ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 34 (1995), S. 10932-10938 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 23 (1990), S. 101-104 
    ISSN: 1573-5079
    Keywords: Photosystem II ; plastoquinone ; heterogeneity ; stoichiometry ; spinach thylakoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The abundance of photosystem II in chloroplast thylakoid membranes has been a contentious issue because different techniques give quite different estimates of photosystem II titer. This discrepancy led in turn to disagreements regarding the stoichiometry of photosystem II to photosystem I in these membranes. We believe that the discrepancy in photosystem II quantitation is resolved by evidence which shows that a large population of photosystem II centers with negligible turnover rates are present in isolated thylakoid membranes as well as in normally developed leaves of healthy plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 25 (1990), S. 39-48 
    ISSN: 1573-5079
    Keywords: photosystem II ; inactive photosystem II ; antenna size ; electrochromic shift
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effective absorption cross section of inactive photosystem II (PS II) centers, which is the product of the effective antenna size and the quantum yield for photochemistry, was investigated by comparing the light saturation curves of inactive PS II and active reaction centers in intact chloroplasts and thylakoid membranes of spinach (Spinacia oleracea). Inactive PS II centers are defined as the impaired PS II reaction centers that require greater than 50 ms for the reoxidation of QA − subsequent to a single turnover flash. Active reaction centers are defined as the rapidly turning over PS II centers (recovery time less than 50 ms) and all of the PS I centers. The electrochromic shift, measured by the flash-induced absorbance increase at 518 nm, was used to probe the activity of the reaction centers. Light saturation curves were generated for inactive PS II centers and active reaction centers by measuring the extent of the absorbance increase at 518 nm induced by red actinic flashes of variable energy. The light saturation curves show that inactive PS II centers required over twice as many photons as active reaction centers to achieve the same yield. The ratio of the flash energy required for 50% saturation for active reaction centers (PS II active + PS I) compared to inactive PS II centers was 0.45±0.04 in intact chloroplasts, and 0.54±0.11 in thylakoid membranes. Analysis of the light saturation curves using a Poisson statistical model in which the ratio of the antenna size of active PS II centers to that of PS I is considered to range from 1 to 1.5, indicates that the effective absorption cross section of inactive PS II centers was 0.54–0.37 times that of active PS II centers. If the quantum yield for photochemistry is assumed to be one, we estimate that the antenna system serving the inactive PS II centers contains approx. 110 chlorophyll molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5079
    Keywords: Photosystem II ; inactive Photosystem II ; water oxidation ; antenna size
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosystem II complexes of higher plants are structurally and functionally heterogeneous. While the only clearly defined structural difference is that Photosystem II reaction centers are served by two distinct antenna sizes, several types of functional heterogeneity have been demonstrated. Among these is the observation that in dark-adapted leaves of spinach and pea, over 30% of the Photosystem II reaction centers are unable to reduce plastoquinone to plastoquinol at physiologically meaningful rates. Several lines of evidence show that the impaired reaction centers are effectively inactive, because the rate of oxidation of the primary quinone acceptor, QA, is 1000 times slower than in normally active reaction centers. However, there are conflicting opinions and data over whether inactive Photosystem II complexes are capable of oxidizing water in the presence of certain artificial electron acceptors. In the present study we investigated whether inactive Photosystem II complexes have a functional water oxidizing system in spinach thylakoid membranes by measuring the flash yield of water oxidation products as a function of flash intensity. At low flash energies (less that 10% saturation), selected to minimize double turnovers of reaction centers, we found that in the presence of the artificial quinone acceptor, dichlorobenzoquinone (DCBQ), the yield of proton release was enhanced 20±2% over that observed in the presence of dimethylbenzoquinone (DMBQ). We argue that the extra proton release is from the normally inactive Photosystem II reaction centers that have been activated in the presence of DCBQ, demonstrating their capacity to oxidize water in repetitive flashes, as concluded by Graan and Ort (Biochim Biophys Acta (1986) 852: 320–330). The light saturation curves indicate that the effective antenna size of inactive reaction centers is 55±12% the size of active Photosystem II centers. Comparison of the light saturation dependence of steady state oxygen evolution in the presence of DCBQ or DMBQ support the conclusion that inactive Photosystem II complexes have a functional water oxidation system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 12 (1987), S. 43-62 
    ISSN: 1573-5079
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The problem of predicting the kinetics of proton efflux and the decay of the internal proton concentration for vesicles containing one or more buffers for which the internal proton concentration is initially higher than that of the surrounding medium is examined. An analytical solution is derived that describes the time course of the proton efflux from vesicles and the decay of the internal proton concentration under conditions of zero transmembrane electric potential. The effect of the internal buffers is to increase the time required for the proton concentration gradient to equilibrate across the membrane. To simplify the analysis we assume that the equilibration of the internal and external proton activity is due primarily to proton diffusion through the membrane, and not to hydroxyl ion flux. For a vesicle containing a single buffer the solution requires six independent physical parameters: the initial internal proton concentration, the external proton concentration, the ratio of the vesicle surface area to the internal volume, the permeability coefficient of the membrane for protons, the total concentration of the internal buffer, and the equilibrium constant for the dissociation of the internal buffer. Determination of these physical values is sufficient to predict the time dependence of the internal proton concentration and of the proton efflux. Over a pH range that is below or near the pK of the internal buffer the solution is complex. However, if the initial pH is one unit or more higher than the pK of the internal buffer the kinetics of the internal proton concentration and proton efflux can be described by a pseudo first order reaction. In this case the apparent rate constant depends linearly on the permeability coefficient and is dominated by the total internal buffer concentration and its pK. For example, increasing the internal buffer concentration inside a vesicle by 10-fold results in an approximately 10-fold increase in the half-time of the proton efflux kinetics. The theoretical analysis is applied to thylakiod vesicles using experimentally determined values for the physical parameters. The predictions of the analysis are compared to experimentally observed kinetics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 48 (1996), S. 247-254 
    ISSN: 1573-5079
    Keywords: electrochromic shift ; chlorophyll fluorescence ; inactive Photosystem II ; light adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In dark-adapted spinach leaves approximately one third of the Photosystem II (PS II) reaction centers are impaired in their ability to transfer electrons to Photosystem I. Although these ‘inactive’ PS II centers are capable of reducing the primary quinone acceptor, QA, oxidation of QA − occurs approximately 1000 times more slowly than at ‘active’ centers. Previous studies based on dark-adapted leaves show that minimal energy transfer occurs from inactive centers to active centers, indicating that the quantum yield of photosynthesis could be significantly impaired by the presence of inactive centers. The objective of the work described here was to determine the performance of inactive PS II centers in light-adapted leaves. Measurements of PS II activity within leaves did not indicate any increase in the concentration of active PS II centers during light treatments between 10 s and 5 min, showing that inactive centers are not converted to active centers during light treatment. Light-induced modification of inactive PS II centers did occur, however, such that 75% of these centers were unable to sustain stable charge separation. In addition, the maximum yield of chlorophyll fluorescence associated with inactive PS II centers decreased substantially, despite the lack of any overall quenching of the maximum fluorescence yield. The effect of light treatment on inactive centers was reversed in the dark within 10–20 mins. These results indicate that illumination changes inactive PS II centers into a form that quenches fluorescence, but does not allow stable charge separation across the photosynthetic membrane. One possibility is that inactive centers are converted into centers that quench fluorescence by formation of a radical, such as reduced pheophytin or oxidized P680. Alternatively, it is possible that inactive PS II centers are modified such that absorbed excitation energy is dissipated thermally, through electron cycling at the reaction center.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5079
    Keywords: herbicide ; instrumentation ; mutant selection ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Fluorometers that measure the kinetics of chlorophyll fluorescence have become invaluable tools for determining the photosynthetic performance of plants. Many of these instruments use high frequency modulated light to measure the rate, efficiency and regulation of photosynthesis. The technique is non-invasive and is effective under diverse environmental conditions. Recently, imaging fluorometers have been introduced that reveal variability in photosynthesis over the surface of a leaf or between individual plants. Most imaging instruments depend on continuous light or low frequency modulated light for fluorescence excitation, which imposes serious limitations on measurements of the fluorescence parameters, especially the minimum fluorescence (F0) and variable fluorescence (FV). Here, we describe a new instrument that combines the advantage of high frequency modulated light with two-dimensional imaging of chlorophyll fluorescence. The fluorometer produces dynamic images of chlorophyll fluorescence from leaves or plants, providing accurate mapping of F0 and FV, and non-photochemical quenching. A significant feature of the instrument is that it can record fluorescence images of leaves in daylight under field conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-03-01
    Print ISSN: 0167-7799
    Electronic ISSN: 1879-3096
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...