ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (10,782)
  • General Chemistry  (4,740)
  • Lunar and Planetary Science and Exploration  (1,853)
  • Man/System Technology and Life Support  (1,601)
  • Astrophysics
  • Deutschland
  • 2005-2009  (4,243)
  • 1970-1974  (15,542)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2022-05-26
    Description: Reexploring convection and its various transitions to chaotic behavior were the central themes of GFD 1981. Our principal lecturer, Dr. Edward A. Spiegel, provided both a rich historical picture and stimulating hours at the current frontiers of this topic. Before the summer was out his research lecture on "A Tale of Two Methods" elegantly merged Pierre Coullet's canonical formalism for studying dynamical systems in a central manifold and the more traditional two-timing amplitude expansions near critical points. Other lecture sequences on convection and its relation to simpler dynamical systems ranged from the fine presentations of John Guckenheimer on bifurcation theory to Fritz Busse's survey of his immense contributions to our understanding of nonlinear convection. The list of other lectures found on the following pages attests to our summer-long exposure to convection in the ocean, the atmosphere, the earth's core and mantle, and in the sun. August brought lectures on new observations of convection in the laboratories of physicists. Albert Libchaber's precise experiments on the many routes convection can take to turbulence, with parallel laboratory and numerical experiments described by J. Gollub and E. Siggia, added much to our language of inquiry.
    Description: Office of Naval Research under Contract N00014-81-G-0089.
    Keywords: Convection ; Astrophysics
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  In: BfS/BfR/RKI/UBA (Hrsg.): Klimawandel und Gesundheit. UMID – UmweltMedizinischerInformationsDienst, Ausgabe 3 (Themenheft), Dezember 2009, 13-16
    Publication Date: 2009
    Description: Beispiele Ambrosia, Eichenprozessionsspinner KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Phänologie
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  In: BfS/BfR/RKI/UBA (Hrsg.): Klimawandel und Gesundheit. UMID – UmweltMedizinischerInformationsDienst, Ausgabe 3 (Themenheft), Dezember 2009, 17-20
    Publication Date: 2009
    Description: ausgedehnte Ambrosiaareale auch in der Lausitz und dem Berliner Raum KATASTER-BESCHREIBUNG: Neben Sensibilisierung gegen Ambrosia auch Kreuzreationen bei Sensibilisierung gegen Beifuß möglich KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Phänologie
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009
    Description: einheimische und importierte  vektorassoziierte  Infektionen, Gastrointestinale  Infektionskrankheiten KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Infektionskrankheiten
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  In: BfS/BfR/RKI/UBA (Hrsg.): Klimawandel und Gesundheit. UMID – UmweltMedizinischerInformationsDienst, Ausgabe 3 (Themenheft), Dezember 2009, 21-23
    Publication Date: 2009
    Description: weltweite Verbreitung der Asiatischen Tigermücke Aedes albopictus innerhalb der letzten zwei Jahrzehnte im Zusammenhang mit Chikungunya-Ausbruch im Sommer 2007 in Italien KATASTER-BESCHREIBUNG: Transportwege der Globalisierung als wesentlicher Faktor neben Klimaänderungen KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Infektionskrankheiten
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  In: BfS/BfR/RKI/UBA (Hrsg.): Klimawandel und Gesundheit. UMID – UmweltMedizinischerInformationsDienst, Ausgabe 3 (Themenheft), Dezember 2009, 24-28
    Publication Date: 2009
    Description: Gesundheitliche Bewertung ultravioletter Strahlung KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; UV-Strahlung
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-26
    Description: The designers of the Orion Crew Exploration Vehicle (CEV) utilize an intensive simulation program in order to predict the launch and landing characteristics of the Crew Impact Attenuation System (CIAS). The CIAS is the energy absorbing strut concept that dampens loads to levels sustainable by the crew during landing and consists of the crew module seat pallet that accommodates four to six seated astronauts. An important parameter required for proper dynamic modeling of the CIAS is knowledge of the suited center of mass (COM) variations within the crew population. Significant center of mass variations across suited crew configurations would amplify the inertial effects of the pallet and potentially create unacceptable crew loading during launch and landing. Established suited, whole-body, and posture-based mass properties were not available due to the uncertainty of the final CEV seat posture and suit hardware configurations. While unsuited segmental center of mass values can be obtained via regression equations from previous studies, building them into a model that was posture dependent with custom anthropometry and integrated suit components proved cumbersome and time consuming. Therefore, the objective of this study was to quantify the effects of posture, suit components, and the expected range of anthropometry on the center of mass of a seated individual. Several elements are required for the COM calculation of a suited human in a seated position: anthropometry; body segment mass; suit component mass; suit component location relative to the body; and joint angles defining the seated posture. Anthropometry and body segment masses used in this study were taken from a selection of three-dimensional human body models, called boundary manikins, which were developed in a previous project. These boundary manikins represent the critical anthropometric dimension extremes for the anticipated astronaut population. Six male manikins and 6 female manikins, representing a subset of the possible maximum and minimum sized crewmembers, were segmented using point-cloud software to create 17 major body segments. The general approach used to calculate the human mass properties was to utilize center of volume outputs from the software for each body segment and apply a homogeneous density function to determine segment mass 3-D coordinates. Suit components, based on the current consensus regarding predicted suit configuration values, were treated as point masses and were positioned using vector mathematics along the body segments based on anthropometry and COM position. A custom MATLAB script then articulates the body segment and suit positions into a selected seated configuration, using joint angles that characterize a standard seated position and a CEV specific seated position. Additional MATLAB(r) scripts are finally used to calculate the composite COM positions in 3-D space for all 12 manikins in both suited and unsuited conditions for both seated configurations. The analysis focused on two aspects: (1) to quantify how much the whole body COM varied from the smallest to largest subject and (2) the impacts of the suit components on the overall COM in each seat configuration. The location across all boundary manikins of the anterior- posterior COM varied by approximately 7cm, the vertical COM varied by approximately 9-10cm, and the mediolateral COM varied by approximately 1.2 cm from the midline sagittal plane for both seat configurations. This variation was surprisingly large given the relative proportionality of the mass distribution of the human body. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration is in the standard posture, the suited vertical COM shifts inferiorly by up to 1 cm whereas in the CEV posture the vertical COM has no appreciable change. These general differences were due the high proportion of suit mass located in the boots and lower legs and their corresponding distance from the body COM as well as the prevalence of suit components on the right side of the body.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19203 , 3rd International Conference on Applied Human Factors and Ergonomics; 17-20 Jul. 2010; Miami, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-04-10
    Description: This presentation reviews the International Lunar Network (ILN) mission, a cooperative effort designed to coordinate individual lunar landers in a geophysical network on the lunar surface. The presentation also includes information on the geophysical network, mission operations, and recent accomplishments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0817 , NLSI Lunar Science Forum; 21-23 Jul. 2009; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: Amino acid analysis of a meteorite fragment of asteroid 2008 TC(sub 3) called Almahata Sitta was carried out using reverse-phase high-perfo rmance liquid chromatography coupled with UV fluorescence detection a nd time-of-flight mass spectrometry (HPLC-FD/ToF-MS) as part of a sam ple analysis consortium. HPLC analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to six-carbon aliph atic amino acids and one- to three carbon amines with abundances rang ing from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, Beta-amino-n-butyric acid (Beta-ABA), 2-amino-2- methylbutanoic acid (isovaline), and 2-aminopentanoic acid (no rvaline) in the meteorite were racemic (D/L approximately 1), indicat ing that these amino acids are indigenous to the meteorite and not te rrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha -aminoisobutyric acid (alpha-AIB), 4-amino-2- methybutanoic acid, 4-a mino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. Th e total abundances of isovaline and AlB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous meteorite Murchison. The extremely love abund ances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous meteorites and may be due to extensive thermal alteration of amino acids on the parent aster oid by partial melting during formation or impact shock heating.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature 〈 or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of 〈 or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our o ngoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of ti 485 days. Periodogram ana lysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(exp -4) . The fractional modulation amplitude decreases with increasing e nergy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent wi th a periodic process, however, continued monitoring is required to c onfirm the coherent nature of the modulation. Spectral analysis indic ates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of approxi mately 2 x 10 40 ergs/s . We suggest that, like the 62 day period of the ULX in M82 (X41.4-1-60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or super giant star.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: The distribution and enantiomeric composition of the 5-carbon (C(sub 5)) amino acids found in Cl-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/Nacetyl- l-cysteine derivatization. A large L-enantiomeric excess (ee) of the a-methyl amino acid isovaline was found in the CM meteorite Murchison (L(sub ee) = 18.5 +/- 2.6%) and the Cl meteorite Orguell (L(sub ee) = 15.2 +/- 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any Cl meteorite. The L-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C(sub 5) amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no L-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for L-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other alpha-dialkyl amino acids found in altered Ct and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the National Academy of Sciences of the United States of America (PNAS); Volume 106; No. 14; 5487-5492
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: We present the mass X-ray observable scaling relationships for clusters of galaxies using the XMM-Newton cluster catalog of Snowden et al. Our results are roughly consistent with previous observational and theoretical work, with one major exception. We find 2-3 times the scatter around the best fit mass scaling relationships as expected from cluster simulations or seen in other observational studies. We suggest that this is a consequence of using hydrostatic mass, as opposed to virial mass, and is due to the explicit dependence of the hydrostatic mass on the gradients of the temperature and gas density profiles. We find a larger range of slope in the cluster temperature profiles at radii 500 than previous observational studies. Additionally, we find only a weak dependence of the gas mass fraction on cluster mass, consistent with a constant. Our average gas mass fraction results also argue for a closer study of the systematic errors due to instrumental calibration and modeling method variations between analyses. We suggest that a more careful study of the differences between various observational results and with cluster simulations is needed to understand sources of bias and scatter in cosmological studies of galaxy clusters.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: Titan displays seasonal changes in the distribution of gas and hazes in its atmosphere, in the character of its methane clouds, and in its temperatures and winds. While Cassini has observed some of these cha rges in detail, some are observable from Earth, and the period of mos t rapid change may be just about to begin in the years after equinox,
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete. The few suitable discrete clouds that have been found for tracking indicate smaller velocities than aloft, consistent: with the Huygens measurements, Along the descent trajectory, the Huygens measurements indicate eastward zonal winds down to 7 km, where they shift westward, and then eastward again below 1 km dawn to the surface. The low-latitude dune fields seen in Cassini RADAR images have been interpreted as longitudinal dunes occurring in a mean eastward zonal wind. This is not like Earth, where the low-latitude winds are westward above the surface. Because the net zonal-mean time-averaged torque exerted by the surface on the atmosphere should vanish, there must be westward flow over part of the surface; the question is where and when. The meridional contrast in tropospheric temperatures deduced from radio occultations at low, mid, and high latitudes. is small, approximately 5 K at the tropopause and approximately 3 K at the surface. This implies efficient heat transport, probably by axisymmetric meridional circulations. The effect of the methane "hydrological" cycle on the atmospheric circulation is not well constrained by existing measurements, Understanding the mature of the surface-atmosphere coupling will be critical to elucidating the atmospheric transports of momentum, heat, and volatiles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Titan from Cassini-Huygens
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: The Moon is our closest planetary neighbor and the only extraterrestrial body to which humans have traveled, yet many questions about its origin and early history remain unanswered. Four papers published in this issue by scientific teams of the Japanese SELENE (Kaguya) mission offer a new global view of the Moon that helps to elucidate how the Moon evolved to its present state. The Moon is lopsided: Its visible nearside (tidally locked to face the Earth) is covered with smooth, dark volcanic mare, whereas the farside mainly consists of more heavily cratered, bright highland material. The differences in crustal thickness and density, apparent surface age, composition, and volcanic activity between the two sides are variously ascribed to external causes (such as a giant impact) or to internal causes (such as core formation, mantle convection, and crustal differentiation). The key to resolving these questions will be better data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science; Volume 323; No. 5916; 885-887
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: The combined use of altimetry, Earth-based Doppler and Earth-based range measurements in the lunar reconnaissance orbiter (LRO) mission (Chin et al. in Space Sci Rev 129:391-419, 2007) has been examined in a simulation study. It is found that in the initial phases of the mission orbit and altimeter geolocation accuracies should be better than 10m in the radial component and 60m overall. It is demonstrated that LRO's precise 1-way laser range measurement from Earth-based stations (Smith et al. in Proceedings of the 15th International Laser Ranging Workshop, Canberra, Australia, October 15-20, 2006) will be useful for gravity recovery. The advantages of multiple laser beams are demonstrated for altimeter calibration, orbit determination and gravity recovery in general planetary settings as well as for LRO.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geodesy; Volume 83; No. 8; 709-721
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-09-11
    Description: A technique involving Fe-55 X-rays provides a straightforward method to measure the response of a detector. The detector's response can lead directly to a calculation of the conversion gain (e(-) ADU(-1) ), as well as aid detector design and performance studies. We calibrate the Fe-15 X-ray energy response and pair production energy of HgCdTe using 8 HST WFC3 1.7 micron flight grade detectors. The results show that each Ka X-ray generates 2273 +/- 137 electrons, which corresponds to a pair-production energy of 2.61 +/- 0.16 eV. The uncertainties are dominated by our knowledge of the conversion gain. In future studies, we plan to eliminate this uncertainty by directly measuring conversion gain at very low light levels.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-08-10
    Description: Tracking of the Mars Global Surveyor spacecraft has been used to measure changes in the long-wavelength gravity field of Mars and to estimate the seasonal mass of carbon dioxide that is deposited in the polar regions each fall and winter and sublimed back into the atmosphere every spring and summer. Observations spanning 4 Mars years have been analyzed. A clear and well-defined seasonal signal, composed of annual and semiannual periods, is seen in the lowest odd degree 3 coefficient but with less confidence in the lowest even degree 2, which is expected to be smaller and is also much more difficult to observe. Direct estimation of the seasonal mass exchange employing a simple, seasonally varying model of the size and height of each cap provides values that indicate some systematic departures from the deposition predicted by a general circulation model. Estimates are also obtained for the precession and nutation of the pole of rotation of Mars, the degree 2 tidal Love number, k2, and the mass of Phobos, the larger of Mars' two natural satellites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: Mars may possess a global sub-surface groundwater table as an integral part of its current hydrological system, However, the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the 'Mars Express (MEx) spacecraft has yet to make a definitive detection of such a body of liquid water. In this work, we quantify. the conditions that would allow a detection of a deep aquifer and demonstrate that the lack of radar detection doses not uniquely role out the presence of such a body. Specifically, if the overlying crustal material has a conductivity above approximately 10(exp -5) S/m (equivalent to a loss tangent of 0.008), a radar echo frown an aquifer could be sufficiently attenuated by the intetvening medium to prevent its detection by MARSIS. As such, the lack of direct detection by MARSIS -- a "null result" does not rule out the possibility of the water table's existence.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysical Research Letters; Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysical Research Letters; Volume 36; L10203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330 ) and December 2008 (MY 29, Ls=183). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at approximately 5:00 PM local time than in the TES retrievals at approximately 2:00 PM, suggestive of possible local time variation of clouds.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 202; Iss. 2; 444-452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: Tectonic patterns on Europa are influenced by tidal stress. An important well-organized component is associated with the orbital eccentricity, which produces a diurnally varying stress as Jupiter's apparent position in Europa's sky oscillates in longitude. Cycloidal lineaments seem to have formed as cracks propagated in this diurnally varying stress field. Maps of theoretical cycloid patterns capture many of the characteristics of the observed distribution on Europa. However, a few details of the observed cycloids distribution have not reproduced by previous models. Recently, it has been shown that Europa has a finite forced obliquity, so Jupiter's apparent positon in Europa's sky will also oscillate in latitude. We explore this new type of diurnal effect on cycloid formation. We find that stress from obliquity may be the key to explaining several characteristics of observed cycloids such as the shape of equator-crossing cycloids and the shift in the crack patterns in the Argadnel Regio region. All of those improvements of the fit between observaiton and theory seem to require Jupiter crossing Europa's equatorial plane 45 deg. to 180 deg after perijove passage. Suggestive of complex orbital dynamics that lock the direction of Europe's pericenter with the direction of the ascending node at the time these cracks were formed.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSps and the nebular B-field may be derived using the IC flux components.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-06
    Description: We present an analysis of the visible through near infrared spectrum of Eta Car and its ejecta obtained during the "Eta Car Campaign with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT)". This is a part of the larger effort to present a complete Eta Car spectrum, and extends the previously presented analyses with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) in the UV (1240-3159 Angstrom) to 10,430 Angstrom. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 Angstroms, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 Angstroms.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-06
    Description: The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8"5 resolution. A spectral analysis is performed combining this new data and archival VLA 7 data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 701; no. 2; 1872-1879
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons,
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: The Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory is an imaging spectrometer for wavelengths between 28 microns and 440 microns. Our design is a dual-band long-slit grating spectrometer, which provides broadband (approx. 4000 km/s) observations in two lines simultaneously over a field of view roughly 10" wide by 320" long. The low backgrounds in spectroscopy require very sensitive detectors with noise equivalent powers of order 10(exp -18) W/square root of Hz. We are developing a kilopixel, filled detector array for SAFIRE in a 32 x 40 format. The detector consists of a transition edge sensor (TES) bolometer array, a per-pixel broadband absorbing backshort array, and a NIST SQUID multiplexer readout array. This general type of array has been used successfully in the GISMO instrument, so we extrapolate to the sensitivity needed for airborne spectroscopy. Much of the cryogenic, electronics, and software infrastructure for SAFIRE have been developed. I provide here an overview of the progress on SAFIRE.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-11
    Description: This document constitutes the publication of work performed by the Space Human Factors Laboratory (mail code SF5 at the time) at the Johnson Space Center (JSC) in the months of June and July of 2000. At that time, the Space Human Factors Laboratory was part of the Space Human Factors Branch in the Flight Projects Division of the Space and Life Directorate. This report was originally to be a document for internal consumption only at JSC as it was seen to be only preliminary work for the further development of solid state illumination for general lighting on future space vehicles and the International Space Station (ISS). Due to funding constraints, immediate follow-on efforts were delayed and the need for publication of this document was overcome by other events. However, in recent years and with the development and deployment of a solid state light luminaire prototype on ISS, the time was overdue for publishing this information for general distribution and reference. Solid state lights (SSLs) are being developed to potentially replace the general luminaire assemblies (GLAs) currently in service in the International Space Station (ISS) and included in designs of modules for the ISS. The SSLs consist of arrays of light emitting diodes (LEDs), small solid state electronic devices that produce visible light in proportion to the electrical current flowing through them. Recent progressive advances in electrical power-to-light conversion efficiency in LED technology have allowed the consideration of LEDs as replacements for incandescent and fluorescent light sources in many circumstances, and their inherent advantages in ruggedness, reliability, and life expectancy make them attractive for applications in spacecraft. One potential area of application for the SSLs in the U.S. Laboratory Module of the ISS. This study addresses the suitability of the SSLs as replacements for the GLAs in this application.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-11
    Description: This document contains some of the descriptions of payload and experiment related to life support and habitation. These describe experiments that have or are scheduled to fly on the International Space Station. There are instructions, and descriptions of the fields that make up the database. The document is arranged in alphabetical order by the Payload
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-27
    Description: NASA's exploration mission is to send humans to the Moon and Mars, in which the purpose is to learn how to live and work safely in those harsh environments. A critical aspect of living in an extreme environment is habitation, and within that habitation element there are key systems which monitor the habitation environment to provide a safe and comfortable living and working space for humans. Expandable habitats are one of the options currently being considered due to their potential mass and volume efficiencies. This paper discusses a joint project between the National Science Foundation (NSF), ILC Dover, and NASA in which an expandable habitat was deployed in the extreme environment of Antarctica to better understand the performance and operations over a one-year period. This project was conducted through the Innovative Partnership Program (IPP) where the NSF provided the location at McMurdo Station in Antarctica and support at the location, ILC Dover provided the inflatable habitat, and NASA provided the instrumentation and data system for monitoring the habitat. The outcome of this project provided lessons learned in the implementation of an inflatable habitat and the systems that support that habitat. These lessons learned will be used to improve current habitation capabilities and systems to meet the objectives of exploration missions to the moon and Mars.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18707 , AIAA Space 2009; 14-17 Sept. 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-27
    Description: Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.
    Keywords: Astrophysics
    Type: JSC-CN-18343 , 72nd Annual Meeting of the Meteoritical Society; 13-18 Jul. 20009; Nancy; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: The outermost layers of the Martian atmosphere are thought to be scientifically unique due to the large influences exerted by the highly dynamic lower atmosphere and the direct input of the solar wind from above. The nature of the solar wind interaction with the upper atmosphere is of particular interest because Mars lacks a global magnetic field, but is well shielded over some regions by strong crustal magnetic fields. Under such circumstances, the direct impact of solar wind plasma may have resulted in enhanced loss of volatiles over the ages including the components of water. The history of upper atmosphere and solar wind interaction measurements at Mars will be reviewed, recent results from the Mars Global Surveyor and Mars Express summarized, and prospects for new scientific advances enabled by the measurements that will be made by planned orbiter and penetrator missions. Special attention will be given to planetary magnetic field measurements, the measurement of ionospheric currents driven by the solar wind, and the role of space weather modeling and forecasting in the future of Mars exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: Astronomers are beginning to know the easy part: How did the Big Bang make stars and galaxies and the chemical elements? How did solar systems form and evolve? How did the Earth and the Moon form, and how did water and carbon come to the Earth? Geologists are piecing together the history of the Earth, and biologists are coming to know the history and process of life from the earliest times. But is our planet the only life-supporting place in the universe, or are there many? Astronomers are working on that too. I will tell the story of the discovery of the Big Bang by Edwin Hubble, and how the primordial heat radiation tells the details of that universal explosion. I will tell how the James Webb Space Telescope will extend the discoveries of the Hubble Space Telescope to ever greater distances, will look inside dust clouds to see stars being born today, will measure planets around other stars, and examine the dwarf planets in the outer Solar System. I will show concepts for great new space telescopes to follow the JWST and how they could use future moon rockets to hunt for signs of life on planets around other stars.
    Keywords: Astrophysics
    Type: How Did the Universe Make People? A Brief History of the Universe from the Beginning to the End; Sep 27, 2009 - Oct 01, 2009; New Haven, CT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18306 , Lunar Science Forum 2009; Jul 21, 2009 - Jul 23, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and MSFC, and Ohio State University and MIT. Progress in measuring cell efficiency for oxygen production, development of non reacting electrodes, and cell feeding and withdrawal will be discussed.
    Keywords: Man/System Technology and Life Support
    Type: MSFC-2201 , Space Propulsion and Energy Sciences International Forum; Feb 24, 2009 - Feb 27, 2009; Hunstville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: The space-based OWL mission is designed to perform high-statistics measurements of ultra-high-energy cosmic rays (UHECR) using the Earth's atmosphere as a vast particle calorimeter, furthering the field of charged-particle astronomy. OWL has been developed in formal NASA instrument and mission studies and is comprised of two large telescopes separated by approx.600 km in 1000 km, near-equatorial orbits to stereoscopically image the near-UV air fluorescence emitted by UHECR-induced particle cascades. The High Resolution Fly's Eye (HiRes) Collaboration, and subsequently the Pierre Auger Observatory, recently reported confirmation of the expected Greisen-Zatsepin-Kuzmin (GZK) suppression of the UHECR flux above a few times 10(exp 19) eV. This observation is consistent with the majority of UHECR originating in astrophysical objects and reduces the need to invoke exotic physical processes. Particles observed above the GZK threshold energy must have come from sources within about 100 Mpc from the Earth. The small particle deflection angles expected at UHECR energies, with standard assumptions of extragalactic magnetic fields, are on the order of 1 degree. Thus by observing particles above the GZK threshold with sufficient exposure, there is the potential of identifying and characterizing individual UHECR sources. Auger has reported significant anisotropy in the arrival directions of UHECR at energies above about 6 10(exp 19) eV observed in the South, and a correlation to AGN in the 12th VCV catalog, suggesting that the sources of UHECR are traced by the distribution of luminous matter in the Universe. However, with similar statistics and the same event selection criteria, HiRes observations in the North are consistent with isotropy. Extended observations by Auger-South, by Telescope Array in the North, and possibly by the proposed Auger-North, will further these investigations. However, much greater exposures will be required to fully identify individual sources and measure their cosmic ray spectra. A five-year OWL mission would deliver approximately 10(exp 6)sq km/sr/yr of exposure with full aperture reached at approx. 10(exp 19) eV. The baseline 3 m optical aperture OWL telescopes with 45 degree full field-of-view are easily accomodated on a single conventional launch vehicle. On orbit, the simultaneous viewing of the same volume of atmosphere allows for precise stereo event reconstruction, which is nearly independent of the inclination of the particle track and tolerant of atmospheric conditions. The availability of monocular operation provides increased reliability or can be employed to increase the instantaneous aperture. In stereo mode, OWL is also capable of fully reconstructing horizontal or upward-moving showers and so has unmatched sensitivity to neutrino-induced events. The details of the OWL mission will he presented and its science capabilities will be discussed.
    Keywords: Astrophysics
    Type: International Cosmic Ray Conference; Jul 07, 2009 - Jul 15, 2009; Lodz; Poland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: Presolar grains were identified in meteorite residues 20 years ago based on their exotic isotopic compositions. Their study has provide new insights into stellar evolution and the first view of the original building blocks of the solar system. Organic matter in meteorites and IDPs is highly enriched in D/H and N-15/N-14 at micrometer scales, possibly due to presolar organic grains. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material. Identifying the carriers of these anomalies and elucidating their physical and chemical properties may give new views of interstellar chemistry and better understanding of the original components of the protosolar disk. However, identifying the carriers has been hampered by their small size and the inability to chemically isolate them. Thanks to immediate careful collection of Tagish Lake meteorite specimen, as well as major advances in nano-scale analytical techniques and advanced sample preparation, we were able to show that in the Tagish Lake meteorite, the principle carriers of these isotopic anomalies are sub-micrometer, hollow organic globules. The organic globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk. Organic globules with similar physical, chemical, and isotopic properties are also recently found from Bells CM2 carbonaceous chondrite, in IDPs and in the comet Wild-2 samples returned by Stardust. These results support the view that microscopic organic grains were widespread constituents of the protoplanetary disk. Their exotic isotopic compositions trace their origins to the outermost portions of the protosolar disk or a presolar cold molecular cloud.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-18214 , AGU 2009 Joint Assembly, Meeting of the Americas; May 24, 2009 - May 27, 2009; Toronto; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The prime scientific objectives of the Gravity and Extreme Magnetism SMEX, GEMS, are to determine the effects of the spin of black holes, the configurations of the magnetic fields of magnetars, and the structure of the supernova shocks which accelerate cosmic rays. In the cases of both stellar black holes and supermassive black holes, sensitivity to 1% polarization is needed to make diagnostic measurements of the net polarizations predicted for probable disk and corona models. GEMS can reach this goal for several Seyferts and quasars and measure the polarizations of representatives of a variety of other classes of X-ray sources, such as rotation-powered and accretion-powered pulsars. GEMS uses foil mirrors to maximize the collecting area achievable within the SMEX constraints. The polarimeters at the mirror foci are Time Projection Chambers which use the photoelectic effect to measure the polarization of the incident photon. We have built laboratory models with good efficiency and modulation in the 2-10 keV range. An attached small student experiment would add 0.5 keV sensitivity for bright soft sources. The instrument has a point spread function which allows measurement of structures in the brighter nearby supernova remnants. GEMS' Orbital Sciences spacecraft will rotate at a rate of 0.1 revolutions per minute during observations, so that systematic errors due to the detector can be detected and corrected. A program of 35 sources can be observed in 9 months. GEMS is designed for a two year lifetime which will allow a General Observer program that would more than double the number of sources measured. For subsets of black holes, neutron stars and supernova remnants, GEMS will measure the polarization of several sources, solving important questions while establishing the sensitivity required for future missions.
    Keywords: Astrophysics
    Type: The Coming of Age of X-Ray Polarimetry (XRAYPOL); Apr 25, 2009 - May 01, 2009; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ 〈 z 〈 $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.
    Keywords: Astrophysics
    Type: Giovanni Fazio Science Symposium; Apr 27, 2009 - Apr 28, 2009; Massachusetts; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.
    Keywords: Astrophysics
    Type: PAMELA Science Meeting and Physics Workshop; May 09, 2009 - May 12, 2009; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: A paradox of X-ray binaries is that their strong X-ray flux ionizes much nearby low density gas, making it difficult to observe. Polarization can reveal gas which is fully ionized and can provide new insight into X-ray binary environments. In this talk I will present models for the scattering and polarization in X-ray binaries, adopting gas parameters which are chosen according to current ideas about these systems. These include stellar winds from a massive companion, X-ray induced disk winds, and the photospheres of a disk or binary companion.
    Keywords: Astrophysics
    Type: The Coming of Age of X-ray Polarimetry; Apr 27, 2009 - Apr 30, 2009; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: In 2009, the Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, CA) was assessed in the National Aeronautics and Space Administration (NASA) Exploration Life Support (ELS) distillation comparison test. The purpose of the test was to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. The CDS portion of the comparison test was conducted between May 6 and August 19, 2009. The system was challenged with two pretreated test solutions, each intended to represent a feasible wastewater generated in a surface habitat. The 30-day equivalent wastewater loading volume for a crew of four was processed for each wastewater solution. Test Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. Test Solution 2 contained the addition of human-generated hygiene wastewater to the solution 1 waste stream components. Approximately 1500 kg of total wastewater was processed through the CDS during testing. Respective recoveries per solution were 93.4 +/- 0.7 and 90.3 +/- 0.5%. The average specific energy of the system was calculated to be less than 130 W-hr/kg. The following paper provides detailed information and data on the performance of the CDS as challenged per the ELS distillation comparison test.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19250 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: This paper summarizes investigations conducted on different orthostatic intolerance protection garments. This paper emphasizes on the engineering and operational aspects of the project. The current Shuttle pneumatic Anti-G Suit or AGS at 25 mmHg (0.5 psi) and customized medical mechanical compressive garments (20-30 mmHg) were tested on human subjects. The test process is presented. The preliminary results conclude that mechanical compressive garments can ameliorate orthostatic hypotension in hypovolemic subjects. A mechanical compressive garment is light, small and works without external pressure gas source; however the current garment design does not provide an adjustment to compensate for the loss of mass and size in the lower torso during long term space missions. It is also difficult to don. Compression garments that do not include an abdominal component are less effective countermeasures than garments which do. An early investigation conducted by the Human Adaptation and Countermeasures Division at Johnson Space Center (JSC) has shown there is no significant difference between the protection function of the AGS (at 77 mmHg or 1.5 psi) and the Russian anti-g suit, Kentavr (at 25 mmHg or 0.5 psi). Although both garments successfully countered hypovolemia-induced orthostatic intolerance, the Kentavr provided protection by using lower levels of compression pressure. This more recent study with a lower AGS pressure shows that pressures at 20-30 mmHg is acceptable but protection function is not as effective as higher pressure. In addition, a questionnaire survey with flight crewmembers who used both AGS and Kentavr during different missions was also performed.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19236 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Reston, Virginia; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19238 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive results that encompass the variation within the entire population. The current EMU does not accommodate humans at the extremes of the anthropometric spectrum. To account for this and to ensure that these requirements cover the population, another phase of testing will be conducted in a differential pressure glove box. This phase will focus on smaller females and very large males that do not have a properly fitted EMU suit. Instead, they would wear smaller or larger gloves and be tested in the glove box as a means to compare and contrast their strength capabilities against the EMU accommodated hand size subjects. The glove box s ability to change pressures easily will also allow for a wider range of glove pressures to be tested. Compared to the data collected on the subjects wearing the EMU suit, it is expected that there will be similar ratios to bare-hand. It is recommended that this topic be sent to the Physical Ergonomics Board for review.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19276 , 3rd International Conference on Applied Human Factors and Ergonomics; Jul 17, 2010 - Jul 20, 2010; Miami, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities varying pressure environments.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19177 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) crew compliment has increased in size from 3 to 6 crew members . In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19173 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19228 , 40tt International Conference on Environmental System (ICES); Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19212 , International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for CSSE pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19039 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Reston, Virginia; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19149 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Coalescing massive black hole binaries are formed when galaxies merge. The final stages of this coalescence produce strong gravitational wave signals that can be detected by the space-borne LISA. When the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.
    Keywords: Astrophysics
    Type: APR09-2009-000640 , Opening Ceremonies of the 2009 International Year of Astronomy; May 02, 2009 - May 05, 2009; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: An EMU water processing kit (Airlock Coolant Loop Recovery A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of postflight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives was implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit components, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements. The intent of this paper is to summarize the findings of that evaluation, and to outline updated schedules for A/L CLR use and component life.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: For future lunar extravehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon(Registered Trademark) membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using this membrane was successfully tested by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of a compact sheet membrane SWME development unit for use in the Constellation System Spacesuit Element Portable Life Support System (Vogel and et. al., ICES 2008). Major design objectives included minimizing mass, volume, and manufacturing complexity while rejecting a minimum of 810 watts of heat from water flowing through the SWME at 91 kg/hr with an inlet temperature of 291K. The design meeting these objectives consisted of three concentric cylindrical water channels interlaced with four water vapor channels. Two units were manufactured for the purpose of investigating manufacturing techniques and performing thermal testing. The extensive thermal test measured SWME heat rejection as a function of water inlet temperatures, water flow-rates, water absolute pressures, water impurities, and water vapor back-pressures. This paper presents the test results and subsequent analysis, which includes a comparison of SWME heat rejection measurements to pretest predictions. In addition, test measurements were taken such that an analysis of the commercial-off-the-shelf vapor pressure control valve could be performed.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: The Constellation Program requires the development of a space suit system to meet new requirements for launch, entry, and abort crew survival functions, microgravity intravehicular and extravehicular activities, and lunar surface exploration. This paper summarizes recent work and the current status of the NASA Constellation Space Suit Element Pressure Garment and Crew Survival Subsystem (PG/CS). The emphasis of the work by the PGS/CS team has been in the areas of feasibility studies toward PGS/CS architecture definition, risk mitigation, and requirements development. Included are results from component level engineering studies, testing in the Orion Vehicle and Orion seat mockups, microgravity testing on the Reduced Gravity Aircraft, occupant protection sled testing, analyses and studies, and their implications on Constellation PG/CS subsystem.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft(Registered TradeMark) Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of the Exploration Life support (ELS) regenerative system technologies. This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically. The latest ALSSAT related publication in ICES 2004 detailed ALSSAT s development status including the completion of all six ELS Subsystems (ELSS), namely, the Air Management Subsystem, the Biomass Subsystem, the Food Management Subsystem, the Solid Waste Management Subsystem, the Water Management Subsystem, and the Thermal Control Subsystem and two external interfaces, including the Extravehicular Activity and the Human Accommodations. Since 2004, many more regenerative technologies in the ELSS were implemented into ALSSAT. ALSSAT has also been used for the ELS Research and Technology Development Metric Calculation for FY02 thru FY06. It was also used to conduct the Lunar Outpost Metric calculation for FY08 and was integrated as part of a Habitat Model developed at Langley Research Center to support the Constellation program. This paper will give an update on the analysis tool s current development status as well as present the analytical results of one of the trade studies that was performed.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: NASA is planning to return to the moon and then explore Mars. A permanent base at the south pole of the moon will be the test bed for Mars. At the moon base, two crewmembers are expected to conduct Extravehicular Activity (EVA) six days every week. Current spacesuits are cooled by the sublimation of water ice into vacuum. A single 7 hour EVA near the lunar equator in daylight can expend up to 5 kilograms of water. Because of the high cost of transporting spacesuit cooling water to the moon, the water for one EVA could cost hundreds of thousands of dollars. The lunar south pole and Mars have low surface temperatures that make cooling much easier than at the lunar equator. Alternate cooling methods and keeping to cool environments can reduce or eliminate the loss of water for spacesuit cooling. If cooling water is not needed, a recycling life support system can provide all the required crew water and oxygen without transporting additional water from Earth.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN455 , International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, G; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: A habitable atmosphere is a fundamental requirement for human spaceflight. To meet such a requirement, the cabin atmosphere must be constantly scrubbed to maintain human life and system functionality. The primary system for atmospheric scrubbing of the US on-orbit segment (USOS) of the International Space Station (ISS) is the Trace Contaminant Control System (TCCS). As part of the Environmental Control and Life Support Systems (ECLSS) atmosphere revitalization rack in the US Lab, the TCCS operates continuously, scrubbing trace contaminants generated primarily by two sources: the metabolic offgassing of crew members and the offgassing of equipment in the ISS. It has been online for approximately 95% since activated in February 2001. The TCCS is comprised of a charcoal bed, a catalytic oxidizer, and a lithium hydroxide post-sorbent bed, all of which are designed to be replaced onorbit when necessary. In 2006, all three beds were replaced following an observed increase in the system resistance that occurred over a period several months. The beds were returned to ground and subjected to a test, teardown and evaluation to investigate the root cause(s) of the decrease in flow rate through the system. In addition, various chemical and physical analyses of the bed materials were performed to determine contaminant loading and any changes in performance. This paper will mainly focus on the results of these analyses and how this correlates with what has been observed from archival sampling and onorbit events. This may provide insight into the future performance of the TCCS and rate of change for orbital replacement units in the TCCS.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M09-0711 , Scientific Organizing Committee; Sep 14, 2009 - Sep 18, 2009; Venice; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: The Lunar Surface System Habitat Demonstration Unit (HDU) will require the project team to integrate a variety of contributions from NASA centers and potential outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture. To accomplish the development of the HDU from conception in June 2009 to rollout for operations in July 2010, the HDU team is using several strategies to mitigate risks and bring the separate efforts together. First, a set of design standards is being developed to define the interfaces between the various systems of HDU and to the payloads, such as the Geology Lab, that those systems will support. Scheduled activities such as early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU. A coordinated effort to establish simplified Computer Aided Design standards and the utilization of a modeling and simulation systems will aid in design and integration concept development. Finally, decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19096 , Earth and Space 2010; Mar 14, 2010 - Mar 17, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: NASA is currently engaged in an activity to facilitate effective operations on the International Space Station (ISS) after the Space Shuttle retires. Currently, the Space Shuttle delivers crew and cargo to and from ISS. The Space Shuttle provides the only large scale method of hardware return from ISS to the ground. Hardware that needs to be periodically repaired, refurbished, or recalibrated must come back from ISS on the Shuttle. One example of NASA flight hardware that is used on ISS and refurbished on the ground is the Compound Specific Analyzer for Oxygen (CSA-O2). The CSA-O2 is an electrochemical sensor that is used on orbit for about 12 months (depending on Shuttle launch schedules), then returned to the ground for sensor replacement. The shuttle is scheduled to retire in 2010, and the ISS is scheduled to operate until 2016. NASA needs a hand held sensor that measures oxygen in the ISS environment and has a 5-10 year service life. After conducting a survey of oxygen sensor systems, NASA selected a Tunable Diode Laser Absorption Spectrometer (TDLAS) as the method of measurement that best addresses the needs for ISS. These systems are compact, meet ISS accuracy requirements, and because they use spectroscopic techniques, the sensors are not consumed or altered after making a measurement. TDLAS systems have service life ratings of 5-10 years, based on the lifetime of the laser. NASA is engaged in modifying a commercially available sensor, the Vaisala OMT 355, for the ISS application. The Vaisala OMT 355 requires three significant modifications to meet ISS needs. The commercial sensor uses a wall mount power supply, and the ISS sensor needs to use a rechargeable battery as its source of power. The commercial sensor has a pressure correction setpoint: the sensor can be adjusted to operate at reduced pressure conditions, but the sensor does not self correct dynamically and automatically. The ISS sensor needs to operate in the airlock, and make accurate measurements in an environment that can change from 14.7 psia to 10.2 psia in 15 minutes. The commercial sensor needs to be repackaged into a configuration that is more compact, and better suited for ISS airlock operations. NASA has recently completed a prototype of the reconfigured system. The unit has been repackaged in a way that the optical path of the spectrometer is unchanged, but the electronics has been integrated into a case measuring 10.7 X 7.2 X 3.0 inches. Two flight qualified rechargeable batteries have been integrated into system. The batteries can power the sensor for 10 hours on a single charge. A pressure sensor has been added to the system. The modified unit automatically compensates for changes in pressure, and meets 0.2% accuracy requirements for oxygen measurements in an environment with 18 to 32% oxygen across a pressure range of 10.0 to 15.0 psia.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18968 , SAMAP 2009 (Submarine Air Monitoring and Purification); Oct 20, 2009 - Oct 21, 2009; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The design and mass cost of a starship and its life support system are investigated. The mission plan for a multi generational interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Only current technology is assumed. Highly reliable life support systems can be provided with reasonably small additional mass, suggesting that they can support long duration missions. Bioregenerative life support, growing crop plants that provide food, water, and oxygen, has been thought to need less mass than providing stored food for long duration missions. The large initial mass of hydroponics systems is paid for over time by saving the mass of stored food. However, the yearly logistics mass required to support a bioregenerative system exceeds the mass of food solids it produces, so that supplying stored dehydrated food always requires less mass than bioregenerative food production. A mixed system that grows about half the food and supplies the other half dehydrated has advantages that allow it to breakeven with stored dehydrated food in about 66 years. However, moderate increases in the hydroponics system mass to achieve high reliability, such as adding spares that double the system mass and replacing the initial system every 100 years, increase the mass cost of bioregenerative life support. In this case, the high reliability half food growing, half food supplying system does not breakeven for 389 years. An even higher reliability half and half system, with three times original system mass and replacing the system every 50 years, never breaks even. Growing food for starship life support requires more mass than providing dehydrated food, even for multigeneration voyages of hundreds of years. The benefits of growing some food may justify the added mass cost. Much more efficient recycling food production is wanted but may not be possible. A single multigenerational interstellar voyage to colonize a new planet would have cost similar to that of the Apollo program. Cost is reduced if a small crew travels slowly and lands with minimal equipment. We can go to the stars!
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN506 , International Conference On Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: CO2 acquisition and utilization technologies will have a vital role in determining sustained and affordable life support and in-situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture and chemically reduce the metabolic CO2 from the cabin air to restitute oxygen consumption. Technologies that facilitate the in-situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars and their demonstration on the moon is critical as well. This paper describes the concept and experimental investigation of a CO2 capture and reduction system that comprises an adsorption compressor and a CO2 and steam co-electrolysis unit. The process products include oxygen for life support and Syngas (CO and H2) for synthetic fuel production. Electrochemical performance in terms of CO2 conversion, oxygen production, and power consumption of a system with a capacity to process 1kg CO2 per day (1-person equivalent) will be discussed.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN408 , International Conference On Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Three NASA centers are working together to address the challenge of operating robotic assets in support of human exploration of the Moon. This paper describes the combined work to date of the Ames Research Center (ARC), Jet Propulsion Laboratory (JPL) and Johnson Space Center (JSC) on a common support framework to control and monitor lunar robotic assets. We discuss how we have addressed specific challenges including time-delayed operations, and geographically distributed collaborative monitoring and control, to build an effective architecture for integrating a heterogeneous collection of robotic assets into a common work. We describe the design of the Robot Application Programming Interface Delegate (RAPID) architecture that effectively addresses the problem of interfacing a family of robots including the JSC Chariot, ARC K-10 and JPL ATHLETE rovers. We report on lessons learned from the June 2008 field test in which RAPID was used to monitor and control all of these assets. We conclude by discussing some future directions to extend the RAPID architecture to add further support for NASA's lunar exploration program.
    Keywords: Man/System Technology and Life Support
    Type: IEEE Aerospace Conference; Mar 07, 2009 - Mar 14, 2009; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: One of the goals of In-Situ Resource Utilization (ISRU) on the moon is to produce oxygen from the lunar regolith which is present in the form of Ilmenite (FeTi03) and other compounds. A reliable and attainable method of extracting some of the oxygen from the lunar regolith is to use the hydrogen reduction process in a hot reactor to create water vapor which is then condensed and electrolyzed to obtain oxygen for use as a consumable. One challenge for a production system is to reliably acquire the regolith with an excavator hauler mobility platform and then introduce it into the reactor inlet tube which is raised from the surface and above the reactor itself. After the reaction, the hot regolith (-1000 C) must be expelled from the reactor for disposal by the excavator hauler mobility system. In addition, the reactor regolith inlet and outlet tubes must be sealed by valves during the reaction in order to allow collection of the water vapor by the chemical processing sub-system. These valves must be able to handle abrasive regolith passing through them as well as the heat conduction from the hot reactor. In 2008, NASA has designed and field tested a hydrogen reduction system called ROxygen in order to demonstrate the feasibility of extracting oxygen from lunar regolith. The field test was performed with volcanic ash known as Tephra on Mauna Kea volcano on the Big Island of Hawai'i. The tephra has similar properties to lunar regolith, so that it is regarded as a good simulant for the hydrogen reduction process. This paper will discuss the design, fabrication, operation, test results and lessons learned with the ROxygen regolith feed system as tested on Mauna Kea in November 2008.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-006 , 2nd Symposium On Space Resource Utilization at 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant's regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-18256 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: One of the primary objectives of NASA's Vision for Space Exploration is the creation of a permanently manned lunar outpost. Facing the challenge of establishing a human presence on the moon will require new innovations and technologies that will be critical to expanding this exploration to Mars and beyond. However, accomplishing this task presents an unprecedented set of obstacles, one of the more significant of which is the development of new strategies for ground test and verification. Present concepts for the Lunar Surface System (LSS) architecture call for the construction of a series of independent yet tightly coupled modules and elements to be launched and assembled in incremental stages. Many of these will be fabricated at distributed locations and delivered shortly before launch, precluding any opportunity for testing in an actual integrated configuration. Furthermore, these components must operate flawlessly once delivered to the lunar surface since there is no possibility for returning a malfunctioning module to Earth for repair or modification. Although undergoing continual refinement, this paper will present the current state of the plans and models that have been devised for meeting the challenge of ground based testing for Constellation Program LSS as well as the rationale behind their selection.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-196 , Aerospace Testing Seminar; Oct 13, 2009 - Oct 15, 2009; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: A lightweight bulldozer blade prototype has been designed and built to be used as an excavation implement in conjunction with the NASA Chariot lunar mobility platform prototype. The combined system was then used in a variety of field tests in order to characterize structural loads, excavation performance and learn about the operational behavior of lunar excavation in geotechnical lunar simulants. The purpose of this effort was to evaluate the feasibility of lunar excavation for site preparation at a planned NASA lunar outpost. Once the feasibility has been determined then the technology will become available as a candidate element in the NASA Lunar Surface Systems Architecture. In addition to NASA experimental testing of the LANCE blade, NASA engineers completed analytical work on the expected draft forces using classical soil mechanics methods. The Colorado School of Mines (CSM) team utilized finite element analysis (FEA) to study the interaction between the cutting edge of the LANCE blade and the surface of soil. FEA was also used to examine various load cases and their effect on the lightweight structure of the LANCE blade. Overall it has been determined that a lunar bulldozer blade is a viable technology for lunar outpost site preparation, but further work is required to characterize the behavior in 1/6th G and actual lunar regolith in a vacuum lunar environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-226 , AIAA 2009 Space Conference and Exposition; Sep 14, 2009 - Sep 17, 2009; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-032 , 11th International Conference on Electrostatics 2009; May 26, 2009 - May 29, 2009; Valencia; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-282 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-133 , International Mars Society Convention; Jul 30, 2009 - Aug 02, 2009; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory (MSL) is the next step in NASA's Mars Exploration Program, currently scheduled for 2011. The spacecraft's descent into the Martian atmosphere will be slowed from Mach 2 to subsonic speeds via a large parachute system with final landing under propulsive control. A Disk-Band-Gap (DBG) parachute will be used on MSL similar to the designs that have been used on previous missions, however; the DBG parachute used by MSL will be larger (21.5 m) than in any of the previous missions due to the weight of the payload and landing site requirements. The MSL parachute will also deploy at higher Mach number (M 2) than previous parachutes, which can lead to instabilities in canopy performance. Both the increased size of the DBG above previous demonstrated configurations and deployment at higher Mach numbers add uncertainty to the deployment, structural integrity and performance of the parachute. In order to verify the performance of the DBG on MSL, experimental testing, including acquisition of Stereo Particle Imaging Velocimetry (PIV) measurements were required for validating CFD predictions of the parachute performance. A rigid model of the DBG parachute was tested in the 10x10 foot wind tunnel at GRC. Prior to the MSL tests, a PIV system had never been used in the 10x10 wind tunnel. In this paper we discuss some of the technical challenges overcome in implementing a Stereo PIV system with a 750x400 mm field-of-view in the 10x10 wind tunnel facility and results from the MSL hardshell canopy tests.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper 2007- 0070 , E-17866 , AIAA 47th Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Observations of the equatorial lunar sodium emission are examined to quantify the effect of precipitating ions on source rates for the Moon's exospheric volatile species. Using a model of exospheric sodium transport under lunar gravity forces, the measured emission intensity is normalized to a constant lunar phase angle to minimize the effect of different viewing geometries. Daily averages of the solar Lyman alpha flux and ion flux are used as the input variables for photon-stimulated desorption (PSD) and ion sputtering, respectively, while impact vaporization due to the micrometeoritic influx is assumed constant. Additionally, a proxy term proportional to both the Lyman alpha and to the ion flux is introduced to assess the importance of ion-enhanced diffusion and/or chemical sputtering. The combination of particle transport and constrained regression models demonstrates that, assuming sputtering yields that are typical of protons incident on lunar soils, the primary effect of ion impact on the surface of the Moon is not direct sputtering but rather an enhancement of the PSD efficiency. It is inferred that the ion-induced effects must double the PSD efficiency for flux typical of the solar wind at 1 AU. The enhancement in relative efficiency of PSD due to the bombardment of the lunar surface by the plasma sheet ions during passages through the Earth's magnetotail is shown to be approximately two times higher than when it is due to solar wind ions. This leads to the conclusion that the priming of the surface is more efficiently carried out by the energetic plasma sheet ions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4597.2011 , Icarus (ISSN 0019-1035); 205; 2; 364-374
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: We study radiation-induced amorphization of crystalline ice, ana lyzing the resu lts of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the 'thermal spike' model. We then discuss the common use of the 1.65 micrometer infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared refl ectance absorption spectra measured between 1.4 and 2.2 micrometers for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 10(exp 15) protons per square centimeter, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.
    Keywords: Astrophysics
    Type: GSFC.JA.4461.2011 , Icarus (ISSN 0019-1035); 207; 1; 314-319
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: LEGNEW-OLDGSFC-GSFC-LN-1225
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: The Surface Systems team is working to learn about lunar regolith and how we can use it as a source of air, water, and fuel for spacecrafts. However, excavation of this valuable regolith is difficult because the robot has to conform to many specifications (mass limit, efficiency level, etc.). NASA has therefore decided to include college students and companies in the search to create the best robot by making it into a competition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The Lunar Regolith Excavation Competition is a new competition that needs graphics, logos, rules, as well as an arena. Although this is the first year of the competition, the competition is modeled after an existing competition, the Centennial Lunar Excavator Challenge. This competition however is aimed at college students. This makes the challenge identifying key aspects of the original competition and modeling them to fit into an easier task, and creating exciting advertisement that helps encourage participation. By using a youth focus group, young insight, as well as guiding advice from experts in the field, hopefully an arena can be designed and built, rules can be molded and created to fit, and alluring graphics can be printed to bring about a successful first year of the Lunar Regolith Excavation Competition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-155
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: KSC-2009-069
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: In 2004, President George W. Bush proposed a new set of goals for NASA which have since been formalized by Congress as the revised United States Space Policy. A major goal is to return humans to the moon by 2020. This prompted a world-wide discussion about what our goals in space ought to be. In 2006 NASA surveyed potential stakeholders asking the question, "Why the Moon?" Responses were received from over 1000 entities including business, industry, academia, and 13 other space agencies. This presentation reports the responses to that questionnaire, as well as current plans for how the return to the moon will be accomplished.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-17341
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.5252.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Presentation on hypothetical "Icebreaker" proposed robotic mission, a follow-on to the 2007Phoenix Mars polar lander which replaces the sco op with a lightweight drill.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN1010
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-096 , KSC-2009-115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: NASA has undertaken the In-Situ Resource Utilization (lSRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The RESOLVE chemical processing system was mounted within the CMU rover "Scarab" and successfully demonstrated on Hawaii's Mauna Kea volcano in November 2008. This technology could be used on Mars as well. As described at the 2008 Mars Society Convention, the Lunar Water Resource Demonstration (LWRD) supports the objectives of the RESOLVE project by capturing and quantifying water and hydrogen released by regolith upon heating. Field test results for the quantification of water using LWRD showed that the volcanic ash (tephra) samples contained 0.15-0.41% water, in agreement with GC water measurements. Reduction of the RH in the surge tank to near zero during recirculation show that the water is captured by the water beds as desired. The water can be recovered by heating the Water Beds to 230 C or higher. Test results for the capture and quantification of pure hydrogen have shown that over 90% of the hydrogen can be captured and 98% of the absorbed hydrogen can be recovered upon heating the hydride to 400 C and desorbing the hydrogen several times into the evacuated surge tank. Thus, the essential requirement of capturing hydrogen and recovering it has been demonstrated. ,
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-127
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at aMars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-60s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000 C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will illustrate through a variety of evolved gas experiments implemented under SAM-like gas flow and temperature ramp conditions on terrestrial analog minerals on high fidelity Sam breadboards the type of chemical information we expect SAM to provide.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6071.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.
    Keywords: Astrophysics
    Type: GSFC.ABS.00249.2012 , Advancing Chemical Understanding through Astronomical Observations; May 26, 2009 - May 29, 2009; Greenbank, WV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-19
    Description: Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2009 American Geophysical Union(AGU) Fall Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.
    Keywords: Astrophysics
    Type: SLAC Summer Institute: Revolutions on the Horizon, A Decade of New Experiments; Aug 06, 2009 - Aug 08, 2009; Menlo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-19
    Description: As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18635 , American Society for Microbiology Conference on Biofilms; Nov 15, 2009 - Nov 19, 2009; Cancun; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-19
    Description: During the last few years, considerable effort has been directed towards very large-scale (〉 $5 billion) missions to detect and characterize Mars-radius to Earth-radius planets around nearby stars; such as the Terrestrial Planet Finder Interferometer and Darwin missions. However, technological issues such as formation flying and control of systematic noise sources will likely prevent these missions from entering Phase A until at least the end of the next decade. Presently more than 350 planets have been discovered by a variety of techniques, and little is known about the majority of them other than their approximate mass. However, a simplified nulling interferometer operating in the near- to mid-infrared (e.g. approx. 5-15 microns), like the enhanced version of the Fourier Kelvin Stellar Interferometer (FKSI), can characterize the atmospheres of a large sample of the known planets - including Earth twins. Many other scientific problems can be addressed with a system like FKSI, including the studies of debris disks, active galactic nuclei, and low mass companions around nearby stars. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics including siderostats.
    Keywords: Astrophysics
    Type: Pathways to Habitable Planets; Sep 14, 2009 - Sep 18, 2009; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-19
    Description: Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the or igin of these compounds could not be firmly established. Here, we pre sent the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardu st-returned foil samples measured by gas chromatography-mass spectrom etry coupled with isotope ratio mass spectrometry. The Delta C-13 value for glycine of +29 +/- ? 6%: strongly suggests an extraterrestrial origin For glycine, while the Delta C-13 value for EACA of -25 +/-2 % indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Submitted to Meteorites and Planetary Science for publication.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...