for various operating conditions is presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1208 , ZWB Forschungsbericht Nr. 1752
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-13
    Description: Results of measurements on a shrouded propeller are given. The propeller is designed for the high ratio of advance and high thrust loading. The effect of the shape of propeller and shroud upon the aerodynamic coefficients of the propulsion unit can be seen from the results. The highest efficiency measured is 0.71. The measurements permit the conclusion that the maximum efficiency can be essentially improved by shroud profiles of small chord and thickness. The largest static thrust factor of merit measured reaches according to Bendemann, a value of about zeta = 1.1. By the use of a nose split flap the static thrust for thin shroud profiles with small nose radius can be about doubled. In a separate section numerical investigations of the behavior of shrouded propellers for the ideal case and for the case with energy losses are carried out. The calculations are based on the assumption that the slipstream cross section depends solely on the shape of the shroud and not on the propeller loading. The reliability of this hypothesis is confirmed experimentally and by flow photographs for a shroud with small circulation. Calculation and test are also in good agreement concerning efficiency and static thrust factor of merit. The prospects of applicability for shrouded propellers and their essential advantages are discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-13
    Description: The requirements on gas turbines for aircraft power units, namely, adequate efficiency, operation at high gas temperatures, low weight, and small dimensions, must be taken into consideration during the design of the blading. To secure good efficiency, it is necessary that the gas flow past the blades as smoothly as possible without separation. This is relatively easily obtainable in the accelerated flow of turbine blading, if the blade spacing is chosen small enough. A small blade spacing, however, is detrimental to the other requirements outlined above. Operation at high gas temperatures usually calls for blade cooling. This cooling is associated with a power input that lowers the turbine efficiency. Since the amount of heat that must be carried off for coding a blade can be influenced rather little, the gross power input for a turbine stage can be reduced by keeping the number of blades to a minimum, that is, with blades of high spacing ratio. But here also a limit is imposed, the exceeding of which is followed by separation of flow. Hence the requirement of finding blade forms on which the flow separates at rather high spacing ratios .
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-11
    Description: Measurements were made, in dives to transonic speeds, of the static-pressure position error at a distance of one chord ahead of the McDonnell XF-88 airplane. The airplane incorporates a wing which is swept back 35 deg along the 0.22 chord line and utilizes a 65-series airfoil with a 9-percent-thick section perpendicular to the 0.25-chord line. The section in the stream direction is approximately 8-percent thick. Data up to a Mach number of about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Data at Mach numbers above about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Results of the measurements indicate that the static-pressure error, within the accuracy of measurement, is negligible from a Mach number of 0.65 to a Mach number of about 0.97. With a further increase in Mach number, the static-pressure error increases rapidly; at the highest Mach number attained in these tests (about M = 1.038), the error increases to about 8 percent of the impact pressure. Above a Mach number of about 0.975, the recorded Mach number remains substantially constant with increasing true Mach number; the installation is of no value between a Mach number of about 0.975 and at least 1.038, as the true Mach number cannot be obtained from the recorded Mach number in this range. Previously published data have shown that at 0.96 chord ahead of the wing tip of the straight-wing X-l airplanes, a rapid rise of position error started at a Mach number of about 0.8. In the case of the XF-88 airplane, this rise of position error was delayed, presumably by the sweep of the wing, to a Mach number of about 0.97.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9I12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley stability tunnel to determine the low-speed static stability and control characteristics of a model of the Bell MX-776. The results show the model to be longitudinally unstable in the angle-of-attack range around zero angle of attack and to become stable at moderate angles of attack. The results of the present investigation agree reasonably well with results obtained in other facilities at low speed. The present pitching-moment results at low Mach numbers also agree reasonably well with unpublished results of tests of the model at supersonic Mach numbers (up to Mach number 1.86). Unpublished results at moderate and high subsonic speeds, however, indicate considerably greater instability at low angles of attack than is indicated by low-speed results. The results of the present tests also showed that the pitching-moment coefficients for angles of attack up to 12deg remained fairly constant with sideslip angle up to 12deg. The elevators tested produced relatively large pitching moments at zero angle of attack but, as the angle of attack was increased, the elevator effectiveness decreased. The rate of decrease of elevator effectiveness with angle of attack was less for 8deg than for 20deg elevator deflection. Therefore although 8deg deflection caused an appreciable change in longitudinal trim angle and trim lift coefficient a deflection of 20deg caused only a small additional increase in trim angle and trim lift coefficient.
    Keywords: Aircraft Stability and Control
    Type: NACA RM-SL52D23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-11
    Description: The present report deals with the aerodynamic, constructive, and instrumental development of a spoiler control for remote control of flying missiles.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1210 , ZWB Forschungsbericht; Rept-1717
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-11
    Description: An investigation was conducted to determine the performance characteristics of the rotor and inlet guide vanes used in the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. Outlet stators used in the engine were omitted to facilitate study of the supersonic rotor. The extent of the deviation from design performance indicates that the design-shock configuration was not obtained. A maximum pressure ratio of 2.26 was obtained at an equivalent tip speed of 1614 feet per second and an adiabatic efficiency of 0.61. The maximum efficiency obtained was 0.79 at an equivalent tip speed of 801 feet per second and a pressure ratio of 1.29. The performance obtained was considerably below design performance. The effective aerodynamic forces encountered appeared to be large enough to cause considerable damage to the thin aluminum leading edges of the rotor blades.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9G19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-11
    Description: As part of the performance investigation of compressors for the J33 turbojet engine, the A-21 model and the A-23 model with a 17- and a 34-blade impeller were operated with water injection at their respective design equivalent speeds of 11,500 and 11,750 rpm. Inlet conditions of pressure of 14 inches of mercury absolute and of ambient temperature correspond to those of the investigation of these models without water injection. The water-air ratio by weight ranged from 0.05 to 0.06. By the use of water injection, the peak pressure ratio of the A-21 compressor and the A-23 compressor with a 34-blade impeller increased approximately 0.38, whereas that of the A-23 compressor with a 17-blade impeller increased only 0.14. The decrease in maximum efficiency for the three compressors ranged from 0.12 to 0.14. The highest increase in maximum equivalent weight flow of air plus weight flow of water was 10.90 pounds per second obtained with the A-21 compressor. The increase in air weight flow alone was approximately 5.70 pounds per second for the A-21 compressor end the A-23, 17-blade compressor, which exceeded the increase of 3.15 pounds per second for the A-23; 34-blade compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9G13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: When auxiliary jet engines are installed on airframes; as well as in some new designs, the jet engines are mounted in such a way that the jet stream exhausts in close proximity to the fuselage. This report deals with the behavior of the jet in close proximity to a two-dimensional surface. The experiments were made to find out whether the axially symmetric stream tends to approach the flat surface. This report is the last of a series of four partial test reports of the Goettingen program for the installation of jet engines, dated October 12, 1943. This report is the complement of the report on intake in close proximity to a wall.
    Keywords: Aerodynamics
    Type: NACA-TM-1214 , Untersuchungen und Mitteilungen; 3057
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: In an earlier report UM No.1117 by Gothert,the single-source method was applied to the compressible flow around circles, ellipses, lunes, and around an elongated body of revolution at different Mach numbers and the results compared as far as possible with the calculations by Lamla ad Busemann. Essentially, it was found that with favorable source arrangement the single-source method is in good agreement with the calculations of the same degree of approximation by.Lamla and Busemann. Near sonic velocity the number of steps must be increased considerably in order to sufficiently approximate the adiabatic curve. After exceeding a certain Mach number where local supersonic fields occur already, it was no longer possible, in spite of the substantially increased number of steps, to obtain a systematic solution because the calculation diverged. This result,was interpreted to mean that above this point of divergence the symmetrical type of flow ceases to exist and changes into the unsymmetrical type characterized by compressibility shocks.
    Keywords: Aerodynamics
    Type: NACA-TM-1203 , Untersuchungen und Mitteilurgen; 1471
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: The problem of the motion of an elongated body of revolution in an incompressible fluid may, as is known, be solved approximately with the aid of the distribution of sources along the axis of the body. In determining the velocity field, the question of whether the body moves uniformly or with an acceleration is no factor in the problem. The presence of acceleration must be taken into account in determining the pressures acting on the body. The resistance of the body arising from the accelerated motion may be computed either directly on the basis of these pressures or with the aid of the so-called associated masses (inertia coefficients). A different condition holds in the case of the motion of bodies in a compressible gas. In this case the finite velocity of sound must be taken into account.
    Keywords: Aerodynamics
    Type: NACA-TM-1230 , Prikladnaya Matematika I Mekhanika; 10; 4; 521-524
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-11
    Description: Various ways were tried recently to decrease the friction drag of a body in a flow; they all employ influencing the boundary layer. One of them consists in keeping the boundary layer Laminar by suction; promising tests have been carried out. Since for large Reynolds numbers the friction drag of the laminar boundary layer is much lower than that of the turbulent boundary layer, a considerable saving in drag results from keeping the boundary layer laminar, even with the blower power required for suction taken into account. The boundary layer is kept laminar by suction in two ways: first, by reduction of the thickness of the boundary layer and second, by the fact that the suction changes the form of the velocity distribution so that it becomes more stable, in a manner similar to the change by a pressure drop. There by the critical Reynolds number of the boundary layer (USigma*/V) (sub crit) becomes considerably higher than for the case without suction. This latter circumstance takes full effect only if continuous suction is applied which one might visualize realized through a porous wall. Thus the suction quantities required for keeping the boundary layer laminar become so small that the suction must be regarded as a very promising auxiliary means for drag reduction.
    Keywords: Aerodynamics
    Type: NACA-TM-1216
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-11
    Description: An investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the high-speed lateral and directional stability characteristics of a 0.10-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicate that static lateral and directional stability is present throughout the Mach number range investigated although in the Mach number range from 0.75 to 0.85 there is an appreciable decrease in rolling moment due to sideslip. Calculations of the dynamic stability indicate that according to current flying-quality requirements the damping of the lateral oscillation, although probably satisfactory for the sea-level condition, may not be satisfactory for the majority of the altitude conditions investigated
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-Sl9G21A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-11
    Description: For the design and the construction of airplanes the control is of special significance, not only with regard to the flight mechhnical properties but also for the proportional arrangement of wing unit, fuselage, and tail unit. whereas these problems may be regarded as solved for direct control of airplane motions, that is, for immediate operation of the control surfaces, they are not clarified as to oscimtions, stability, and stress phenomena occurring in flight motions with Indirect control, ss realized for instance in tab control. Its modus operandi is based on the activation of a tab hinged to the trailing edge & the main control surface. Due to lift and drag variations, mcments originate about the axis of rotation of the main contnol surface which cause an up-or--down floating of the main control surface and thus a change in the direction of the airplane. Since this tab control means flying with free control surface , the treatment of this problem should provide the basis on which to judge stability, oscilhtton, and stress data.The present report is to represent a contribution toward the clarification of the problems arising and, to treat the longitudinal motion of an airplane.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1197 , ZWB Forschungsbericht Nr. 2000; Rept-2000
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-11
    Description: Four component measurements of 12 wings of symmetric profile having flaps with chord ratios t(sub R)/t(sub L) = 0.3 and t(sub R)/t(sub L) = 0.2 are treated in this report. As a result of the investigations, the effects of plan form and gap between fixed surface and control surface have been clarified. Lift, drag, pitching moment, and hinge moment were measured in the control-surface deflection range: -23 deg 〈 or = beta 〈 or = 23 deg and the range of angle of attack: -20 deg 〈 or = alpha 〈 or = 20 deg. Six wings with flaps of small chord (t(sub R)/t(sub L) 〈 0.1) were investigated at large flap settings.
    Keywords: Aerodynamics
    Type: NACA-TM-1206 , ZWB Forschungsbericht; Rept-552/4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-11
    Description: The present report describes a new method for the prediction of the flow pattern of a gas in the two-dimensional and axially symmetrical case. It is assumed that the expansion of the gas is adiabatic and the flow stationary. The several assumptions necessary of the nozzle shape effect, in general, no essential limitation on the conventional nozzles. The method is applicable throughout the entire speed range; the velocity of sound itself plays no singular part. The principal weight is placed on the treatment of the flow near the throat of a converging-diverging nozzle. For slender nozzles formulas are derived for the calculation of the velocity components as function of the location.
    Keywords: Aerodynamics
    Type: NACA-TM-1215 , Luftfahrtforschung; 91-102
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel of a 1/29-scale model of the Republic XF-91 airplane with a.conventional-tail arrangement installed. Previously, tests were made on the model with a vee tail installed. The erect spin and recovery characteristics of the model were determined for the normal loading with the wing installed at various amounts of incidence. The spin investigation also included inverted-spin tests, spin-recovery-parachute tests, tests with the center of gravity moved rearward, and tests with external fuel tanks added to the model. In addition, several tail.modifications were tested,on the model in an attempt, to improve the model's spin-recovery characteristics. The results indicate that any fully developed spin obtained on the airplane with the conventional tail installed will be satisfactorily terminated if rudder reversal is accompanied by moving the ailerons with the spin (stick right in a right spin).Decreasing the wing incidence from 6deg to -2deg should have a beneficial effect on the recovery characteristics of the airplane. Recovery characteristics by normal use of controls (full rudder reversal followed by moving the elevators down) will be satisfactory if the wing incidence,of the airplane is -2deg. Installation of external fuel tanks (with or without fuel) will have a somewhat adverse effect on the recovery characteristics of the airplane, but if the recovery technique includes movement of the ailerons to full with the spin, the spin rotation will be terminated rapidly. Varying the position of the center of gravity within the limits indicated to be possible on the airplane should not affect the recovery characteristics.
    Keywords: Aerodynamics
    Type: NACA-RM-SL9E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: The plane problem of the vibrating airfoil in supersonic flow is dealt with and solved within the scope of a linearized theory by the method of the acceleration potential.
    Keywords: Aerodynamics
    Type: NACA-TM-1238 , ZWB Forschungsbericht Nr. 1903; Rept-1903
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-11
    Description: So-called flip-flop controls (also called "on-off-course controls") are frequently preferred to continuous controls because of their simple construction. Thus they are used also for the steering control of airplanes. Such a body possesses-even if one thinks, for instance, only of the symmetric longitudinal motion - three degrees of freedom so that a study of its motions under the influence of an intermittent control is at least lengthy. Thus, it is suggested that an investigation of the basic effect of such a control first be made on a system with one degree of freedom. Furthermore, we limit ourselves in the resent report to the investigation of an "ideal" control where the control surface immediately obeys the command given by the "steering control function". Thus the oscillation properties of the control surface and the defects in linkage, sensing element, and mixing device are, at first, neglected. As long as the deviations from the "ideal" control may be neglected in practice, also the motion of the control surface takes place at the heat of the motion of the principal system. The aim of our investigation is to obtain a survey of the influence of the system and control coefficients on the damping behavior which is to be attained.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1237 , ZWB Untersuchungen und Mitteilungen Nr. 1326; Rept-1326
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-11
    Description: A single-stage modification of the turbine from a Mark 25 torpedo power plant was investigated to determine the performance with two nozzle designs in combination with special rotor blades having a 20 inlet angle. The performance is presented in terms of blade, rotor, and brake efficiency as a function of blade-jet speed ratio for pressure ratios of 8, 15 (design), and 20. The blade efficiency with the nozzle having circular pas- sages (K) was equal to or higher than that with the nozzle having rectangular passages (J) for all pressure ratios and speeds investigated. The maximum blade efficiency of 0.571 was obtained with nozzle K at a pressure ratio of 8 and a blade-jet speed ratio of 0.296. The difference in blade efficiency was negligible at a pressure ratio of 8 at the low speeds; the maxim difference was 0.040 at a pressure ratio of 20 and a blade-jet speed ratio of 0.260.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9H09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-11
    Description: The J33-A-27 compressor was operated at an inlet pressure of 14 inches of mercury absolute and ambient inlet temperature over a range of equivalent impeller speeds from 6100 to 11,800 rpm. At the design equivalent speed of 11,800 rpm, the J33-A-27 compressor had a peak pressure ratio of 4.40 at an equivalent weight flow of 105.7 pounds per second and a peak adiabatic temperature-rise efficiency of 0.745. The maximum equivalent weight flow at design speed was 113.5 pounds per second.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9F30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-11
    Description: A supplementary investigation on the stabilization of the Jettisonable nose section of the X-2 airplane has been conducted in the Langley 20-foot free-spinning tunnel. It was found that the nose section could be stabilized by the addition of curved fins which could be folded against the fuselage for normal flight.
    Keywords: Aerodynamics
    Type: NACA-RM-L9F22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-11
    Description: The characteristics of a cargo-dropping device having extensible rotating blades as load-carrying surfaces have been studied in simulated vertical descent in the Langley 20-foot free-spinning tunnel. The investigation included tests to determine the variation in vertical sinking speed with load. A study of the blade characteristics and of the test results indicated a method of dynamically balancing the blades to permit proper functioning of the device.
    Keywords: Aerodynamics
    Type: NACA-RM-L9G14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: An investigation of the stability and control characteristics of a 1/10-scale model of a Canadian tailless glider has been conducted in the 10 Langley free-flight tunnel. The glider designated the N.R.L. tailless glider has a straight center section and outboard panels sweptback 43 deg. along the leading edge of the wing. The aspect ratio is 5.83 and the taper ratio is 0.323. From the results of the investigation and on the basis of comparison with higher-scale static tests of the National Research Council of Canada, it is expected that the longitudinal stability of the airplane will be satisfactory with flap up but unsatisfactory near the stall with flap down. The airplane is expected to have unsatisfactory lateral stability and control characteristics in the design configuration with either flap up or flap down. The model flights showed very low damping of the lateral oscillation. Increasing the vertical-tail area improved the lateral stability, and it appeared that a value of the directional-stability parameter C(sub n beta) of at least 0.002 per degree would probably be necessary for satisfactory lateral flying characteristics. A comparison of the calculated dynamic lateral stability characteristics of the N.R.L. tailless glider with those of a conventional-type sweptback airplane having a similar wing plan form and about the same inclination of the principal longitudinal axis of inertia showed that the tailless glider had poorer lateral stability because of the relatively larger radius of gyration in roll and the smaller damping-in-yaw factor C(sub nr).
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9C28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: An investigation was conducted to determine the effect of turbine-disk cooling with air on the efficiency and the power output of the radial-flow turbine from the Turbo Engineering Corporation TT13-18 turbosupercharger. The turbine was operated at a constant range of ratios of turbine-inlet total pressure to turbine-outlet static pressure of 1,5 and 2.0, turbine-inlet total pressure of 30 inches mercury absolute, turbine-inlet total temperature of 12000 to 20000 R, and rotor speeds of 6000 to 22,000 rpm, Over the normal operating range of the turbine, varying the corrected cooling-air weight flow from approximately 0,30 to 0.75 pound per second produced no measurable effect on the corrected turbine shaft horsepower or the turbine shaft adiabatic efficiency. Varying the turbine-inlet total temperature from 12000 to 20000 R caused no measurable change in the corrected cooling-air weight flow. Calculations indicated that the cooling-air pumping power in the disk passages was small and was within the limits of the accuracy of the power measurements. For high turbine power output, the power loss to the compressor for compressing the cooling air was approximately 3 percent of the total turbine shaft horsepower.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ-55-FF-1 turbo Jet engine. The test unit consisted of a row of inlet guide vanes and a supersonic rotor; the stator vanes after the rotor were omitted. The maximum pressure ratio produced in the single stage was 2.28 at an equivalent tip speed or 1814 feet per second with an adiabatic efficiency of approximately 0.61, equivalent weight flow of 13.4 pounds per second. The maximum efficiency of 0.79 was obtained at an equivalent tip speed of 801 feet per second.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9A31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: A 0.1-size powered dynamic model of a large, high-speed flying boat was landed in Langley tank no. 1 into oncoming waves 4 feet high (full size). The model was tested with two afterbodies of differing lengths (4.12 and 6.63 beams). The short afterbody had a constant angle of dead rise of 22.5deg and a keel angle of 6.5deg. The long afterbody had warped dead rise and a keel angle of 8.5deg. The vertical accelerations were slightly greater and the maximum angular accelerations and maxim= trims were slightly less for the model with the long afterbody than for the model with -the short afterbody. A wave length of 210 feet (full size) imposed the highest accelerations on the model with either the long or the short afterbody.
    Keywords: Aerodynamics
    Type: NACA-RM-SL9B09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: The inlet wide vanes for the supersonic compressor of the XJ55-FF-1 engine were studied as a separate component in order to determine the performance prior to installation in the compressor test rig. Turning angles approached design values, and increased approximately to through the inlet Mach number range from 0.30 to choke. A sharp break in turning angle was experienced when the choke condition was reached. The total-pressure loss through the guide vanes was approximately 1 percent for the unchoked conditions and from 5 to 6 percent when choked.
    Keywords: Aerodynamics
    Type: NACA-RM-SE9E03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-12
    Description: An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9J14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: During the past several years it has been necessary for aeronautical research workers to exert a good portion of their effort in developing the means for conducting research in the high-speed range. The transonic range particularly has presented a very acute problem because of the choking phenomena in wind tunnels at speeds close to the speed of sound. At the same time, the multiplicity of design problems for aircraft introduced by the peculiar flow problems of the transonic speed range has given rise to an enormous demand for detail design data. Substantial progress has been made, however, in developing the required research techniques and in supplying the demand for aerodynamic data required for design purposes. In meeting this demand, it has been necessary to resort to new techniques possessing such novel features that the results obtained have had to be viewed with caution. Furthermore, the kinds of measurements possible with these various techniques are so varied that the correlation of results obtained by different techniques generally becomes an indirect process that can only be accomplished in conjunction with the application of estimates of the extent to which the results of measurements by any given technique are modified by differences that are inherent in the techniques. Thus, in the establishment of the validity and applicability of data obtained by any given technique, direct comparisons between data from different sources are a supplement to but not a substitute for the detailed knowledge required of the characteristics of each technique and fundamental aerodynamic flow phenomena.
    Keywords: Aerodynamics
    Type: NASA-TM-X-56649 , NACA Conference on Aerodynamic Problems of Transonic Airplane Design; Sep 27, 1949 - Sep 29, 1949; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-15
    Description: An investigation of the static longitudinal stability, static directional stability, and aileron control characteristics at transonic and supersonic speeds is being made of 1/6 scale rocket-propelled model of the Bell MX-776. A stability investigation has been made of two symmetrical models with controls undeflected and centers of gravity one-half and one-body diameter, respectively, ahead of the equivalent design center-of-gravity location of the full-scale version. Both models developed large normal-force coefficients in both the subsonic and supersonic ranges which indicated longitudinal instability at low angles of attack. The side-force coefficients were small for both models and indicated that the models were directionally stable. A possible tendency toward dynamic directional instability in the transonic region was indicated by short-period oscillations of the side forces. The results showed a partial-span inboard aileron to be ineffective or to cause negative control in the the transonic region when deflected approximately 5 deg but not when deflected 10 deg. An investigation of drag showed it to increase with a rearward movement of the center of gravity. This indicates an increase in the trim angle of attack as could be caused by a decrease in static stability.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9D21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.
    Keywords: Aerodynamics
    Type: NACA-TM-1205 , Schriften der Deutschen Akademie der Luftfahrtforschung; 8; 1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    California Institute of Technology Pasadena
    In:  Seismological Laboratory Bulletin, Pasadena, California Institute of Technology Pasadena, vol. 1947, no. 6, pp. 126, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1948
    Keywords: Seismology ; Earthquake catalog ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Geol. Rundschau, New York, Allerton Press, vol. 36, no. 2, pp. 77-83, pp. L01606, (ISSN: 1340-4202)
    Publication Date: 1948
    Keywords: Seismicity ; Fault zone ; NAF ; SAF ; Turkey ; Structural geology ; 1939 ; Earthquake
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Geofisica Pura e Applicata, Pasadena, California Institute of Technology Pasadena, vol. 12, no. 6, pp. 130-134, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1948
    Keywords: Seismology ; Seismicity ; Source parameters ; Hypocentral depth
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Die Naturwissenschaften, Pasadena, California Institute of Technology Pasadena, vol. 35, no. 6, pp. 196-202, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1948
    Keywords: CRUST ; Tectonics ; Seismology ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Trans., Am. Geophys. Union, Pasadena, California Institute of Technology Pasadena, vol. 29, no. 6, pp. 406-407, pp. L24306, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1948
    Keywords: Seismology ; Seismicity ; EOS
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 399-411
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 341-353
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 307-322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 127-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 29-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 355-365
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 151-166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 109-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 325-340
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 377-395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA. Langley Aeron. Lab. NACA: Univ. Conf. on Aerodyn.; p 367-376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 167-183
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Keywords: AERODYNAMICS
    Type: NACA: Univ. Conf. on Aerodyn.; p 3-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-06-28
    Description: An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.
    Keywords: Aerodynamics
    Type: NACA-RM-A7J13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.
    Keywords: Aircraft Stability and Control
    Type: NACA-TN-1771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted to determine the penetration of a circular air Jet directed perpendicularly to an air stream as a function of Jet density, Jet velocity, air-stream density, air-stream velocity, Jet diameter, and distance downstream from the Jet. The penetration was determined for nearly constant values of air-stream density at two tunnel velocities, four Jet diameters, four positions downstream of the Jet, and for a large range of Jet velocities and densities. An equation for the penetration was obtained in terms of the Jet diameter, the distance downstream from the jet, and the ratios of Jet and air-stream velocities and densities.
    Keywords: Aerodynamics
    Type: NACA-TN-1615
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-28
    Description: A theory has been developed for resetting the blade angles of an axial-flow compressor in order to improve the performance at speeds and flows other than the design and thus extend the useful operating range of the compressor. The theory is readily applicable to the resetting of both rotor and stator blades or to the resetting of only the stator blades and is based on adjustment of the blade angles to obtain lift coefficients at which the blades will operate efficiently. Calculations were made for resetting the stator blades of the NACA eight-stage axial-flow compressor for 75 percent of design speed and a series of load coefficients ranging from 0.28 to 0.70 with rotor blades left at the design setting. The NACA compressor was investigated with three different blade settings: (1) the design blade setting, (2) the stator blades reset for 75 percent of design speed and a load coefficient of 0.48, and (3) the stator blades reset for 75 percent of design speed and a load coefficient of 0.65.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-915 , NACA-ACR-E6E02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-28
    Description: The results of wind tunnel tests at NASA Langley targeted at the performance and configurational characteristics of 0.1 and 0.13 scale model spanwise blowing (SWB) jet wing concepts are reported. The concept involves redirection of engine compressor bleed air to provide SWB at the fuselage-wing juncture near the wing leading edge. The tests covered the orientation of the outer panel nozzles, the effects of SWB operation on the performance of leading and trailing edge flaps and the effects of SWB on lateral stability. The trials were run at low speeds and angles of attack from 24-45 deg (landing). Both lift and longitudinal stability improved with the SWB, stall and leading edge vortex breakdown were delayed and performance increased with the SWB rate. Lateral stability was degraded below 20 deg angle of attack while instabilities were delayed above 20 deg due to roll damping.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 84-2195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-16
    Description: A wind tunnel investigation was conducted to determine the performance of a 4000-pound-thrust axial-flow turbojet engine with a high flow compressor. Pressure altitudes included 5000 to 40000 feet with ram pressure ratios from 1.00 to 1.82. Altitudes included 20000 to 40000 feet and ram pressure ratios from 1.09 to 1.75. A comparison is made between engine performance with high flow and low flow compressors.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-16
    Description: A wind tunnel investigation was conducted to determine the performance of a turbine operating as an integral part of a turbojet engine. Data was obtained while the engine was running over full operable range of speeds at various altitudes and flight mach numbers, and with four nozzles of different outlet areas.A maximum turbine efficiency of 0.875 was obtained at altitude of 15 thousand feet, Mach number 0.53, and corrected turbine speed of 5900 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8A23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-16
    Description: Temperature and pressure distributions for an original and modified 3000 pound thrust axial flow turbojet engine were investigated. Data are included for a range of simulated altitudes from 5000 to 45000 feet, Mach numbers from 0.24 to 1.08, and corrected engine speeds from 10,550 to 13,359 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8C17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 1/24-scale model of the Grumman XF9F-2 airplane with wing-tip tanks installed has been conducted-in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect spin and recovery characteristics of the model for a range of possible loadings of the tip tanks were determined. Spin and recovery characteristics without tanks were determined in a previous investigation. The model results indicated that the airplane spins will generally be oscillatory and that recoveries will be satisfactory for all loadings by normal recovery technique (full rudder reversal followed approximately one-half turn later by moving the elevator down). The rudder force necessary for recovery should be within the physical capability of the pilot but the elevator force may be excessive so that some type of balance or booster might be necessary, or it might be necessary to jettison the wing-tip tanks.
    Keywords: Aerodynamics
    Type: NACA-RM-SL9F01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-11
    Description: A supplementary wind-tunnel investigation has been conducted to determine the effect of rearward positions of the center of gravity on the spin, longitudinal-trim, and tumbling characteristics of the 1/20-scale model of the Consolidated Vultee 7002 airplane equipped with the single vertical tail. A few tests were also made with dual vertical tails added to the model. The model was ballasted to represent, the airplane in its approximate design gross weight for two center-of-gravity positions, 3O and 35 percent of the mean aerodynamic chord. The original tests previously reported were for a center-of-gravity position of 24 percent of the mean aerodynamic chord.
    Keywords: Aerodynamics
    Type: NACA-RM-SL9B24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-11
    Description: At the request of the Air Material Command, U. S. Air Force, a theoretical study has been made of the dynamic lateral stability characteristics of the MX-838 (XB-51) airplane. The calculations included the determination of the neutral-oscillatory-stability boundary (R = 0), the period and time to damp to one-half amplitude of the lateral oscillation, end the time to damp to one-half amplitude for the spiral mode. Factors varied in the investigation were lift coefficient, wing incidence, wing loading, and altitude. The results of the investigation showed that the lateral oscillation of the airplane is unstable below a lift coefficient of 1.2 with flaps . deflected 40deg but is stable over the entire speed range with flaps deflected 20deg or 0deg. The results showed that satisfactory oscillatory stability can probably be obtained for all lift coefficients with the proper variation of flap deflection and wing incidence with airspeed. Reducing the positive wing incidence improved the oscillatory stability characteristics. The airplane is spirally unstable for most conditions but the instability is mild and the Air Force requirements are easily met.
    Keywords: Aerodynamics
    Type: NACA-RM-SL8K10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-11
    Description: The results of altitude-wind-tunnel tests conducted to determine the performance of an axial-flow-type 4000.pound-thrust turboJet engine for a range of pressure altitudes from 5000 to 40,000 feet and ram pressure ratios from 1.02 to 1.86 are presented and the experimental and analytical methods employed are discussed. By means of suitable generalizing factors applied to the measured performance data, curves were obtained from which the engine performance at any altitude for a given ram pressure ratio can be estimated. The data presented include the windmilling drag characteristics of the turbojet engine for the ranges of altitudes and ram pressure ratios covered by the performance data.
    Keywords: Aerodynamics
    Type: NACA-RM-E8F09-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the effects of decreasing the rudder deflection, of decreasing the rudder span, and of differential rudder movements on the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane. The results indicated that decreasing the rudder span or the rudder deflections, individually or jointly, did not seriously alter the spin or recovery characteristics of the model; and recovery by normal use of controls (full rapid rudder reversal followed l/2 to 1 turn later by movement of the stick forward of neutral) remained satisfactory. Linking the original rudders so that the inboard rudder moves from full with the spin to neutral while the outboard rudder moves from neutral to full against the spin will also result in satisfactory spin and recovery characteristics. Calculations of rudder-pedal forces for recovery showed that the expected forces would probably be within the capabilities of a pilot but that it would be advisable to install some type of boost in the control system to insure easy and rapid movement of the rudders.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9H30a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-11
    Description: A series of flight tests have been made at the Langley Flight Research Division at the request of the Bureau of Aeronautics, Department of the Navy, to determine the flying qualities of the Grumman F8F-1 air- plane. This paper presents the test results necessary to determine the longitudinal stability and control characteristics end the stalling characteristics. These tests were made between February and June of 1947- The range of Mach numbers covered in this investigation was approximately 0.10 to 0.62, and no attempt was made to investigate compressibility effects at higher Mach numbers. The lateral and directional stability and control characteristics of the subject airplane have already been reported (reference 1). Also presented in this paper is a discussion of the normal accelerations induced by yawing velocity and sideslip which were considered ob,jectionable by the pilot for this airplane. A discussion of the undesirable accelerations has been included with a view towards formulating some flying-qualities requirements limiting them.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-11
    Description: An investigation was made in the Langley high-speed 7-by 10-foot tunnel to determine the high-speed longitudinal stability end con&o1 characteristics of a 0.01-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicated that the lift and drag force breaks occurred at a Mach number of about 0.76. The aerodynamic-center position moved rearward after the force break and control position stability was present for all Mach numbers up to a Mach number of 0.80.
    Keywords: Aerodynamics
    Type: NACA-RM-SL8K16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-11
    Description: A spin investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the North American XP-86 airplane. The effects of control settings and movements upon the erect and inverted spin and recovery characteristics of the model were determined for the design gross weight loading. The long-range loading was also investigated and the effects of extending slats and dive flaps were determined. In addition, the investigation included the determination of the size of spin-recovery parachute required for emergency recovery from demonstration spins, the rudder force required to move the rudder for recovery, and the best method for the pilot to escape if it should become necessary to do so during a spin. The results of the investigation indicated that the XP-86 airplane will probably recover satisfactorily from erect and inverted spins for all possible loadings. It was found that fully extending both slats would be beneficial but that extending the dive brakes would cause unsatisfactory recoveries. It was determined that a 10.0-foot-diameter tail parachute with a drag coefficient of 0.7 and with a towline 30.0 feet long attached below the jet exit or a 6.0-foot-diameter wingtip parachute opened on the outer wing tip with a towline 6.0 feet long would insure recoveries from any spins obtainable. The rudder-pedal force necessary to move the rudder for satisfactory recovery was found to be within the physical capabilities of the pilot.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8D22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-11
    Description: This paper presents the results of measurements of longitudinal stability of a 1/50-scale model of the XP-88 airplane by the wing-flow method. Lift, rolling-moment, hinge-moment, and pitching-moment characteristics as well as the downwash at the tail were measured over a Mach number range from approximately 0.5 to 1.05 at Reynolds numbers below 1,000,000. No measurements of drag were obtained. No abrupt changes due to Mach number were noted in any of the parameters measured. The data indicated that the wing was subject to early tip stalling; that the tail effectiveness decreased gradually with increasing Mach number up to M = 0.9, but increased again at higher Mach numbers; that the variation of downwash with angle of attack did not change appreciably with Mach number except between 0.95 and 1.0 where d(epsilon)/d(alpha), decreased from 0.46 to 0.32; that at zero lift with a stabilizer setting of -1.5 deg there was a gradually increasing nosing-up tendency with increasing Mach number; and that the control-fixed stability in maneuvers at constant speed gradually increased with increasing Mach number.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8E28A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics were determined, as were also the effects of extending the wing slats, of center-of-gravity movement, and-of variation in the mass distribution. The investigation also included wing-tip spin-recovery-parachute tests, pilot-escape tests, and rudder-control-force tests. The investigation indicated that the spin and recovery characteristics of the airplane will be satisfactory for all conditions. It was found that a single 4.24-foot (full-scale) parachute when opened alone from the outboard wing tip or two 8.77-foot (full-scale) parachutes when opened simultaneously, one from each wing tip, would effect satisfactory emergency recoveries (the drag coefficients of the parachutes, based on the surface area of the parachute, were 0.83 and 0.70 for the 4.24- and 8.77-foot parachutes, respectively). The towline length in both cases was 25 feet (full scale). Tests results showed that, if the pilot should have to leave the airplane during a spin, he should jump from the outboard side (left side in a right spin) of the cockpit. The rudder-control force necessary for recovery from a spin was found to be rather high but appeared to be within the upper limits of a pilot's capabilities.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-11
    Description: Tests of a 1/20-scale dynamically similar model of the Northrop B-35 airplane were made to study its ditching characteristics. The model was ditched in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds,and conditions of damage were simulated during the investigation. The ditching characteristics were determined by visual observation and from motion-picture records and time-history acceleration records. Both longitudinal and lateral accelerations were measured. Results are given in tabular form and time-history acceleration curves and sequence photographs are presented. Conclusions based on the model investigation are as follows: 1. The best ditching of the B-35 airplane probably can be made by contacting the water in a near normal landing attitude of about 9 deg with the landing flaps full down so as to have a low horizontal speed. 2. The airplane usually will turn or yaw but the motion will not be violent. The maximum lateral acceleration will be about 2g. 3. If the airplane does not turn or yaw immediately after landing, it probably will trim up and then make a smooth run or porpoise slightly. The maximum longitudinal decelerations that will be encountered are about 6g or 7g. 4. Although the decelerations are not indicated to be especially large, the construction of the airplane is such that extensive damage is to be expected, and it probably will be difficult to find ditching stations where crew members can adequately brace themselves and be reasonably sure of avoiding a large inrush of water.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL8A29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-11
    Description: This report presents the results of the tests of a power-plant installation to improve the circumferential pressure-recovery distribution at the face of the engine. An underslung "C" cowling was tested with two propellers with full cuffs and with a modification to one set of cuffs. Little improvement was obtained because the base sections of the cuffs were stalled. A set of guide vanes boosted the over-all pressures and helped the pressure recoveries for a few of the cylinders. Making the underslung cowling into a symmetrical "C" cowling evened the pressure distribution; however, no increases in front pressures were obtained. The pressures at the top cylinders remained low and the high pressures at the bottom cylinders were reduced. At higher powers and engine speeds, the symmetrical cowling appeared best from the standpoint of over-all cooling characteristics.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SL7L10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-11
    Description: The effect of rotor-blade length, inlet angle, and shrouding was investigated with four different nozzles in a single-stage modification of the Mark 25 aerial-torpedo power plant. The results obtained with the five special rotor configurations are compared with those of the standard first-stage rotor with each nozzle. Each nozzle-rotor combination was operated at nominal pressure ratios of 8, 15 (design), and 20 over a range of speeds from 6000 rpm to the design speed of 18,000 rpm. Inlet temperature and pressure conditions of 1OOOo F and 95 pounds per square inch gage, respectively, were maintained constant for all runs.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9G20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-11
    Description: The hydrodynamic characteristics of an aerodynamically refined planing-tail hull were determined from dynamic model tests in Langley tank no. 2. Stable take-off could be made for a wide range of locations of the center of gravity. The lower porpoising limit peak was high, but no upper limit was encountered. Resistance was high, being about the same as that of float seaplanes. A reasonable range of trims for stable landings was available only in the aft range of center-of-gravity locations.
    Keywords: Aerodynamics
    Type: NACA-RM-L8G16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-11
    Description: This report contains the results of the wind tunnel investigation of the pressure distribution on the flying mock-up of the Consolidated Vultee XP-92 airplane. Data are presented for the pressure distribution over the wing, vertical tail and the fuselage, and for the pressure loss and rate of flow through the ducted fuselage. Data are also presented for the calibration of two airspeed indicators, and for the calibration of angle-of-attack and sideslip-angle indicator vanes.
    Keywords: Aerodynamics
    Type: NACA-RM-SA8D08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-11
    Description: Flow-metering devices used by the NACA and by the manufacturer of the J33 turbojet engine were calibrated together to determine whether an observed discrepancy in weight flow of approximately 4 percent for the two separate investigations might be due to the different devices used to meter air flow. A commercial adjustable orifice and a square-edge flat-plate orifice used by the NACA and a flow nozzle used by the manufacturer were calibrated against surveys across the throat of the nozzle. It was determined that over a range of weight flows from 18 to 45 pounds per second the average weight flows measured by the metering device used for the compressor test would be 0.70 percent lower than those measured by the metering device used in the engine tests and the probable variation about this mean would be +/- 0.39 percent. The very close agreement of the metering devices shows that the greater part of the discrepancy in weight flow is attributable to the effect of inlet pressure.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8H03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-11
    Description: Pressure measurements were made during wind-tunnel tests of the McDonnell XP-85 parasite fighter. Static-pressure orifices were located over the fuselage nose, over the canopy, along the wing root, and along the upper and lower stabilizer roots. A total-pressure and static-pressure rake was located in the turbojet engine air-intake duct. It was installed at the station where the compressor face would be located. Pressure data were obtained for two airplane conditions, clean and with skyhook extended, through a range of angle of attack and a range of yaw.
    Keywords: Aerodynamics
    Type: NACA-RM-SA8J22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the NACA Cleveland altitude wind tunnel to evaluate the performance characteristics of the X24C-4B turbojet engine over a range of simulated altitudes from 5000 to 45,000 feet,simulated flight Mach numbers from 0 to 1.08, and engine speeds from 4000 to 12,500 rpm. Performance data are presented to show graphically the effects of altitude at a flight Mach number of 0.25 and of flight Mach number at an altitude of 25,000 feet. The performance data are generalized to show the applicability of methods used to determine performance at any altitude from data obtained at a given altitude. A complete tabulation of performance data, as well as lubrication- and fuel- system data, is presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE7L26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-11
    Description: Investigations were made of the turbine from a Mark 25 torpedo to determine the performance of the unit with three different turbine nozzles at various axial nozzle-wheel clearances. Turbine efficiency with a reamed nondivergent nozzle that uses the axial clearance space for gas expansion was little affected by increasing the axial running clearance from 0.030 to 0.150 inch. Turbine efficiency with cast nozzles that expanded the gas inside the nozzle passage was found to be sensitive to increased axial nozzle-wheel clearance. A cast nozzle giving a turbine brake efficiency of 0.525 at an axial running clearance of 0.035 inch gave a brake efficiency of 0.475 when the clearance was increased to 0.095 inch for the same inlet-gas conditions and blade-jet speed ratio. If the basis for computing the isentropic power available to the turbine is the temperature inside the nozzle rather then the temperature in the inlet-gas pipe, an increase in turbine efficiency of about 0.01 is indicated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8B04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: At the request of the Air Material Command, Arm Air Forces, an investigation was conducted at the NACA Cleveland laboratory to determine the performance characteristics of the XJ-41-V turbojet-engine compressor. The complete compressor was mounted on a collecting chamber having an annular air-flow passage simulating the burner annulus of the engine and was driven by an electric motor. The compressor was extensively instrumented to determine the overall performance of the compressor, the characteristic performance of each of the compressor components, the state of the air stream in the simulated burner annulus, and the operation of the compressor bearings. An initial investigation at an equivalent compressor speed of 8000 rpm was made to determine the performance of the compressor and the collecting chamber and to determine the similarity of the air stream at the entrance to the simulated burner annulus. The mechanical performance of the compressor over a range of actual compressors speeds from 3300 to 8000 rpm is reported.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7A17a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-14
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-E8A27b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-17
    Description: At the request of the Henschel Aircraft Works. A. G. Berlin. three models of the missile "Zitterrochen" were investigated at subsonic velocities.(open jet 215-millimeter diameter) and at supersonic velocities (open jet 110 by 130 millimeters) in order to determine the effect of various wing forms on the air forces and moments. Three-component measurements were taken, and one model was also investigated with deflected control plates.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1159 , DLUM-3122 , Deutsche Luftfahrtforschung, Untersuchungen und Mitteilungen
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: Measurements on three tubes with flow regulated by suction at the trainling edge of the tube are described. It was possible to vary the mass of air flowing through the tube over a large range. Such tubes could be used for shrouded propellers.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1191 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters; 1945
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-15
    Description: A preliminary investigation of an axial-flow gas turbine-propeller engine was conduxted. Performance data were obtained for engine speeds from 8000 to 13,000 rpm and altitudes from 5000 to 35,000 feet and compressor inlet ram pressure ratios from 1.00 to 1.17.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...