ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Emergency mask approach on Orion poses a challenge to the traditional Shuttle or Station approaches. Currently, in the case of a fire or toxic spill event, the crew utilizes open loop oxygen masks that provide the crew with oxygen to breath, but also dumps the exhaled oxygen into the cabin. For Orion, with a small cabin volume, the extra oxygen will exceed the flammability limit within a short period of time, unless a nitrogen purge is also provided. Another approach to a fire or toxic spill event is the use of a filtering emergency masks. These masks utilize some form of chemical beds to scrub the air clean of toxic providing the crew safe breathing air for a period without elevating the oxygen level in the cabin. Using the masks and a form of smoke-eater filter, it may be possible to clean the cabin completely or to a level for safe transition to a space suit to perform a cabin purge. Issues with filters in the past have been the reaction temperature and high breathing resistance. Development in a new form of chemical filters has shown promise to make the filtering approach feasible.
    Keywords: Space Transportation and Safety
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The Orion Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably. Preliminary Design Review was performed and long lead procurement items were started. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage into manufacturing. This paper covers the Orion ECLS development from April 2009 to April 2010.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The use of porous media as a mean of separating liquid condensate from the air stream in condensing heat exchangers has been explored in the past inside small plant growth chambers and in the Apollo Command Module. Both applications used a cooled porous media made of sintered stainless steel to cool and separate condensation from the air stream. However, the main issues with the utilization of porous media in the past have been the deterioration of the porous media over long duration, such as clogging and changes in surface wetting characteristics. In addition, for long duration usage, biofilm growth from microorganisms on the porous medial would also be an issue. In developing Porous Media Condensing Heat Exchangers (PMCHX) for future space applications, different porous materials and microbial growth control methods will need to be explored. This paper explores the work performed at JSC and GRC to evaluate different porous materials and microbial control methods to support the development of a Porous Media Condensing Heat Exchanger. It outlines the basic principles for designing a PMCHX and issues that were encountered and ways to resolve those issues. The PMCHX has potential of mass, volume, and power savings over current CHX and water separator technology and would be beneficial for long duration space missions.
    Keywords: Man/System Technology and Life Support
    Type: Habitation 2006; Feb 05, 2006 - Feb 08, 2006; Orlando, Fl; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliques upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel. This is a challenge, as new composite radiator panels are being considered as replacements for the aluminum panels used previously. Various thermal control paints, coatings, and appliques were applied to aluminum and isocyanate ester composite coupons and were exposed for 30 days at the Atmospheric Exposure Site of the Kennedy Space Center s Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected coupons were subsequently exposed to simulated solar wind and vacuum ultraviolet radiation to identify the effect of a simulated space environment on the as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints and coatings. The purpose of this paper is to present the results of the weathering testing and to summarize the durability of several thermal control paints, coatings, and appliques to weathering and postweathering environments.
    Keywords: Composite Materials
    Type: 07ICES-40 , 37th International Conference on Environmental Systems; Jul 09, 2007 - Jul 12, 2007; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Radiators are used to reject energy from space vehicles through radiant heat transfer. They are typically the largest component in a vehicle's thermal control system and can have a large impact on the vehicle design and operation. NASA s current vision for exploration dictates that radiators for a Crew Exploration Vehicle (CEV), a Lunar Surface Access Module (LSAM), and a lunar base will need to be developed. These applications present new challenges when compared to previous radiators on the Space Shuttle and International Space Station (ISS). In addition, many technological advances have been made that could positively impact future radiator design. This paper outlines new requirements for future radiators and documents a trade study performed to select the some promising technologies for further evaluation. The technologies include K1100 based carbon composites for the radiator surface as well as Optical Solar Reflectors (OSRs), a lithium based white paint, and electrochromic thin films for optical coatings. Coupons were made using these materials and tests were performed to characterize their performance. Testing included evaluating structural and thermal properties of the carbon composites, thermal cycling, launch pad weather simulation, and exposure to solar wind, and Ultraviolet (UV) radiation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 06ICES-318 , International Conference on Environmental Systems; Jul 17, 2006 - Jul 20, 2006; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station. Working with NASA fire and materials experts, this approach outlines the best requirements for both the closed out area of the vehicle, such as the avionics bay, and the crew cabin area to address the unique challenges due to the size and configuration of the CEV.
    Keywords: Man/System Technology and Life Support
    Type: 2007-07ICES-231 , 37th International COfnerence on Environmental Systems; Jul 09, 2007 - Jul 12, 2007; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: NASA is currently investigating several technology options for advanced human spaceflight. This presentation covers some recent developments that relate to NASA's Orion spacecraft and future Lunar missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Spacecraft Thermal Control Workshop; Feb 27, 2007; El Segundo, CA
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Spacecraft radiators reject heat to their surroundings and coatings play an important role in this heat rejection. The coatings provide the combined optical properties of low solar absorptance and high infrared emittance. The coatings are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not designed for a terrestrial weathering environment, the durability of spacecraft paints, coatings, and appliques upon exposure to weathering and subsequent exposure to ascent heating, solar wind, and ultraviolet radiation was studied. In addition to traditional aluminum panels, new isocyanate ester composite panels were exposed for a total of 90 days at the Atmospheric Exposure Site of Kennedy Space Center's (KSC) Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected panel coupons were subsequently exposed to simulated ascent heating, solar wind, and vacuum ultraviolet (UV) radiation to identify the effect of a simulated space environment on as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints, coatings, and appliques.
    Keywords: Nonmetallic Materials
    Type: NASA/TM-2008-215259 , E-16525 , 39th Central Regional Meeting of the American Chemical Society; Jun 10, 2008 - Jun 14, 2008; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the Moon and back again. This year, the prime contractor has been selected, requirements have been refined, and development areas are being pursued. The Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is moving one year closer to performing on orbit.
    Keywords: Man/System Technology and Life Support
    Type: SAE-2007-01-3044 , International Conference on Environmental Systems; Jul 09, 2007 - Jul 12, 2007; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Emergency mask approach on Orion poses a challenge to the traditional Shuttle or Station approaches. Currently, in the case of a fire or toxic spill event, the crew utilizes open loop oxygen masks that provide the crew with oxygen to breath, but also dumps the exhaled oxygen into the cabin. For Orion, with a small cabin volume, the extra oxygen will exceed the flammability limit within a short period of time, unless a nitrogen purge is also provided. Another approach to a fire or toxic spill event is the use of a filtering emergency masks. These masks utilize some form of chemical beds to scrub the air clean of toxic providing the crew safe breathing air for a period without elevating the oxygen level in the cabin. Using the masks and a form of smoke-eater filter, it may be possible to clean the cabin completely or to a level for safe transition to a space suit to perform a cabin purge. Issues with filters in the past have been the reaction time, breakthroughs, and high breathing resistance. Development in a new form of chemical filters has shown promise to make the filtering approach feasible.
    Keywords: Space Transportation and Safety
    Type: 09ICES-0206 , 2009-01-2460 , JSC-CN-18274 , JSC-CN-18371 , 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...