ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General Chemistry  (1,940)
  • Earth Resources and Remote Sensing  (1,434)
  • Astronomy  (1,431)
  • Instrumentation and Photography  (1,159)
  • Cell & Developmental Biology
  • 2000-2004  (4,400)
  • 1940-1944  (2,173)
Collection
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2003 Dec 19;302(5653):2039-45.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14700029" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/therapeutic use ; Animals ; Astronomical Phenomena ; Astronomy ; Climate ; Germ Cells/cytology/physiology ; Humans ; Mental Disorders/etiology/genetics ; Neoplasms/blood supply/drug therapy ; Physical Phenomena ; Physics ; RNA, Antisense ; *Science/trends ; Stem Cells/physiology ; Y Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are reexamined. Previous analyses have concluded that the source is an accreting black hole of mass 〉 or approx. 50 solar masses although it has been noted that the light curve resembles that of an AM Herculis system. Here we show that the short period and an assumed main-sequence companion constrain the mass of the companion to less than 1 solar mass. Furthermore, a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrain the mass of the compact object to less than 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star that intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within approx. 10(exp 3) yr. We find that the observations cannot rule out an AM Herculis system in the Milky Way and that such a system can account for the variations seen in the light curve.
    Keywords: Astronomy
    Type: The Astrophysical Journal; Vol. 605; 360-367
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-11-25
    Description: Contents include the following: Why are the mirrors segmented? Why lightweight segmented mirrors? Why cold (cryogenic) mirrors? Why a space telescope? How did NASA go about developing the mirror technology to enable this? Why was beryllium selected for JWST s mirrors? How are the Beryllium mirrors made? What happens to the mirrors once they are complete?
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-10-05
    Description: We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV 〈 E 〈 4 keV neutrals from icy moon surfaces and atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and directional distributions of the resultant neutrals, allow indirect global mapping of magnetic field structures around the moons. Temporal variation of the magnetic structures can be linked to induced magnetic fields associated with subsurface oceans.
    Keywords: Earth Resources and Remote Sensing
    Type: Workshop on Europa's Icy Shell: Past, Present, and Future; 17; LPI-Contrib-1195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for next generation astronomical telescopes and detectors. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: Comets, fine-grained matrices of chondrites, and chondritic interplanetary dust particles (IDPs) are each composed of both crystalline and amorphous silicates. The primitive solar nebula, in which comets and asteroids accreted, was formed from the collapsed core of a Giant Molecular Cloud, that, in turn, condensed from materials present in the interstellar medium (ISM). Despite observations that reveal the presence of crystalline magnesium silicate minerals in the shells of very high mass-loss-rate stars [1,2], typical silicate grains in the ISM are most likely to be amorphous, given their relatively long residence time in such a high radiation environment. An upper limit of ~3% crystalline grains can be derived from their non-detection in spectra of ISM solids [3]. If the vast majority of grains that enter the primitive solar nebula are amorphous, then the observation of crystalline dust in comets and primitive chondrite matrices indicates the action of specific processes required to transform the amorphous starting materials into the crystals that are observed.
    Keywords: Astronomy
    Type: Chondrites and the Protoplanetary Disk, Part 3; LPI-Contrib-1218-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Keywords: Astronomy
    Type: American Astronomical Society; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: Currently Mars missions can collect more data than can be returned. Future rovers of increased mission lifetime will benefit from onboard autonomous data processing systems to guide the selection, measurement and return of scientifically important data. One approach is to train a neural net to recognize spectral reflectance characteristics of minerals of interest. We have developed a carbonate detector using a neural net algorithm trained on 10,000 synthetic Vis/NIR (350-2500 nm) spectra. The detector was able to correctly identify carbonates in the spectra of 30 carbonate and noncarbonate field samples with 100% success. However, Martian dust coatings strongly affect the spectral characteristics of surface rocks potentially masking the underlying substrate rock. In this experiment, we measure Vis/NIR spectra of calcite coated with different thicknesses of palagonite dust and evaluate the performance of the carbonate detector.
    Keywords: Instrumentation and Photography
    Type: Lunar and Planetary Science XXXV: Mars: New Methods and Techniques; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Astronomical Telescopes and Instrumentation; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: We discovered a low-mass companion to the M dwarf GJ 164 with the CCD-based imaging system of the Stellar Planet Survey astrometric program. The existence of GJ 164B was confirmed with Hubble Space Telescope NICMOS imaging observations. A high-dispersion spectral observation in V sets a lower limit of Deltam 〉 2.2 mag between the two components of the system. Based on our parallax value of 82 +/- 8 mas, we derive the following orbital parameters: P = 2.04 +/- 0.03 yr, a = 103 +/- 0.03, and M-total 0.265 +/- 0.020 M-circle dot. The component masses are M-A = 0.170 +/- 0.015 M-circle dot and M-B = 0.095 +/- 0/015 M-circle dot. Based on its mass, colors, and spectral properties, GJ 164B has spectral type M6-M8 V.
    Keywords: Astronomy
    Type: The Astrophysical Journal; Volume 617; 1323-1329
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: Stardust successfully encountered comet 81P/Wild 2 on 2 January 2004 at a distance of 236.4 +/- 1 km. All encounter investigations acquired valuable new and surprising findings. The time-of-flight spectrometer registered 29 spectra during flyby and measured the first negative ion mass spectra of cometary particles. The dust detectors recorded particles over a broad mass range, 10(exp -11) to 10(exp -4) g. Unexpectedly, the dust distribution along Stardust's flight path was far from uniform, but instead occurred in short 'bursts', suggesting in-flight breakup of fragments ejected from the nucleus. High-resolution, stunning images of the Wild 2 surface show a diverse and complex variety of landforms not seen from comets 1P/Halley and 19P/Borrelly or icy satellites of the outer solar system. Longer-exposure images reveal large numbers of jets projected nearly around the entire perimeter of the nucleus, many of which appear to be highly collimated. A triaxial ellipsoidal fit of the Wild 2 nucleus images yields the principal nucleus radii of 1.65 X 2.00 X2.75 km (+/- 0.05 km). The orientations and source locations on the nucleus surface of 20 highly collimated and partially overlapping jets have been traced. There is every indication that the expected samples were successfully collected from the Wild 2 coma and are poised for a return to Earth on 15 January 2006.
    Keywords: Astronomy
    Type: Journal Of Geophysical Research; Volume 109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: The Terrestrial Planet Finder Coronagraph will rely heavily on modeling and analysis throughout its mission lifecycle. Optical modeling is especially important, since the tolerances on the optics as well as scattered light suppression are critical for the mission's success. The high contrast imaging necessary to observe a planet orbiting a distant star requires new and innovative technologies to be developed and tested, and detailed optical modeling provides predictions for evaluating design decisions. It also provides a means to develop and test algorithms designed to actively suppress scattered light via deformable mirrors and other techniques. The optical models are used in conjunction with structural and thermal models to create fully integrated optical/structural/thermal models that are used to evaluate dynamic effects of disturbances on the overall performance of the coronagraph. The optical models we have developed have been verified on the High Contrast Imaging Testbed. Results of the optical modeling verification and the methods used to perform full three-dimensional near-field diffraction analysis are presented.
    Keywords: Astronomy
    Type: Proceedings of SPIE. Space Systems Engineering and Optical Alignment Mechanisms (ISSN 0277-786X/04); Volume 5528
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: The first high-dynamic-range interferometric mode planned to come on line at the Keck Observatory is mid-infrared nulling. This observational mode, which is based on the cancellation of the on-axis starlight arriving at the win Keck telescopes, will be used to examine nearby stellar systems for the presence of circumstellar exozodiacal emission. This paper describes the system level layout of the Keck Interferometer Nuller (KIN), as well as the final performance levels demonstrated in the laboratory integration and test phase at the Jet Propulsion Laboratory prior to shipment of the nuller hardware to the Keck Observatory in mid-June 2004. On-sky testing and observation with the mid-infrared nuller are slated to begin in August 2004.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-11
    Description: The recent successful rendezvous of the Stardust spacecraft with comet Wild-2 will be followed by its return of cometary dust to Earth in January 2006. Results from two separate dust impact detectors suggest that the spacecraft collected approximately the nominal fluence of at least 1,000 particles larger than 15 micrometers in size. While constituting only about one microgram total, these samples will be sufficient to answer many outstanding questions about the nature of cometary materials. More than two decades of laboratory studies of stratospherically collected interplanetary dust particles (IDPs) of similar size have established the necessary microparticle handling and analytical techniques necessary to study them. It is likely that some IDPs are in fact derived from comets, although complex orbital histories of individual particles have made these assignments difficult to prove. Analysis of bona fide cometary samples will be essential for answering some fundamental outstanding questions in cosmochemistry, such as (1) the proportion of interstellar and processed materials that comprise comets and (2) whether the Solar System had a O-16-rich reservoir. Abundant silicate stardust grains have recently been discovered in anhydrous IDPs, in far greater abundances (200 5,500 ppm) than those in meteorites (25 ppm). Insight into the more subtle O isotopic variations among chondrites and refractory phases will require significantly higher precision isotopic measurements on micrometer-sized samples than are currently available.
    Keywords: Astronomy
    Type: Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-12
    Description: This book, for the first time, ties together physical processes across the full scale of the heliosphere. It is about the natural connections that exist between various parts of the system. Therefore, it is mainly cast in terms of those mechanisms and phenomena rather than individual missions in space. However, to give credit, this has only been possible because of the existence of a fleet of deep space missions such as Ulysses, SOHO, and the Voyagers. It is only with them working in concert that a real understanding of the physics can be, and has been achieved. There are fourteen chapters in the book, written by top scientists from around the world. The level of presentation is very high but the authors were given enough space to present understandable introductions, physical discussions, and extensive bibliographies. The book can be of use to average scientists and academicians as well as to specialists.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-11
    Description: Absorbing the electromagnetic radiation in several regions of the solar spectrum, C02 plays an important role in the Earth radiation budget since it produces the greenhouse effect. Many natural processes in the Earth's system add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at different sites around the world show an increased carbon dioxide concentration in the atmosphere.
    Keywords: Earth Resources and Remote Sensing
    Type: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Earth Science and Applications Workshop; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Keywords: Instrumentation and Photography
    Type: International Society for Optical Engineering (SPIE) Astronomical Telescopes and Instrumentation; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-11
    Keywords: Instrumentation and Photography
    Type: Astronomical Telescopes and Instrumentation; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-11
    Keywords: Astronomy
    Type: 203rd American Astronomical Society; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-12
    Description: A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of liquid metals and molten semiconductors. The experimental setup of the transient torque method is similar to that of the oscillation cup method. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate around its vertical axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with published data. The method is nonintrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer to measure just the viscosity of the melt or as a rotating magnetic field method to determine the electrical conductivity of a melt or a solid if desired.
    Keywords: Instrumentation and Photography
    Type: Review of Scientific Instruments (ISSN 0034-6748); Volume 75; No. 9; 2810-2816
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: RX J0806.3+1527 is a candidate double degenerate binary with possibly the shortest known orbital period. The source shows an approximately equal to 100% X-ray intensity modulation at the putative orbital frequency of 3.11 mHz (321.5 s). If the system is a detached, ultracompact binary gravitational radiation should drive spin-up with a magnitude of nu(sup dot) approximately 10(exp -16) Hz per second. Efforts to constrain the X-ray frequency evolution to date have met with mixed success, principally due to the sparseness of earlier observations. Here we describe the results of the first phase coherent X-ray monitoring campaign on RX J0806.3+1527 with Chandra. We obtained a total of 70 ksec of exposure in 6 epochs logarithmically spaced over 320 days. With these data we conclusively show that the X-ray frequency is increasing at a rate of 3.77 plus or minus 0.8 x 10(exp -16) Hz per second. Using the ephemeris derived from the new data we are able to phase up all the earlier Chandra and ROSAT data and show they are consistent with a constant nu(sup dot) = 3.63 plus or minus 0.06 x 10(exp -16) Hz per second over the past decade. This value appears consistent with that recently derived by Israel et al. largely from monitoring of the optical modulation, and is in rough agreement with the solutions reported initially by Hakala et al., based on ground-based optical observations. The large and stable nu(sup dot) over a decade is consistent with gravitational radiation losses driving the evolution. An intermediate polar (IP) scenario where the observed X-ray period is the spin period of an accreting white dwarf appears less tenable because the observed nu(sup dot) requires an m(sup dot) approximately equal to 4 x 10 (exp -8) solar mass yr(sup -l), that is much larger than that inferred from the observed X-ray luminosity (although this depends on the uncertain distance and bolometric corrections), and it is difficult to drive such a high m(sup dot) in a binary system with parameters consistent with all the multiwavelength data. If the ultracompact scenario is correct, then the X-ray flux cannot be powered by stable accretion which would drive the components apart, suggesting a new type of energy source (perhaps electromagnetic) may power the X-ray flux.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: Currently, the best available probe of the early phase of gamma-ray burst (GRB) jet attributes is the prompt gamma-ray emission, in which several intrinsic and extrinsic variables determine GRB pulse evolution. Bright, usually complex bursts have many narrow pulses that are difficult to model due to overlap. However, the relatively simple, long spectral lag, wide-pulse bursts may have simpler physics and are easier to model. In this work we analyze the temporal and spectral behavior of wide pulses in 24 long-lag bursts, using a pulse model with two shape parameters - width and asymmetry - and the Band spectral model with three shape parameters. We find that pulses in long-lag bursts are distinguished both temporally and spectrally from those in bright bursts: the pulses in long spectral lag bursts are few in number, and approximately 100 times wider (10s of seconds), have systematically lower peaks in vF(v), harder low-energy spectra and softer high-energy spectra. We find that these five pulse descriptors are essentially uncorrelated for our long-lag sample, suggesting that at least approximately 5 parameters are needed to model burst temporal and spectral behavior. However, pulse width is strongly correlated with spectral lag; hence these two parameters may be viewed as mutual surrogates. We infer that accurate formulations for estimating GRB luminosity and total energy will depend on several gamma-ray attributes, at least for long-lag bursts. The prevalence of long-lag bursts near the BATSE trigger threshold, their predominantly low vF(v) spectral peaks, and relatively steep upper power-law spectral indices indicate that Swift will detect many such bursts.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: Modern space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations". for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 38-46; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: We present imaging results and source structure analysis of extragalactic radio sources observed using the Very Long Baseline Array (VLBA) at 24 GHz and 43 GHz as part of an ongoing NASA, USNO, NRAO and Bordeaux Observatory collaboration to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies. The K/Q-band image database now includes images of 108 sources at 43 GHz (Q-braid) and images of 230 sources at 24 GHz (K-band). Preliminary analysis of the observations taken to date shows that the sources are generally more compact as one goes from the ICRF frequency of 8.4 GHz to 24 GHz. This result is consistent with the standard theory of compact extragalactic radio sources and suggests that reference frames defined at these higher radio frequencies will be less susceptible to the effects of intrinsic source structure than those defined at lower frequencies.
    Keywords: Astronomy
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 361-365; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: In this paper, we present an optimal open-loop slew trajectory algorithm developed at GSFC for the so-called "Yardstick design" of the James Webb Space Telescope (JWST). JWST is an orbiting infrared observatory featuring a lightweight, segmented primary mirror approximately 6 meters in diameter and a sunshield approximately the size of a tennis court. This large, flexible structure will have significant number of lightly damped, dominant flexible modes. With very stringent requirements on pointing accuracy and image quality, it is important that slewing be done within the required time constraint and with minimal induced vibration in order to maximize observing efficiency. With reaction wheels as control actuators, initial wheel speeds as well as individual wheel torque and momentum limits become dominant constraints in slew performance. These constraints must be taken into account when performing slews to ensure that unexpected reaction wheel saturation does not occur, since such saturation leads to control failure in accurately tracking commanded motion and produces high frequency torque components capable of exciting structural modes. A minimum-time constraint is also included and coupled with reaction wheel limit constraints in the optimization to minimize both the effect of the control torque on the flexible body motion and the maneuver time. The optimization is on slew command parameters, such as maximum slew velocity and acceleration, for a given redundant reaction wheel configuration and is based on the dynamic interaction between the spacecraft and reaction wheel motion. Analytical development of the slew algorithm to generate desired slew position, rate, and acceleration profiles to command a feedback/feed forward control system is described. High-fidelity simulation and experimental results are presented to show that the developed slew law achieves the objectives.
    Keywords: Astronomy
    Type: SPIE Conference on Space Systems Optomechanics and Dynamics; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: We introduce a million-second observation of the supernova remnant Cassiopeia A with the Chandra X-ray Observatory. The bipolar structure of the Si-rich ejecta (NE jet and SW counterpart) is clearly evident in the new images, and their chemical similarity is confirmed by their spectra. These are most likely due to jets of ejecta as opposed to cavities in the circumstellar medium, since we can reject simple models for the latter. The properties of these jets and the Fe-rich ejecta will provide clues to the explosion of Cas A.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: We report on our Chandra and RXTE observations of the bright old nova, V603 Aql, performed in 2001 April, supplemented by our analysis of archival X-ray data on this object. We find that the RXTE data are contaminated by the Galactic Ridge X-ray emission. After accounting for this effect, we find a high level of aperiodic variability in the RXTE data, at a level consistent with the uncontaminated Chandra data. The Chandra HETG spectrum clearly originates in a multi-temperature plasma. We constrain the possible emission measure distribution of the plasma through a combination of global and local fits. The X-ray luminosity and the spectral shape of V603 Aql resemble those of SS Cyg in transition between quiescence and outburst. The fact that the X-ray flux variability is only weakly energy dependent can be interpreted by supposing that the variability is due to changes in the maximum temperature of the plasma. The plasma density is likely to be high, and the emission region is likely to be compact. Finally, the apparent overabundance of Ne is consistent with V603 Aql being a young system.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: The Integrated Science Instrument Module of the James Webb Space Telescope is described from a systems perspective with emphasis on unique and advanced technology aspects. The major subsystems of this flight element are described including: structure, thermal, command and data handling, and software.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: Ultraluminous X-ray sources (ULXs) with apparent luminosities up to hundreds of times the Eddington luminosity for a neutron star have been discovered in external galaxies. The existence of intermediate-mass black holes has been proposed to explain these sources. We present evidence for an intermediate-mass black hole in the ULX M82 X-1 based on the spectral features and timing (quasi-periodic oscillation [QPO]) properties of the X-radiation from this source. We revisited XMM-Newton and Rossi X-Ray Timing Explorer (RXTE) data for M82 X-1 obtained in 2001 and 1997 for XMM and RXTE, respectively. We show for these observations that the source is either in transition or in a high/soft state with photon spectral indices 2.1 and 2.7, respectively. We confirm the early determination of the QPO frequency nu approx. = 55 mHz in this source by Strohmayer & Mushotzky and identify this as the low-frequency QPO for the source. We apply a new method to determine the black hole mass of M82 X-1. The method uses the index-QPO low-frequency correlation that has been recently established in Galactic black hole candidates GRS 1915+105, XTE JI550-564, 4U 1630-47, and others. Using scaling arguments and the correlation derived from the consideration of Galactic black holes, we conclude that M82 X-1 is an intermediate black hole with a mass of the order of 1000 solar mass,.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-06
    Description: Interstellar glycolaldehyde (CH20HCHO) has been detected with the 100-m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of the 1(sub 10)-1(sub 01),2(sub 11)-2(sub 02),3(sub 12)-3(sub 0), and 4(sub 13)-4(sub 04) rotational transitions at 13.48, 15.18, 17.98, and 22.14 GHz, respectively. An analysis of these four high signal- to-noise rotational transitions yields a glycolaldehyde state temperature of ~8 K. Previously reported emission line detections of glycolaldehyde with the NRAO 12-m telescope at mm-wavelengths (71 GHz to 103 GHz) are characterized by a state temperature of -50 K. By comparison the GBT detections are surprisingly strong and seen in emission at 13.48 GHz, emission and absorption at 15.18 GHz, and absorption at 17.98 GHz and 22.14 GHz. We attribute the strong absorption observed by the GBT at the higher frequencies to the correspondingly smaller GBT beams coupling better to the continuum source(s) in Sagittarius B2(N). A possible model for the two-temperature regions of glycolaldehyde is discussed.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying sea surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-06
    Description: The extension of dielectric and inductive spectroscopy into in situ observations represents a significant exploration-enabling tool. This technology can be widely applied from microscopic to macroscopic. Dielectrometry and inductometry can measure sub-surface composition and its distribution. The primary environment that we cannot easily explored is the sub-surface of solid bodies. Weather as part of our equipment that we bring with us, or the locations we are exploring. These fundamental questions lie at the core of the exploration Initiative. To answer them we must use a whole host of complimentary tools including those that allow us to practically examine the sub-surface environment. A nondestructive approach offers significant advantages for both the initial identification of likely samples but also the monitoring of ecosystems and crew health. These include materials characterization, nondestructive inspection, and process quality control, damage monitoring, and hidden object detection and identification. The identification of natural resources such as water on the Moon or Mars is of great importance to the utilization of local resource in the support of human exploration crews. On the macroscopic scale, the understanding of what resources are available and how they are distributed is of primary importance to their productive utilization. Even if initial explorations do not require the use of local resources to succeed, eventual settlement and commercial development will. The routine examination of the structural integrity (micro cracks, leaks) of hi.inafi habitats in harsh envkmments ww!d also be enabled.
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below approximately 1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonized thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess is seen to be an artefact of absorption of the underlying continuum while the core soft emission is attributed to recombination in an extended region of more highly ionised gas. This new analysis underlines the importance of fully accounting for absorption in characterizing AGN X-ray spectra.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: An important component of Milankovitch's astronomical theory of climate change is the precession index. The precession index, along with the Earth's tilt and orbital eccentricity, are believed to be the major controlling factors of climate change in the last few million years. The precession index is e sin omega(sub s) where e is the Earth's orbital eccentricity and omega(sub s) measures how close the Sun is to the Earth at midsummer. When omega(sub s) = 90deg the Sun is close to the Earth during northern summer, and at 270deg it is far from the Earth during northern summer. The precession index varies with time, because both the eccentricity e and the parameter omega(sub s) are constantly changing due to disturbances in the Earth's orbit by other planets, and due to the precession of the Earth, The change is largely periodic, with a period of about 23,000 years.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: The GLAST Large Area Telescope (LAT), successor to Energetic Gamma-ray Experiment Telescope (EGRET) on the Compton Observatory, will play an important role in multiwavelength studies during the second half of this decade. Operating at energies between 20 MeV and greater than 300 GeV with sensitivity 30 or more times greater than that of EGRET, the Large Area Telescope (LAT) will offer good spatial and time resolution over a large (less than 2 sr) field of view. The LAT will bring insight to the whole range of high-energy gamma-ray phenomena, including bursts, active galactic nuclei, pulsars, supernova remnants, diffuse emission and unidentified sources. In essentially all cases, the maximum scientific return will come from coordinated (although not necessarily simultaneous) multiwavelength observations. Particularly with its planned scanning mode of operation, GLAST will have full sky coverage on relatively short time scales. The LAT team looks forward to cooperating with observers at other wavelengths.
    Keywords: Instrumentation and Photography
    Type: New Astronomy Reviews (ISSN 1387-6473); Volume 48; No. 5-6; 543-549
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: A puzzling feature of the Chandra-detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting from an outward-increasing radio-to-X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's nonthermal electron distribution. In this letter we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely, that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors GAMMA approximately 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from kiloparsec scales to the hot spots, where, in a final collision with the intergalactic medium, they slow down rapidly to the subrelativistic velocities of the hot spot advance speed.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-06
    Description: We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: Recent studies have shown that strong correlations are observed between low frequency QPO s and the spectral power law index for a number of black hole candidate sources (BHCs), when these sources exhibit quasi-steady hard x-ray emission states. The dominant long standing interpretation of QPO's is that they are produced in and are the signature of the thermal accretion disk. Paradoxically, strong QPO's are present even in the cases where the thermal component is negligible. We present a model which identifies the origin of the QPO's and relates them directly to the properties of a compact coronal region which is bounded by the adjustment from Kepleriaa to sub-Kelperian inflow into the BH, and is primarily responsible for the observed power law spectrum. The model also predicts the relationship between high and low frequency QPO's and shows how BH's can be unique identified from observations of the soft states of NS's and BHC's.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: We have analyzed a large set of Rossi X-ray Timing Explorer/Proportional Counter Array (RXTE/PCA) scanning and slewing observations performed between April 1996 and March 1999. We obtained the 3-20 keV spectrum of the cosmic X-ray background (CXB) by subtracting Earth-occulted observations from observations of the X-ray sky at high galactic latitude and far away from sources. The sky coverage is approximately 22.6 x 10(exp 3) square degrees. The PCA spectrum of CXB in 3-20 keV energy band is adequately approximated by a single power law with photon index GAMMA approximately 1.4 and normalization at 1 keV approximately 9.5 phot/s/square centimeter/keV/sr. Instrumental background uncertainty precludes accurate RXTE/PCA measurements of the spectrum of cosmic X-ray background at energies above 15 keV and therefore we cannot detect the high energy cutoff observed by the High Energy Astronomical Observatory (HEAO)-1 A2 experiment. Deep observations of the 6 high latitude points used to model the PCA background provide a coarse measure of the spatial variation of the CXB. The CXB variations are consistent with a fixed spectral shape and variable normalization characterized by a fractional rms amplitude of approximately 7% on angular scales of approximately 1 square deg.
    Keywords: Astronomy
    Type: Astronomy and Astrophysics; Volume 411; 329-334
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive aerosol optical thicknesses (AOT) and aerosol properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the red and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and aerosol scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of aerosol retrieval from MODIS over land will include polarization.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: We present a solution to the apparent discrepancy between the radial gradient in the diffuse Galactic gamma-ray emissivity and the distribution of supernova remnants, believed to be the sources of cosmic rays. Recent determinations of the pulsar distribution have made the discrepancy even more apparent. The problem is shown to be plausibly solved by a variation in the Wco-to-N(H2) scaling factor. If this factor increases by a factor of 5-10 from the inner to the outer Galaxy, as expected from the Galactic metallicity gradient and supported by other evidence, we show that the source distribution required to match the radial gradient of gamma-rays can be reconciled with the distribution of supernova remnants as traced by current studies of pulsars. The resulting model fits the EGRET gamma-ray profiles extremely well in longitude, and reproduces the mid-latitude inner Galaxy intensities better than previous models.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: "Introduction to AIRS and CrIS" is a chapter in a book dealing with various aspects of remote sensing. AIRS and CrIS are both high spectral resolution IR sounding instruments, which were recently launched (AIRS) or will soon be launched (CrIS). The chapter explains the general principles of infra-red remote sensing, and explains the significance and information content of high spectral resolution IR measurements. The chapter shows results obtained using AIRS observations, and explains why similar quality results should be obtainable from CrIS data.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-06
    Description: SAFIR will: Study the important and relatively unexplored region of the spectrum between 30 and 300 m; Enable the study of galaxy formation and the earliest stage of star formation by revealing regions too enshrouded by dust to be studied by NGST; Be more than 100 times as sensitive as SIRTF or the European [Herschel] mission.SAFIR is projected to cost around $600M total. The decadal review committee recommends that $100M be allocated in this decade to start the SAFIR project, and that additional technology developments be funded separately: Far-Infrared Array Development ($10M ) Refrigerators ($50M ) Large, Lightweight Optics ($80M ). Current developments are also described.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 37-58; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-06
    Description: This paper represents the consensus view of the 124 participants in the Second Workshop on New Concepts for Far-Infrared/Submillimeter Space Astronomy.We recommend that NASA pursue the vision for far-IR astronomy outlined in the NAS Decadal Survey, which said: A rational coordinated program for space optical and infrared astronomy would build on the experience gained with NGST1 to construct [a JWST-scale filled-aperture far-IR telescope SAFIR, and then ultimately, in the decade 2010 to 2020, build on the SAFIR, TPF, and SIM experience to assemble a space-based, far-infrared interferometer. SAFIR will study star formation in the young universe, the buildup of elements heavier than hydrogen over cosmic history, the process of galaxy formation, and the early phases of star formation, which occur behind a veil of dust that precludes detection at mid IR and shorter wavelengths. The far-infrared interferometer will resolve distant galaxies to study protogalaxy interactions and mergers and the processes that led to enhanced star formation activity and the formation of Active Galactic Nuclei, and will resolve protostars and debris disks in our Galaxy to study how stars and planetary systems form.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; XV-XXVI; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-06
    Description: An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 224-234; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-06
    Description: The Millimeter-wave Bolometric Interferometer (MBI) is a proposed ground-based instrument designed for a wide range of cosmological and astrophysical observations including studies of the polarization of the cosmic microwave background (CMB). MBI combines the advantages of two well-developed technologies - interferometers and bolometric detectors. Interferometers have many advantages over .filled-aperture telescopes and are particularly suitable for high resolution imaging. Cooled bolometers are the highest sensitivity detectors at millimeter and sub-millimeter wavelengths. The combination of these two technologies results in an instrument with both high sensitivity and high angular resolution.
    Keywords: Instrumentation and Photography
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 309-316; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: We describe a new "ideal integrator" bolometer as a prototype for a new generation of sensitive, flexible far-IR detectors suitable for use in large arrays. The combination of a non-dissipative sensor coupled with a fast heat switch provides breakthrough capabilities in both sensitivity and operation. The bolometer temperature varies linearly with the integrated infrared power incident on the detector, and may be sampled intermittently without loss of information between samples. The sample speed and consequent dynamic range depend only on the heat switch reset cycle and can be selected in software. Between samples, the device acts as an ideal integrator with noise significantly lower than resistive bolometers. Since there is no loss of information between samples, the device is well-suited for large arrays. A single SQUID readout could process an entire column of detectors, greatly reducing the complexity, power requirements, and cost of readout electronics for large pixel arrays.
    Keywords: Instrumentation and Photography
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 342-348; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-06
    Description: SAFIR will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 157-166; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-06
    Description: The question "How did we get here and what will the future bring?"captures the human imagination and the attention of the National Academy of Science's Astronomy and Astrophysics Survey Committee (AASC). Fulfillment of this fundamental goal requires astronomers to have sensitive, high angular and spectral resolution observations in the far-infrared/submillimeter (far- IR/sub-mm) spectral region. With half the luminosity of the universe and vital information about galaxy, star and planet formation, observations in this spectral region require capabilities similar to those currently available or planned at shorter wavelengths. In this paper we summarize the scientific motivation, some mission concepts and technology requirements for far-IR/sub-mm space interferometers that can be developed in the 2010-2020 timeframe.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 167-177; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-06
    Description: The combination of sensitive direct detectors and a cooled aperture promises orders of magnitude improvement in the sensitivity and survey time for far-infrared and submillimeter spectroscopy compared to existing or planned capabilities. Continuing advances in direct detector technology enable spectroscopy that approaches the background limit available only from space at these wavelengths. Because the spectral confusion limit is significantly lower than the more familiar spatial confusion limit encountered in imaging applications, spectroscopy can be carried out to comparable depth with a significantly smaller aperture. We are developing a novel waveguide-coupled grating spectrometer that disperses radiation into a wide instantaneous bandwidth with moderate resolution (R ~ 1000) in a compact 2-dimensional format. A line survey instrument coupled to a modest cooled single aperture provides an attractive scientific application for spectroscopy with direct detectors. Using a suite of waveguide spectrometers, we can obtain complete coverage over the entire far-infrared and sub-millimeter. This concept requires no moving parts to modulate the optical signal. Such an instrument would be able to conduct a far-infrared line survey 10 6 times faster than planned capabilities, assuming existing detector technology. However, if historical improvements in bolometer sensitivity continue, so that photon-limited sensitivity is obtained, the integration time can be further reduced by 2 to 4 orders of magnitude, depending on wavelength. The line flux sensitivity would be comparable to ALMA, but at shorter wavelengths and with the continuous coverage needed to extract line fluxes for sources at unknown redshifts. For example, this capability would break the current spectroscopic bottleneck in the study of far-infrared galaxies, the recently discovered, rapidly evolving objects abundant at cosmological distances.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 205-213; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-06
    Description: When arrays are used to collect multiple appropriately-dithered images of the same region of sky, the resulting data set can be calibrated using a least-squares minimization procedure that determines the optimal fit between the data and a model of that data. The model parameters include the desired sky intensities as well as instrument parameters such as pixel-to-pixel gains and offsets. The least-squares solution simultaneously provides the formal error estimates for the model parameters. With a suitable observing strategy, the need for separate calibration observations is reduced or eliminated. We show examples of this calibration technique applied to HST NICMOS observations of the Hubble Deep Fields and simulated SIRTF IRAC observations.
    Keywords: Instrumentation and Photography
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 382-390; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-06
    Description: The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.
    Keywords: Instrumentation and Photography
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 370-373; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-06
    Description: Broadband surveys at the millimeter and submillimeter wavelengths will require bolometers that can reach new limits of sensitivity and also operate under high background conditions. To address this need, we present results on a dual transition edge sensor (TES) device with two operating modes: one for low background, ultrasensitive detection and one for high background, enhanced dynamic range detection. The device consists of a detector element with two transition temperatures (T(sub c)) of 0.25 and 0.51 K located on the same micromachined, thermally isolated membrane structure. It can be biased on either transition, and features phonon-limited noise performance at the lower T(sub c). We measure noise performance on the lower transition 7 x 10(exp -18) W/rt(Hz) and the bias power on the upper transition of 12.5 pW, giving a factor of 10 enhancement of the dynamic range for the device. We discuss the biasable range of this type of device and present a design concept to optimize utility of the device.
    Keywords: Instrumentation and Photography
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 378-381; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-06
    Description: The far-infrared and submillimeter region (20 microns-800 microns) has perhaps the greatest potential of all wavelengths for advancement in astronomy. When viewed in terms of the cosmic backgrounds, the far-IR is extremely important: half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z approximately equal to 6) this energy is redshifted to approximately 600 microns. Existing and planned missions have a broad range of capabilities, defined in terms of their spectral coverage, spectral resolution, angular resolution, mapping speed, and sensitivity. In this 5-dimensional parameter space, the far-IR is substantially be-hind most other wavelength bands. The opportunity for future missions with great discovery potential is evident. Such missions will be well-suited to answering fundamental questions about the history of energy release in the Universe, the formation and evolution of galaxies, and formation of stellar and protoplanetary systems. We discuss the parameter space that can be filled by a few well-chosen space missions, specifically a submillimeter all-sky survey and a far-IR to submillimeter observatory. Ultimately, a long baseline submillimeter interferometer is necessary to provide sensitivity and angular resolution.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 278-282; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-06
    Description: The discovery of galaxies beyond z approximately equal to 1 which emit the bulk of their luminosity at long wavelengths has demonstrated the need for high sensitivity, broadband spectroscopy in the far-IR/submm/mm bands. Because many of these sources are not detectable in the optical, long wavelength spectroscopy is key to measuring their redshifts and ISM conditions. The continuum source list will increase in the next decade with new ground-based instruments (SCUBA2, Bolocam, MAMBO) and the surveys of HSO and SIRTF. Yet the planned spectroscopic capabilities lag behind, primarily due to the difficulty in scaling existing IR spectrograph designs to longer wavelengths. To overcome these limitations, we are developing WaFIRS, a novel concept for long-wavelength spectroscopy which utilizes a parallel-plate waveguide and a curved diffraction grating. WaFIRS provides the large (approximately 60%) instantaneous bandwidth and high throughput of a conventional grating system, but offers a dramatic reduction in volume and mass. WaFIRS requires no space overheads for extra optical elements beyond the diffraction grating itself, and is two-dimensional because the propagation is confined between two parallel plates. Thus several modules could be stacked to multiplex either spatially or in different frequency bands. The size and mass savings provide opportunities for spectroscopy from space-borne observatories which would be impractical with conventional spectrographs. With background-limited detectors and a cooled 3.5 telescope, the line sensitivity would be better than that of ALMA, with instantaneous broad-band coverage. We have built and tested a WaFIRS prototype for 1-1.6 mm, and are currently constructing Z-Spec, a 100 mK model to be used as a ground-based lambda/DELTAlambda approximately equal to 350 submillimeter galaxy redshift machine.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 285-294; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-06
    Description: With upcoming missions in mid- and far-Infrared there is a need for software packages to reliably simulate the planned observations. This would help in both planning the observation and scanning strategy and in developing the concepts of the far-off missions. As this workshop demonstrated, many of the new missions are to be in the far-IR range of the electromagnetic spectrum and at the same time will map the sky with a sub-arcsec angular resolution. We present here a computer package for simulating foreground maps for the planned sub-mm and far-IR missions. such as SPECS. The package allows to study confusion limits and simulate cosmological observations for specified sky location interactively and in real time. Most of the emission at wavelengths long-ward of approximately 50 microns is dominated by Galactic cirrus and Zodiacal dust emission. Stellar emission at these wavelengths is weak and is for now neglected. Cosmological sources (distant and not-so-distant) galaxies for specified cosmologies will be added. Briefly, the steps that the algorithm goes through is described.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 271-277; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-06
    Description: The contents include the following: 1. SIRTF. Long wavelength surveys planned for SIRTF. Galaxy Discovery Rates for Future Missions. Impact of SIRTF s Improved Resolution at 160um: Resolving the Background. 2. Polarimetry. Submillimeter Polarimetry - The State of Play. Magnetic Vectors Across the Orion Molecular Cloud Core. Neutral and Ionized Molecular Spectral Lines. Variation of Polarization With Wavelength. The Polarization Spectrum. Submillimeter Polarimetry - Looking Ahead. 3.Confusion. Confusion at 500, 600 micron. 4. Extragalactic Science. Do Massive Black Holes and Galaxy Bulges form Together? 5. Galactic Science. Can We See the First Generations of Stars and Metal Formation? The Birth of Planets and the Origins of Life. Spatial Resolution at 100 microns. Far-ir/Sub-mm Transitions of Linear Carbon Clusters. Predicted Spectra of Glycine.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 23-36; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-06
    Description: We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Delta lambda/lambda = 1/7 at a resolution of delta lambda/lambda approx. 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 m and 450 m bands. These bands cover line emission from the important star formation tracers neutral carbon (CI) and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry.
    Keywords: Instrumentation and Photography
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 374-377; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-06
    Description: The NGST wavefront sensing and control system will be developed to TRL6 over the next few years, including testing in a cryogenic vacuum environment with traceable hardware. Doing this in the far-infrared and submillimeter is probably easier, as some aspects of the problem scale with wavelength, and the telescope is likely to have a more stable environment; however, detectors may present small complications. Since this is a new system approach, it warrants a new look. For instance, a large space telescope based on the DART membrane mirror design requires a new actuation approach. Other mirror and actuation technologies may prove useful as well.
    Keywords: Instrumentation and Photography
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 393-407; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-06
    Description: Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.
    Keywords: Astronomy
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 188-193; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-06
    Description: A new infrared heterodyne instrument has been developed which allows the use of both tuneable diode lasers (TDL) and quantum cascade lasers (QCL) as local oscillators (LO). The current frequency tuning range of our system extends from 900 to 1100/cm depending on the availability of lasers but is planned to be extended to 600/cm soon. The IF-bandwidth is 1.4 GHz using an acousto-optical spectrometer (AOS). The frequency resolution and stability of the system is approximately 10(exp 7). Currently, mercury-cadmium-telluride (MCT) detectors are used as mixers while new devices like quantum-well-infrared-photodetectors (QWIP) and hot-electron-bolometers (HEB) are investigated. The IF-bandwidth can be extended to about 3 GHz by using a new broadband acousto-optical spectrometer presently under development. The instrument is fully transportable and can be attached to any infrared or optical telescope. The semiconductor laser is stabilized to a Fabry-Perot ring-resonator, which is also used as an efficient diplexer to superimpose the local-oscillator and the signal radiation. As a first step measurements of trace gases in Earth's atmosphere and non-LTE emission from Venus' atmosphere were carried out as well as observations of molecular features in sunspots. Further astronomical observations from ground-based telescopes and the airborne observatory SOFIA are planned for the future. Of particular interest are molecules without a permanent dipole moment like H2, CH4, C2H2 etc.
    Keywords: Instrumentation and Photography
    Type: International Thermal Detectors Workshop (TDW 2003); 7-8 - 7-11; NASA/CP-2004-212748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-06
    Description: In this review paper an overview of the potential applications of high Tc (approx. 90 K) superconductors (HTS) and mid-Tc (approx. 39 K) superconductors (MTS) thin films in far IR/Sub-mm thermal detectors is presented. HTSs (YBCO, GdBCO etc.) were discovered in the late 80s while superconductivity in MgB2, an MTS, was discovered in 2001. The sharp transition in transport properties of HTS has allowed the fabrication of composite infrared thermal detectors (bolometers) with better figures of merit than thermopile detectors - thermopiles are currently on board the CIRS instrument on the Cassini mission to Saturn. The potential for developing even more sensitive sensors for IR/Sub-mm applications using MgB2 thin films is assessed. Current MgB2 thin film deposition techniques and film quality are reviewed.
    Keywords: Instrumentation and Photography
    Type: International Thermal Detectors Workshop (TDW 2003); 4-1 - 4-4; NASA/CP-2004-212748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-06
    Description: This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.
    Keywords: Instrumentation and Photography
    Type: International Thermal Detectors Workshop (TDW 2003); 3-6 - 3-10; NASA/CP-2004-212748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-06
    Description: There are moderately-cooled (around 77K) infrared detectors, for instance InSb (around 5 microns wavelength) and HgCdTe (around 15 to 20 microns wavelength). However for longer wavelengths there are either uncooled thermal-type detectors or highly cooled (about 4K and lower) quantum and thermal detectors, with the notable exception of high Tc superconductor detectors. We will describe certain long-wavelength applications in space where only moderate cooling is feasible, and where better sensitivity is required than possible with uncooled detectors. These requirements could be met with high Tc bolometers, but it may also be prudent to develop other technologies. Additionally, over the past 16 years a marketplace has not developed for the commercial production of high Tc bolometers, indicating their production may be a natural endeavor for government laboratories.
    Keywords: Instrumentation and Photography
    Type: International Thermal Detectors Workshop (TDW 2003); 3-1 - 3-5; NASA/CP-2004-212748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-06
    Description: Thermal infrared imagery from several satellite instruments, such as the NOAA AVHRR and the NASA MODIS, is presently used to detect and map forest fires. But while these radiometers can identify fires they are designed and optimized for cloud detection, providing relatively low spatial resolution and quickly saturating even for small fires. Efforts to detect and monitor forest fires from space would benefit from the development of single-sensor satellites designed specifically for this purpose. With the advent of uncooled thermal detectors, and thus the absence of aggressive cooling, the possibility of developing small satellites for the purpose of fire detection and monitoring becomes practical and cost-effective. Thus is the case with the Economical Microbolometer Based Environmental Radiometer Satellite (EMBERSat) program. The objective of this program is to develop a single, prototype satellite that will provide multiband thermal imagery with a spatial resolution of 250m and a dynamic range of 300-1000K. The thermal imaging payload has flight heritage in the Infrared Spectral Imaging Radiometer that flew aboard mission STS-85 and the spacecraft is a variant of the SimpleSat bus launched from the shuttle Columbia as part of STS-105. The EMBERSat program is a technology demonstration initiative with the eventual goal of providing high-resolution thermal imagery to both the scientific community and the public.
    Keywords: Instrumentation and Photography
    Type: International Thermal Detectors Workshop (TDW 2003); 2-25 - 2-28; NASA/CP-2004-212748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-06
    Description: A general model is presented that assimilates the thermal and electrical properties of the bolometer - this block model demonstrates the Electro-Thermal Feedback (ETF) effect on the bolometers performance. This methodology is used to construct a SPICE model that by way of analogy combines the thermal and electrical phenomena into one simulation session. The resulting circuit diagram is presented and discussed.
    Keywords: Instrumentation and Photography
    Type: International Thermal Detectors Workshop (TDW 2003); 3-17 - 3-21; NASA/CP-2004-212748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-06
    Description: This paper presents all-sky maps of diffuse gamma radiation in various energy ranges between 30 MeV and 10 GeV, based on data collected by the EGRET instrument on the Compton Gamma Ray Observatory. Although the maps can be used for a variety of applications. the immediate goal is the generation of diffuse gamma-ray maps which can be used as a diffuse background/foreground for point source analysis of the data to be obtained from new high-energy gamma-ray missions like GLAST and AGILE. To generate the diffuse gamma maps from the raw EGRET maps, the point sources in the Third EGRET Catalog were subtracted out using the appropriate point spread function for each energy range. After that, smoothing was performed to minimize the effects of photon statistical noise. A smoothing length of 1 deg vas used for the Galactic plane maps. For the all-sky maps, a procedure was used which resulted in a smoothing length roughly equivalent to 4 deg. The result of this work is 16 maps of different energy intervals for absolute value of b 〈 or equal to 20 deg, and 32 all-sky maps, 16 in equatorial coordinates (J2000) and 16 in Galactic coordinates.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-06
    Description: The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-06
    Description: An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-06
    Description: The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.
    Keywords: Instrumentation and Photography
    Type: SPIE Conference; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-06
    Description: We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-06
    Description: In relativistic gravity, a spinning pulsar will precess as it orbits a compact companion star. We have measured the effect of such precession on the average shape and polarization of the radiation from PSR B1534+12. We have also detected, with limited precision, special-relativistic aberration of the revolving pulsar beam due to orbital motion. Our observations fix the system geometry, including the misalignment between the spin and orbital angular momenta, and yield a measurement of the precession timescale consistent with the predictions of General Relativity.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-06
    Description: We detected three extremely embedded X-ray sources in the R Corona Australis (R CrA) star forming core, IRS 7 region. Two weak X-ray sources are associated with the VLA centimeter radio sources 10E & W, whereas the third brightest source detected in the two XMM-Newton observations on March 2003 has no counterpart at any wavelengths. The large K-band upper-limit (19.4m) measured with the University of Hawaii 88-inch Telescope and strong absorption derived in X-rays (N(sub H) approx. 2.8 x 10(exp 23)/sq cm equivalent to A(sub v) approx. 180 m) indicate that the source is younger than typical Class I protostars, i.e. a Class 0 protostar or an intermittent phase between Class 0 and Class I protostars. The X-ray luminosity was less than one thirtieth (log L(sub x) less than or approx. equals 29.3 ergs/s) in the former Chandra observation in October 2000, which suggests that the X-ray activity, probably generated by magnetic activity, is triggered by an intermittent mass accretion episode such as FU Ori type outbursts. Because the source was detected at high significance in the XMM-Newton observations (approx. 2,000 cnts), X-ray properties of such young protostars can be well investigated for the first time. The light curves were constant in the 1st observation and increased linearly by a factor of two during 30 ksec in the 2nd observation. Both spectra showed iron K lines originated in hot thin-thermal plasma and fluorescence by cold gas. They can be reproduced by an absorbed thin-thermal plasma model with a Gaussian component at 6.4 keV (kT approx. 3-4 keV, L(sub x) approx. 7-20 x 10(exp 30) ergs/s). The rising timescale of the light curves in the 2nd observation was too slow for magnetically generated X-ray flares, whereas large equivalent width of the fluorescence iron K line in the 1st observation (approx. 810 eV) requires strong partial covering of the X-ray source. These results suggest that a confined hot (perhaps accretion) spot on the protostellar core was behind the star in the 1st observation and just appeared in the 2nd observation due to the core rotation with period of greater than or approx. 22.8 days, which is much slower than the break-up velocity previously assumed for young protostars. This means that the source had quiescent X-ray activity during the observations with an order of magnitude stronger level than Class I (older) protostars. We also consider whether the X-ray source associated with 10E could be shock heated plasma by a collision of a jet emanating from the tentative Class 0 object.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-06
    Description: Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric analysis. Gradients in ozone and tropospheric temperature appear to be well captured by the analyses. In contrast, gradients in upper stratospheric and mesospheric temperature as well as upper tropospheric humidity are less well captured. This is likely due in part to a lack of data to specify these fields accurately in the analyses. Advanced new sounders, like AIRS, may help to better specify these fields in the future.
    Keywords: Instrumentation and Photography
    Type: Quarterly Journal of the Royal Meteorological Society; Volume 128; 1-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-06
    Description: Ozone data from the solar occultation Polar Ozone and Aerosol Measurement (POAM) III instrument are included in the ozone assimilation system at NASA's Global Modeling and Assimilation Office, which uses Solar Backscatter UItraViolet/2 (SBUV/2) instrument data. Even though POAM data are available at only one latitude in the southern hemisphere on each day, their assimilation leads to more realistic ozone distribution throughout the Antarctic region, especially inside the polar vortex. Impacts of POAM data were evaluated by comparisons of assimilated ozone profiles with independent ozone sondes. Major improvements in ozone representation are seen in the Antarctic lower stratosphere during austral Winter and spring in 1998. Limitations of assimilation of sparse occultation data are illustrated by an example.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-06
    Description: The Arctic is currently considered an area in transformation. Glaciers have been retreating, permafrost has been diminishing, snow covered areas have been decreasing, and sea ice and ice sheets have been thinning. This paper provides an overview of the unique role that satellite sensors have contributed in the detection of changes in the Arctic and demonstrates that many of the changes are not just local but a pan-Arctic phenomenon. Changes from the upper atmosphere to the surface are discussed and it is apparent that the magnitude of the trends tends to vary from region to region and from season to season. Previous reports of a warming Arctic and a retreating perennial ice cover have also been updated, and results show that changes are ongoing. Feedback effects that can lead to amplification of the signals and the role of satellite data in enhancing global circulation models are also discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: Physics Today
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Technical information is provided about the antenna and VLBI equipment at the Westford site of Haystack Observatory, and about changes to the systems since the 2002 IVS Annual Report.
    Keywords: Astronomy
    Type: International VLBI Service for Geodesy and Astronomy; 98-101; NASA/TP-2004-212254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-06
    Description: Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (approximately 50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition t o continuum backgrounds. The MGGPOD package and documentation are publicly available for download. We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for lightweight, temperature-tolerant, radiation-hard sensors. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-05
    Description: The development of Doppler Global Velocimetry from a laboratory curiosity to a wind tunnel instrumentation system is discussed. This development includes system advancements from a single velocity component to simultaneous three components, and from a steady state to instantaneous measurement. Improvements to system control and stability are discussed along with solutions to real world problems encountered in the wind tunnel. This on-going development program follows the cyclic evolution of understanding the physics of the technology, development of solutions, laboratory and wind tunnel testing, and reevaluation of the physics based on the test results.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-05
    Description: This paper presents the calibration results and uncertainty analysis of a high-precision reference pressure measurement system currently used in wind tunnels at the NASA Langley Research Center (LaRC). Sensors, calibration standards, and measurement instruments are subject to errors due to aging, drift with time, environment effects, transportation, the mathematical model, the calibration experimental design, and other factors. Errors occur at every link in the chain of measurements and data reduction from the sensor to the final computed results. At each link of the chain, bias and precision uncertainties must be separately estimated for facility use, and are combined to produce overall calibration and prediction confidence intervals for the instrument, typically at a 95% confidence level. The uncertainty analysis and calibration experimental designs used herein, based on techniques developed at LaRC, employ replicated experimental designs for efficiency, separate estimation of bias and precision uncertainties, and detection of significant parameter drift with time. Final results, including calibration confidence intervals and prediction intervals given as functions of the applied inputs, not as a fixed percentage of the full-scale value are presented. System uncertainties are propagated beginning with the initial reference pressure standard, to the calibrated instrument as a working standard in the facility. Among the several parameters that can affect the overall results are operating temperature, atmospheric pressure, humidity, and facility vibration. Effects of factors such as initial zeroing and temperature are investigated. The effects of the identified parameters on system performance and accuracy are discussed.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-05
    Description: A videogrammetric technique developed at NASA Langley Research Center has been used at five NASA facilities at the Langley and Ames Research Centers for deformation measurements on a number of sting mounted and semispan models. These include high-speed research and transport models tested over a wide range of aerodynamic conditions including subsonic, transonic, and supersonic regimes. The technique, based on digital photogrammetry, has been used to measure model attitude, deformation, and sting bending. In addition, the technique has been used to study model injection rate effects and to calibrate and validate methods for predicting static aeroelastic deformations of wind tunnel models. An effort is currently underway to develop an intelligent videogrammetric measurement system that will be both useful and usable in large production wind tunnels while providing accurate data in a robust and timely manner. Designed to encode a higher degree of knowledge through computer vision, the system features advanced pattern recognition techniques to improve automated location and identification of targets placed on the wind tunnel model to be used for aerodynamic measurements such as attitude and deformation. This paper will describe the development and strategy of the new intelligent system that was used in a recent test at a large transonic wind tunnel.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-12
    Description: The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the low-energy gamma-ray sky (approx. 20-1000 keV) between 1991 April and 2000 May (9.1 yr). BATSE monitored the high-energy sky using the Earth occultation technique (EOT) for point sources whose emission extended for times on the order of the CGRO orbital period (approx. 92 min) or greater. Using the EOT to extract flux information, a catalog of sources using data from the BATSE Large Area Detectors has been prepared. The first part of the catalog consists of results from the all-sky monitoring of 58 sources, mostly Galactic, with intrinsic variability on timescales of hours to years. For these sources, we have included tables of flux and spectral data, and outburst times for transients. Light curves (or flux histories) have been placed on the World Wide Web. We then performed a deep sampling of these 58 objects, plus a selection of 121 more objects, combining data from the entire 9.1 yr BATSE data set. Source types considered were primarily accreting binaries, but a small number of representative active galaxies, X-ray-emitting stars, and supernova remnants were also included. The sample represents a compilation of sources monitored and/or discovered with BATSE and other high-energy instruments between 1991 and 2000, known sources taken from the HEAO 1 A-4 and Macomb & Gehrels catalogs. The deep sample results include definite detections of 83 objects and possible detections of 36 additional objects. The definite detections spanned three classes of sources: accreting black hole and neutron star binaries, active galaxies, and Supernova remnants. The average fluxes measured for the fourth class, the X-ray emitting stars, were below the confidence limit for definite detection.
    Keywords: Astronomy
    Type: The Astrophysical Journal Supplement Series; Volume 154; 585-622
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-12
    Description: Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X- ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that, independent of the source of the energetic ions - magnetospheric or solar wind - the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X-rays compared to the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X-rays is magnetospheric in origin, and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approximately 40 minute quasi-periodic radio outbursts.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-12
    Description: Here we present an analysis of the first photons detected with the Chandra X-ray Observatory and an identification of the brightest source in the field which we named Leon X-1 to honor the momentous contributions of the Chandra Telescope Scientist, Leon Van Speybroeck. The observation took place immediately following the opening of the last door protecting the X-ray telescope. We discuss the unusual operational conditions as the first extra-terrestrial X-ray photons reflected from the telescope onto the ACIS camera. One bright source was a p parent to the team at the control center and the small collection of photons that appeared on the monitor were sufficient to indicate that the telescope had survived the launch and was approximately in focus, even prior to any checks and subsequent adjustments.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-06
    Description: Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. These instruments are sometimes built in a phased approach, with some measurement capabilities being added in later phases. In other cases, there may not be a planned increase in measurement capability, but technology may mature to the point that it offers new measurement capabilities that were not available before. In still other cases, detailed spectral measurements may be too costly to perform on a large sample. Thus, lower resolution instruments with lower associated cost may be used to take the majority of measurements. Higher resolution instruments, with a higher associated cost may be used to take only a small fraction of the measurements in a given area. Many applied science questions that are relevant to the remote sensing community need to be addressed by analyzing enormous amounts of data that were generated from instruments with disparate measurement capability. This paper addresses this problem by demonstrating methods to produce high accuracy estimates of spectra with an associated measure of uncertainty from data that is perhaps nonlinearly correlated with the spectra. In particular, we demonstrate multi-layer perceptrons (MLPs), Support Vector Machines (SVMs) with Radial Basis Function (RBF) kernels, and SVMs with Mixture Density Mercer Kernels (MDMK). We call this type of an estimator a Virtual Sensor because it predicts, with a measure of uncertainty, unmeasured spectral phenomena.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-06
    Description: The purpose of this research is to develop, test and calibrate a prototype portable device that will measure human metabolic activity; namely time resolved measurements of gas temperature, pressure and flow-rate, and oxygen and carbon dioxide partial pressure during inhalation and exhalation.
    Keywords: Instrumentation and Photography
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 154-163; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-06
    Description: The XTE was launched December 30, 1995. Shortly after launch, it become apparent that the solar array was not performing as expected. On leaving shadow, the array exhibited many discontinuous drops in current output. The size of each of these drops was consistent with the loss of a part of a sell. The current decreases could not be caused by the loss of an entire circuit. This meant that the array may have had numerous cracked solar cells that opened as array got warmer. Studies performed on the array's qualification panel suggest that the cell cracks may have been cased by extensive tap testing performed on the array and that these cracks were undetectable at room temperature using usual inspection method.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the 15th Space Photovoltaic Research and Technology Conference; 151-160; NASA/CP-2004-212735
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-06
    Description: An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-02
    Description: The Fluids Integrated Rack (FIR), a facility-class payload, and the Light Microscopy Module (LMM), a subrack payload, are integrated research facilities that will fly in the U.S. Laboratory module, Destiny, aboard the International Space Station. Both facilities are being engineered, designed, and developed at the NASA Glenn Research Center by Northrop Grumman Information Technology. The FIR is a modular, multiuser scientific research facility that is one of two racks that make up the Fluids and Combustion Facility (the other being the Combustion Integrated Rack). The FIR has a large volume dedicated for experimental hardware; easily reconfigurable diagnostics, power, and data systems that allow for unique experiment configurations; and customizable software. The FIR will also provide imagers, light sources, power management and control, command and data handling for facility and experiment hardware, and data processing and storage. The first payload in the FIR will be the LMM. The LMM integrated with the FIR is a remotely controllable, automated, on-orbit microscope subrack facility, with key diagnostic capabilities for meeting science requirements--including video microscopy to observe microscopic phenonema and dynamic interactions, interferometry to make thin-film measurements with nanometer resolution, laser tweezers to manipulate micrometer-sized particles, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure the photonic properties of materials. Vibration disturbances were identified early in the LMM development phase as a high risk for contaminating the science microgravity environment. An integrated FIR-LMM test was conducted in Glenn's Acoustics Test Laboratory to assess mechanical sources of vibration and their impact to microscopic imaging. The primary purpose of the test was to characterize the LMM response at the sample location, the x-y stage within the microscope, to vibration emissions from the FIR and LMM support structures.
    Keywords: Instrumentation and Photography
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 42; No. 10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-06
    Description: Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-06
    Description: We present imaging results and source structure analysis of extragalactic radio sources observed using the Very Long Baseline Array (VLBA) at 24 GHz and 43 GHz as part of an ongoing NASA, USNO, NRAO and Bordeaux Observatory collaboration to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies. The K/Q-band image database now includes images of 108 sources at 43 GHz (Q-band) and images of 230 sources at 24 GHz (K-band). Preliminary analysis of the observations taken to date shows that the sources are generally more compact as one goes from the ICRF frequency of 8.4 GHz to 24 GHz. This result is consistent with the standard theory of compact extragalactic radio sources and suggests that reference frames defined at these higher radio frequencies will be less susceptible to the effects of intrinsic source structure than those defined at lower frequencies.
    Keywords: Astronomy
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 75-79; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-10-02
    Description: At the 1994 Conference on Chondrules and the Protoplanetary Disk, shock waves were discussed as mechanisms that may have been responsible for forming chondrules, millimeter-sized igneous spheres which are significant components of chondritic meteorites, and references therein]. At the time, shock waves were appealing because they were thought to be brief, repetitive events that were quantitatively shown to be able to rapidly heat silicates to the appropriate temperatures for chondrule formation. Since that meeting, more detailed models for the thermal processing of material in shock waves have been developed. These models have tracked the thermal evolution of the silicates for longer periods of time and found that their cooling rates are also consistent with what has been inferred for chondrules. In addition to the thermal histories of these particles, shock waves may be able to explain a number of other features observed in primitive meteorites. Here, we review the recent work that has been done in studying the interaction of solids with shock waves in the solar nebula.
    Keywords: Astronomy
    Type: Chondrites and the Protoplanetary Disk, Part 1; LPI-Contrib-1218-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-10-02
    Description: In order to understand the timing of events in the early solar system, we rely on the radio-nuclide-based chronometers applied to materials in primitive meteorites. Because the time scale of early-solar system evolution was on the order of a few million years (Myr), we focus on so-called "short-lived radionuclides" with mean lives of less than 10 Myr (Table 1), as well as on the long-lived U-Pb system where high precision 207Pb-206Pb ages are applied. Note that the validity of some systems as chronometers (e.g., Be-B, Fe-Ni) has yet to be established. We summarize literature data for chondrules and CAIs and discuss how these chronometers constrain formation time scales in the early solar system.
    Keywords: Astronomy
    Type: Chondrites and the Protoplanetary Disk, Part 2; LPI-Contrib-1218-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-02
    Description: A photograph and a block diagram of the high-temperature probe station are shown. The system consists of the ceramic heater mounted on a NASA shuttle tile insulator, a direct current power supply, a personal-computer-based data acquisition and temperature controller, microwave probes, a microscope, and a network analyzer. The ability to perform microwave tests at high temperatures is becoming necessary. There is now a need for sensors and communication circuits that can operate at 500 C and above for aircraft engine development and monitoring during flight. To address this need, researchers have fabricated devices using wide bandgap semiconductors such as SiC with targeted operating temperatures of 500 to 600 C. However, the microwave properties of these devices often change drastically with temperature, so any designs that are intended to be used in such an environment must be characterized at high temperatures. For some reliability, lifetime, and direct-current testing, the device under test can be packaged and characterized in an oven. However, for RF and microwave measurements, it is usually not possible to establish a calibrated reference plane at the device terminals within a package. In addition, the characteristics of the package would vary over a 500 C temperature range, and this would have to be accounted for when the data were analyzed. A high temperature probe station allows circuits and devices to be characterized through on wafer measurements across a broad temperature range with known reference plane. The conventional, commercially available thermal wafer-probe stations that are used to evaluate microwave devices across a controlled temperature range have a typical upper limit of 200 C. Standalone thermal heating chucks are available with an extended upper temperature range of 300 to 400 C. To effectively characterize devices at temperatures up to and surpassing 500 C, Glenn researchers developed a custom probe station. In the past, custom probe stations have been developed to test devices under other extreme environments, such as cryogenic temperatures as low as 37 K. Similarly, this custom probe station was specifically modified for high-temperature use. It allows devices to be measured quickly and flexibly, without the use of wire bonds and test fixtures. The probe station is shown making scattering parameter measurements from 1 to 50 GHz with a Hewlett-Packard 8510C Network Analyzer. There is a half-wafer of silicon directly on top of the heater to provide a uniform heated platform for our sample. A quarter wafer of silicon carbide forms the substrate for our test circuit of several transmission lines.
    Keywords: Instrumentation and Photography
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-02
    Description: Our previous studies have shown that the Jet and Vortex Actuator generates free-jet, wall-jet, and near- wall vortex flow fields. That is, the actuator can be operated in different modes by simply varying the driving frequency and/or amplitude. For this study, variations are made in the actuator plate and wide-slot widths and sine/asymmetrical actuator plate input forcing (drivers) to further study the actuator induced flow fields. Laser sheet flow visualization, particle- image velocimetry, and laser velocimetry are used to measure and characterize the actuator induced flow fields. Laser velocimetry measurements indicate that the vortex strength increases with the driver repetition rate for a fixed actuator geometry (wide slot and plate width). For a given driver repetition rate, the vortex strength increases as the plate width decreases provided the wide-slot to plate-width ratio is fixed. Using an asymmetric plate driver, a stronger vortex is generated for the same actuator geometry and a given driver repetition rate. The nondimensional scaling provides the approximate ranges for operating the actuator in the free jet, wall jet, or vortex flow regimes. Finally, phase-locked velocity measurements from particle image velocimetry indicate that the vortex structure is stationary, confirming previous computations. Both the computations and the particle image velocimetry measurements (expectantly) show unsteadiness near the wide-slot opening, which is indicative of mass ejection from the actuator.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-08
    Description: A magnitude 6.5 earthquake devastated the town of Bam in southeast Iran on 26 December 2003. Surface displacements and decorrelation effects, mapped using Envisat radar data, reveal that over 2 m of slip occurred at depth on a fault that had not previously been identified. It is common for earthquakes to occur on blind faults which, despite their name, usually produce long-term surface effects by which their existence may be recognised. However, in this case there is a complete absence of morphological features associated with the seismogenic fault that destroyed Bam.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 31; L11611
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...