ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (50)
  • Other Sources
  • photosynthesis  (50)
  • Springer  (50)
  • MDPI Publishing
  • National Academy of Sciences
  • 2000-2004  (50)
Collection
  • Articles  (50)
  • Other Sources
Publisher
  • Springer  (50)
  • MDPI Publishing
  • National Academy of Sciences
Years
Year
  • 1
    ISSN: 1440-1703
    Keywords: photosynthesis ; Prunus avium ; relative growth rate ; shading ; total plant water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Cherry (Prunus avium L.) saplings were grown under natural sunlight (controls) or moderate shading (up to 30%, depending on the incident light intensity and the hour of the day). Reduced light intensity increased the dry mass of each of the plant components studied. Consequently, the total dry mass of shaded plants was significantly greater than that of controls at the end of the growing season. However, the diurnal trend in the level of photosynthesis (per unit of leaf area) of shaded plants was similar to the controls in August, but lower in September. As the growing season proceeded, reduced photosynthetic rates, thinner mesophyll and larger specific leaf area in the shaded plants indicated that leaf development had adapted to shaded conditions throughout the growing season. It is suggested that increased growth of shaded plants was caused by a higher initial relative growth rate and a greater whole-plant photosynthesis. Shading consistently reduced transpiration over the season, therefore improving water use efficiency of shaded leaves. Our results suggest that a moderate reduction in light intensity can be a useful method for improving growth and saving water in hot and dry environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Russian journal of marine biology 26 (2000), S. 389-398 
    ISSN: 1608-3377
    Keywords: hermatypic coral ; zooxanthella ; photosynthesis ; respiration ; energy budget
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We analyzed the recent data on the distribution of the photosynthetic energy of zooxanthellae in corals and the models of interactions between the plant and animal cells in the course of matter and energy exchange developed based on this information. The models of energy exchange of animals symbiotic with zooxanthellae are characterized by the following features: (1) A flow chart of carbon or energy fluxes is the main form of representation of the energetics in native symbiotic organisms. (2) The relations between the symbionts are relatively adequately revealed and correspond to the modern notions; however, the intensities of the energy fluxes ascribed to these relations are dependent on the experimental and design methods used by the authors. (3) The inputs into the energy budget consist of the autotrophic production of zooxanthellae and the heterotrophy of the polyp. The energy expenditures comprise excretion, respiration, development, and growth of the animal and algae. (4) The differences between the species, genera, and phyla of animals that develop symbiotic relations with zooxanthellae are confined to the absolute values of energy fluxes in the organism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5176
    Keywords: Euglena gracilis ; Chlamydomonas reinhardtii ; photosynthesis ; oxygen electrode ; Light Pipette ; bioassay ; chlorophyll concentration ; algae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Euglena gracilis and Chlamydomonas reinhardtii were used as model organisms to establish the best conditions for studying photosynthetic efficiency using the Light Pipette – experimental system, which enables sensitive detection of changes in oxygen evolution/consumption and an easy collection and digitalisation of data. Chlorophyll concentrations of 0.005, 0.025, 0.050 and 0.075 mgmL-1 were investigated using different light regimes. Cultures of E. gracilis at the same chlorophyll concentration absorbed more light(measured at 580 μmol m-2 s-1) than those of C. reinhardtii. Cell density had a considerable effect on the reliability of measurements. Chlorophyll concentrations between 0.025 mgChl ml-1 and 0.050 mgChlml-1 can be recommended when applying the Light Pipette system in bioassays using microalgae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 159-168 
    ISSN: 1573-5176
    Keywords: Chlorophyll fluorescence ; Chondruscrispus ; Macrocystis pyrifera ; photosynthesis ; photoinhibition ; outdoor culture system ; Ulvalactuca ; UV-radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The present study examined the effect of UV andphotosynthetically active radiation (PAR) onphotoinhibition and recovery in the Phaeophyte Macrocystis pyrifera, the Rhodophyte Chondruscrispus and the Chlorophyte Ulva lactuca underoutdoor culture conditions. There was an increase inphotoinhibition as a consequence of high exposure toUV-B radiation in M. pyrifera, however, highlevels of PAR accounted for most of thephotoinhibition in C. crispus and U.lactuca. Photodamage by UV-A, UV-B and PAR wascompletely repaired within 5 h and effective quantumyield reached pretreatment values in the three speciesstudied. Species were less susceptible tophotoinhibition after being incubated for 5 d underhigh exposures of natural irradiance suggesting aphotoadaptive process. The recovery of the effectivequantum yield was impaired by long exposure to highlevels of UV-B in C. crispus and UV-A, UV-B andPAR in M. pyrifera. This suggests a differentkind of damage by UV-A and PAR radiation, one to thephotosynthetic apparatus and another which affects therepair mechanism of some species. There was anincrease in UV-absorption (λ 330 nm) in M. pyrifera and C. crispus within four days ofthe initiation of the experiment suggesting that thesespecies photoprotect their photosynthetic system whenexposed to elevated UV and PAR levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5176
    Keywords: fluorescence ; homogeneous culture ; JR125 polymer ; Laminaria ; gametophytes ; photosynthesis ; ultrastructural studies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract As filament aggregation is responsible for heterogeneity of Laminariales gametophyte cultures, a project was conducted to obtain stable homogeneous `free-living' cultures of Laminaria digitatagametophytes. The alga was cultivated at 15 ° Cunder low light and in the presence of a cationic cellulosic polymer, JR125. With 0.1%polymer in the culture medium, the filaments were dispersed and did not adhere to the culture vessel. The absence of any effect of the closely related, but uncharged, polymer LR-250 Natrasol on filament aggregation indicated that the cationic nature of the JR125 molecule was involved in gametophyte dissociation. In the presence of JR125, the gametophytes showed active vegetative growth; the doubling time, measured as chlorophyll concentration, was 5 days. The outer surface of the cell wall was clearly modified by the polymer treatment, as observed by transmission electron microscopy, while neither the inner cell wall or cell organelles were affected. Physiological studies indicated that JR125 treatment did not disturb cell physiology, there being no effecton respiration, photosynthetic activity, sensitivity to high-light stress or modification of pigment or fluorescence characteristics. We have therefore established the conditions for maintaining a stable culture of mixed male and female Laminaria digitata gametophytes in active vegetative growth. The presence of JR 125 in the medium yields a homogeneous culture without cell physiology becoming modified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 309-315 
    ISSN: 1573-5176
    Keywords: nuisance algae ; bio-fouling ; photosynthesis ; lightutilisation ; show caves ; control measures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Depending on the intensity, quality and duration ofthe illumination, necessary for viewing show caves,conditions conducive for algal growth are created. Although algae are the major component of this flora,ferns and mosses have also been recorded. Little isknown of the algae, except that they are considered anuisance in terms of discoloration and damage to thekarst formations. The occurrence and possible controlof the algal flora has been studied in the CangoCaves, one of the most important touristic sites inSouth Africa. The algal flora is sparse in speciesdiversity and primitive forms are present. They haveparticular physiological adaptations and usingmicro-oxygen liberation and fluorescence measurements,their photosynthetic characteristics were established. Environmentally friendly control measures wereinvestigated and a solution for their control is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 201-206 
    ISSN: 1573-5176
    Keywords: photobioreactors ; high yields ; photosynthesis ; single stage reactors ; multistage reactors ; strain selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The successful coupling between physiology andtechnology is central to the success of algalbiotechnology. Imperative is a proper understandingof the variables and their impacts on biomass and/orbiocompound production. The crux lies inphotosynthesis and the capturing of light energy atthe optimal rate for eventual maximal photochemistry(biosynthesis). It is in the hands of algalbiotechnologists to understand the dynamics andregulatory mechanisms of especially PSII (photosystemII) activity in order to advance this technologyfurther. Biophysical and technological optimisationand design aimed at maximising photon flux capture aresome of the avenues that needs be pursued. This needsto be augmented by molecular, biochemical andphysiological inputs. Unfortunately detailedsystematic analyses of the variables, theirinteraction and possible synergism have rarely beendone. The debate regarding the merits andproductivity in closed, either plate or tubular,vertical or horizontal, and open pond reactors need tobe resolved. Exciting developments regarding onlinemeasurements and feedback control for optimalproductivities are part of the solutions andapproaches that need to be followed. Multistagesystems that not only utilise autotrophic growth andstress components, but also combinedautotrophic/heterotrophic systems could providesolutions to specific production requirements. Theseand other important issues are addressed in theoverview. The challenges facing algalbiotechnologists and future research needs are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5176
    Keywords: desiccation ; growth ; growth model ; inorganic carbon ; nutrients ; photoperiod ; photosynthesis ; pigments ; Porphyra linearis ; PPF ; respiration ; temperature ; water velocity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of environmental parameters on the growthof Porphyra linearis gametophytes was examinedunder controlled conditions, and related to themultilinear regression growth model recently developedfor this seaweed under coastal conditions in theeastern Mediterranean. Growth chambers, a gradienttable, special culture devices and analytical methodswere combined for this culture study.The major factors significantly controlling thegrowth rate of the P. linearis gametophytein glass dishes were: photoperiod, temperature, agein culture, photosynthetic photon flux (PPF), salinityand water dynamics. Maximal growth occurred underdaylength of 12 h, medium temperature (15–20 °C), low PPF (70–140 μmol photon m-2s-1), ambient salinity (30–40 ppt), 1–3 h ofdaily air exposure, and water velocity of 4 cm s-1.Photosynthesis and respiration rates weredominantly affected by daylength and temperature,while the concentration of pigments was dominantlyaffected by PPF and temperature.These conditions correspond well to the optimalnatural growth environment of this local species andare in agreement with the optimum estimated throughthe recently developed outdoor mathematical growthmodel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 285-290 
    ISSN: 1573-5176
    Keywords: algal culture ; Chlamydomonas perigranulata ; light-harvesting pigment ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The productivity was evaluated of a strain of Chlamydomonas perigranulata isolated from the RedSea. A mutant with small light-harvesting pigments(LHC-1) was obtained by UV mutagenesis. Thechlorophylls content of the wild type was twice ashigh as that of LHC-1, and the initial slope of thephotosynthesis-irradiance curve was higher in the wildtype. However, the maximum photosynthetic activity ona per cell basis was almost the same. It isconcluded that LHC-1 is a mutant with lesslight-harvesting pigment (LHP) than the wild type. Aspreviously reported, the mutant with lower LHP contenthas a higher productivity in a continuous culturesystem, so we compared the productivity of the wildtype and the mutant. The maximum productivity of LHC-1was 1.5 times higher than that of the wild type. Itis suggested that the technique of reducing thecontent of light-harvesting pigment should be madeavailable for other organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biodiversity and conservation 9 (2000), S. 379-392 
    ISSN: 1572-9710
    Keywords: climate change ; cyanobacteria ; ectoenzymes ; Mediterranean ; nutrient limitation ; photosynthesis ; stromatolite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A stromatolitic microbial mat extensively covers La Solana streambed, a calcareous Mediterranean stream. This stromatolite shows remarkable biological and physiological diversity. It is mainly composed by cyanobacteria, with Rivularia and Schizothrix as the most abundant taxa. The stromatolite is photosynthetically adaptated to the high irradiances reaching the streambed. Photosynthetically active chlorophyll is present even in the lowest layers of the stromatolite, indicating the presence of well-preserved cyanobacteria in that part. Diffusion of gases and nutrients within the stromatolite can be possible because of the high porosity of the crust. It has been experimentally established that the stromatolite recovers heterotrophic and autotrophic activities in a few hours, after being desiccated for long periods. Recovery after desiccation is indicative of the high resilience of this community to environmental extremes, which are common in Mediterranean climatic regimes. The stromatolitic community is adapted to nutrient limitation, both to low availability of inorganic phosphorus and nitrogen (that constrain growth of primary producers), and to low dissolved organic carbon (mainly affecting heterotrophs). Stromatolitic heterotrophs mainly rely on the organic carbon stored in the crust as the main organic carbon source. These strategies are the direct response of the stromatolite to oligotrophy, and justify the restricted occurrence in stream systems affected by organic pollution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1573-5176
    Keywords: Caulerpa taxifolia ; chlorophyll fluorescence ; copper ; photosynthesis ; potassium ; respiration ; RubisCO ; sodium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chemical techniques were investigated in order to eradicate Caulerpa taxifolia, a green alga spreading at a remarkable rate in the Mediterranean Sea. The action of copper, potassium and sodium ions on survival rates and photosynthetic parameters was compared, in order to optimise the conditions of further in situ treatments. The lethal doses were determined and the impact of the studied cations on photosynthesis and respiration rates and PSII photochemistry was analysed from measurements of net oxygen exchanges and chlorophyll fluorescence. The Cu2+ concentrations required to obtain 100% mortality were 15 × 102 to 104 times lower than those of K+ and Na+. Respiration was slightly affected whatever the salt concentration,while photosynthesis could be totally inhibited depending on the applied treatment. Changes in the structure of the Ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO, EC: 4.1.1.39) were also detected when C. taxifolia under went cation treatments (10 mg L-1 Cu2+, 1h; 20 gL-1 K+, 3 h; 20 g L-1 Na+, 1 h). Given the high concentration and long incubation periods required with K+ and Na+ ions, these cations are not suitable to be used in situ. Our results make possible the utilisation of copper cations following technical approaches such asion-exchange textile covers, which allows a controlled release of cupric ions without dissemination in the marine environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1573-868X
    Keywords: Tidal front ; nutrient ; phytoplankton ; photosynthesis ; stratification ; mixing ; Iyo Nada
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Field observations were conducted to examine the processes governing the phytoplankton distribution and photosynthetic activity in and around a tidal front formed in Iyo Nada, the Seto Inland Sea, Japan. The existence of a middle layer intrusion, which, it has been suggested, moves from the mixed region to the stratified region of the tidal front, was ascertained by the phytoplankton distribution in addition to a T-S diagram. Skeletonema costatum, which originally inhabited the mixed region, was used as the indicator to reveal the intrusion. However, the tip of water containing the S. costatum population did not extend deeply into the stratified region. The velocity of the intrusion seemed to be slow enough to make biological processes, such as nutrient uptake by phytoplankton and subsequent growth, as well as the decrease in cell density due to zooplankton grazing, dominate during the transportation. The patchy distribution of copepod nauplii implied that grazing has an influence on the distribution pattern of phytoplankton. The location of high photosynthetic activity did not coincide spatially with the center of high phytoplankton biomass, suggesting the importance of these biological processes. Therefore, it is considered that the middle layer intrusion plays a role as an inducer of subsequent biological processes at the tidal front by not only supplying nutrients from the mixed region but also by increasing the vertical diffusivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Wetlands ecology and management 8 (2000), S. 273-280 
    ISSN: 1572-9834
    Keywords: light curves ; mangrove ; microphytobenthos ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A method of measuring CO2gas exchange (caused, for example, by microalgal photosynthesis on emersed tidal mudflats) using open flow IR gas analyzers is described. The analyzers are integrated in a conventional portable photosynthesis system (LI-6400, LI-COR, Nebraska, USA), which allows manipulation and automatic recording of environmental parameters at the field site. Special bottomless measuring chambers are placed directly on the surface sediment. Measurements are performed under natural light conditions and ambient CO2concentrations, as well as under different CO2concentrations in air, and various PAR radiation levels produced by a LED light source built into one of the measurement chambers. First results from tidal channel banks in a north Brazilian mangrove system at Bragança (Pará, Brazil) under controlled conditions show a marked response of CO2assimilation to CO2concentration and to irradiance. Photosynthesis at 100 μmol mol−1CO2in air in one sample of a well-developed algal mat was saturated at 309 μmol photons m−2s−1, but increased with increasing ambient CO2concentrations (350 and 1000 μmol mol−1CO2) in the measuring chamber. Net CO2assimilation was 0.8 μmol CO2 m−2s−1at 100 μmol mol−1CO2, 5.9 μmol CO2m−2s−1at 350 μmol mol−1CO2and 9.8 μmol CO2m−2s−1at 1000 μmol mol−1CO2. Compensation irradiance decreased and apparent photon yield increased with ambient CO2concentration. Measurements under natural conditions resulted in a quick response of CO2exchange rates when light conditions changed. We recommend the measuring system for rapid estimations of benthic primary production and as a valuable field research tool in connection with certain ecophysiological aspects under changing environmental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1573-5036
    Keywords: dry matter production ; irrigation water use ; leaf senescence ; paddy rice ; photosynthesis ; soil water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In most cases, rice production is associated with flooding irrigation and the efficiency of irrigated water use (WUEi) is generally lower for production of rice than for other crops. We have examined the effects of various irrigation regimes on water consumption in a well-puddled paddy field, as well as on dry matter production, grain yield and physiological responses of the plants. Four sets of conditions were studied, with two replications, in the well-puddled paddy field: Continuous flooding irrigation treatment (CSF); three intermittent irrigation treatments, designated II-0, II-1 and II-2, in which plants were re-irrigated when the water potential of the soil fell below 0, –10, and –20 kPa at a depth of 5 cm, respectively. Water consumption was lower during II-0 than during CSF because the percolation rate was reduced by the reduction in the hydraulic head of the ponded water. Intermittent irrigation led to the repeated shrinking and swelling of soil during II-1 and II-2 and, therefore, soil cracks developed rapidly. Since they became the major routes of water percolation, these soil cracks increased water consumption during II-1 and II-2 above that during CSF and II-0. There were no significant differences in dry matter production and grain yield between CSF and II-0, but both were significantly greater than in the case of II-1 and II-2. Therefore, WUEi increased in the following order: II-0, CSF, II-2, II-1, although the difference was very small between II-1 and II-2. A lower crop growth rate (CGR) resulted from a decrease in the net assimilation rate (NAR) during II-1 and II-2, and there was also a reduction in the leaf area index (LAI) during II-2. Early senescence with ripening and water stress around midday decreased the rate of photosynthesis in leaves, causing the lower NAR. These physiological responses of the plants were responsible for the reduction on the dry matter production and grain yield in the intermittent irrigation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1573-5036
    Keywords: growth ; light intensity ; Phaseolus vulgaris L. ; phosphorus–zinc interaction ; photosynthesis ; yield ; zinc deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two experiments were conducted in a factorial combination of three Zn levels (0, 10 and 40 mg Zn kg-1 soil) and two P levels (0 and 200 mg P kg-1 soil). Experiment 1 was carried out during winter in a heated glasshouse, and experiment 2 during summer under a rain shelter. Plants of dwarf bean (Phaseolus vulgaris L., cv. Borlotto nano) were grown in pots filled with sandy soil. In both experiments, leaf Zn concentration was reduced by the addition of P to plants grown at low Zn supply. However, leaf Zn concentration lower than the critical level was observed only during experiment 2, and the main effects of low Zn were reductions of internode length, light use efficiency and maximum photosynthetic rate. In plants with leaf Zn concentration lower than the critical level, saturating irradiance levels fell from ∼1000 μmol m-2 s-1 PPFD to ∼300–400 μmol m-2 s-1 PPFD. Reduction of net photosynthesis was observed from the beginning of flowering and led to decreased seed production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 223 (2000), S. 155-162 
    ISSN: 1573-5036
    Keywords: drought acclimation ; Helianthus annuus L. ; photosynthesis ; pressure-volume curves ; water relations ; water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The responses of leaf water parameters to drought were examined using three sunflower (Helianthus annuus L.) genotypes. Osmotic potential at full water saturation (π100), apoplastic water fraction (AWF) and bulk elastic modulus (BEM) were determined by pressure-volume curve analysis on well watered or on water-stressed plants (−1.0 MPa Ψ1 〈 −1.5 MPa) previously drought-pretreated or not. The drought-pretreated plants were subjected to a 7-day drought period (predawn leaf water potential reached −0.9 MPa) followed by 8 days of rewatering. In well watered plants, all genotypes in response to drought acclimation displayed a significantly decreased π100 associated with a decrease in the leaf water potential at the turgor-loss point (decrease in Ψtlp was between 0.15 and 0.21 MPa, depending on the genotype). In two genotypes, drought acclimation affected the partitioning of water between the apoplastic and symplastic fractions without any effect on the total amount of water in the leaves. As a third genotype displayed no modification of AWF and BEM after drought acclimation, the decreased π100 was only due to the net accumulation of solutes and was consistent with the adjustment of the photochemical efficiency observed previously in this genotype in response to drought acclimation. In water-stressed plants, the osmotic adjustment (OA) can increase further beyond that observed in response to the drought pretreatment. However, the maintenance of photosynthetic rate and stomatal conductance at low leaf water potentials not only depends on the extent of osmotic adjustment, but also on the interaction between OA and AWF or BEM. Adaptative responses of leaf water parameters to drought are thus quite contrasted in sunflower genotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1573-5036
    Keywords: photosynthesis ; root respiration ; carbon allocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The study was conducted to investigate carbon metabolic responses to surface soil drying for cool-season grasses. Kentucky bluegrass (Poa pratensis L.) and tall fescue (Festuca arundinaceae Schreb.) were grown in a greenhouse in split tubes consisting of two sections. Plants were subjected to three soil moisture regimes: (1) well-watered control; (2) drying of upper 20-cm soil (upper drying); and (3) drying of whole 40-cm soil profile (full drying). Upper drying for 30 d had no dramatic effects on leaf water potential (Ψleaf) and canopy photosynthetic rate (Pn) in either grass species compared to the well-watered control, but it reduced canopy respiration rate (Rcanopy) and root respiration rate in the top 20 cm of soil (Rtop). For both species in the lower 20 cm of wet soil, root respiration rates (Rbottom) were similar to the control levels, and carbon allocation to roots increased with the upper soil drying, particularly for tall fescue. The proportion of roots decreased in the 0-20 cm drying soil, but increased in the lower 20 cm wet soil for both grass species; the increase was greater for tall fescue. The Ψleaf, Pn, Rcanopy, Rtop, Rbottom, and carbon allocation to roots in both soil layers were all significantly higher for upper dried plants than for fully dried plants of both grass species. The reductions in Rcanopy and Rtop in surface drying soil and increases in root respiration and carbon allocation to roots in lower wet soil could help these grasses cope with surface-soil drought stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1573-5036
    Keywords: chilling ; chlorophyll fluorescence ; nutrient ; phosphorus ; photosynthesis ; starvation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The experiments were conducted on two tomato cultivars: Garbo and Robin. Mineral starvation due to plant growth in 20-fold diluted nutrient solution (DNS) combined with chilling reduced the rate of photosynthesis (P N) and stomatal conductance (g) to a greater extent than in plants grown in full nutrient solution (FNS). In phosphate-starved tomato plants the P N rate and stomatal conductance decreased more after chilling than in plants grown on FNS. In low-P plants even 2 days after chilling the recovery of CO2 assimilation rate and stomatal conductance was low. A resupply of phosphorus to low-P plants (low P + P) did not improve the rate of photosynthesis in non-chilled plants (NCh) but prevented PN inhibition in chilled (Ch) plants. The greatest effect of P resupply was expressed as a better recovery of photosynthesis and stomatal conductance, especially in non-chilled low P + P plants. The F v/F m (ratio of variable to maximal chlorophyll fluorescence) decreased more during P starvation than as an effect of chilling. Supplying phosphorus to low-P plants caused the slight increase in the F v/F mratio. In conclusion, after a short-term chilling in darkness a much more drastic inhibition of photosynthesis was observed in nutrient-starved or P-insufficient tomato plants than in plants from FNS. This inhibition was caused by the decrease in both photochemical efficiency of photosystems and the reduction of stomatal conductance. The presented results support the hypothesis that tomato plants with limited supply of mineral nutrients or phosphorus are more susceptible to chilling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-5079
    Keywords: ascorbic acid ; ascorbate-glutathione cycle ; bean yield ; dehydroascorbate ; ozone ; photosynthesis ; soybean ; vegetative yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the characteristics of ascorbic acid (ASC) level, dehydroascorbate (DHA) level, and the ASC–DHA redox status in the leaflets of two soybean cultivars grown in a field environment and exposed to elevated ozone (O3) levels. These two cultivars, one that preliminary evidence indicated to be O3-tolerant (cv Essex), and one that was indicated to be O3-sensitive (cv Forrest), were grown in open-top chambers during the summer of 1997. The plants were exposed daily to a controlled, moderately high O3 level (≈58 nl l−1 air) in the light, beginning at the seedling stage and continuing to bean maturity. Concurrently, control plants were exposed to carbon-filtered, ambient air containing a relatively low O3 level (≈24 nl l−1 air) during the same period. Elevated O3 did not affect biomass per plant, mature leaf area accretion, or bean yield per plant of cv Essex. In contrast, elevated O3 level decreased the biomass and bean yield per plant of cv Forrest by approximately 20%. Daily leaflet photosynthesis rate and stomatal conductance per unit area did not decrease in either cultivar as a result of prolonged O3 exposure. A 10% lower mature leaflet area in O3-treated cv Forrest plants contributed to an ultimate limitation in long-term photosynthetic productivity (vegetative and bean yield). Possible factors causing cv Essex to be more O3 tolerant than cv Forrest were: 1) mature leaflets of control and O3-treated cv Essex plants consistently maintained a higher daily ASC level than leaflets of cv Forrest plants, and 2) mature leaflets of cv Essex plants maintained a higher daily ASC–DHA redox status than leaflets of cv Forrest plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 64 (2000), S. 167-177 
    ISSN: 1573-5079
    Keywords: dynamic light scattering ; mass spectrometry ; oxygen evolution ; photosynthesis ; protein crystallization ; protein structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The manganese-stabilizing protein (MSP) of Photosystem II was purified from spinach photosynthetic membranes. The MSP was crystallized in the presence of calcium. Despite the apparent purity of the isolated protein, the crystals grew to only about 0.05 mm in their largest dimension. The MSP was analyzed to identify possible sources of protein heterogeneity that could hinder crystal growth. Tandem reverse-phase HPLC/ electronspray ionization mass spectrometry analysis of the MSP showed a major peak and four smaller peaks. All five peaks had molecular masses of 26 535, as expected for mature MSP, indicating the absence of heterogeneities due to covalent modifications. MALDI mass spectroscopy was utilized to identify heterogeneities in the MSP oligomeric state. These measurements showed that purified MSP in solution is a mixture of monomers and dimers, while solubilized MSP crystals contained only dimers. Size-exclusion chromatography and dynamic light scattering were used to probe the effect of the crystallization conditions on the MSP. Size-exclusion chromatography of concentrated MSP showed the presence of aggregates and monomers, while dilute MSP contained monomers. Dynamic light scattering experiments in the absence, or in the presence of 10–50 mM or 100 mM calcium, yielded calculated molecular mass values of 34 kDa, 48 kDa and 68 kDa, respectively. These changes in the observed molecular mass of the MSP could have been caused by the formation of dimers and higher oligomers and/or significant conformational changes. Based on the results reported in this study, a model is presented which details the effect of oligomeric heterogeneity on the inhibition of MSP crystal growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 65 (2000), S. 249-259 
    ISSN: 1573-5079
    Keywords: dynamic light scattering ; membrane protein crystallization ; photosynthesis ; thermoluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have recently reported the crystallization of the reaction center of Photosystem II in the presence of detergent mixtures [Adir N (1999) Acta Crystallogr D Biol Crystallogr D55: 891–894]. We have used high performance liquid chromatography, dynamic light scattering, native gel electrophoresis and thermoluminescence measurements to characterize the interaction between these detergent mixtures and RC II, to try and understand their role in the crystallization process. Size exclusion HPLC and dynamic light scattering confirmed that the isolated RC II used for crystallization was exclusively monomeric. Dynamic light scattering measurements show that the detergent mixtures formed single micelles within a limited range of hydrodynamic radii. Both size exclusion HPLC and dynamic light scattering were used to follow the interaction between the detergent mixtures and monomeric RC II. These techniques revealed a decrease in the detergent mixture treated RC II particle size (with respect with the untreated RC II), and that RC II from solubilized crystals contained particles of the same size. Native gel electrophoresis showed that this change in apparent size is not due to the disintegration of the internal structure of the RC II complex. Thermoluminescence measurements of solubilized RC II crystals showed charge recombination from the S2,3QA − state, indicating that RC II remains functionally viable following detergent mixture treatment and crystallization. The role of the detergent mixtures in the crystallization of RC II is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1573-5079
    Keywords: herbicide ; instrumentation ; mutant selection ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fluorometers that measure the kinetics of chlorophyll fluorescence have become invaluable tools for determining the photosynthetic performance of plants. Many of these instruments use high frequency modulated light to measure the rate, efficiency and regulation of photosynthesis. The technique is non-invasive and is effective under diverse environmental conditions. Recently, imaging fluorometers have been introduced that reveal variability in photosynthesis over the surface of a leaf or between individual plants. Most imaging instruments depend on continuous light or low frequency modulated light for fluorescence excitation, which imposes serious limitations on measurements of the fluorescence parameters, especially the minimum fluorescence (F0) and variable fluorescence (FV). Here, we describe a new instrument that combines the advantage of high frequency modulated light with two-dimensional imaging of chlorophyll fluorescence. The fluorometer produces dynamic images of chlorophyll fluorescence from leaves or plants, providing accurate mapping of F0 and FV, and non-photochemical quenching. A significant feature of the instrument is that it can record fluorescence images of leaves in daylight under field conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 1573-5079
    Keywords: chlorophyll ; energy quenching ; fluorescence ; LIDAR ; photochemistry ; photosynthesis ; Photosystem II ; phytoplankton ; pump and probe ; remote sensing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Initial results of the airborne LIDAR measurement of photochemical quantum yield, ΦPo, and functional absorption cross-section, σPS II, of Photosystem II (PS II) are reported. NASA's AOL3 LIDAR was modified to implement short-pulse pump-and-probe (SP-P&P) LIDAR measurement protocol. The prototype system is capable of measuring a pump-induced increase in probe-stimulated chlorophyll fluorescence, ΔF/Fsat, along with the acquisition of `conventional' LIDAR-fluorosensor products from an operational altitude of 150 m. The use of a PS II sub-saturating probe pulse increases the response signal but also results in excessive energy quenching (EEQ) affecting the ΔF/Fsat magnitude. The airborne data indicated up to a 3-fold EEQ-caused decline in ΔF/Fsat, and 2-fold variability in the EEQ rate constant over a spatial scale a few hundred kilometers. Therefore, continuous monitoring of EEQ parameters must be incorporated in the operational SP-P&P protocol to provide data correction for the EEQ effect. Simultaneous airborne LIDAR measurements of ΦPo and σPS II with EEQ correction were shown to be feasible and optimal laser excitation parameters were determined. Strong daytime ΔF/Fsat decline under ambient light was found in the near-surface water layer over large aquatic areas. An example of SP-P&P LIDAR measurement of phytoplankton photochemical and fluorescent characteristics in the Chesapeake Bay mouth is presented. Prospects for future SP-P&P development and related problems are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1573-5079
    Keywords: acclimation ; photosynthesis ; rbcL ; rbcS ; source strength
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous investigations have shown that increased source strength as a result of elevated CO2 can alter the timing of the phases of change that occur in photosynthetic rates during dicot leaf ontogeny [Miller et al. (1997) Plant Physiol 115: 1195–1200]. To evaluate the converse situation of decreased source strength, we examined leaf development in rbcS antisense mutants of tobacco. These mutants have depressed Rubisco levels and decreased rates of carbohydrate production. We found that antisense leaves are longer-lived than wild type leaves and that this appeared to be due to a prolongation of the senescence phase of development, as monitored by photosynthetic rates, chlorophyll content, and the abundance and activity of Rubisco. Declines in these parameters during leaf ontogeny in both the wild type and mutant plants were generally accompanied by coordinate reductions in the levels of rbcS mRNA and rbcL mRNA, as well as by reductions in chloroplast rRNA, chloroplast DNA and total protein. We suggest that the prolongation of senescence in the antisense leaves is due to an impact of source strength on leaf developmental programming that occurs, at least in part, at the level of transcript abundance of nuclear and chloroplast genes for chloroplast rRNAs and proteins. We hypothesize that plants are capable of sensing a range of source strength conditions to initiate and modulate leaf developmental programming.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1573-5079
    Keywords: Fourier transform infrared spectroscopy ; Mn-cluster ; oxygen evolution ; photosynthesis ; Photosystem II ; vibrational spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The S2 state of the oxygen-evolving Mn-cluster of Photosystem II (PS II) is known to have different forms that exhibit the g =2 multiline and g = 4.1 EPR signals. These two spin forms are interconvertible at 〉 200 K and the relative amplitudes of the two signals are dependent on the species of cryoprotectant and alcohol contained in the medium. Also, it was recently found that the mutiline form can be converted to the g = 4.1 form by absorption of near-infrared light by the Mn-cluster itself at around 150 K [Boussac et al. (1996) Biochemistry 35: 6984–6989]. We have used light-induced Fourier transform infrared (FTIR) difference spectroscopy to study the structural difference in these two S2 forms. FTIR difference spectra for S2/S1 as well as for S2QA -/S1QA measured at cryogenic temperatures using PS II membranes in the presence of various cryoprotectants, and monohydric alcohols did not show any specific differences except for intensities of amide I bands, which were larger when ethylene glycol or glycerol was present in addition to sucrose. This result was interpreted due to more flexible movement of the protein backbones upon S2 formation with a higher cryoprotectant content. Light-induced difference spectra measured at 150 K using either blue light without near-infrared light or red plus near-infrared light also did not show any detectable difference. In addition, a different spectrum upon near-infrared illumination at 150 K of the PS II sample in which the S2 state had been photogenerated at 200 K exhibited no meaningful signals. These results indicate that the two S2 forms that give rise to the multiline and g = 4.1 signals have only minor differences, if any, in the structures of amino-acid ligands and polypeptide backbones. This conclusion suggests that conversion between the two spin states is caused by a spin-state transition in the Mn(III) ion rather than valence swapping within the Mn-cluster that would considerably affect the vibrations of ligands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 66 (2000), S. 13-31 
    ISSN: 1573-5079
    Keywords: photosynthesis ; photoacoustic ; optoacoustic ; spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoacoustic methods offer unique capabilities for photosynthesis research. Phenomena that are readily observed by photoacoustics include the storage of energy by electron transport, oxygen evolution by leaf tissue at microsecond time resolution, and the conformational changes of photosystems caused by charge separation. Despite these capabilities, photoacoustic methods have not been widely exploited in photosynthesis research. One factor that has contributed to their slow adoption is uncertainty in the interpretation of photoacoustic signals. Careful experimentation is resolving this uncertainty, however, and technical refinements of photoacoustic methods continue to be made. This review provides an overview of the application of photoacoustics to the study of photosynthesis with an emphasis on the resolution of uncertainties in the interpretation of photoacoustic signals. Recent developments in photoacoustic technology are also presented, including a microphotoacoustic spectrometer, gas permeable photoacoustic cells, the use of photoacoustics to monitor phytoplankton populations, and the use of photoacoustics to study protein dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1573-5079
    Keywords: chlorophyll ; fluorescence ; LIDAR ; photosynthesis ; Photosystem II ; pump and probe ; remote sensing ; singlet-singlet quenching ; singlet-triplet quenching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The development of a technique for laser measurement of fPhotosystem II (PS II) photochemical characteristics of phytoplankton and terrestrial vegetation from an airborne platform is described. Results of theoretical analysis and experimental study of pump-and-probe measurement of the PS II functional absorption cross-section and photochemical quantum yield are presented. The use of 10 ns probe pulses of PS II sub-saturating intensity provides a significant, up to 150-fold, increase in the fluorescence signal compared to conventional `weak-probe' protocol. Little effect on the fluorescence yield from the probe-induced closure of PS II reaction centers is expected over the short pulse duration, and thus a relatively intense probe pulse can be used. On the other hand, a correction must be made for the probe-induced carotenoid triplet quenching and singlet-singlet annihilation. A Stern-Volmer model developed for this correction assumes a linear dependence of the quenching rate on the laser pulse fluence, which was experimentally validated. The PS II saturating pump pulse fluence (532 nm excitation) was found to be 10 and 40 μmol quanta m−2 for phytoplankton samples and leaves of higher plants, respectively. Thirty μs was determined as the optimal delay in the pump-probe pair. Our results indicate that the short-pulse pump-and-probe measurement of PS II photochemical characteristics can be implemented from an airborne platform using existing laser and LIDAR technologies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1573-5079
    Keywords: acclimation ; climate change ; CO2 ; down-regulation ; global change ; photosynthesis ; stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Atmospheric CO2 concentration continues to rise. It is important, therefore, to determine what acclimatory changes will occur within the photosynthetic apparatus of wheat (Triticum aestivum L. cv. Yecora Rojo) grown in a future high-CO2 world at ample and limited soil N contents. Wheat was grown in an open field exposed to the CO2 concentration of ambient air [370 μmol (CO2) mol−1; Control] and air enriched to ∼200 μmol (CO2) mol−1 above ambient using a Free-Air CO2 Enrichment (FACE) apparatus (main plot). A High (35 g m−2) or Low (7 and 1.5 g m−2 for 1996 and 1997, respectfully) level of N was applied to each half of the main CO2 treatment plots (split-plot). Under High-N, FACE reduced stomatal conductance (g s) by 30% at mid-morning (2 h prior to solar noon), 36% at midday (solar noon) and 27% at mid-afternoon (2.5 h after solar noon), whereas under Low-N, g s was reduced by as much as 31% at mid-morning, 44% at midday and 28% at mid-afternoon compared with Control. But, no significant CO2 × N interaction effects occurred. Across seasons and growth stages, daily accumulation of carbon (A′) was 27% greater in FACE than Control. High-N increased A′ by 18% compared with Low-N. In contrast to results for g s, however, significant CO2 × N interaction effects occurred because FACE increased A′ by 30% at High-N, but by only 23% at Low-N. FACE enhanced the seasonal accumulation of carbon (A′′) by 29% during 1996 (moderate N-stress), but by only 21% during 1997 (severe N-stress). These results support the premise that in a future high-CO2 world an acclimatory (down-regulation) response in the photosynthetic apparatus of field-grown wheat is anticipated. They also demonstrate, however, that the stimulatory effect of a rise in atmospheric CO2 on carbon gain in wheat can be maintained if nutrients such as nitrogen are in ample supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 30 (2000), S. 163-170 
    ISSN: 1573-5087
    Keywords: ATPase ; bioenergetics ; Fragaria ananassa Duch ; growth ; ion transport ; photosynthesis ; proton transport ; respiration ; source-sink ; strawberry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The biochemical, physiological and anatomical properties of strawberry (Fragaria ananassa Duch.) cv. 'Cambridge Favourite' stolons were studied during growth. ATPase activity was measured, in microsomal and plasma membrane fractions, along with chlorophyll determination, in-situ photosynthesis measurements and scanning electron microscopy (SEM) and X-ray microanalysis of stolon cross-sections. Potassium-stimulated ATPase activity and proton-pumping, both together indicating the presence of plasma membrane ATPase, was greatest in the stolon tip, the tissue with the fastest growth and respiratory activity. The enzyme activity and respiration gradient from the tip of the stolon to the base was concomitant with xylem development which was more differentiated in the base than in the tip. These cross-sections also showed 30% greater amounts of calcium and potassium of the cryo-preserved basal part relative to the stolon tip. This gradient existed independent of the presence of daughter plants. A hypothesis is presented which suggests that for the long-distance longitudinal transport of nutrients this gradient between stolon tip and base is likely to be involved in stolon growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; EPR ; heat effect ; manganese complex ; oxygen-evolution ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rise of the chlorophyll fluorescence yield of Photosystem II (PS II) membranes as induced by high-intensity actinic light comprises only two distinct phases: (1) the initial O-J increase and (2) the subsequent J-P increase. Partial inhibition of the PS II donor side by heating or washing procedures which remove peripheral PS II proteins or cofactors of the oxygen-evolving complex results in decrease of magnitude and rate of the J-P phase. The rate constant of the J-P increase is directly proportional to the steady-state rate of oxygen evolution; complete suppression of the J-P phase corresponds to full inhibition. A characteristic dip after J-level is observed only in Tris-washed or severely heated PS II membranes; manganese release correlates with appearance of the dip after J-level as verified by EPR spectroscopy. Presence of stabilizing cosolutes (glycine betaine, sucrose) or addition of donor-side cofactors (bicarbonate, chloride, calcium) to PS II membranes before heating (47 °C, 5 min) diminishes J-P phase suppression and prevents dip appearance, whereas the addition after heating is without effect. In conclusion, analysis of chlorophyll fluorescence transients of PS II membranes is a potentially useful tool for investigations on photosynthetic oxygen evolution. A decreased rate of the J-P phase can be employed as a convenient indicator for partial inhibition of oxygen-evolution activity; the appearance of a dip after J-level is suggestive of manganese release.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1573-5079
    Keywords: big bluestem ; C4 ; elevated CO2 ; photosynthesis ; water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Open-top chambers were used to study the effects of CO2 enrichment on leaf-level photosynthetic rates of the C4 grass Andropogon gerardii in the native tallgrass prairie ecosystem near Manhattan, Kansas. Measurements were made during a year with abundant rainfall (1993) and a year with below-normal rainfall (1994). Treatments included: No chamber, ambient CO2 (A); chamber with ambient CO2 (CA); and chamber with twice-ambient CO2 (CE). Measurements of photosynthesis were made at 2-hour intervals, or at midday, on cloudless days throughout the growing season using an open-flow gas-exchange system. No significant differences in midday rates of photosynthesis or in daily carbon accumulation as a result of CO2 enrichment were found in the year with abundant precipitation. In the dry year, midday rates of photosynthesis were significantly higher in the CE treatment than in the CA or A treatments throughout the season. Estimates of daily carbon accumulation also indicated that CO2 enrichment allowed plants to maximize carbon acquisition on a diurnal basis. The increased carbon accumulation was accounted for by greater rates of photosynthesis in the CE plots during midday. During the wet year, CO2 enrichment decreased stomatal conductance, which allowed plants to decrease transpiration while still photosynthesizing at rates similar to plants in ambient conditions. During the dry year, CO2 enrichment allowed plants to maintain photosynthetic rates even though stomatal conductance and transpiration had been reduced in all treatments due to stress. Estimates of instantaneous water-use efficiency were reduced under CO2 enrichment for both years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1573-5079
    Keywords: electron paramagnetic resonance ; extrinsic proteins ; manganese cluster ; oxygen evolution ; photosynthesis ; Photosystem II
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three extrinsic proteins (PsbO, PsbP and PsbQ), with apparent molecular weights of 33, 23 and 17 kDa, bind to the lumenal side of Photosystem II (PS II) and stabilize the manganese, calcium and chloride cofactors of the oxygen evolving complex (OEC). The effect of these proteins on the structure of the tetramanganese cluster, especially their possible involvement in manganese ligation, is investigated in this study by measuring the reported histidine-manganese coupling [Tang et al. (1994) Proc Natl Acad Sci USA 91: 704–708] of PS II membranes depleted of none, two or three of these proteins using ESEEM (electron spin echo envelope modulation) spectroscopy. The results show that neither of the three proteins influence the histidine ligation of manganese. From this, the conserved histidine of the 23 kDa protein can be ruled out as a manganese ligand. Whereas the 33 and 17 kDa proteins lack conserved histidines, the existence of a 33 kDa protein-derived carboxylate ligand has been posited; our results show no evidence for a change of the manganese co-ordination upon removal of this protein. Studies of the pH-dependence of the histidine–manganese coupling show that the histidine ligation is present in PS II centers showing the S2 multiline EPR signal in the pH-range 4.2–9.5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1573-5028
    Keywords: Chlamydomonas reinhardtii ; chloroplast transformation ; photosynthesis ; photosystem II ; processing ; psbA gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract One of the photosystem II reaction center proteins, D1, is encoded by the psbA gene and is synthesized as a precursor form with a carboxyl-terminal extension that is subsequently cleaved between Ala-344 and Ser-345. We have generated three psbA transformants of the green alga Chlamydomonas reinhardtii in which Ala-344 or Ser-345 have been substituted with Pro or Glu (A344P, S345E, and S345P) to understand the effects of the amino acid substitutions on the processing of the precursor D1. S345E grew photoautotrophically and showed PSII activity like the wild type. However, A344P and S345P were unable to grow photoautotrophically and were significantly photosensitive. A344P was deficient in the processing of precursor D1 and in oxygen-evolving activity, but assembled photosystem II complex capable of charge separation. In contrast, both precursor and mature forms of D1 accumulated in S345P cells from the logarithmic phase and the cells evolved oxygen at 18% of wild-type level. However, S345P cells from the stationary phase contained mostly the mature D1 and showed a twofold increase in oxygen-evolving activity. The rate of processing of the accumulated pD1 was estimated to be about 100 times slower than in the wild type. It is therefore concluded that the functional oxygen-evolving complex is assembled when the precursor D1 is processed, albeit at a very low rate. These results suggest the functional significance of the amino acid residues at the processing site of the precursor D1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 1573-5028
    Keywords: cytochrome c-550 ; manganese-stabilizing protein (MSP) ; photosynthesis ; PSII ; Synechocystis sp. PCC6803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To investigate the interaction between the manganese-stabilizing protein (MSP) and cytochrome c-550 (cyt. c-550) of the photosystem II (PSII) complex in the cyanobacterium Synechocystis sp. PCC6803, three site-directed amino acid substitution mutants in MSP (MSP-D159N, MSP-R163L, MSP-D159N/R163L) were created by single and double amino acid substitution mutagenesis. The modified psbO genes encoding the mutants forms of MSP were used to transform a single-deletion mutant ΔpsO strain lacking MSP as well as a double-deletion strain ΔpsbO:ΔpsbV lacking both MSP and cyt. c-550. The mutant forms of MSP were expressed in each case and all permitted autotrophic growth in strains expressing cyt. c-550. However, when the MSP mutations were introduced into a strain which lacks cyt. c-550 (ΔpsbV), the two single amino acid substitution mutants (ΔpsbV:MSP-D159N and ΔpsbV:MSP-R163L) failed to grow photoautotrophically. These strains exhibited coupled O2-evolving activity of 68–77% compared to the wild-type control using CO2 as an electron acceptor and maximal uncoupled O2-evolution rates of 42–57% using 2,6-dichloro-p-benzoquinone (DCBQ) as an artificial electron acceptor. Interestingly, when the two amino acid substitutions were together in the absence of cyt. c-550 (ΔpsbV:MSP-D159N/R163L), the mutant grew photoautotrophically and the oxygen-evolving activities were higher than in the single mutants. This indicates that the MSP-D159N mutant suppresses the non-autotrophic phenotype of MSP-R163L (or vice versa) in the absence of cyt. c-550. The possibilities of a direct (ionic) or indirect interaction between D159 and R163 of MSP are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1573-1561
    Keywords: Caffeic acid ; allelopathy ; plant water balance ; photosynthesis ; chlorophyll fluorescence ; 13C carbon isotopes ; leafy spurge ; Euphorbia esula ; small everlasting ; Antennaria microphylla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Leafy spurge (Euphorbia esula), a native perennial weed introduced from Eurasia around the turn of the century, disrupts natural and agroecosystems across much of the Northern Great Plains. While leafy spurge displaces many native plant species, it has been demonstrated that small everlasting (Antennaria microphylla), a native perennial, is allelopathic to leafy spurge. Caffeic acid (CA), one of three compounds isolated from small everlasting, inhibits leafy spurge seed germination, root elongation, and callus culture growth. This study investigated the mechanism of this interference at the whole-plant level. Results indicate that inhibition of growth in leafy spurge after exposure to CA is primarily due to a disruption of plant–water relations. Leafy spurge cuttings were propagated in 0.5 strength Hoagland's nutrient solution for 30 days. For treatments, six plants were transferred into nutrient medium amended with either 0.1 or 0.25 mM CA for a period of 30 days. To determine the effect of pH, two additional groups of six plants were grown in nutrient medium adjusted with HCl corresponding to pH levels of plants treated with CA (pH 5.5–5.8 for 0.1 mM CA and pH 4.5–4.8 for 0.25 mM CA). By day 12 of the treatment period, plants treated with both levels of CA had significantly higher leaf diffusive resistances than control plants. Plants grown at the corresponding pH levels experienced higher diffusive resistances later in the treatment period (day 21). Transpiration was similarly affected with treated plants showing relatively higher transpiration rates compared to controls. Chlorophyll fluorescence was significantly lower than controls in all treated plants by end of the treatment period. The stable carbon isotope ratio (13C:12C) in these plants was higher than controls. These data show that a disruption of plant water relations is the primary mechanism of plant growth inhibition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biological physics 26 (2000), S. 321-339 
    ISSN: 1573-0689
    Keywords: CP29 ; electronic excited states ; energy transfer ; LHCII ; light-harvesting complexes ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract We have suggested a model for the electronic excited states of the minorplant antenna, CP29, by incorporating a considerable part of the currentinformation offered by structure determination, site-directed mutagenesis,and spectroscopy in the modeling.We have assumed that the electronic excited states of the complex havebeen decided by the chlorophyll-chlorophyll (Chl) and Chl-proteininteractions and have modeled the Coulombic interaction between a pairof Chls in the point-dipole approximation and the Chl-protein interactionsare treated as empirical fit parameters.We have suggested the Qy dipole moment orientations and the siteenergies for all the chlorophylls in the complex through a simultaneoussimulation of the absorption and linear dichroism spectra.The assignments proposed have been discussed to yield a satisfactoryreproduction of all prominent features of the absorption, linear and circulardichroism spectra as well as the key spectral and temporal characteristics ofthe energy transfer processes among the chlorophylls.The orientations and the spectral assignments obtained by relatively simpleexciton calculations have been necessary to provide a good point ofdeparture for more detailed treatments of structure-function relationship inCP29. Moreover, it has been discussed that the CP29 model suggested canguide the studies for a better understanding of the structure-functionrelationship in the major plant antenna, LHCII.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1573-5079
    Keywords: electron spin-lattice relaxation rate ; manganese ; oxygen-evolving complex ; photosynthesis ; Photosystem II
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The pulsed EPR inversion recovery sequence has been utilized to monitor the temperature dependence of the electron spin-lattice relaxation rate of the Mn cluster of the Photosystem II oxygen evolving complex poised in a variety of S 2 state forms giving rise to g = 2 multiline EPR signals. A previous study (Lorigan and Britt (1994) Biochemistry 33: 12072–12076) showed that for PS II membranes treated with 5% ethanol, the S 2 state Mn cluster relaxes via the Orbach spin-lattice relaxation mechanism, where the relaxation is enhanced via phonon scattering off an excited state spin manifold, in this case at an energy of Δ = 36.5 cm−1 above the S = 1/2 ground state giving rise to the multiline EPR signal. Parallel experiments are reported for PS II membranes with 5% methanol, treated with ammonia, and following short and long term dark adaptation. In each case, the temperature dependence of the electron spin-lattice relaxation rate is consistent with Orbach relaxation, and the range of excited state energies is relatively narrow (33.8 cm−1 ≤ Δ ≤ 39.7 cm−1). In addition, short term dark adapted (6 min, ‘active state’) PS II membranes show biphasic recovery traces which indicate that a minority fraction of the oxygen evolving complexes are trapped in a form with greatly slowed spin-lattice relaxation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 31 (2000), S. 1-16 
    ISSN: 1573-5087
    Keywords: apple ; application methods ; caustic sprays ; economics ; flowering ; growth regulators ; Malus xdomestics Borkh. ; modeling ; photosynthesis ; review
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The history of fruit thinning is reviewed, beginning with hand removalof fruits, the effects upon subsequent flowering, and current attemptsto develop mechanical methods of fruit removal. Early experiments withcaustic compounds and growth regulators and their subsequent developmentas commercial practices are discussed, as well as the modes of action ofgrowth regulators. Brief reviews of methods of application, factorsaffecting response, modeling to improve efficiency, and the economicvalue of thinning to the grower are also included.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1573-5095
    Keywords: chlorophyll fluorescence ; competition ; morphology ; photosynthesis ; red pine ; stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Photosynthetic light acclimation in red pine (Pinus resinosa Ait.) seedlings was examined in a greenhouse study to better understand the physiological response of this species to increased light intensity following release from competition. Seedlings grown in a high (HL), medium (ML) or low (LL) light environment for 12 weeks were transferred to high light. Gas exchange and chlorophyll fluorescence of ML and LL seedlings were measured prior to and following transfer and compared with the HL control treatment. Photosynthetic characteristics were related to initial light treatment and time after transfer. Acclimation of gas exchange features to high light in shade formed ML and LL foliage was relatively rapid, with similar values among light treatments within 57 days of transfer. Acclimation of net photosynthetic rate was similar in ML and LL seedlings, and was associated primarily with increased mesophyll conductance to CO2. The ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) decreased initially after transfer, especially in LL seedlings, but recovered to normal values after 57 days. Red pine seedlings appear to be well adapted for photosynthetic acclimation to high light intensity, consistent with that reported for other early successional tree species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1573-5044
    Keywords: acclimatization ; CO2 concentration ; photosynthesis ; reducing sugar ; total sugar
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rehmannia glutinosa plantlets were cultured for 4 weeks under different culture conditions to determine the optimum environment for in vitro growth and ex vitro survival. Plantlet growth increased with an increasing number of air exchanges of the culture vessel, exhibiting greatest shoot weight, total fresh weight, leaf area, and chlorophyll content at 4.4 h−1 of air exchanges. High sucrose concentration (30 g l−1) increased root weight but reduced shoot growth. Net photosynthetic rates of the plantlets were greatest when sucrose was not added to the medium. On the other hand, ex vitro survival of the plantlets was not influenced by sucrose concentration. In the experiment on difference in photoperiod and dark period temperatures (DIF) and photosynthetic photon flux (PPF), plantlet growth increased as DIF and PPF levels increased. Particularly, increasing PPF level had a more distinctive effect on plantlet growth than increasing DIF level. The interaction of DIF × PPF was also significant, showing the greatest plantlet growth in positive DIF (+8 DIF) and a high PPF (210 μmol m−2 s−1). In conclusion, the results of this experiment suggest that increased number of air exchanges of the culture vessel, decreased sucrose concentration, and positive DIF in combination with high PPF level enhanced growth and acclimatization of Rehmannia glutinosa plantlets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 218 (2000), S. 1-10 
    ISSN: 1573-5036
    Keywords: dry matter reduction ; leaf chlorophyll content ; leaf sodium uptake ; Oryza sativa ; photosynthesis ; salinity ; season effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Salinity is a major yield-reducing factor in coastal and arid, irrigated rice production systems. Salt tolerance is a major breeding objective. Three rice cultivars with different levels of salt tolerance were studied in the field for growth, sodium uptake, leaf chlorophyll content, specific leaf area (SLA), sodium concentration and leaf CO2 exchange rates (CER) at photosynthetic active radiation (PAR)-saturation. Plants were grown in Ndiaye, Senegal, at a research station of the West Africa Rice Development Association (WARDA), during the hot dry season (HDS) and the wet season (WS) 1994 under irrigation with fresh or saline water (flood water electrical conductivity = 3.5 mS cm-1). Relative leaf chlorophyll content (SPAD method) and root, stem, leaf blade and panicle dry weight were measured at weekly intervals throughout both seasons. Specific leaf area was measured on eight dates, and CER and leaf sodium content were measured at mid-season on the first (topmost) and second leaf. Salinity reduced yields to nearly zero and dry-matter accumulation by 90% for the susceptible cultivar in the HDS, but increased leaf chlorophyll content and CER at PAR- saturation. The increase in CER, which was also observed in the other cultivars and seasons, was explained by a combination of two hypotheses: leaf chlorophyll content was limited by the available N resources in controls, but not in salt-stressed plants; and the sodium concentrations were not high enough to cause early leaf senescence and chlorophyll degradation. The growth reductions were attributed to loss of assimilates (mechanisms unknown) that must have occurred after export from the sites of assimilation. The apparent, recurrent losses of assimilates, which were between 8% and 49% according to simulation with the crop model for potential yields in irrigated rice, ORYZA S, might be partly due to root decomposition and exudation. Possibly more importantly, energy-consuming processes, such as osmoregulation, interception of sodium and potassium from the transpiration stream in leaf sheaths and their subsequent storage, drained the assimilate supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1573-5079
    Keywords: chlororespiration ; pheophytin a ; photosynthesis ; Photosystem II ; potato ; tobacco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Increases in the chlorophyll fluorescence Fo (dark level fluorescence) during heat treatments were studied in various higher plants. Besides the dissociation of light-harvesting chlorophyll a/b protein complexes from the reaction center complex of PS II and inactivation of PS II, dark reduction of QA via plastoquinone (PQ) seemed to be related to the Fo increase at high temperatures. In potato leaves or green tobacco cultured cells, a part of the Fo increase was quenched by light, reflecting light-induced oxidation of QA - which had been reduced in the dark at high temperatures. Appearance of the Fo increase due to QA reduction depended on the plant species, and the mechanisms for this are proposed. The reductants seemed to be already present and formed by very brief illumination of the leaves at high temperatures. A ndhB-less mutant of tobacco showed that complex I type NAD(P)H dehydrogenase is not involved in the heat-induced reduction of QA. Quite strong inhibition of the QA reduction by diphenyleneiodonium suggests that a flavoenzyme is one of the electron mediator to PQ from the reductant in the stroma. Reversibility of the heat-induced QA reduction suggests that an enzyme(s) involved is activated at high temperatures and mostly returns to an inactive form at room temperature (25 °C).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 63 (2000), S. 159-170 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; chlororespiration ; Euglena ; photosynthesis ; spill over ; state transitions ; xanthophyll cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When far red light preincubated cells of Euglena gracilis are transferred to dark or light, chlorophyll fluorescence (F0 and Fm) decreases. Non-photochemical quenching in the dark is suggested to be induced partly by chlororespiration and partly by changes in the distribution of excitation energy between the photosystems. Depending on the light intensities it was possible to resolve the non-photochemical quenching into at least three different components. The slowest relaxation phase of non-photochemical quenching occurred only after exposure to high light and was assigned to photoinhibition. The other two components were an energy-dependent quenching (qE), and the one which we attribute to a spill over mechanism. We suggest that both photosystems use a common antenna system consisting of LHC I and LHC II proteins. In contrast to higher plants, qE in Euglena gracilis is independent of the xanthophyll cycle and an aggregation of LHC II.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 63 (2000), S. 109-121 
    ISSN: 1573-5079
    Keywords: carotenoid protein ; cyanobacteria ; cytochromes ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The perspectives and enthusiasms recorded in this review describe the events I witnessed and, in small ways, contributed to. Two great rewards emerged from my experiences – the pleasure of doing experiments and the great wealth of friendships with students and colleagues. As a graduate student, phenomena appeared at the bench before me which clarified the coupling of electron transport to ATP synthesis. My first PhD graduate student measured concentrations of pyridine nucleotides in chloroplasts and his results have been often confirmed and well used. All of the many graduate students who followed contributed to our understanding of photosynthesis. I have taken much pleasure from documenting the details of photosynthetic phosphorylation and electron transport in cyanobacteria. Studies of the `c' type cytochromes in these organisms continue to fascinate me. My experiences in government in its efforts to promote research are unusual, perhaps unique. A rare event outside the laboratory – a natural bloom of cyanobacteria – stimulated new thoughts and special opportunities for laboratory science. Photosynthesis seems magisterial in its shaping of our planet and its biology and in the details of its cleverness that were revealed in the time of my witness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1573-9058
    Keywords: Cicer arietinum ; gas exchange ; photosynthesis ; water potential ; δ13C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rate of photosynthesis (P N) in leaves and pods as well as carbon isotope content in leaves, pod walls, and seeds was measured in well-watered (WW) and water-stressed (WS) chickpea plants. The P N, on an area basis, was negligible in pods compared to leaves and was reduced by water stress (by 26%) only in leaves. WS pod walls and seeds discriminated less against 13CO2 than did the controls. This response was not observed for leaves as is usually the case. Pod walls and seeds discriminated less against 13CO2 than did leaves in both WW and WS plants. Measurement of carbon isotope composition in pods may be a more sensitive tool for assessing the impact of water stress on long-term assimilation than is the instantaneous measurement of gas exchange rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 1573-9058
    Keywords: irradiation stress ; lincomycin ; photosynthesis ; protein synthesis and degradation ; recovery ; Synechocystis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The photosynthesis and related plant productivity aspects of plants and cyanobacteria depend upon the functioning of photosystem 2 (PS2), associated with D1 and D2 heterodimer reaction centre core proteins. The D1 protein is encoded by psbA gene, genetically localized on the plastid genome (cpDNA), contains functional cofactors of PS2 in association with D2 protein, and also functions for radiant energy transformation through oxidation of water and reduction of plastoquinone. Surprisingly, D1 protein accounts for even less than 1% of the total thylakoid membrane protein content. In spite of that, its rate of turnover is very much comparable to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) large subunit, most abundantly present in green tissue. The normal functioning of PS2 possesses damage-repair cycles of D1 protein. Generally, rate of photodamage does not exceed the rate of repair under optimal growth conditions, therefore, no adverse effect on photosynthetic efficiency is manifest. However, under strong irradiance coupled with elevated temperature, level of photodamage exceeds the rate of repair, resulting in photoinhibition, photodegradation of D1 protein, and lowering photosynthetic efficiency linked with plant productivity eventually. The features of D1 turnover process are reviewed, particularly with respect to molecular mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1573-9058
    Keywords: chloroplast ; heat stress ; heat tolerance ; photosynthesis ; stress proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We recently showed that the chloroplast small heat-shock protein (herein referred to as chlp Hsp24) protects photosystem 2 (PS2) during heat stress, and phenotypic variation in production of chlp Hsp24 is positively related to PS2 thermotolerance. However, the importance of chlp Hsp24 or other Hsps to other aspects of photosynthesis and overall photosynthetic thermotolerance is unknown. To begin investigating this and the importance of genetic variation in Hsp production to photosynthetic thermotolerance, the production of several prominent Hsps and photosynthetic thermotolerance were quantified in nine genotypes of Lycopersicon, and then the relationships between thermotolerance of net photosynthetic rate (P N) and production of each Hsp were examined. The nine genotypes exhibited wide variation in P N thermotolerance and production of each of the Hsps examined (chlp Hsp70, Hsp60, and Hsp24, and cytosol Hsp70). No statistically significant relationship was observed between production of chlp Hsp70 and P N thermotolerance, and only a weak positive relationship between cytosolic Hsp70 and P N was detected. However, significant positive relationships were observed between production of chlp Hsp24 and Hsp60 and P N thermotolerance. Hence natural variation in production of chlp Hsp24 and Hsp60 is important in determining variation in photosynthetic thermotolerance. This is perhaps the first evidence that chlp Hsp60 is involved in photosynthetic thermotolerance, and these in vivo results are consistent with previous in vitro results showing that chlp Hsp24 protects PS2 during heat stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1573-2932
    Keywords: microalgal communities ; photosynthesis ; temperature ; thermal pollution ; tropical coast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The influence of thermal discharges on thephytoplankton community from a coastal zone of theGulf of Mexico was evaluated through their structureand photosynthetic behaviour focusing on responses tochanges in light and temperature. Biological andphysicochemical parameters were measured over a periodof two years in an area with permanent hot waterdischarges from a thermoelectric plant. Thetemperature in the sampling area ranged from 23.5 to36 °C with differences between the coldest andthe hottest station from 5.3 to 9.2 °C.Photosynthetically active radiation (PAR) were reducedin the discharge area water column, due to turbulence.One hundred and one different taxa were identifiedwith a strong predominance of Diatoms. The chlorophylla concentration ranged from 0.3 to 6.1 μgL-1, with highest values of thephaeophytin:chlorophyll ratio found at the hottest station.The community structure did not show significativedifferences among sampling stations with respect totemperature variations. However, in the algalassemblages influenced by thermal discharges, it waspossible to observe alterations in the photosynthesisbehaviour. Phytoplankton response to short termphotosynthesis experiments was segregated according tocomposition and origin of microalgal assemblages.Samples with larger heterogeneous composition had moreconsistent oxygen production responses. Algalcommunities exposed to hot effluent showed differentdegrees of photosynthesis rate reduction,higher light requirements (〉500 μE m2 s-1)and lower temperature (25 °C) to achieve Pmaxthan algae sampled in sites without such exposure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1573-8264
    Keywords: carotenoids ; chlorophyll ; photosynthesis ; stomatal conductance ; stomatal index ; stomatal morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Study of the effects of air pollution caused by thermal power plant emissions on some foliar traits of Ruellia tuberosa L. has shown that length and width of stomata, length of stomatal pore, stomatal density, photosynthetic rate, stomatal conductance and chlerophyll content were reduced in the polluted plants in pre-flowering, flowering as well as post-flowering phases of plant growth. Intercellular carbon dioxide concentration in the palisade tissue was increased at each stage of plant development. Stomatal index remained almost unchanged at the polluted site, except on the adaxial surface during the preflowering stage where it was higher as compared to the non-polluted plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Springer
    Biologia plantarum 43 (2000), S. 625-627 
    ISSN: 1573-8264
    Keywords: ion accumulation ; iron chelators ; malondialdehyde ; photosynthesis ; proline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Exposure of the freshwater green alga Scenedesmus incrassatulus Bohl, strain R-83 to salt stress (175 mM NaCl) resulted in a reduction of its growth and 14CO2 fixation and in an increase of accumulation of free proline and malondialdehyde (MDA). The accumulation of proline in the light was higher than in dark. NaCl significantly inhibited the Fe-induced release of organic chelators from the cells. Exogenously supplied 10−4M methyl jasmonate (JA-Me) did not considerably change the 14CO2 fixation, but increased proline and MDA accumulation in the cells and moderately inhibited the release of chelators from cells. JA-Me supplied simultaneously with NaCl helps the algae to counteract the salt stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...