ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (9,332)
  • Lunar and Planetary Science and Exploration  (1,839)
  • Industrial Chemistry  (1,305)
  • Cell & Developmental Biology
  • 2005-2009  (1,949)
  • 1950-1954  (9,876)
Collection
Keywords
Language
Years
Year
  • 101
    Publication Date: 2019-07-12
    Description: Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ESCG-4470-09-TEAN-DOC-0144 , JSC-CN-19753
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-07-12
    Description: Ozone is a tracer of photochemistry in the atmosphere of Mars and an observable used to test predictions of photochemical models. We present a comparison of retrieved ozone abundances on Mars using ground-based infrared heterodyne measurements by NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) and space-based Mars Express Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet measurements. Ozone retrievals from simultaneous measurements in February 2008 were very consistent (0.8 microns-atm), as were measurements made close in time (ranging from less than 1 to greater than 8 microns-atm) during this period and during opportunities in October 2006 and February 2007. The consistency of retrievals from the two different observational techniques supports combining the measurements for testing photochemistry-coupled general circulation models and for investigating variability over the long-term between spacecraft missions. Quantitative comparison with ground-based measurements by NASA'GSFC's Infrared Heterodyne Spectrometer (IRHS) in 1993 reveals 2-4 times more ozone at low latitudes than in 2008 at the same season, and such variability was not evident over the shorter period of the Mars Express mission. This variability may be due to cloud activity.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2019-07-12
    Description: Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2009-215659 , E-17000
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-12
    Description: An apparatus for simulating the environment at the surface of Mars has been developed. Within the apparatus, the pressure, gas composition, and temperature of the atmosphere; the incident solar visible and ultraviolet (UV) light; and the attenuation of the light by dust in the atmosphere can be simulated accurately for any latitude, season, or obliquity cycle over the entire geological history of Mars. The apparatus also incorporates instrumentation for monitoring chemical reactions in the simulated atmosphere. The apparatus can be used for experiments in astrobiology, geochemistry, aerobiology, and aerochemistry related to envisioned robotic and human exploration of Mars. Moreover, the apparatus can be easily adapted to enable similar experimentation under environmental conditions of (1) the surfaces of moons, asteroids, and comets, and (2) the upper atmospheres of planets other than Mars: in particular, it can be made to simulate conditions anywhere in the terrestrial atmosphere at altitudes up to about 100 km.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-13190 , NASA Tech Briefs, August 2009; 27-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-07-13
    Description: Recent advances in social media and internet communications have revolutionized the ways people interact and disseminate information. Astronauts are already taking advantage of these tools by blogging and tweeting from space, and almost all NASA missions now have presences on the major social networking sites. One priotity for future human explorers on Mars will be communicating their experiences to the people back on Earth. During July 2009, a 6-member crew of volunteers carried out a simulated Mars mission at the Flashline Mars Arctic Research Station (FMARS). The Mars Society built the mock Mars habitat in 2000-01 to help develop key knowledge and inspire the public for human Mars exploration. It is located on Devon island about 1600 km from the North Pole within the Arctic Circle. The structure is situated on the rim of Haughton Crater in an environment geologically and biologically analogous to Mars. Living in a habitat, conducting EVAs wearing spacesuits, and observing communication delays with "Earth,"the crew endured restrictions similar to those that will be faced by future human Mars explorers. Throughout the expedition, crewmembers posted daily blog entries, reports, photos, videos, and updates to their website and social media outlets Twitter, Facebook, YouTube, and Picasa Web Albums. During the sixteen EVAs of thier field science research campaign, FMARS crewmembers collected GPS track information and took geotagged photos using GPS-enabled cameras. They combined their traverse GPS tracks with photo location information into KML/KMZ files that website visitors can view in Google Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ED11A-0565 , JSC-CN-19505 , 2009 AGU Fall Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The surface of the Moon is covered in regolith, which is NOT soil! The regolith is shattered igneous rock plus glass. The particles are unsorted, unweathered and not abraided. Modeling of the regolith at the level of individual particles will be very problematic. Modeling of the regolith, if successful for one area, will be successful for most other areas if variation in particle size is addressed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0034 , Lunar Site Preparation and Outpost Setup Workshop; Oct 20, 2009 - Oct 21, 2009; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-07-13
    Description: This slide presentation reviews information on space radiation environments important to magnetospheric missions including trapped radiation, solar particle events, cosmic rays, and solar winds. It also includes information about ion penetration of the magnetosphere, galactic cosmic rays, solar particle environments, CRRES internal discharge monitor, surface charging and radiation effects.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0009 , Charged Particle Environments in Earth''s Magnetosphere and their Effects on Space System; Oct 07, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-07-13
    Description: A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2009-215800 , 2009-01-2473 , E-16958-1 , 39th International Conference on Environmental Systems (ICES); Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-07-13
    Description: JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3 to 4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 to 35 . Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2009-215647 , 2009-01-2420 , E-16959 , 39th International Conference on Environmental Systems (ICES); Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-07-13
    Description: We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); 203; 2; 677-680
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-07-13
    Description: This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0735 , AIAA Space 2009; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-07-13
    Description: The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0751 , M10-0061 , Lunar Exploration Analysis Group Meeting; Nov 16, 2009 - Nov 19, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-07-13
    Description: NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0738 , M09-0761 , AIAA SPACE 2009 Conference and Exposition; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-07-13
    Description: In this work we analyze chronological data for lunar meteorites with emphasis on the spatial and temporal distribution of lunar mare basalts. The data are mostly from the Lunar Meteorite Compendium (http://www-curator.jsc.nasa.gov/antmet/lmc/contents.cfm cited thereafter as Compendium) compiled by Kevin Righter and from the associated literature.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18942 , 50th Vernadsky/Brown Microsymposium on Comparative Planetology; Oct 12, 2009 - Oct 14, 2009; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-07-13
    Description: Astronauts on long-duration lunar missions will need the capability to "high-grade" their samples to select the highest value samples for transport to Earth and to leave others on the Moon. We are supporting studies to defile the "necessary and sufficient" measurements and techniques for highgrading samples at a lunar outpost. A glovebox, dedicated to testing instruments and techniques for high-grading samples, is in operation at the JSC Lunar Experiment Laboratory.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18937 , Annual Meeting of the Lunar Exploration Analysis Group; Nov 16, 2009 - Nov 19, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2019-07-13
    Description: Visions of lunar outposts often depict a collection of fixed elements such as pressurized habitats, in and around which human inhabitants spend the large majority of their surface stay time. In such an outpost, an efficient deployment of environmental control and life support equipment can be achieved by centralizing certain functions within one or a minimum number of habitable elements and relying on the exchange of gases and liquids between elements via atmosphere ventilation and plumbed interfaces. However, a rigidly fixed outpost can constrain the degree to which the total lunar landscape can be explored. The capability to enable widespread access across the landscape makes a lunar architecture with a high degree of surface mobility attractive. Such mobility presents unique challenges to the efficient deployment of environmental control and life support functions in multiple elements that may for long periods of time be operated independently. This paper describes some of those anticipated challenges.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2009-01-2481 , M09-0501 , 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-07-13
    Description: As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a "minimum functionality" approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicle's safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to began Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. NASA intends to continue to seek industry involvement in project formulation activities. This paper will update the international coimmunity on the status of the Altair Project as it addresses the challenges of project formulation, including optinuzing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IAC-09.D2.3.2 , JSC-CN-18913 , JSC-CN-19032 , International Astronautical Congress 2009; Oct 12, 2009 - Oct 16, 2009; Daejeon; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-07-13
    Description: Measurement of-rays from the surface of objects can tell us about the chemical composition. Absorption of radiation causes characteristic fluorescence from material being irradiated. By measuring the spectrum ofthe radiation and identifying lines in the spectrum, the emitting element (s) can be identified.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0654 , SPIE Optics + Photonics 2009 Conference; Aug 02, 2009 - Aug 06, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-13
    Description: Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind." were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the the spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first space walk in June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill-set and subsequently the training methods, changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the Skylab, Space Shuttle; and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IAC-09.B6.3.6 , JSC-CN-18915 , 60th International Astronautical Congress; Nov 12, 2009 - Nov 16, 2009; Daejeon; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-13
    Description: The objective of this paper is to describe and summarize the results of the development efforts for the Lunar Surface Manipulation System (LSMS) with respect to increasing the performance, operational versatility, and automation. Three primary areas of development are covered, including; the expansion of the operational envelope and versatility of the current LSMS test-bed, the design of a second generation LSMS, and the development of automation and remote control capability. The first generation LSMS, which has been designed, built, and tested both in lab and field settings, is shown to have increased range of motion and operational versatility. Features such as fork lift mode, side grappling of payloads, digging and positioning of lunar regolith, and a variety of special end effectors are described. LSMS operational viability depends on bei nagble to reposition its base from an initial position on the lander to a mobility chassis or fixed locations around the lunar outpost. Preliminary concepts are presented for the second generation LSMS design, which will perform this self-offload capability. Incorporating design improvements, the second generation will have longer reach and three times the payload capability, yet it will have approximately equivalent mass to the first generation. Lastly, this paper covers improvements being made to the control system of the LSMS test-bed, which is currently operated using joint velocity control with visual cues. These improvements include joint angle sensors, inverse kinematics, and automated controls.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LF99-8273 , AIAA Space 2009 Conference and Exposition; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The Ap16 Clam shell Sampling Devices (CSSDs) were designed to sample the uppermost surface of lunar soil. The two devices used beta cloth (69003) and velvet (69004) to collect soil from the top 100 and 500 micrometers of the soil, respectively. Due to the difficulty of the sampling method, little material was collected and as a result little research has been done on these samples. Initial studies attempted to look at the material which had fallen off of the fabrics and was subsequently collected from inside the sample containers. However, this material was highly fractionated and did not provide an adequate picture of the uppermost surface. Recently, samples were obtained directly from the beta cloth using carbon tape. While still fractionated, these samples provide a unique glimpse into the undisturbed soil exposed at the lunar surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0646 , Lunar Science Forum; Jul 21, 2009 - Jul 23, 2009; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-13
    Description: The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL and USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single, common, intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. LMMP will provide such products as DEMs, hazard assessment maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0645 , Lunar Science Forum; Jul 21, 2009 - Jul 23, 2009; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-07-13
    Description: Two troctolites from the lunar magnesium suite (Mg-suite), 76335 and 76535, have Sm-147-ND-143 and Rb-87- Sr-87 ages that do not indicate the same age for their respective sample. In the case of 76335, the Sm-147-ND-143 age is 4278 +/- 60 Ma, but the Rb-87-Sr-87 data does not reveal an isochron]. For 76535, the Sm-147-ND-143 age is significantly younger (4260 +/- 60 Ma) than the Rb-87- Sr-87 age (4570 +/- 70 Ma, Lambda = 1.402x10(exp -11)). This study was designed to discover why the Sm-147-ND-143 and Rb-87-Sr-87 ages did not match for each individual sample.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0460 , M09-0553 , 72nd Annual Meeting of the Meteoritical Society; Jul 13, 2009 - Jul 18, 2009; Nancy; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-07-13
    Description: A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 09ICES-0029 , M09-0134 , M09-0373 , (ISSN 0148-7191)|39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-13
    Description: Numerous technical challenges exist to successfully extend lunar surface exploration beyond the tantalizing first steps of Apollo. Among these is the challenge of lunar dust intrusion into the cabin environment. Addressing this challenge includes the design of barriers to intrusion as well as techniques for removing the dust from the cabin atmosphere. Opportunities exist for adapting approaches employed in dusty industrial operations and pristine manufacturing environments to cabin environmental quality maintenance applications. A survey of process technologies employed by the semiconductor, pharmaceutical, food processing, and mining industries offers insight into basic approaches that may be suitable for adaptation to lunar surface exploration applications.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2009-01-2356 , M09-0488 , 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-07-13
    Description: The Cassini spacecraft completed its nominal mission at Saturn in 2008 and began its extended mission. Cassini carries the Composite Infrared Spectrometer (CIRS); a Fourier transform spectrometer that measures the composition, thermal structure and dynamics of the atmospheres of Saturn and Titan, and also the temperatures of other moons and the rings.
    Keywords: Lunar and Planetary Science and Exploration
    Type: OSA Fourier Transform Spectroscopy (FTS) Technical Conference; Apr 26, 2009 - May 01, 2009; Vancouver, BC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-07-13
    Description: Most nations currently involved in human spaceflight, or with such ambitions, believe that space exploration will capture the imagination of our youth resulting in future engineers and scientists, advance technologies which will improve life on earth, increase the knowledge of our solar system, and strengthen bonds and relationships across the globe. The Global Exploration Strategy, published in 2007 by 14 space agencies, eloquently makes this case and presents a vision for space exploration. It argues that in order for space exploration to be sustainable, nations must work together to address the challenges and share the burden of costs. This paper will examine Mars mission scenarios developed by NASA, ESA and other agencies and show resulting conclusions regarding key challenges, needed technologies and associated mission risks. It will discuss the importance of using the International Space Station as a platform for exploration risk reduction and how the global exploration community will develop lunar exploration elements and architectures that enable the long term goal of human missions to Mars. The International Space Station (ISS) is a critical first step both from a technology and capability demonstration point of view, but also from a partnership point of view. There is much work that can be done in low earth orbit for exploration risk reduction. As the current "outpost at the edge of the frontier", the ISS is a place where we can demonstrate certain technologies and capabilities that will substantially reduce the risk of deploying an outpost on the lunar surface and Mars mission scenarios. The ISS partnership is strong and has fulfilled mission needs. Likewise, the partnerships we build on the moon will provide a strong foundation for establishing partnerships for the human Mars missions. On the moon, we build a permanently manned outpost and deploy technologies and capabilities to allow humans to stay for long periods of time. The moon is interesting from a scientific point of view, but it is extremely important for development and demonstration the technologies and capabilities needed for human missions to Mars. This paper will show the logic and strategy for addressing technological, operational and programmatic challenges by using low earth orbit and lunar missions to enable the long term goal of exploration of our solar system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IAC-09-B3.1.1.7 , JSC-CN-18739 , JSC-CN-18928 , 60th International Astronautical Congress; Oct 12, 2009 - Oct 16, 2009; Daejeon; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-13
    Description: The RESOLVE (Regolith and Environment Science, Oxygen and Lunar Volatiles Extraction) Project, aims to extract and quantify useful resources from lunar soil. The reactor developed for RESOLVE is a dual purpose system, designed to evolve both water, at 150 C and up to 80 psig, and oxygen, using hydrogen reduction at 900 C. A variety of laboratory tests were performed to verify its operation and to explore the properties of the analog site soil. The results were also applied to modeling efforts which are being used to estimate the apparent thermal properties of the soil. The experimental and numerical results, along with the analog site tests, will be used to evolve and optimize future reactor designs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2009-215621 , AIAA-2009-1203 , E-16937 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-13
    Description: We have previously developed a chemical conversion model of the carbothermal processing of lunar regolith using methane to predict the rate of production of carbon monoxide. In this carbothermal process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Hydrogen is carried away by the exiting stream of gases and carbon is deposited on the melt surface. The deposited carbon mixes with the melt and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. In our model, we assume that the flux of carbon deposited is equal to the product of the surface reaction rate constant gamma and the concentration of methane adjacent to the melt surface. Similarly, the rate of consumption of carbon per unit volume in the melt is equal to the product of the melt reaction rate constant k and the concentrations of carbon and metal oxide in the melt. In this paper, we describe our effort to determine gamma and k by comparison of the predictions from our model with test data obtained by ORBITEC (Orbital Technologies Corporation). The concentration of methane adjacent to the melt surface is a necessary input to the model. It is inferred from the test data by a mass balance of methane, adopting the usual assumptions of the continuously-stirred-tank-reactor model, whereby the average concentration of a given gaseous species equals its exit concentration. The reaction rates gamma and k have been determined by a non-linear least-squares fit to the test data for the production of carbon monoxide and the fraction of the incoming methane that is converted. The comparison of test data with our model predictions using the determined chemical kinetic rate constants provides a consistent interpretation of the process over the full range of temperatures, pressures, and methane flow rates used in the tests, thereby increasing our confidence to use the model for scale-up purposes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2009-215617 , AIAA-2009-1390 , E-16933 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-13
    Description: Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks which are believed to have precipitated approximately 3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these Fe3O4 are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of Fe3O4 and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. We focus this discussion on the composition of ALH84001 magnetites and then compare these observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18666 , European Planetary Science Congress; Sep 13, 2009 - Sep 18, 2009; Potsdam; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-13
    Description: A recent study (Desai, 2008) has shown that the actual landing sites of Mars Pathfinder, the Mars Exploration Rovers (Spirit and Opportunity) and the Phoenix Mars Lander have been further downrange than predicted by models prior to landing Desai's reconstruction of their entries into the Martian atmosphere showed that the models consistently predicted higher densities than those found upon entry, descent and landing. Desai's results have raised a question as to whether there is a systemic problem within Mars atmospheric models. Proposal is to compare Mars atmospheric density estimates from Mars atmospheric models to measurements made by Mars Global Surveyor (MGS). Comparison study requires the completion of several tasks that would result in a greater understanding of reasons behind the discrepancy found during recent landings on Mars and possible solutions to this problem.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0482 , Joint Aerosciences/Flight Mechanics/GN&C TDT Meeting; May 12, 2009 - May 14, 2009; Melbourne, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-13
    Description: The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect evolved volatiles and organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS) that can detect masses in the 2 to 140 dalton range [1]. Five Martian soils were individually heated to 1000 C in the DSC ovens where evolved gases from mineral decompostion products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18424 , The New Martian Chemistry Workshop; Jul 26, 2009 - Jul 28, 2009; Medford, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-07-13
    Description: Of the 6 instruments and one technology demonstration aboard the LRO, only CRaTER does not measure some kind of interaction of particles with the lunar regolith. LEND detects neutron fluence that contains information about the number density of protons in the upper regolith. To infer the presence of protons, the PI must assume a model that characterizes the surface as a collection of atoms. Thus, LEND does not sense the regolith as a structure. LROC, LOLA, and LAMP sense reflected photons whose wavelength is much shorter than the median particle size in the regolith. The photons interact with electrons, either in atomic shells or in chemical bonds. These interactions occur within a nanometer or so of the surface of a particle. Thus, the particles are macroscopic objects and models of the reflection process invoke ray-tracing optics. DIVINER senses photons that have been emitted by surface particles through thermal phonon processes. The wavelengths detected by the instrument are of the same order as the median particle size, and the photons contain information on particle dimensions as well as the molecular bonds in the constituent compounds. The Mini-RF synthetic aperture radar generates and detects photons of a few centimeters wavelength that interact with the regolith as a dielectric, the dielectric properties of the particulate component being described through effective medium theory. However, the interaction with rocks (macroscopic objects of interest to geologists) can be characterized using Fresnel or Mie models of electromagnetic properties.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18221 , Lunar Reconn. Orbiter Science Targeting Meeting; Jun 09, 2009 - Jun 11, 2009; Tempe, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-13
    Description: NASA's Marshall Space Flight Center (MSFC), in conjunction with the United States Geological Survey (USGS), is implementing a new data acquisition strategy to support the development and evaluation of lunar regolith simulants. The objective is to characterize the variance in particle composition, size, shape, and bulk density of the lunar regolith. Apollo drive and drill cores are the preferred samples as they allow for investigation of variation with depth, and many proposed operations on the moon will involve excavation of lunar regolith to depths of at least tens of centimeters. Multiple Apollo cores will be sampled multiple times along their vertical axes and analyzed. This will permit statistical statements about variation both within a core, between closely spaced cores, and between distant areas.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-2194 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2019-07-13
    Description: Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN1028 , 5th International Symposium on Visual Computing; Nov 30, 2009 - Dec 02, 2009; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-13
    Description: Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19397 , Lunar and Planetary Science Conference 2010; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-13
    Description: This slide presentation reviews some of what is known about the moon, and draws parallels between the moon and any other terrestrial planet. The Moon is a cornerstone for all rocky planets The Moon is a terrestrial body, formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids The Moon is a differentiated body, with a layered internal structure (crust, mantle, and core) The Moon is a cratered body, preserving a record of bombardment history in the inner solar system The Moon is an active body, experiencing moonquakes, releasing primordial heat, conducting electricity, sustaining bombardment, and trapping volatile molecules Lunar robotic missions provide early science return to obtain important science and engineering objectives, rebuild a lunar science community, and keep our eyes on the Moon. These lunar missions, both past and future are reviewed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0820 , M09-0821 , Herzberg Institute of Astrophysics; Sep 15, 2009; Victoria, BC; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-13
    Description: Activation of the surfaces of lunar regolith particles can occur through interactions with solar electromagnetic radiation, solar and galactic particle radiation and micrometeoroid bombardment. An attempt has been made to quantify the relative importance of each of those effects. The effects of these activated surfaces may be to enhance the adhesion and toxicity of the particles. Also key to the importance of activation is the lifetimes of activated states in various environments which is controlled by their passivation rate as well as their activation rate. Although techniques exist to characterize the extent of activation of particles in biological system, it is important to be able to quantify the activation state on the lunar surface, in ground-test vacuum systems, and in habitat atmospheres as well.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2009-215648 , 2009-01-2337 , E-16960 , 39th International Conference on Environmental Systems (ICES); Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2019-07-13
    Description: The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to preposition a habitat, supplies, and exploration equipment. The next opportunity, two years later, would send to Mars orbit 1) a lander with a Mars Ascent Vehicle (MAV) and 2) a crewed Mars Transit Habitat with an Orion CEV for Earth return. The following opportunity, two years after the first crew, would go back to cargo-only launches. This alternation of cargo and crew opportunities results in a sustainable launch rate of six Ares V launches every two years. It is notable that four of the six launches per Mars opportunity are identical, build-to-print, Tran-Mars Injection stages. This type of production rate could lend itself well to a COTStype service provider, and would make it feasible to have a live spare in place in the event of a single launch failure.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Space 2009 Conference; Sep 16, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This slide presentation reviews a possible mission architecture for a more austere Mars mission, than the one developed by NASA outlined in the Design Reference Architecture 5 (DRA 5). "Austere" architecture is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. This approach will not meet all the DRA 5 mission requirements. Included in the presentation are the elements of an Austere mission, diagrams of the trans-Mars injection (TMI), cruise, and Mars Orbital Insertion for various phases of the mission, the entry descent landing (EDL) concept. The key features of the Transit Habitat (TransHab), the Earth Departure Stage (EDS), the landers, are reviewed. A chart shows the Mass in tons, of the conceptual types of Mars Landers. The EDL concept, EDL Phase diagrams for the Mars Lander are reviewed. New technologies that would be required are also reviewed. Flight test programs for the various parts of the architecture and a flight schedule are reviewed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Space 2009 Conference; Sep 16, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-13
    Description: The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA's program requirements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-17037 , 1st AIAA Astmospheric and Space Environments; Jun 22, 2009 - Jun 25, 2009; San Antonio, Tx; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-13
    Description: This slide slide presentation reviews the lunar regolith simulants and presents a comparison of the different types and their uses. Figures of Merit (FoM) algorithms have been developed to quantitatively compare the distributions in different granular materials. These algorithms have been used to compare the different lunar regolith simulants to the Apollo 16 reference material for composition and particle size distribution. The results of this comparison of the various forms of lunar regolith simulants are examined.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-2222 , Lunar Regolith/Simulant Workshop; Mar 17, 2009 - Mar 20, 2009; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18457 , Nuclear Emerging Technologies for Space (NETS - 2009); Jun 15, 2009 - Jun 18, 2009; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2019-07-13
    Description: Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to ~122,000 ft (~37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were met with the RS-18 data and additional testing data from subsequent LO2/methane test programs in 2009 which included the first simulated-altitude pyrotechnic ignition demonstration of LO2/methane.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18473 , 45th AIAA/ASME/SAE/ASEE Joint Propulsion; Aug 02, 2009 - Aug 05, 2009; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-13
    Description: This slide presentation reviews several geologic concepts applicable to lunar geology with particular interest in creating lunar regolith simulant. Fundamental ways in which the Moon differs from the Earth. Concepts that are described in detail are: minerals, glass, and rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-2218 , Lunar Regolith/Simulant Workshop; Mar 17, 2009 - Mar 20, 2009; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-13
    Description: This poster reviews the planning and design for an integrated architecture for characterization, mitigation, scientific evaluation and resource utilization of near earth objects. This includes tracks to observe and characterize the nature of the threat posed by a NEO, and deflect if a significant threat is posed. The observation stack can also be used for a more complete scientific analysis of the NEO.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0456 , 1st IAA Planetary Defense Conference; Apr 27, 2009 - Apr 30, 2009; Grenada; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-07-13
    Description: Some meteorites and IDPs contain micron-size carbonaceous globules that are associated with significant H and/or N isotopic anomalies. This has been interpreted as indicating that such globules may contain at least partial preserved organic species formed in the outer reaches of the proto-solar disk or the presolar cold molecular cloud. Owing to their small sizes, relatively little is known about their chemical compositions. Here we present in situ measurements of aromatic molecular species in organic globules from the Bells (CM2) chondrite by microprobe two-step laser mass spectrometry. This meteorite was chosen for study because we have previously found this meteorite to contain high abundances of globules that often occur in clusters. The Bells (CM2) globules are also noteworthy for having particularly high enrichments in H-2. and N-15. In this study, we identified individual globules and clusters of globules using native UV fluorescence.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18521 , 72nd Annual Meeting of the Meteoritical Society; Jul 13, 2009 - Jul 18, 2009; Nancy; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reviews NASA Marshall's effort to sustain space transportation solutions through product lines that include: 1) Propulsion and Transportation Systems; 2) Life Support Systems; and 3) and Earth and Space Science Spacecraft Systems, and Operations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0529 , PLM Summit North America; Jun 23, 2009 - Jun 24, 2009; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-07-13
    Description: The Lunar and Planetary Science group at Marshall provides core capabilities to support the Agency's lunar exploration goals. ILN Anchor Nodes are currently in development by MSFC and APL under the Lunar Quest Program at MSFC. The Science objectives of the network are to understand the interior structure and composition of the moon. Pre-phase A engineering assessments are complete, showing a design that can achieve the science requirements, either on their own (if 4 launched) or in concert with international partners. Risk reduction activities are ongoing. The Lunar Quest Program is a Science-based program with the following goals: a) Fly small/medium science missions to accomplish key science goals; b) Build a strong lunar science community; c) Provide opportunities to demonstrate new technologies; and d) Where possible, help ESMD and SOMG goals and enhance presence of science in the implementation of the VSE. The Lunar Quest Program will be guided by recommendations from community reports.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0472 , Lunar Science Workshop; Jun 16, 2009 - Jun 18, 2009; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-07-13
    Description: Flight experiments flown on the Space Shuttle, the International Space Station, Mir, Skylab, and free flyers such as the Long Duration Exposure Facility, the European Retrievable Carrier, and the EFFU, provide multiple opportunities for the investigation of molecular contamination effects. Retrieved hardware from the Solar Maximum Mission satellite, Mir, and the Hubble Space Telescope has also provided the means gaining insight into contamination processes. Images from the above mentioned hardware show contamination effects due to materials processing, hardware storage, pre-flight cleaning, as well as on-orbit events such as outgassing, mechanical failure of hardware in close proximity, impacts from man-made debris, and changes due to natural environment factors.. Contamination effects include significant changes to thermal and electrical properties of thermal control surfaces, optics, and power systems. Data from several flights has been used to develop a rudimentary estimate of asymptotic values for absorptance changes due to long-term solar exposure (4000-6000 Equivalent Sun Hours) of silicone-based molecular contamination deposits of varying thickness. Recommendations and suggestions for processing changes and constraints based on the on-orbit observed results will be presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0436 , 2009 National Space and Missile Materials Symposium; Jun 22, 2009 - Jun 25, 2009; Henderson, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-07-13
    Description: Beginning in 2004 personnel at MSFC began serious efforts to develop a new generation of lunar simulants. The first two products were a replication of the previous JSC-1 simulant under a contract to Orbitec and a major workshop in 2005 on future simulant development. It was recognized in early 2006 there were serious limitations with the standard approach of simply taking a single terrestrial rock and grinding it. To a geologist, even a cursory examination of the Lunar Sourcebook shows that matching lunar heterogeneity, crystal size, relative mineral abundances, lack of H2O, plagioclase chemistry and glass abundance simply can not be done with any simple combination of terrestrial rocks. Thus the project refocused its efforts and approached simulant development in a new and more comprehensive manner, examining new approaches in simulant development and ways to more accurately compare simulants to actual lunar materials. This led to a multi-year effort with five major tasks running in parallel. The five tasks are Requirements, Lunar Analysis, Process Development, Feed Stocks, and Standards.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0511 , Planetary and Terrestrial Mining Sciences Symposium; Jun 07, 2007 - Jun 10, 2007; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-08-14
    Description: The presentation introduces the concept of a thermal wadi, an engineered source of thermal energy that can be created using native material on the moon or elsewhere to store solar energy for use by various lunar surface assets to survive the extremely cold environment of the lunar night. A principal benefit of this approach to energy storage is the low mass requirement for transportation from Earth derived from the use of the lunar soil, or regolith, as the energy storage medium. The presentation includes a summary of the results of a feasibility study involving the numerical modeling of the performance of a thermal wadi including a manufactured thermal mass, a solar energy reflector, a nighttime thermal energy reflector and a lunar surface rover. The feasibility study shows that sufficient thermal energy can be stored using unconcentrated solar flux to keep a lunar surface rover sufficiently warm throughout a 354 hour lunar night at the lunar equator, and that similar approaches can be used to sustain surface assets during shorter dark periods that occur at the lunar poles. The presentation includes descriptions of a compact lunar rover concept that could be used to manufacture a thermal wadi and could alternatively be used to conduct a variety of high-value tasks on the lunar surface. Such rovers can be produced more easily because the capability for surviving the lunar night is offloaded to the thermal wadi infrastructure. The presentation also includes several concepts for operational scenarios that could be implemented on the moon using the thermal wadi and compact rover concepts in which multiple affordable rovers, operated by multiple terrestrial organizations, can conduct resource prospecting and human exploration site preparation tasks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-17371 , U.S. Chamber of Commerce Programmatic Workshop on NASA Lunar Surface Systems Concepts; Feb 25, 2009 - Feb 27, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019-08-14
    Description: NASA s Science Mission Directorate (SMD) established the Lunar Quest Program (LQP) to accomplish lunar science objectives embodied in the National Academies report The Scientific Context for Exploration of the Moon (2007) and the NASA Advisory Council-sponsored Workshop on Science Associated with the Lunar Exploration Architecture (2007). A major element of LQP's lunar flight projects is the International Lunar Network (ILN), a network of small geophysical nodes on the lunar surface. NASA plans to provide the first two stations around 2014 and a second pair in the 2016-2017 timeframe. International involvement to provide additional stations will build up the network so that 8-10 nodes could be simultaneously operating. This flight project complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0332 , Lunar and Planetary Science Conference; Mar 22, 2009 - Mar 25, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2019-08-14
    Description: The Constellation program (CxP) has developed a list of 50 sites of interest on the Moon which will be targeted by the LRO narrow angle camera. The list has also been provided to the M~ team to supplement their targeting list. This list does not represent a "site selection" process; rather the goal was to find "representative" sites and terrains to understand the range of possible surface conditions for human lunar exploration to aid engineering design and operational planning. The list compilers leveraged heavily on past site selection work (e.g. Geoscience and a Lunar Base Workshop - 1988, Site Selection Strategy for a Lunar Outpost - 1990, Exploration Systems Architecture Study (ESAS) - 2005). Considerations included scientific, resource utilization, and operational merits, and a desire to span lunar terrain types. The targets have been organized into two "tiers" of 25 sites each to provide a relative priority ranking in the event of mutual interference. A LEAG SAT (special action team) was established to validate and recommend modifications to the list. This SAT was chaired by Dr. Paul Lucey. They provided their final results to CxP in May. Dr. Wendell Mendell will organize an on-going analysis of the data as they come down to ensure data quality and determine if and when a site has sufficient data to be retired from the list. The list was compiled using the best available data, however, it is understood that with the flood of new lunar data, minor modifications or adjustments may be required.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0644 , Lunar Science Forum; Jul 21, 2009 - Jul 23, 2009; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2019-08-26
    Description: Laboratory impact experiments were performed to investigate the conditions that produce large-scale damage in rock targets. Aluminum cylinders (6.3 mm diameter) impacted basalt cylinders (69 mm diameter) at speeds ranging from 0.7 to 2.0 km/s. Diagnostics included measurements of the largest fragment mass, velocities of the largest remnant and large fragments ejected from the periphery of the target, and X-ray computed tomography imaging to inspect some of the impacted targets for internal damage. Significant damage to the target occurred when the kinetic energy per unit target mass exceeded roughly 1/4 of the energy required for catastrophic shattering (where the target is reduced to one-half its original mass). Scaling laws based on a rate-dependent strength were developed that provide a basis for extrapolating the results to larger strength-dominated collisions. The threshold specific energy for widespread damage was found to scale with event size in the same manner as that for catastrophic shattering. Therefore, the factor of four difference between the two thresholds observed in the lab also applies to larger collisions. The scaling laws showed that for a sequence of collisions that are similar in that they produce the same ratio of largest fragment mass to original target mass, the fragment velocities decrease with increasing event size. As a result, rocky asteroids a couple hundred meters in diameter should retain their large ejecta fragments in a jumbled rubble-pile state. For somewhat larger bodies, the ejection velocities are sufficiently low that large fragments are essentially retained in place, possibly forming ordered "brick-pile" structures.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-07-12
    Description: We describe the conceptual method of an autonomously operable Direct Forming machine that would consume regolith or regolith slag to mold intimately, interlinked elements in a continuous process. The resulting product, one to three meter wide geomats, would be deployed over commonly traversed areas to isolate the astronauts and equipment from underlying dust. The porous geotextile would provide areas for dust settling, thereby mitigating dust impingement on astronaut suits or surface structures. Because of their self-supporting yet flexible structure, these geomats could be assembled into shields and buttresses to protect lunar habitants from radiation, forming a "flexoskeleton" from in situ materials.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-07-12
    Description: A series of six sample spacesuit pressure garment assembly (PGA) fabric samples were prepared for the Materials International Space Station Experiment 7 (MISSE-7) flight experiment to test the effects of damage by lunar dust on the susceptibility of the fabrics to radiation damage. These included pristine Apollo-era fluorinated ethylene-propylene (FEP) fabric, Apollo-era FEP fabric that had been abraded with JSC-1A lunar simulant, and a piece of Alan Bean s Apollo 12 PGA sectioned from near the left knee. Also included was a sample of pristine orthofabric, and orthofabric that had been abraded to two different levels with JSC-1A. The samples were characterized using optical microscopy, field emission scanning electron microscopy, and atomic force microscopy. Two sets of six samples were then loaded in space environment exposure hardware, one of which was stored as control samples. The other set was affixed to the MISSE-7 experiment package, and will be mounted on the International Space Station, and exposed to the wake-side low Earth orbit environment. It will be retrieved after an exposure of approximately 12 months, and returned for post flight analysis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2009-215810 , E-17073
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019-07-12
    Description: The Mars Exploration Rover (MER) Project at the Jet Propulsion Laboratory developed two golf-cart size robotic vehicles, Spirit and Opportunity, for geological exploration of designated target areas on the surface of Mars. The primary scientific objective of these missions was the search for evidence of the presence of water on or near the surface of the planet during its history. Spirit and Opportunity were launched on June 10 and July 7, 2003, with their respective landings scheduled for January 4 and January 25, 2004 (UTC). NASA views the MER missions as particularly critical because of their scientific importance in the ongoing search for conditions under which life might have existed elsewhere in the solar system, because of their high level of public interest and because more than half of all prior missions launched to Mars internationally have failed. This report summarizes the findings and recommendations of the NASA Engineering and Safety Center review of the project.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2009-215713 , NESC-RP-04-10/03-004-E , L-19652 , LF99-8660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-07-12
    Description: The Cassini-Huygens mission is returning new geophysical data for the midsize, icy satellites of Saturn (i.e., satellites with radii between 100 and 1,000 km). These data have enabled a new generation of geophysical model studies for Phoebe, Iapetus, Rhea, Mimas, Tethys, Dione, as well as Enceladus (see Spencer et al. 2009). Here we consider the new model studies that have reported significant results elucidating the evolutionary histories and internal structures of these satellites. Those results have included their age, the development of their internal structures and mineralogies, which for greatest fidelity must be done concomitantly with coupled dynamical evolutions. Surface areas, volumes, bulk densities, spin rates, orbit inclinations, eccentricities, and distance from Saturn have changed as the satellites have aged. Heat is required to power the satellites evolution, but is not overly abundant for the midsized satellites. All sources of heat must be evaluated and taken into account. This includes their intensities and when they occur and are available to facilitate evolution, both internal and dynamical. The mechanisms of heat transport must also be included. However, to model these to high fidelity the material properties of the satellite interiors must be accurately known. This is not the case. Thus, we discuss what is known about these properties and how the uncertainties affect the estimation of heat sources, transport processes, and the consequential changes in composition and evolution. Phoebe has an oblate shape that may be in equilibrium with its spin period of ~9.3 h. Its orbital properties suggest that it is not one of the regular satellites, but is a captured body. Its density is higher than that of the other satellites, consistent with formation in the solar nebula rather than from material around Saturn. Oblate shape and high density are unusual for objects in this size range, and may indicate that Phoebe was heated by Al-26 decay soon after its formation, which is consistent with some models of the origin of Kuiper belt objects. Iapetus has the shape of a hydrostatic body with a rotation period near 16 h. It subsequently despun to its current synchronous rotation state, ~79 day period. These observations are sufficient to constrain the required heating in Iapetus early history, suggesting that it formed several My after CAI condensation. Because Saturn had to be present for Iapetus to form, this date also constrains the age of Saturn and how long it took to form. Both shape and gravitational data are available for Rhea. Gravity data were obtained from the single Cassini flyby during the prime mission and within the uncertainties cannot distinguish between hydrostatic and non-hydrostatic gravitational fields. Both Dione and Tethys display evidence of smooth terrains, with Dione's appearing considerably younger. Both are conceivably linked to tidal heating in the past, but the low rock abundance within Tethys and the lack of eccentricity excitation of Tethys orbit today make explaining this satellite's geology challenging.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Saturn From Cassini-Huygens; 577-612
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-08-26
    Description: In this case we applied our Rossiter-McLaughlin methodology to a binary star, rather than a star-planet system. The orbits of binary stars precess as a result of general relativistic effects, forces arising from the asphericity of the stars, and forces from any additional stars or planets in the system. For most binaries, the theoretical and observed precession rates are in agreement. However, one system known as DI Herculis has resisted explanation for 30 years. The observed precession rate is a factor of four slower than the theoretical rate, a disagreement that once was interpreted as evidence for a failure of general relativity. Among the contemporary explanations are the existence of a circumbinary planet and a large tilt of the stellar spin axes with respect to the orbit. In this paper we reported that both stars of DI Herculis rotate with their spin axes nearly perpendicular to the orbital axis (contrary to the usual assumption for close binary stars). The rotationally induced stellar oblateness causes precession in the direction opposite to that of relativistic precession, thereby reconciling the theoretical and observed rates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature; 461; 373-376
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-08-24
    Description: Enceladus is one of the most remarkable satellites in the solar system, as revealed by Cassini's detection of active plumes erupting from warm fractures near its south pole. This discovery makes Enceladus the only icy satellite known to exhibit ongoing internally driven geological activity. The activity is presumably powered by tidal heating maintained by Enceladus 2:1 mean-motion resonance with Dione, but many questions remain. For instance, it appears difficult or impossible to maintain the currently observed radiated power (probably at least 6 GW) in steady state. It is also not clear how Enceladus first entered its current self-maintaining warm and dissipative state initial heating from non-tidal sources is probably required. There are also many unanswered questions about Enceladus interior. The silicate fraction inferred from its density of 1.68 g per cubic centimeter is probably differentiated into a core, though we have only indirect evidence for differentiation. Above the core there is probably a global or regional water layer, inferred from several models of tidal heating, and an ice shell thick enough to support the ~1 kilometer amplitude topography seen on Enceladus. It is possible that dissipation is largely localized beneath the south polar region. Enceladus surface geology, ranging from moderately cratered terrain to the virtually crater-free active south polar region, is highly diverse, tectonically complex, and remarkably symmetrical about the rotation axis and the direction to Saturn. South polar activity is concentrated along the four tiger stripe fractures, which radiate heat at temperatures up to at least 167 K and are the source of multiple plumes ejecting ~200 kilograms per second of H2O vapor along with significant N2 (or C2H4), CO2, CH4, NH3, and higher-mass hydrocarbons. The escaping gas maintains Saturn's neutral gas torus, and the plumes also eject a large number of micron-sized H2O ice grains that populate Saturn's E-ring. The mechanism that powers the plumes is not well understood, and whether liquid water is involved is a subject of active debate (but likely nonetheless). Enceladus provides a promising potential habitat for life in the outer solar system, and the active plumes allow the unique opportunity for direct sampling of that zone. Enceladus is thus a prime target for Cassini's continued exploration of the Saturn system, and will be a tempting target for future missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Saturn From Cassini-Huygens; 683-724
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-08-24
    Description: Saturn is the first giant planet to be visited by an orbiting spacecraft that can transmit large amounts of data to Earth. Crater counts on satellites from Phoebe inward to the regular satellites and ring moons are providing unprecedented insights into the origin and time histories of the impacting populations. Many Voyager-era scientists concluded that the satellites had been struck by at least two populations of impactors. In this view, the Population I impactors, which were generally judged to be comets orbiting the Sun, formed most of the larger and older craters, while Population II impactors, interpreted as Saturn-orbiting ejecta from impacts on satellites, produced most of the smaller and younger craters. Voyager data also implied that all of the ring moons, and probably some of the midsized classical moons, had been catastrophically disrupted and reaccreted since they formed. We examine models of the primary impactor populations in the Saturn system. At the present time, ecliptic comets, which likely originate in the Kuiper belt/scattered disk, are predicted to dominate impacts on the regular satellites and ring moons, but the models require extrapolations in size (from the observed Kuiper belt objects to the much smaller bodies that produce the craters) or in distance (from the known active Jupiter family comets to 9.5 AU). Phoebe, Iapetus, and perhaps even moons closer to Saturn have been struck by irregular satellites as well. We describe the Nice model, which provides a plausible mechanism by which the entire Solar System might have experienced an era of heavy bombardment long after the planets formed. We then discuss the three cratering chronologies, including one based upon the Nice model, that have been used to infer surface ages from crater densities on the saturnian satellites. After reviewing scaling relations between the properties of impactors and the craters they produce, we provide model estimates of the present-day rate at which comets impact, and catastrophically disrupt, the saturnian moons. Finally, we present crater counts on the satellites from two different groups. Many of the heavily cratered terrains appear to be nearly saturated, so it is difficult to infer the provenance of the impactors from crater counts alone. More large craters have been found on Iapetus than on any other satellite. Enceladus displays an enormous range of surface ages, ranging from the old mid-latitude plains to the extremely young South Polar Terrain. Cassini images provide some evidence for the reality of Population II. Most of the observed craters may have formed in one or more cataclysms, but more work is needed to determine the roles of heliocentric and planetocentric bodies in creating the craters.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Saturn From Cassini-Huygens; 613-635
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-08-24
    Description: We presented photometric and spectroscopic observations of the 2009 February 2 transit of the exoplanet XO-3b. The new data showed that the planetary orbital axis and stellar rotation axis are misaligned, as reported earlier by Hebrard and coworkers. XO-3b was the first exoplanet known to have a highly inclined orbit relative to the equatorial plane of its parent star, and as such it may fulfill the predictions of some scenarios for the migration of massive planets into close-in orbits.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrophysical Journal; 700; 1; 302-308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-07-19
    Description: NASA has built a prototype oxygen production plant to process the lunar regolith using the hydrogen reduction chemical process. This plant is known as "ROxygen - making oxygen from moon rocks". The ROxygen regolith transfer team has identified the flow and transfer characteristics of lunar regolith simulant to be a concern for lunar oxygen production efforts. It is important to ISRU lunar exploration efforts to develop hardware designs that can demonstrate the ability to flow and transfer a given mass of regolith simulant to a desired vertical height under lunar gravity conditions in order to introduce it into a reactor. We will present results obtained under both 1/6-g and 1-g gravity conditions for a system that can pneumatically convey 16.5 kg of lunar regolith simulant (NU-LHT-2M, Mauna Kea Tephra, and JSC-1A) from a flat-bottom supply hopper to a simulated ISRU reactor (dual-chambered receiving hopper) where the granular material is separated from the convey gas (air) using a series of cyclone separators, one of which is an electrically enhanced cyclone separator (electrocyclone). The results of our study include (1) the mass flow rate as a function of input air pressure for lunar regolith simulants that are conveyed pneumatically as a dusty gas in a vertical direction against gravity under lunar gravity conditions (for NU-LHT-2M and Mauna Kea Tephra), and under earth gravity conditions (for NU-LHT-2M, Mauna Kea Tephra and JSC-1A), and (2) the efficiency of the cyclone/electrocyclone filtration system in separating the convey gas (air) from the granular particulates as a function of particle size.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-213
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-07-19
    Description: NASA is committed to collaborating with not only our National Partners but also with our International Partners to help make our world a better place. We do this through the sharing of our discoveries and working together so that we can address uncertainties in predictions and forecasts that impact how we live on our home planet. NASA is committed to a Digital Earth as it enables our research to focus on cross disciplinary analysis. The mainstream Information Technologies along with the Digital Earth concepts have allowed this interdisciplinary research that is so critical to societal benefits. The technologies have been discovered and in many cases implemented, but we must forge ahead together to continue to advance all that is possible to fully extend our earth observations for the sake of humankind.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Sixth International Symposium on Digital Earth: Digital Earth in Action; Sep 09, 2009 - Sep 12, 2009; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-07-19
    Description: The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their perspectives on topics including human factors, logistics, EVA operations, and the use of social media throughout the mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18647 , SpaceOps 2010: Delivering on the Dream; Apr 25, 2010 - Apr 30, 2010; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-07-19
    Description: Beginning in 2004 personnel at MSFC began serious efforts to develop a new generation of lunar simulants. The first two products were a replication of the previous JSC-1 simulant under a contract to Orbitec and a major workshop in 2005 on future simulant development. Beginning in 2006 the project refocused its efforts and approached simulant development in a new and more comprehensive manner, examining new approaches in simulant development and ways to more accurately compare simulants to actual lunar materials. This led to a multi-year effort with five major tasks running in parallel. The five tasks are Requirements, Lunar Analysis, Process Development, Feed Stocks, and Standards. Major progress has been made in all five areas. A substantial draft of a formal requirements document now exists and has been largely stable since 2007. It does evolve as specific details of the standards and Lunar Analysis efforts proceed. Lunar Analysis has turned out to be vastly more difficult than anticipated. After great effort to mine existing published and gray literature, the team has realized the necessity of making new measurements of the Apollo samples, an effort that is currently in progress. Process development is substantially ahead of expectations in 2006. It is now practical to synthesize glasses of appropriate composition and purity. It is also possible to make agglutinate particles in significant quantities. A series of minerals commonly found on the Moon has been synthesized. Separation of mineral constituents from starting rock material is also proceeding. Customized grinding and mixing processes have been developed and tested are now being documented. Identification and development of appropriate feedstocks has been both easier and more difficult than anticipated. The Stillwater Mining Company, operating in the Stillwater layered mafic intrusive complex of Montana, has been an amazing resource for the project, but finding adequate sources for some of the components remains a difficult problem. For example the ratio of clino- to ortho-pyroxenes in the Stillwater is not an exact match for lunar materials. One of the sources being examined as an alternative pyroxene source is the Bushveld Complex in South Africa. Standards have been a major success for the project. The Figure of Merit algorithms have been created, tested, and are being considered for an ISO standard. Agreement has been reached in the community about how to make many of the critical measurements. There remains much work to do: (1) driving down the cost of simulants remains a major obstacle; (2) documentation and cost data analysis have not kept up with progress; (3) educating users in the complexity of the lunar regolith and the use of simulants remains a major task. In summary the project has made enormous progress and is successfully placing simulant development and use on a rigorous, scientifically defensible, engineering basis.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0471 , Planetary and Terrestrial Mining Science Symposium (PTMSS)/Northern Centre for Advanced Technology, Inc. (NORCAT); Jun 08, 2009 - Jun 11, 2009; Ontario; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-07-19
    Description: Charging of the lunar surface is of interest both from a scientific standpoint as well as a practical one because of plans for human return to the Moon. Recent work published in the scientific literature suggest that the lunar surface may charge to significant negative potentials at times when spacecraft above the surface only charge to moderate negative potentials or even positive values. This is possible only if secondary electron yields due to photoemission and electron impact are significantly less than unity for lunar regolith over a wide range of energies, inconsistent with values obtained by laboratory measurements. We review the available laboratory measurements of lunar secondary electron yields and photoemission yields and discuss their impact to lunar charging analyses.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0160 , 1st AIAA Atmospheric and Space Environments Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-07-19
    Description: The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL US Army Cold Regions Research and Engineering Laboratory, and the USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation s data needs. LMMP will provide access to this data through a single intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. Two visualization systems are being developed, a web-based system called Lunar Mapper, and a desktop client, ILIADS, which will be downloadable from the LMMP portal. LMMP will provide such products as local and regional imagery and DEMs, hazard assessment maps, lighting and gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and to ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar commercial community, the lunar education and public outreach (E/PO) community, and anyone else interested in accessing or utilizing lunar data. A beta version of the portal and visualization systems is expected to be released in late 2009, with a version 1 release planned for early 2011.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0750 , American Geophysical Union Annual Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Twenty years ago, the Lunar Prospector remote sensing satellite provided evidence of relatively large hydrogen concentrations at the lunar poles and in particular concentrated in permanently shadowed craters. The scientific hypothesis is that the hydrogen is in the form of cryo-trapped water just under the surface of the soil. If true this would mean that an average of about 2% water ice is mixed with the lunar soil existing in the form of ice at cryogenic temperatures. For 5 years we have been investigating the use of microwaves for the processing of lunar soil. One of the early uses could be to use microwave energy to extract volatiles and in particular water from the lunar permafrost. Prototype experiments have shown that microwave energy at 2.45 GHz, as in consumer microwave ovens, will couple with and heat cryogenically cooled lunar soil permafrost simulant, resulting in the rapid sublimation of water vapor into the vacuum chamber. The water vapor has been collected on a cryogenic cold trap with high efficiency. The primary advantage of microwave processing is that the volatiles can be extracted in situ. Excavation would not be required. Microwave frequency dielectric property measurements are being made of different lunar soil simulants and plans are to measure Apollo lunar soil at different frequencies and over a range of temperatures. The materials properties are being used to evaluate the heating of lunar soil and develop COMSOL models that can be used to evaluate different microwave extraction scenarios. With COMSOL the heating from cryogenic temperatures can be calculated and COMSOL will permit temperature dependent materials properties to be used during the heating process. Calculations at different microwave frequencies will allow the evaluation of the type of hardware that would be needed to most efficiently extract the water and other volatiles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0493 , COSMOL Conference 2009; Oct 08, 2009 - Oct 10, 2009; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-07-19
    Description: Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation. The origin and maintenance of these superrotating atmospheres is not well understood, but Titan has a strong seasonal modulation in the middle atmosphere, and the seasonal changes in the winds may offer clues. The pole in winter and early spring is characterized by temperatures 20-30 K cooler at 140-170 km than those at low latitudes, and strong circumpolar winds as high as 190 m/s at 200- 250 km. At these levels the polar region is characterized by enhanced concentrations of several organic gases, and also detectable condensates. All this suggests that the polar vortex provides a mixing barrier between winter polar and lower-latitude air masses, analogous to the polar ozone holes on Earth. Because the concentrations of organic gases increase with altitude in the middle atmosphere, the observed enhancements suggest subsidence over the winter pole. Consistent with this are the observed temperatures approximately 200 K at the winter-polar stratopause (280 km), making it the warmest part of the atmosphere. The warm stratopause likely results from adiabatic heating associated with the subsidence. Recent observations in late northern winter and early spring indicate that the warm anomaly at the winter-polar stratopause is weakening;. In contrast to the middle atmosphere, latitude contrasts in tropospheric temperatures are muted. During the northern winter season, they were approximately 5 K at the tropopause and 3 K or less near the surface, being coldest at high northern latitudes. This is understandable in terms of the long radiative relaxation times in the troposphere, compared to times that are much shorter than a season in the upper stratosphere and higher. Curiously, the transition between the small meridional contrast (and presumably seasonal variations) in temperatures observed in the troposphere and the large variations observed at higher altitudes occurs abruptly above 80 km. Here the temperatures in the lower stratosphere, generally increasing with altitude, exhibit a sudden drop with increasing altitude at high northern latitudes, producing the contrast between low and high northern winter latitudes in the upper stratosphere described above. While the radiative relaxation time associated with infrared gaseous coolants decreases with altitude in the stratosphere, the abrupt transition suggests the presence of an optically thick condensate at thermal-infrared wavelengths. Near the surface, temperature lapse rates are adiabatic over the lowest 2 km, with the suggestion of a nocturnal stable inversion over the lowest 200 m in radio-occultation soundings near the morning terminator. At mid and high latitudes in both winter and summer hemispheres, the profiles are more statically stable (i.e., subadiabatic). This is most pronounced in the winter hemisphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: European Planetary Science Congress Meeting; Sep 13, 2009 - Sep 18, 2009; Potsdam; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-07-19
    Description: Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AGU Fall Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-07-19
    Description: The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18408 , International Distinguished Scholars Symposia on Seven Future Technologies: Extreme Engineering; Jun 11, 2009; Seoul; Korea, Democratic People''s Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18309 , Lunar Science Forum 2009; Jul 21, 2009 - Jul 23, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019-07-19
    Description: The stated goals of the 2004 Vision for Space Exploration focus on establishing a human presence throughout the solar system beginning with the establishment of a permanent human presence on the Moon. However, the precise objectives to be accomplished on the lunar surface and the optimal system architecture to achieve those objectives have been a topic of much debate since the inception of the Constellation Program. There are two basic styles of system architectures being traded at the Programmatic level: a traditional large outpost that would focus on techniques for survival off our home planet and a greater depth of exploration within one area, or a mobile approach- akin to a series of nomadic camps- that would allow greater breadth of exploration opportunities. The traditional outpost philosophy is well within the understood pressure garment design space with respect to developing interfaces and operational life cycle models. The mobile outpost, however, combines many unknowns with respect to pressure garment performance and reliability that could dramatically affect the cost and schedule risks associated with the Constellation space suit system. This paper provides an overview of the concepts being traded for a mobile architecture from the operations and hardware implementation perspective, describes the primary risks to the Constellation pressure garment associated with each of the concepts, and summarizes the approach necessary to quantify the pressure garment design risks to enable the Constellation Program to make informed decisions when deciding on an overall lunar surface systems architecture.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19148 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-07-19
    Description: Many options for exploration of the Moon and Mars have been identified and evaluated since the Vision for Space Exploration VSE was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of the moon and Mars and those of the Augustine human spaceflight commission for the implications of each architecture on the Environmental Control and Life Support, ExtraVehicular Activity and Thermal Control systems. The advantages and disadvantages of each architecture and options are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19099 , International Conference on Environmental Sytems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-07-19
    Description: Essential consumables like oxygen must to be produced from materials on the lunar surface to enable a sustained, long-term presence of humans on the Moon. The Outpost Precursor for ISRU and Modular Architecture (OPTIMA) field test on Mauna Kea, Hawaii, facilitated by the Pacific International Space Center for Exploration Systems (PISCES) of the University of Hawaii at Hilo, was designed to test the implementation of three hardware concepts to extract oxygen from the lunar regolith: Precursor ISRU Lunar Oxygen Testbed (PILOT) developed by Lockheed Martin in Littleton, CO; Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) developed at the NASA Kennedy Space Center in Cape Canaveral, FL; and ROxygen developed at the NASA Johnson Space Center in Houston, TX. The three concepts differ in design, but all rely on the same general principle: hydrogen reduction of metal cations (primarily Fe2+) bonded to oxygen to metal (e.g., Fe0) with the production of water. The hydrogen source is residual hydrogen in the fuel tanks of lunar landers. Electrolysis of the water produces oxygen and hydrogen (which is recycled). We used the miniaturized M ssbauer spectrometer MIMOS II to quantify the yield of this process on the basis of the quantity of Fe0 produced. Iron M ssbauer spectroscopy identifies iron-bearing phases, determines iron oxidation states, and quantifies the distribution of iron between mineral phases and oxidation states. The oxygen yield can be calculated by quantitative measurements of the distribution of Fe among oxidation states in the regolith before and after hydrogen reduction. A M ssbauer spectrometer can also be used as a prospecting tool to select the optimum feedstock for the oxygen production plants (e.g., high total Fe content and easily reduced phases). As a demonstration, a MIMOS II backscatter spectrometer (SPESI, Germany) was mounted on the Cratos rover (NASA Glenn Research Center in Cleveland, OH), which is one of several rover concepts designed to excavate and transfer regolith to the stationary hydrogen reduction plants. Spaceflight versions of the MIMOS II are part of the instrument payloads of NASA s Mars Exploration Rovers and still operating five years after landing on the surface of the planet. MIMOS II was also selected for Phobos-Grunt, a Russian sample return mission to the martian moon Phobos scheduled to launch in 2009, and ESA s ExoMars rover, an exobiology mission scheduled to launch in 2013. An advanced version of the instrument is currently under development. A new detector system with a higher energy resolution will not only reduce the necessary measurement time considerably, but also allow the simultaneous acquisition of an X-ray fluorescence spectrum to determine the elemental composition of samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar Base Symposium; May 12, 2009 - May 13, 2009; Kaiserlautern; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-19
    Description: We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo〈5, En50-En75).
    Keywords: Lunar and Planetary Science and Exploration
    Type: 11226-10-ST 41st annual meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society; Oct 04, 2009 - Oct 09, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-19
    Description: The Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage. This paper covers the Orion ECLS development from April 2008 to April 2009.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 09ICES-205 , JSC-CN-17332 , JSC-CN-18273 , ICES 2009; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The basaltic plains of the Moon contain lava channels on scales of tens of meters to hundreds of kilometers. Many of these channels are segmented, strongly suggesting that some portions include covered lava tubes. Lunar lava tubes are expected to provide unique environments below the harsh lunar surface, maintaining near-isothermal conditions and substantial shielding from solar and galactic radiation. A lava tube has often been suggested as natural shelter for a future human outpost. Previous searches for lunar lava tubes have been limited by a combination of image resolution and completeness of coverage. The five robotic Lunar Orbiter spacecraft combined to photograph essentially the entire lunar surface with a resolution of 60 m, and covered selected sites with resolutions as high as 2 m. The highest-resolution Apollo images, from the mapping and panoramic cameras, covered swaths totaling 16% of the lunar surface, at resolutions of approximately 5 m. The Lunar Reconnaissance Orbiter -- launched in June 2009 to a polar orbit -- carries a suite of instruments that will revolutionize lunar remote sensing, including the identification and characterization of lava tubes. The Lunar Reconnaissance Orbiter Camera (LROC) system includes a multi-spectral wide-angle camera with a resolution of 70 m, allowing a comprehensive survey of the entire lunar surface. The LROC narrow-angle camera is providing targeted images at resolutions of 0.5 - 2 m, including stereo coverage, which should allow detection of tube entrances and breakdown structures. The Lunar Orbiter Laser Altimeter is producing a global topographic map with a vertical resolution of 1 m and a horizontal resolution of 50 m. These data will be critical to understanding lava dynamics and tube emplacement.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18936 , Geological Society of America Annual Meeting; Oct 18, 2009 - Oct 21, 2009; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2019-07-19
    Description: In recent years, Jupiter has undergone many atmospheric changes from storms turning red to global. cloud upheavals, and most recently, a cornet or asteroid impact. Yet, on top of these seemingly random changes events there are also periodic phenomena, analogous to observed Earth and Saturn atmospheric oscillations. We will present 15 years of Hubble data, from 1994 to 2009, to show how the equatorial tropospheric cloud deck and winds have varied over that time, focusing on the F953N, F41 ON and F255W filters. These filters give leverage on wind speeds plus cloud opacity, cloud height and tropospheric haze thickness, and stratospheric haze, respectively. The wind data consistently show a periodic oscillation near 7-8 S latitude. We will discuss the potential for variations with longitude and cloud height, within the calibration limits of those filters. Finally, we will discuss the role that large atmospheric events, such as the impacts in 1994 and 2009, and the global upheaval of 2007, have on temporal studies, This work was supported by a grant from the NASA Planetary Atmospheres Program. HST observational support was provided by NASA through grants from Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract NAS5-26555.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 09-RC-451 -AAS - DPS , 41st Annual Meeting of the American Astronomical Society Division for Planetary Sciences; Oct 04, 2009 - Oct 09, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The recent top prioritization of the Europa Jupiter System Mission for the next outer solar system flagship mission is refocusing attention on Europa and the other Galilean satellites and their contextual environments in the Jupiter system. Surface sputtering by magnetospheric plasma generates a tenuous atmosphere for Europa, dominated by 02 gas. This tenuous gas is in turn excited by plasma electrons, producing ultraviolet and visible emissions. Two sets of imaging observations have been published to date, UV images from the Hubble Space Telescope, and visible eclipse images from Cassini. Three additional sets of HST UV observations were acquired in February 2007, April 2007 and June 2009. The signal to noise ratio in these data are not high, however, given the paucity of data and its increasing importance in terms of planning for EJSM, we have attempted to extract as much new information as possible from these data. This talk will summarize our analysis to date, and discuss them in terms of existing models, which attempt to explain the image morphology either in terms of the underlying source production and loss processes, or in terms of the plasma interaction with the exosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0515 , Magnetospheres of the Outer Planets 2009; Jul 26, 2009 - Jul 31, 2009; Cologne; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-19
    Description: As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 09-RC-219-AAS-DPS , 41st Annual Meeting of the AAS Division for Planetary Sciences; Oct 04, 2009 - Oct 09, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-19
    Description: A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 41st Annual Meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 04, 2009 - Oct 09, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-19
    Description: Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0543 , 2nd Annual NLSI Science Forum; Jul 21, 2009 - Jul 23, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-19
    Description: Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 10857-09-ST , Magnetospheres of the Outer Planets 2009; Jul 27, 2009 - Jul 31, 2009; Cologne; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-19
    Description: The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (〈10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18385 , NASA 2009 Lunar Science Forum; Jul 21, 2009 - Jul 23, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-07-19
    Description: As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18731 , IAC 2009 DAEJON; Oct 12, 2009 - Oct 16, 2009; Daejeon; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the United States' contribution to the International Lunar Network (ILN) project, the Anchor Nodes project. The ILN is an initiative of 9 national space agencies to establish a set of robotic geophysical monitoring stations on the surface of the Moon. The project is aimed at furthering the understanding of the lunar composition, and interior structure.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0813 , National Academy of Sciences Planetary Decadal Survey Inner Planets Panel; Aug 28, 2009; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019-07-13
    Description: Abstract In early 2004, President Bush announced a bold vision for space exploration. One of the goals included in this vision is a return to the moon by 2020. In response to this vision, NASA established the Constellation Program, which includes several project offices. One of the Constellation projects is Altair, which is the next generation Lunar Lander. The future Altair missions are very different than the Lunar missions accomplished during the Apollo era. As such, there are several project risks and design challenges that have never before been addressed. Due to the unique thermal environment associated with this mission, many of these risks and design challenges are associated with the vehicle's thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The current paper will summarize the Altair mission profile, the operational phases, and the thermal design challenges unique to this particular vehicle. The paper will also describe the technology development efforts being performed to mitigate the risks and design challenges. The technology development project is performing a rigorous development effort that includes thermal control system fluids, evaporators, heat exchangers, and Lunar surface radiators. Constellation Program, there are several project offices. One of these projects includes the development of NASA's new lunar lander vehicle. The overall mission architecture for this vehicle, Altair, is very similar to Apollo's architecture. This paper will provide the reader with an overview of the Altair vehicle. In addition, Altair's thermal control system, including the functionality and the hardware, will be discussed. The paper will also describe the technology development process and the various technology developments currently underway.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19249 , 2010 IEEE Aerospace Conference; Mar 06, 2010 - Mar 13, 2010; Big Sky, Montana; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-07-13
    Description: This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19120 , 2010 IEEE Aerospace Conference; Mar 06, 2010 - Mar 13, 2010; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-07-13
    Description: Results from a 26 shot ballistic range test of the Mars Science Laboratory (MSL) entry capsule are presented. The supersonic pitch damping properties of the MSL capsule were characterized between Mach 1.35 and Mach 3.5 and total angles-of-attack from 0 to 30 degrees. In flight, the MSL entry capsule will utilize a radial center-of-gravity offset to produce a non-zero trim angle-of-attack. This offset trim angle will produce lift, enabling the capsule to fly a guided entry and reducing the landing footprint dimensions to within 10 km of the desired landing site. A lifting configuration could not be tested at the ballistic range used for this test as the models would swerve into the range walls, possibly damaging cameras, the coordinate reference system or other facility assets. Ballistic (non-lifting) data was extracted and will be implemented in a conservative fashion to ensure that the dynamic stability characteristics of the flight vehicle are bounded. A comparison between the MSL pitch damping results and the dynamic model of the Mars Exploration Rover capsule shows generally close agreement with no significant differences in damping characteristics due to the change in backshell geometry. Dynamic moments are also compared to the MSL reaction control system (RCS) control authority to show the controller has sufficient margin to easily damp any dynamic stability effects.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper 2009-3917 , LF99-8967 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-07-13
    Description: The Moon Mineralogy Mapper's (M3) is a high uniformity and high signal-to-noise ratio NASA imaging spectrometer that is a guest instrument on the Indian Chandrayaan-1 Mission to the Moon. The laboratory measured spectral, radiometric, spatial, and uniformity characteristics of the M3 instrument are given. The M3 imaging spectrometer takes advantage of a suite of critical enabling capabilities to achieve its measurement requirement with a mass of 8 kg, power usage of 15 W, and volume of 25X18X12 cm. The M3 detector and spectrometer are cooled by a multi-stage passive cooler. This paper presents early M3 performance assessment results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-2216 , Chandrayaan-1 Science and Operations Management; Jan 29, 2009 - Jan 30, 2009; Bangalore; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-07-13
    Description: By far the most important database to help us determine the engineering questions we need to address comes from the Apollo experience. In combing through the Apollo Mission Reports and Technical Debriefings there are numerous references to the problems caused by lunar dust during the missions. These have been sorted into nine classes of difficulties.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0390 , Lunar Regolith/Simulant Workshop; Mar 17, 2009 - Mar 20, 2009; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-07-13
    Description: A review of the NASA MSFC Lunar Environment Test System (LETS) System Development is presented. The contents include: 1) MSFC LETS Chamber Status; 2) LETS Simulant Containment Box Development; 3) Tests Conducted in LETS To date: Simulant Dust Migration; 4) Summary; and 5) Forward Work.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0391 , Third Lunar Regolith Simulant Workshop; Mar 17, 2009 - Mar 20, 2009; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This section of the workshop describes the history of the moon, and offers explanations for the importance of understanding lunar history for engineers and users of lunar simulants. Included are summaries of the initial impact that is currently in favor as explaining the moon's formation, the crust generation, the creation of craters by impactors, the era of the lunar cataclysm, which some believe effected the evolution of life on earth, the nature of lunar impacts, crater morphology, which includes pictures of lunar craters that show the different types of craters, more recent events include effect of micrometeorites, solar wind, radiation and generation of agglutinates. Also included is a glossary of terms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0379 , Lunar Regolith/Simulant Workshop Workshop; Mar 17, 2009 - Mar 20, 2009; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-07-13
    Description: A study underway at Marshall Space Flight Center is further characterizing the effects of shock on isotopic ages. The study was inspired by the work of L. Nyquist et al. [1, 2], but goes beyond their work by investigating the spatial distribution of elements in lunar ferroan anorthosites (FANs) and magnesium-suite (Mg-suite) rocks in order to understand the processes that may influence the radioisotope ages obtained on early lunar samples. This paper discusses the first data set (major elements) obtained on FANs 62236 and 67075.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0331 , Lunar and Planetary Science Conference; Mar 22, 2009 - Mar 25, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019-07-13
    Description: The Mars Exploration Rover (MER) Opportunity has been studying Meridiani Planum for five years. On sol 1634 of its mission, Opportunity left Victoria crater after investigating it for approximately 682 sols [1] and is now on a journey towards Endeavour, a 24 km diameter crater about 12 km southeast of Victoria. A priority along the way is the investigation of cobbles, which in the jargon of the MER science team denotes any loose rock fragment larger than a couple of centimeters. Cobbles investigated thus far are of diverse origin [2] and provide the only means to investigate material other than the ubiquitous sulfate-rich outcrop, basaltic sand or hematiterich spherules dubbed blueberries. Some of these cobbles are meteorites [3]. Meteorites on Mars are not just a curiosity that make Mars a more Earth-like planet. Metallic iron in meteorites, for example, may be used as a more sensitive tracer for volatile surface interactions compared to igneous minerals [4]. Between sols 1713 and 1749, including the period of Mars solar conjunction, Opportunity investigated a cobble informally named Santorini. Its chemical and mineralogical composition is very similar to Barberton and Santa Catarina, two cobbles that were identified as meteorites and which are probably related to each other [3]. Santorini was investigated with the rover s Panoramic Camera (Pancam), Microscopic Imager (MI), Alpha-Particle X-ray Spectrometer (APXS) and Moessbauer (MB) spectrometer. The miniature Thermal Emission Spectrometer (mini-TES) was not operational at the time. The Rock Abrasion Tool (RAT) could not be used to brush off potential dust coatings because of unfavorable geometry.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0330 , Lunar and Planetary Science Conference; Mar 22, 2009 - Mar 25, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-13
    Description: An overview of several important aerodynamics challenges new to the Mars Science Laboratory (MSL) entry vehicle are presented. The MSL entry capsule is a 70 degree sphere cone-based on the original Mars Viking entry capsule. Due to payload and landing accuracy requirements, MSL will be flying at the highest lift-to-drag ratio of any capsule sent to Mars (L/D = 0.24). The capsule will also be flying a guided entry, performing bank maneuvers, a first for Mars entry. The system's mechanical design and increased performance requirements require an expansion of the MSL flight envelope beyond those of historical missions. In certain areas, the experience gained by Viking and other recent Mars missions can no longer be claimed as heritage information. New analysis and testing is re1quired to ensure the safe flight of the MSL entry vehicle. The challenge topics include: hypersonic gas chemistry and laminar-versus-turbulent flow effects on trim angle, a general risk assessment of flying at greater angles-of-attack than Viking, quantifying the aerodynamic interactions induced by a new reaction control system and a risk assessment of recontact of a series of masses jettisoned prior to parachute deploy. An overview of the analysis and tests being conducted to understand and reduce risk in each of these areas is presented. The need for proper modeling and implementation of uncertainties for use in trajectory simulation has resulted in a revision of prior models and additional analysis for the MSL entry vehicle. The six degree-of-freedom uncertainty model and new analysis to quantify roll torque dispersions are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper 2009-3914 , LF99-8935 , 41st AIAA Thermophysics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-07-13
    Description: One of the important outstanding goals of lunar science is understanding the bombardment history of the Moon and calibrating the impact flux curve for extrapolation to the Earth and other terrestrial planets. The "terminal lunar cataclysm," a brief but intense period of bombardment about 3.9 billion years ago, is of particular scientific interest. Radiometric dating of lunar impact-melt rocks forms the backbone of the lunar cataclysm hypothesis. A histogram of precise age determinations of impact-melt rocks shows the characteristics of the classic formulation of the lunar cataclysm hypothesis: a sharp peak at 3.9 Ga, a steep decline after 3.9 Ga perhaps only 20-200 Myr long, and few rocks of impact origin prior to 4.0 Ga.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0449 , M09-0554 , Lunar Reconnaissance Orbiter Science Targeting Meeting; Jun 09, 2009 - Jun 11, 2009; Tempe, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...