ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
  • 2010-2014  (132)
  • 1985-1989
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: The 2011 submarine eruption that took place in the proximity of El Hierro Island (Canary Islands, Spain) has raised the need to identify the most likely future emission zones even on volcanoes characterized by low frequency activity. Here, we propose a probabilistic method to build the susceptibility map of El Hierro, i.e. the spatial distribution of vent opening for future eruptions, based on the probabilistic analysis of volcano-structural data of the Island collected through newfieldworkmeasurements, bathymetric information, as well as analysis of geological maps, orthophotos and aerial photographs. These data have been divided into different datasets and converted into separate and weighted probability density functions, which were included in a non-homogeneous Poisson process to produce the volcanic susceptibility map. The most likely area to host new eruptions in El Hierro is in the south-western part of the West rift. High probability locations are also found in the Northeast and South rifts, and along the submarine parts of the rifts. This map represents the first effort to deal with the volcanic hazard at El Hierro and can be a support tool for decision makers in land planning, emergency measures and civil defense actions.
    Description: This work has been partially funded by the Spanish Geological Survey (IGME) through the MODEX Project (directed by Luis Laín) and a Research Grant for LB, and the Research grant program “Innova Canarias 2020®” from the “Fundación Universitaria de Las Palmas”.
    Description: Published
    Description: 21-30
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Susceptibility ; Volcanic hazard ; Eruptive vent ; Volcano-tectonics ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The 1669 AD flank eruption was the most destructive event on Etna volcano in historical times (~700 BC) and provided, because of the presence of numerous quarries and subsurface data, the opportunity for a unique case study in which we directly measured the thickness of the lava field. Moreover, analysis of historical documents allowed reconstruction of the temporal evolution of the lava field and estimation of the average effusion rate. One hundred and thirty eight thickness measurements, acquired from field surveys and subsurface data, allowed us to divide the lava field into twelve zones of homogenous mean thickness and to calculate a total lava volume of (607 ± 105) × 106 m3, corresponding to an average effusion rate of 58 ± 10 m3/s. This new volume differs by −24% up to +64%, from previously published values. The temporal evolution of the cumulative volume and average effusion rate were reconstructed for the first fourteen days, from field data and analysis of historical records. A short initial phase was characterized by a rapid increase in effusion rate, which reached a peak of ~640 m3/s after three days. This was followed by a longer phase in which the flow rate decreased. The first fourteen days were crucial for the development of the lava field, and in this time it covered 72% of its final area and produced most of the damage. Thereafter, the growth of a complex lava tube network promoted lava field lengthening to the city of Catania, 17 km away from the vent. Effusion rate trends like those of the 1669 eruption can be adopted for future investigations aimed at assessing the effects of similar events on Etna’s most highly urbanized area and at other effusive basaltic volcanoes.
    Description: Published
    Description: 694
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna, 1669, Lava flow field, Lava volume, effusion rate trend ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Hazard mapping in poorly known volcanic areas is complex since much evidence of volcanic and non-volcanic hazards is often hidden by vegetation and alteration. In this paper, we propose a semi-quantitative method based on hazard event tree and multi-hazard map constructions developed in the frame of the FP7 MIAVITA project. We applied this method to the Kanlaon volcano (Philippines), which is characterized by poor geologic and historical records. We combine updated geological (long-term) and historical (short-term) data, building an event tree for the main types of hazardous events at Kanlaon and their potential frequencies. We then propose an updated multi-hazard map for Kanlaon, which may serve as a working base map in the case of future unrest. The obtained results extend the information already contained in previous volcanic hazard maps of Kanlaon, highlighting (i) an extensive, potentially active ~5 km long summit area striking north–south, (ii) new morphological features on the eastern flank of the volcano, prone to receiving volcanic products expanding from the summit, and (iii) important riverbeds that may potentially accumulate devastating mudflows. This preliminary study constitutes a basis that may help local civil defence authorities in making more informed land use planning decisions and in anticipating future risk/hazards at Kanlaon. This multi-hazard mapping method may also be applied to other poorly known active volcanoes.
    Description: This work was undertaken under the MIAVITA project, financed by the European Commission under the 7th Framework Programme for Research and Technological Development, Area “Environment”, Activity 6.1 “Climate Change, Pollution and Risks”.
    Description: Published
    Description: 1929-1943
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: RISK ASSESSMENTS ; Mount Kanlaon ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The statistical analysis of volcanic activity at Mt Etna was conducted with the twofold aim of (1) constructing a probability map for vent opening of future flank eruptions and (2) forecasting the expected number of eruptive events at the summit craters. The spatiotemporal map of new vent opening at Etna volcano is based on the analysis of spatial locations and frequency of flank eruptions starting from 1610. Thanks to the completeness and accuracy of historical data over the last four centuries, we examined in detail the spatial and temporal distribution of flank eruptions showing that effusive events follow a nonhomogenous Poisson process with space-time varying intensities. After demonstrating the spatial nonhomogeneity and the temporal nonstationarity of flank eruptions at Etna, we calculated the recurrence rates (events expected per unit area per unit time) and produced different spatiotemporal probability maps of new vent opening in the next 1, 10 and 50 years. These probabilistic maps have an immediate use in evaluating the future timing and areas of Etna prone to volcanic hazards. Finally, the results of the analysis of the persistent summit activity during the last 110 years indicate that the hazard rate for eruptive events is not constant with time, differs for each summit crater of Mt Etna, highlighting a general increase in the eruptive frequency starting from the middle of last century and particularly from 1971, when the SE crater was formed.
    Description: This work was developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 1925-1935
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; probabilistic modeling ; eruption ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Improving lava flow hazard assessment is one of the most important and challenging fields of volcanology, and has an immediate and practical impact on society. Here, we present a methodology for the quantitative assessment of lava flow hazards based on a combination of field data, numerical simulations and probability analyses. With the extensive data available on historic eruptions of Mt. Etna, going back over 2000 years, it has been possible to construct two hazard maps, one for flank and the other for summit eruptions, allowing a quantitative analysis of the most likely future courses of lava flows. The effective use of hazard maps of Etna may help in minimizing the damage from volcanic eruptions through correct land use in densely urbanized area with a population of almost one million people. Although this study was conducted on Mt. Etna, the approach used is designed to be applicable to other volcanic areas.
    Description: This work was developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 3493
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Lava flow hazard ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Flank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.
    Description: This work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.
    Description: Published
    Description: 4398-4409
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Volcano flank instability ; Pernicana fault ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K" ılauea Volcano, Hawai‘i, caused by magma " o-Kupaianaha withdrawal during the early eruptive episodes (1983–1985) of the ongoing Pu‘u ‘ O‘" " eruption. Eruptive activity at the Pu‘u ‘ O‘" o vent was typically accompanied by abrupt deflation that lasted for several hours and was followed by a sudden onset of gradual inflation once the eruptive episode had ended. Similar patterns of deflation and inflation were recorded at K" ılauea’s summit, approximately 15 km to the northwest, albeit with time delays of hours. These delay times can be reproduced by modeling the spatiotemporal changes in magma pressure and flow rate within an elastic-walled dike that traverses K" ılauea’s ERZ. Key parameters that affect the behavior of the magma-dike system are the dike dimensions, the elasticity of the wall rock, the magma viscosity, and to a lesser degree the magnitude and duration of the pressure variations themselves. Combinations of these parameters define a transport efficiency and a pressure diffusivity, which vary somewhat from episode to episode, resulting in variations in delay times. The observed variations in transport efficiency are most easily explained by small, localized changes to the geometry of the magma pathway
    Description: Published
    Description: 2232–2246
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: magma flow ; dikes ; Kilauea ; elastic rock ; magma-rock coupling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Between January 2011 and April 2012, the Southeast Crater (SEC) on Mount Etna was the site of 25 episodes of lava fountaining, which led to the construction of a new pyroclastic cone on the eastern flank of the SEC. During these episodes lava overflows reached 4.3 km in length with an area of 3.19 km2 and a volume of 28 x 106 m3. The new cone, informally called New Southeast Crater (NSEC), grew over a pre-existing subsidence depression (pit crater), which had been formed in 2007-2009. The evolution of the NSEC cone was documented from its start by repeated GPS surveys carried out both from a distance and on the cone itself, and by the acquisition of comparison photographs. These surveys reveal that after the cessation of the lava fountains in April 2012, the highest point of the NSEC stood 190 m above the pre-cone surface, while the cone volume was about 19 x 106 m3, representing 38 % of the total (bulk) volume of the volcanic products including pyroclastic fallout erupted in 2011-2012, which is 50 x 106 m3 (about 33 x 106 m3 dense-rock equivalent). Growth of the new cone took place exclusively during the paroxysmal phases of the lava fountaining episodes, which were nearly always rather brief (on the average 2 hours). Overall, the paroxysmal phases of all 25 episodes represent 51 hours of lava fountaining activity – the time needed to build the cone. This is the fastest documented growth of a newborn volcanic cone both in terms of volume and height. Mean effusion rates during the lava fountaining episodes on 20 August 2011 (E11), as well as 12 and 24 April 2012 (E24 and E25) exceeded 500 m3/s (with maximum rates of 980 m3/s during E11) and thus they are among the highest effusion rates ever recorded at Etna. The composition of the erupted products varies in time, reflecting different rates of magma supply into the shallow feeding system, but without notable effects on the eruptive phenomenology. This implies that the dynamics leading to the episodic lava fountaining was largely, though not entirely, controlled by the repeated formation and collapse of a foam layer in the uppermost portion of the magmatic reservoir of the NSEC.
    Description: Published
    Description: 10-21
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna, summit eruptions; scoria cone growth; lava and tephra volume; collapsing foam model ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-24
    Description: The Aeolian Arc (Southern Tyrrhenian Sea, Italy) is one of the most active volcanic areas of the Mediterranean basin, affected by volcanic/hydrothermal and seismic activity. Ancient populations settled this region since historical times, building coastal installations which currently are valuable archaeological indicators of relative sea level changes and vertical land movements. In this study we show and discuss data on the relative sea level change estimated from a submerged wharf of Roman age dated between 50 B.C. and 50 A.D., located at Basiluzzo Island. This structure has been studied through marine surveys and archaeological interpretations and is presently located at a corrected depth of 4.10 0.2 m. We explain this submergence by a cumulative effect of the relative sea level change caused by the regional glaciohydro- isostatic signal, active since the end of the last glacial maximum, and the local volcano-tectonic land subsidence. Finally, a total subsidence rate of 2.05 0.1 mm/yr 1, with a volcano-tectonic contribution of 1.43 0.1 mm/yr 1 for the last 2 ka BP, is inferred from the comparison against the latest predicted sea level curve for the Southern Tyrrhenian Sea, suggesting new evaluations of the volcanotectonic hazard for this area of the Aeolian islands.
    Description: Published
    Description: 143-150
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: Aeolian islands, sea level, crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-30
    Description: An improved version of the PDAC (Pyroclastic Dispersal Analysis Code) numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time and space discretizations and fully multidimensional advection discretizations, in order to reduce numerical diffusion and enhance the accuracy of the original model. The resulting numerical model is tested against the problem of jet decompression in both two and three dimensions. For homogeneous jets, numerical results show a good quantitative agreement with experimental results on the laboratory scale in terms of Mach disk location (Lewis and Carlson, 1964). For multiphase jets, we consider monodisperse and polydisperse mixtures of particles with different diameter. For fine particles, for which the pseudogas limit is valid, the multiphase model correctly reproduces predictions of the pseudogas model. We obtain that particles are in mechanical and thermal equilibrium with the gas phase and the jet decompression structure is in quantitative agreement with pseudogas results (Ogden et al., 2008b). For both fine and coarse particles, we measure the importance of multiphase effects with relation to the characteristic time scales of multiphase jets and we quantify how particles affect the average jet dynamics in terms of pressure, mixture density, vertical velocity and temperature. Furthermore, time dependent vent conditions are introduced, in order to achieve numerical simulation of eruption regimes characterized by transient jet behaviour. We show how in case of rapid change in vent conditions, volcanic jet structures do not evolve through a succession of steady state configurations and the transition between different flow conditions can result in the collapse of the volcanic column.
    Description: Published
    Description: 1-50
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: restricted
    Keywords: Volcanic eruptions ; supersonic jets ; multiphase flows ; implicit methods ; finite volume methods ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: A calibration method has been applied on satellite data in the visible infrared spectral range from which spectral reflectance and emissivity may be retrieved. This dissertation describes the steps needed for multispectral/hyperspectral data calibration and a number of algorithms for reflectance and emissivity retrieval. The methodology is applied to retrieve reflectance and emissivity of volcano Teide and is validated through a comparison with “ground truth”. The “ground truth” spectra have been acquired during a field campaign carried on September 2007. As application of calibrated-validated data, the classification of the volcano Teide and the temperature map are discussed.
    Description: Università di Parma
    Description: Unpublished
    Description: 1.10. TTC - Telerilevamento
    Description: restricted
    Keywords: Remote Sensing, Volcano Teide, validation, calibration, spectra, ASTER, Hyperion, classification ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Archaeological and volcanological studies conducted in the Naples area have revealed that numerous high-intensity explosive eruptions that occurred in the past 10 ka caused damage and victims in the human communities living in the plain surrounding the Neapolitan volcanoes. These catastrophic events were interspersed by hundred to thousand year long periods of quiescence, usually exceeding a human life-time. During the Early Bronze Age in particular, the Campania Plain was densely inhabited due to favourable climatic conditions and soil fertility. The archaeological and volcanological investigation of the sequences found in archaeological excavations has permitted the detailed reconstruction of the effects of eruptions and deposition mechanisms of their products on settlements. This paper discusses the example of Nola- Palma Campania during a most interesting, though poorly known, period of activity bracketed by the Vesuvian Pomici di Avellino (Early Bronze Age) and Pollena (AD 472) Plinian eruptions. Through this timespan the Plainwas variably inhabited, crossed by long-lived roads and subject to agricultural exploitation. Eruptions caused significant breaks in the occupation of the area, but also maintained the plain’s extraordinary fertility. During this period, at least eight other eruptions occurred: the Pomici di Pompei Plinian event (AD 79), two sub-Plinian to phreato-Plinian events, and five violent Strombolian to Vulcanian events. Thin and poorly developed to thicker and mature palaeosols or erosional unconformities separate the various pyroclastic deposits. Almost all the eruptions and related phenomena interacted with human settlements in the Campania Plain, and in their sequences many traces of the displacement of people during the eruptions may be seen, as well as land reclamation and re-utilization soon afterwards. Despite the various kinds of hazard posed by volcanic and related phenomena, humans nevertheless found good reasons for settlement in the Campania Plain and flourished there. A multidisciplinary approach has yielded detailed information regarding the evolution of the area and the effects of eruptions on settlements. These data are of paramount importance for an improved understanding of past events and in evaluating the hazard of eruptions and related phenomena.
    Description: Published
    Description: 132-141
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: stratigrafy ; volcanology ; archaeology ; volcanic hazard ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    IL TORCOLIERE Officine Grafico-Editoriali d’Ateneo. Centro Interdipartimentale di Servizi, U.N.O.
    Publication Date: 2017-04-04
    Description: Il Giappone dista da Napoli 10.000 km ma l’arcipelago giapponese ha in comune con il Golfo di Napoli e la Campania Felix dei Romani la genesi geologica, in quanto sono stati formati da processi geodinamici del tutto simili, come la natura vulcanica dei suoli, il morbido paesaggio dei coni e dei crateri vulcanici, le manifestazioni fumaroliche delle «solfatare» ed il termalismo quali spie della presenza di masse di magma intrappolate nella crosta a piccola profondità, la sismicità, chiara manifestazione della non sopita dinamica di questi territori. Due terre con tali caratteristiche non potevano non incontrarsi per i comuni interessi nella crescita della conoscenza dei fenomeni vulcanici e sismici e per la mitigazione dei loro effetti sulle popolazioni esposte. Non a caso Italia e Giappone saranno nella seconda metà dell’Ottocento i paesi più avanzati nello studio dei terremoti e dei vulcani.
    Description: Published
    Description: 166-198
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: open
    Keywords: vulcanologia, sismologia, giappone, napoli ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-03
    Description: Il sistema CUMAS (Cabled Underwater Module for Acquisition of Seismological data) è un prodotto tecnologico-scientifico complesso nato con il Progetto V4 [Iannaccone et al., 2008] allo scopo di monitorare l’area vulcanica dei Campi Flegrei (fenomeno del bradisismo). Si tratta di un modulo sottomarino cablato e connesso a una boa galleggiante (meda elastica). Il sistema è in grado di acquisire e trasmettere alla sala di monitoraggio dell’OV, in continuo e in tempo reale, sia i segnali sismologici sia quelli di interesse geofisico ed oceanografico (maree, correnti marine, segnali acustici subacquei, parametri funzionali di varia natura). Il sistema è in grado di ricevere comandi da remoto per variare diversi parametri di acquisizione e di monitorare un cospicuo numero di variabili di funzionamento. Il sistema si avvale del supporto di una boa galleggiante attrezzata. La boa è installata a largo del golfo di Pozzuoli (Napoli) a circa 3 km dalla costa. Il modulo sottomarino, collegato via cavo alla parte fuori acqua della boa, è installato sul fondale marino a una profondità di circa 100 metri.
    Description: Submitted
    Description: 82-85
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: N/A or not JCR
    Description: open
    Keywords: Monitoraggio sismico; sistemi sottomarini; boa; meda elastica ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.01. Atmosphere::01.01.06. Thermodynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and composition ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous ; 01. Atmosphere::01.03. Magnetosphere::01.03.01. Interplanetary physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms ; 01. Atmosphere::01.03. Magnetosphere::01.03.03. Magnetospheric physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics ; 01. Atmosphere::01.03. Magnetosphere::01.03.05. Solar variability and solar wind ; 01. Atmosphere::01.03. Magnetosphere::01.03.06. Instruments and techniques ; 02. Cryosphere::02.01. Permafrost::02.01.99. General or miscellaneous ; 02. Cryosphere::02.01. Permafrost::02.01.01. Active layer ; 02. Cryosphere::02.01. Permafrost::02.01.02. Cryobiology ; 02. Cryosphere::02.01. Permafrost::02.01.03. Cryosol ; 02. Cryosphere::02.01. Permafrost::02.01.04. Periglacial processes ; 02. Cryosphere::02.01. Permafrost::02.01.05. Seasonally frozen ground ; 02. Cryosphere::02.01. Permafrost::02.01.06. Thermokarst ; 02. Cryosphere::02.01. Permafrost::02.01.07. Tundra ; 02. Cryosphere::02.01. Permafrost::02.01.08. Instruments and techniques ; 02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous ; 02. Cryosphere::02.02. Glaciers::02.02.01. Avalanches ; 02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction ; 02. Cryosphere::02.02. Glaciers::02.02.03. Geomorphology ; 02. Cryosphere::02.02. Glaciers::02.02.04. Ice ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance ; 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction ; 02. Cryosphere::02.02. Glaciers::02.02.08. Rock glaciers ; 02. Cryosphere::02.02. Glaciers::02.02.09. Snow ; 02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques ; 02. Cryosphere::02.03. Ice cores::02.03.99. General or miscellaneous ; 02. Cryosphere::02.03. Ice cores::02.03.01. Aerosols ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 02. Cryosphere::02.03. Ice cores::02.03.03. Climate Indicators ; 02. Cryosphere::02.03. Ice cores::02.03.04. Ice Core Air Bubbles ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 02. Cryosphere::02.03. Ice cores::02.03.06. Precipitation ; 02. Cryosphere::02.03. Ice cores::02.03.07. Teleconnection ; 02. Cryosphere::02.03. Ice cores::02.03.08. Temperature ; 02. Cryosphere::02.03. Ice cores::02.03.09. Instruments and techniques ; 02. Cryosphere::02.04. Sea ice::02.04.99. General or miscellaneous ; 02. Cryosphere::02.04. Sea ice::02.04.01. Atmosphere/sea ice/ocean interaction ; 02. Cryosphere::02.04. Sea ice::02.04.02. Leads ; 02. Cryosphere::02.04. Sea ice::02.04.03. Polynas ; 02. Cryosphere::02.04. Sea ice::02.04.04. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.99. General or miscellaneous ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.02. Equatorial and regional oceanography ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 03. Hydrosphere::03.02. Hydrology::03.02.01. Channel networks ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.99. General or miscellaneous ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.04. Upper ocean and mixed layer processes ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.01. Dynamo theory ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.02. Data dissemination::05.02.05. Collections ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.06. Methods::05.06.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Geomorphometric parameters (slope, aspect, valley depth, and areal density of cones) derived from a moderate resolution digital elevation model with a grid spacing of 100 m are used in an attempt to interpret the tectonic/structural features related to surface deformation in the Auca Mahuida volcanic terrain (Neuquén Basin, Argentina). The Auca Mahuida (2.03–0.88 Ma) is the southernmost volcanic field of the Payenia volcanic province, in the Andean foreland. The foreland is subjected to an E–W compression related to the eastward migration of the N–S striking thrust front of the Andes. The geomorphometric analysis indicates that the Auca Mahuida consists of a basal, E–W elongated lava field with monogenic vents and a summit, polygenic, also E–W elongated, cone. A N100◦E striking fault controls the southern flank of the field, which is also affected by scarps related to erosional and gravity-controlled processes. The drainage network shows a pseudo-radial pattern around the summit cone, and the Auca Mahuida’s deepest valley is structurally controlled by a NNW–SSE striking fault affecting the sedimentary basement. The volcanic field lies on a NE to E dipping substratum. The areal distribution of the monogenic cones is consistent with ascent of magmas along E–W striking fractures, and with elastic models of a pressurized hole (magma chamber) subjected to an E–W compression. At Auca Mahuida, the ascent of melts from the mantle is controlled, in the overriding crust, by tectonic structures formed in response to the E–W compression of the Andes.
    Description: INGV abd YPF
    Description: Published
    Description: 1469-1480
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: geomorphology ; volcanism ; tectonics ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-05-11
    Description: We present here the results from dynamical and thermal models that describe a channeled lava flow as it cools by radiation. In particular, the effects of power-law rheology and of the presence of bends in the flow are considered, as well as the formation of surface crust and lava tubes. On the basis of the thermal models, we analyze the assumptions implicit in the currently used formulae for evaluation of lava flow rates from satellite thermal imagery. Assuming a steady flow down an inclined rectangular channel, we solve numerically the equation of motion by the finite-volume method and a classical iterative solution. Our results show that the use of power-law rheology results in relevant differences in the average velocity and volume flow rate with respect to Newtonian rheology. Crust formation is strongly influenced by power-law rheology; in particular, the growth rate and the velocity profile inside the channel are strongly modified. In addition, channel curvature affects the flow dynamics and surface morphology. The size and shape of surface solid plates are controlled by competition between the shear stress and the crust yield strength: the degree of crust cover of the channel is studied as a function of the curvature. Simple formulae are currently used to relate the lava flow rate to the energy radiated by the lava flow as inferred from satellite thermal imagery. Such formulae are based on a specific model, and consequently, their validity is subject to the model assumptions. An analysis of these assumptions reveals that the current use of such formulae is not consistent with the model.
    Description: Published
    Description: 510-520
    Description: JCR Journal
    Description: open
    Keywords: Rheology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-05-17
    Description: During AprileMay 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instruments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14e23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourlyaveraged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.
    Description: Published
    Description: 165-183
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic ash dispersion ; Numerical model ; Model validation ; 2010 Eyjafjallajökull eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-12-14
    Description: Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that investigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant phenocrysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and textural observations are compared with observations on natural samples.
    Description: Published
    Description: Q07024
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: analog experiments ; crystal bearing ; polydisperse suspensions ; rheology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-06-22
    Description: The building materials of the Theatre of Marcellus, 44–11 BCE, reflect Roman builders’ careful selections of tuff and travertine for dimension stone and volcanic aggregates for pozzolanic concretes. The vitric–lithic–crystal Tufo Lionato tuff dimension stone contains a high proportion of lava lithic fragments, which increase its compressive strength and decrease water sorption, enhancing durability. Sophisticated installations of travertine dimension stone reinforce the tuff masonry, which is integrated with durable concrete walls and barrel vaults. The pozzolanic mortars of the concretes contain harenae fossiciae mainly from the intermediate alteration facies of the mid-Pleistocene, scoriaceous Pozzolane Rosse pyroclastic flow. They have pervasive interpenetrating pozzolanic cements, including strätlingite, similar to highquality, imperial era mortars. Concrete walls are faced with refined Tufo Lionato opus reticulatum and tufelli, and opus testaceum of fired, greyish-yellow brick. The exploratory concrete masonry, which includes some of the earliest examples of brick facings and strätlingite cements in Rome, and the integration of these materials in complex architectural elements and internal spaces, reflect the highly skilled workmanship, rigorous work-site management and technical supervision of Roman builders trained in republican era methods and materials.
    Description: Published
    Description: 728–742
    Description: JCR Journal
    Description: restricted
    Keywords: VOLCANIC TUFF MASONRY ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-06-22
    Description: The rocks of Alban Hills and Monti Sabatini volcanoes (Central Italy) and their associated epiclastic deposits have been extensively used as building material in ancient Rome from about VIIIth century BCE to IVth century CE. However, the identification of the source areas of these rocks is difficult due to the lack of an integrated stratigraphic and geochemical analysis of the relationships between the two volcanic districts, and to the alteration affecting the primary products as consequence of weathering and pedogenetic processes. Here, a comprehensive, upgraded stratigraphic and geochronological review of the two volcanic districts, corroborated by new geochronological data for several eruptive units and altered deposits is presented, coupled to a complete geochemical background, achieved by means of newly determined major and trace element analyses for all the main eruptive units. A study of the alteration processes of the primary products is also presented, and the age of the main weathering and pedogenetic phases, associated to Quaternary climatic changes, are also investigated. The results are integrated with those from literature in order to construct discriminant diagrams based on selected trace elements, and allow us to characterize the primary and altered volcanic deposits in the Rome area, distinguish products of different volcanic districts, discuss the effects of different weathering processes on the mobility of some elements, and provide a reference frame for the provenance of the volcanic materials employed in ancient Roman masonry. The interdisciplinary data set and results presented here provide groundwork for volcanological, climate, pedological and archaeological provenance studies.
    Description: Published
    Description: 115–136
    Description: JCR Journal
    Description: restricted
    Keywords: Quaternary volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-01-27
    Description: We describe a new type of secondary rootless phreatomagmatic explosions observed at active lava flows at volcanoes Klyuchevskoy (Russia) and Etna (Italy). The explosions occurred at considerable (up to 5 km) distances from primary volcanic vents, generally at steep (15–35°) slopes, and in places where incandescent basaltic or basaltic-andesitic lava propagated over ice/water-saturated substrate. The explosions produced high (up to 7 km) vertical ash/steam-laden clouds as well as pyroclastic flows that traveled up to 2 km downslope. Individual lobes of the pyroclastic flow deposits were up to 2 m thick, had steep lateral margins, and were composed of angular to subrounded bomb-size clasts in a poorly sorted ash–lapilli matrix. Character of the juvenile rock clasts in the pyroclastic flows (poorly vesiculated with chilled and fractured cauliflower outer surfaces) indicated their origin by explosive fragmentation of lava due to contact with external water. Non-juvenile rocks derived from the substrate of the lava flows comprised up to 75% in some of the pyroclastic flow deposits. We suggest a model where gradual heating of a water-saturated substrate under the advancing lava flow elevates pore pressure and thus reduces basal friction (in the case of frozen substrate water is initially formed by thawing of the substrate along the contact with lava). On steep slope this leads to gravitational instability and sliding of a part of the active lava flow and water-saturated substrate. The sliding lava and substrate disintegrate and intermix, triggering explosive “fuel–coolant” type interaction that produces large volume of fine-grained clastic material. Relatively cold steam-laden cloud of the phreatomagmatic explosion has limited capacity to transport upward the produced clastic material, thus part of it descends downslope in the form of pyroclastic flow. Similar explosive events were described for active lava flows of Llaima (Chile), Pavlof (Alaska), and Hekla (Iceland) indicating that this type of explosions and related hazard is common at snow/ice-clad volcanoes and sometimes happens also on fluid-saturated hydrothermally altered slopes.
    Description: Published
    Description: 60–72
    Description: JCR Journal
    Description: restricted
    Keywords: lava flow; pyroclastic flow; secondary explosion; phreatomagmatic explosion; Klyuchevskoy; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: In the framework of the Aeolian Volcanic District evolution, the chapter provides the reconstruction of the Vulcano Island history through the subdivision in eight Eruptive Epochs.
    Description: Published
    Description: 33-47
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: open
    Keywords: Vulcano history ; volcanic successions ; eruptive epochs ; Aeolian archipelago ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: A multidisciplinary approach integrating a wide data set ranging from bulk rock compositions of the erupted products to volcanic tremor, long‐period events, and tilt and gravity signals is used to investigate the source depth and magma dynamics of the 10 May 2008 lava fountain at Southeast crater (SEC) of Mount Etna. The investigation was undertaken in the framework of the previous 2007 explosive activity as well as the subsequent effusive eruption beginning 13 May 2008 and lasting up to July 2009. All the data concur in indicating that the 10 May lava fountain was generated by the fragmentation of a foam layer trapped at the top of a shallow reservoir, about 1500–1700 m below the summit of SEC. The shift from the episodic strombolian/lava fountain activity occurring in 2007 at SEC to the more powerful 10 May 2008 lava fountain is explained by the intrusion of a new more primitive magma into the shallow reservoir. Data also indicate that an attempted magma intrusion east of the summit area occurred during the 10 May fire fountain. This event caused the fracturing and weakening of the surrounding rocks and created a preferential pathway for the penetration of the magma that, only 3 days later, started to feed the 2008–2009 effusive eruption.
    Description: Published
    Description: Q07009
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; lava fountain mechanism ; multidisciplinary monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-03
    Description: Campi Flegrei collapse caldera (Italy) is a high-risk volcanic area located close to Naples and includes part of the densely populated city. This area is characterised by large up and down ground displacements. The last large uplift episode caused 3.5 m of cumulative vertical displacement at the centre of the town of Pozzuoli, during the period 1969–1984. Up and down ground movements in this area often occur without intercurring eruptions and are similar to what is observed at other calderas worldwide. Here, however, they appear more evident and amplified. Understanding the mechanism of such movements is crucial for hazard assessment and eruption forecast, mainly due to this densely populated area. This paper presents a detailed model for ground displacements due to deep fluid injection in shallower layers. Such a model explains in a natural way the occurrence of uplift and subsidence without eruptions. We show that it is possible to fit observed ground deformation in this area with a thermofluid dynamical model. The model obtained is also consistent with other observations like microgravity changes, changes in CO2 flux, etc. Here, we suggest that significant uplift and subsidence at calderas can be due to effects of deep fluid injections other than magma. At Campi Flegrei, however, a partial magmatic contribution at the origin of the observed episodes cannot be excluded.
    Description: Published
    Description: 833–847
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical approximations and analysis; Hydrothermal systems; Explosive volcanism; Calderas ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-03
    Description: A high-resolution morphological and geological inspection was carried out on the Palinuro Bank (39 300N, 14 480E), a volcanic complex made by several, coalescent volcanic features located on the Cam- panian continental slope (Eastern Tyrrhenian Sea, Italy). A shallow ( 84 m asl) volcanic edifice, char- acterized by a flat top modelled surface, is present on its central sector. The use of a very high-resolution Digital Terrain Model allowed recognition of the presence of relict morphologies (perhaps notches/inner margins) related to the past sea-level still-stands. Three depth levels of paleo-shorelines markers are located at 90 m, 100 m, and 123 m, respectively. In addiction, the truncated shape of the cone itself, located between 84 m and 130 m, could be interpreted as a tilted marine terrace. Breaks in slope produced by terrace landforms caused oversteepening that could have triggered lateral collapses both on the northern and southern flanks of the Bank, as suggested by the presence of steep slopes (25e40 ) and indicated by acoustic facies on chirp high-resolution mono-channel seismic profiles. The results allow further hypotheses on vertical displacement between the western sector of the Palinuro Bank, where caldera shapes are present, and the central sector, made by shallower volcanic cones. These two sectors also differ in terms of magnetic properties.
    Description: Published
    Description: 228-237
    Description: JCR Journal
    Description: restricted
    Keywords: Palinuro Bank ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publication Date: 2017-04-04
    Description: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Description: Published
    Description: 170-186
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: The Holocene is the most recent geological epoch spanning from about 11700 years ago to the present day. The most important human civilizations appeared during the Holocene. From the Holocene onwards, environmental changes, and the hazards associated with them, became extremely important for their impact on historical events, in some cases blending with humanity’s vicissitudes and influencing the rise and decline of civilizations. This paper summarises the geological and climatic conditions of Northern Europe during the Holocene and tries to determine whether or not they support the hypothesis formulated by Felice Vinci (Vinci, 2003) about the migration of Baltic populations towards the Mediterranean in the Bronze Age at the end of the “climatic optimum” (Houghton et al., 1990; Rohling & De Rijk, 1999). This study presents data on glacio-eustatic changes and on isostatic uplift together with information on probable tsunamis that occurred in the North Atlantic, North Sea, Scandinavia and the Baltic Sea. Moreover, some data on catastrophic events that affected the Mediterranean region are reported, because these catastrophes could have favoured the settlement of “people coming from the sea” that took advantage of the demographic and socio-economic weakening of indigenous populations (Driessen, 2002). The paper aims to provide geological and palaeogeographic constraints to the hypotheses formulated by Felice Vinci on the migration of Scandinavians towards the Mediterranean. The data analysed have been collected from the available scientific literature (see references). The amount of information available for each geological phenomenon is vast and sometimes theories developed from the same data are in conflict. The comparison between the Mediterranean and the Baltic areas (one of which could have been the theatre of the Homeric events) will be useful to find evidence of geological phenomena within the Homeric texts, giving useful indications to better understand where the poems are set or at least to provide interesting discussion points related to Felice Vinci’s hypothesis (Vinci 2003).
    Description: Published
    Description: 179-197
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: open
    Keywords: Geology ; Holocene ; Northern Europe ; Mediterranean ; Earthquakes ; Volcanoes ; Ice age ; Tides ; Tsunami ; Glacio-eustatism ; Seismicity ; Uplift ; Submarine landslides ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: In this work we show the use of a geo-spatial information system (GIS) for the volume estimation of fallout deposits and for the identification of syn- and post-eruptive depositional mechanisms. For the first time, we present thickness distribution maps, isopachs maps and fallout deposit volume for the single stratigraphic units (A-F) of the 122 BC Plinian eruption of Etna, the most powerful eruption of this volcano in historical times. Thickness data collected during the field survey were organised in a geo-referenced database and several interpolation algorithms were used to calculate the volumes of the six fallout layers of eruption (units A-F). Results have been compared with those obtained using the Pyle’s method that bases volume calculation on the exponential thickness-decay law of the deposits. Differences in 20 results of the two methods have been analyzed applying 2 and 3D geo-statistical analysis to thickness data and an “ideal” fallout deposit has been used as a reference. Our approach allowed both the identification of stratigraphic sections which deposits were affected by secondary erosional or accumulation phenomena, and the assessment of whether the secondary processes were caused by local morphologic conditions or variation in eruptive dynamics (e.g. rotation of the dispersal axis direction).
    Description: Published
    Description: R0105
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Geographic Information System (GIS) ; Plinian eruption ; Pyroclastic deposits ; Volume estimation ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Eastern Sicily has been affected in historical times by large earthquakes followed by devastating tsunamis, such as the 1169, 1693 and 1908 events. In order to provide a long-term assessment for tsunami recurrence and related hazards, we developed a multi-disciplinary study, with a paleoseismo-logical approach, aimed to recognize and date historical and paleotsunami deposits. Starting from information on the effects of known tsunamis (hit localities, inundation areas, run-up heights) and with a geomorphological approach, we selected several sites—such as coastal lakes, marshes and lagoons—potentially suitable for preserving tsunami deposits. In these sites, 64 test gouge cores have been dug by hand and engine coring. In order to reconstruct paleoenvironments and to identify potential paleotsunami deposits, sedimentological and paleontological analyses were carried out. Magnetic and X-ray analyses were used to highlight susceptibility variations and peculiar small-scale sedimentary structures not detectable through the standard stratigraphic investigation. Moreover, radiocarbon dating and tephra identification provide age ranges of the tsunami deposits and constraints for sedimentation rates allowing the correlation with historical events. At Capo Peloro in northeastern Sicily, combining archaeological, historical, and C14 data, we associated two tsunami deposits with the earthquakes occurred in 1783 and 17 A.D. We also collected evidence for the occurrence of multiple inundations at sites in the eastern flank of Mt. Etna: three events in the past 580 yrs at the Anguillara site and four events in the past 4000 yrs at the Gurna site. In southeastern Sicily, in the Augusta bay, combining historical, tephrostratigraphical and C14 dating, we reconstructed a tsunami inundation history composed of six events in the past 4000 yrs; the two most recent ones are related to the 1693 and 1169 earthquakes.
    Description: Published
    Description: 109-146
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: reserved
    Keywords: Tsunami deposits ; sedimentation processes ; micropaleontology ; tephra ; environmental analyses ; off-fault paleoseismology ; coastal hazards ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: Spaceborne remote sensing of high-temperature volcanic features offers an excellent opportunity to monitor the onset and development of new eruptive activity. To provide a basis for real-time response during eruptive events, we designed and developed the volcano monitoring system that we call HOTSAT. This multiplatform system can elaborate both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, and it is here applied to the monitoring of the Etna volcano. The main advantage of this approach is that the different features of both of these sensors can be used. It can be refreshed every 15 min due to the high frequency of the SEVIRI acquisition, and it can detect smaller and/or less intense thermal anomalies through the MODIS data. The system consists of data preprocessing, detection of volcano hotspots, and radiative power estimation. To locate thermal anomalies, a new contextual algorithm is introduced that takes advantage of both the spectral and spatial comparison methods. The derivation of the radiative power is carried out at all ‘hot’ pixels using the middle infrared radiance technique. The whole processing chain was tested during the 2008 Etna eruption. The results show the robustness of the system after it detected the lava fountain that occurred on May 10 through the SEVIRI data, and the very beginning of the eruption on May 13 through the MODIS data analysis.
    Description: Published
    Description: 544-550
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: Etna volcano, Infrared remote sensing, MODIS, SEVIRI ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Spaceborne remote sensing techniques and numerical simulations have been combined in a web-GIS framework (LAV@HAZARD) to evaluate lava flow hazard in real time. By using the HOTSAT satellite thermal monitoring system to estimate time-varying TADR (time averaged discharge rate) and the MAGFLOW physicsbased model to simulate lava flow paths, the LAV@HAZARD platform allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We used LAV@HAZARD during the 2008–2009 lava flow-forming eruption at Mt Etna (Sicily, Italy). We measured the temporal variation in thermal emission (up to four times per hour) during the entire duration of the eruption using SEVIRI and MODIS data. The time-series of radiative power allowed us to identify six diverse thermal phases each related to different dynamic volcanic processes and associated with different TADRs and lava flow emplacement conditions. Satellite-derived estimates of lava discharge rates were computed and integrated for the whole period of the eruption (almost 14 months), showing that a lava volume of between 32 and 61 million cubic meters was erupted of which about 2/3 was emplaced during the first 4 months. These time-varying discharge rates were then used to drive MAGFLOW simulations to chart the spread of lava as a function of time. TADRs were sufficiently low (b30 m3/s) that no lava flows were capable of flowing any great distance so that they did not pose a hazard to vulnerable (agricultural and urban) areas on the flanks of Etna.
    Description: Published
    Description: 197-207
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano Infrared remote sensing Numerical simulation GIS Lava hazard assessment ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: A new statistical texton-based method for cloud detection through satellite image analysis is presented. The ultimate goal is to improve the performance of remote sensing techniques used to support the observations of active volcanic processes. The proposed method is a supervised classifier that exploits radiance spatial correlation in satellite images using a statistical descriptor of texture called texton. Cloudy and clear-sky models are determined using cluster analysis over the image features. The pixels to be classified are compared with the estimated models and assigned to the closest model. The cloud detection algorithm has been tested on a data set of MSG-SEVIRI images acquired during 2008 (about 35,000 images) of the Sicily area. Results show that the texton-based approach is robust in terms of percentage of correctly classified pixels, reaching more than 85% of success in both daytime and nighttime images.
    Description: Published
    Description: 279-290
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: reserved
    Keywords: SEVIRI, Etna volcano, cloud detection ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: A smoothed particle hydrodynamics (SPH) method for lava-flow modeling was implemented on a graphical processing unit (GPU) using the compute unified device architecture (CUDA) developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non- Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU) code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.
    Description: Published
    Description: 600-620
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: GPGPU, Modeling, HPC, Smoothed particle hydrodynamics, Hazard, Lava ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: No abstract
    Description: Published
    Description: 11-12
    Description: 5.9. Formazione e informazione
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; Basaltic explosive volcanism ; Volcanic hazard ; Education ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: Employing both absolute and relative gravimeters, we carried out three hybrid microgravity surveys at Etna volcano between 2007 and 2009. The repeated measurements highlighted the spatio-time evolution of the gravity field associated with the volcanic unrest. We detected a gravity increase attained an amplitude of about 80 µGal on the summit area of the volcano between July 2008 and July 2009. The observed gravity increase could reflect mass accumulations into shallow magma storage system of the volcano located at 1÷2 km below sea level. We present here data and the advantages in using the combined approach of relative and absolute measurements performed at Etna volcano.
    Description: Published
    Description: Saint Petersburg, Russia
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: open
    Keywords: absolute and relative gravity ; Mt Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 1010 kg/s from shallow-seated (4–6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).
    Description: Published
    Description: 161-166
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: conduit model ; large explosive eruption ; extensional stress ; linear fissure eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-03
    Description: The study of geodynamics relies on an understanding of the strength of the lithosphere. However, our knowledge of kilometer‐scale rheology has generally been obtained from centimeter‐sized laboratory samples or from microstructural studies of naturally deformed rocks. In this study, we present a method that allows rheological examination at a larger scale. Utilizing forward numerical modeling, we simulated lithospheric deformation as a function of heat flow and rheological parameters and computed several testable predictions including horizontal velocities, stress directions, and the tectonic regime. To select the best solutions, we compared the model predictions with experimental data. We applied this method in Italy and found that the rheology shows significant variations at small distances. The strength ranged from 0.6 ± 0.2 TN/m within the Apennines belt to 21 ± 6 TN/m in the external Adriatic thrust. These strength values correspond to an aseismic mantle in the upper plate and to a strong mantle within the Adriatic lithosphere. With respect to the internal thrust, we found that strike‐slip or transpressive, but not compressive, earthquakes can occur along the deeper portion of the thrust. The differences in the lithospheric strength are greater than our estimated uncertainties and occur across the Adriatic subduction margin. Using the proposed method, the lithospheric strength can be also determined when information at depth is scarce but sufficient surface data are available. Citation: Carafa, M. M. C., and S. Barba (2011), Determining rheology from deformation data: The case of central Italy, Tectonics, 30, TC2003, doi:10.1029/2010TC002680.
    Description: Published
    Description: TC2003
    Description: JCR Journal
    Description: restricted
    Keywords: Rheology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: Published
    Description: B03216
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; magnetotelluric ; flank instability ; volcano ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: We produce a spatial probability map of vent opening (susceptibility map) at Etna, using a statistical analysis of structural features of flank eruptions of the last 2 ky. We exploit a detailed knowledge of the volcano structures, including the modalities of shallow magma transfer deriving from dike and dike-fed fissure eruptions analysis on historical eruptions. Assuming the location of future vents will have the same causal factors as the past eruptions, we converted the geological and structural data in distinct and weighted probability density functions, which were included in a non-homogeneous Poisson process to obtain the susceptibility map. The highest probability of new eruptive vents opening falls within a N-S aligned area passing through the Summit Craters down to about 2,000 ma.s.l. on the southern flank. Other zones of high probability follow the North-East, East-North-East, West, and South Rifts, the latter reaching low altitudes (∼400 m). Less susceptible areas are found around the faults cutting the upper portions of Etna, including the western portion of the Pernicana fault and the northern extent of the Ragalna fault. This structuralbased susceptibility map is a crucial step in forecasting lava flow hazards at Etna, providing a support tool for decision makers.
    Description: This study was performed with the financial support from the V3-LAVA project (DPC-INGV 2007–2009 contract).
    Description: Published
    Description: 2083–2094
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Flank eruption ; Dike ; Volcano structure ; Susceptibility map ; Spatial clustering ; Back analysis ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information froma large collection of data. Finding useful similar trends inmultivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of researchwhere different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.
    Description: Thisworkwas partially funded by INGV and the DPC-INGV project “Flank”.
    Description: Published
    Description: 65-74
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: data mining ; features extraction ; time series clustering ; self organizing maps ; Etna ; summit and flank eruptions ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: In this paper, we report four years of soil CO2 emission data measured monthly at 130 sites in two peripheral areas of Mt Etna Volcano that are well known for their high discharge rates of volcanic gas. We remove the influence of atmospheric parameters, and by means of statistical analyses, we (i) demonstrate that variations in CO2 emissions are due mainly to CO2 of a deep origin and (ii) quantify the total amounts of CO2 derived from a deep magma source. Periods of anomalous deep degassing are identified in both areas. A comparison of the timing of these anomalies and geophysical data indicates that the periods of anomalous degassing can be mostly ascribed to intrusions of fresh magma into the Etna plumbing system, which is in agreement with many previous works. Based on the existing literature, we formulate an interpretative framework of magma migration within the plumbing system, consistent with temporal trends in the observed anomalies. Finally, we reconstruct the processes of recent magma ascent at Mt Etna based on our interpretative framework, published geophysical data, and records of volcanic activity.
    Description: Published
    Description: 218-227
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; Mt Etna ; Volcanic activity ; Magma transfer ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: Ground deformations in active volcanoes are considered precursors of eruptions according to the most tested models; therefore monitoring networks of ground deformations are installed on inhabited dangerous volcanoes. Direct measurements of such deformations are carried out since 1861 when Luigi Palmieri monitored the eruption at Mt. Vesuvius with levelings along the shoreline near the town of Torre del Greco. Relative sea level changes were measured at Serapeo in Pozzuoli in the middle of 19th century to record soil uplifts which are locally known as bradyseism. To enlarge the time series of data on these phenomena it is necessary to utilize historical and prehistorical informations on the location of shore-line of human settlements. As regards the regions of active volcanoes as the Neapolitan one three processes contribute to sea level changes as eustatism, regional tectonics and local intrusive and effusive phenomena. Therefore at the same time the relative sea level should be different at far-away places only few kilometres according to the volcanic activity. In fact eustatic and tectonic processes contribute to sea level changes with very lesser rates than volcanic activity. The Neapolitan region for its geological history is an excellent laboratory for testing the validation of new paradigms for some natural phenomena.
    Description: Published
    Description: Arcavacata di Rende (Cosernza)
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: Bay of Naples, Ground deformations, Human ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: We propose a formal procedure to validate the hypothesis of a causal relationship between great tectonic earthquakes and volcanic eruptions through a forward statistical test. This approach allows such a hypothesis to be evaluated in an objective way, ruling out any possible unconscious overfitting of the past data. The procedure consists of two steps: (a) the computation of the stress perturbation in a volcanic area due to some selected seismic event, by means of a spherical, layered, viscoelastic and self- gravitating earth model; and (b) the application of a statistical test to check the differences in the spatio-temporal distribution of eruptions before and after the earthquake, weighting each eruption with the stress perturbation induced at the volcano at the time of the eruption. Finally, for the sake of example, we apply the method to the case of the recent Engano earthquake in Sumatra (June 2000) and the Denali earthquake in Alaska (November 2002).
    Description: Published
    Description: 383 – 395
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake–volcano interaction ; post-seismic stress perturbation ; forward test ; Engano earthquake ; Denali earthquake ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: The dynamics of the May 18, 1980 lateral blast at Mount St. Helens, Washington (USA), were studied by means of a three-dimensional multiphase flow model. Numerical simulations describe the blast flow as a high-velocity pyroclastic density current generated by a rapid expansion (burst phase, lasting less than 20 s) of a pressurized polydisperse mixture of gas and particles and its subsequent gravitational collapse and propagation over a rugged topography. Model results show good agreement with the observed large-scale behavior of the blast and, in particular, reproduce reasonably well the front advancement velocity and the extent of the inundated area. Detailed analysis of modeled transient and local flow properties supports the view of a blast flow led by a high-speed front (with velocities between 100 and 170 m/s), with a turbulent head relatively depleted in fine particles, and a trailing, sedimenting body. In valleys and topographic lows, pyroclasts accumulate progressively at the base of the current body after the passage of the head, forming a dense basal flow depleted in fines (less than 5 wt.%) with total particle volume fraction exceeding 10−1 in most of the sampled locations. Blocking and diversion of this basal flow by topographic ridges provides the mechanism for progressive current unloading. On ridges, sedimentation occurs in the flow body just behind the current head, but the sedimenting, basal flow is progressively more dilute and enriched in fine particles (up to 40 wt.% in most of the sampled locations). In the regions of intense sedimentation, topographic blocking triggers the elutriation of fine particles through the rise of convective instabilities. Although the model formulation and the numerical vertical accuracy do not allow the direct simulation of the actual deposit compaction, present results provide a consistent, quantitative model able to interpret the observed stratigraphic sequence.
    Description: Published
    Description: B06208
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mount St. Helens ; blast, multiphase flow ; numerical simulations ; pyroclastic density currents ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-02-24
    Description: Time-dependent brittle deformation is a fundamental and pervasive process operating in the Earth's upper crust. Its characterization is a pre-requisite to understanding and unraveling the complexities of crustal evolution and dynamics. The preferential chemical interaction between pore fluids and strained atomic bonds at crack tips, a mechanism known as stress corrosion, allows rock to fail under a constant stress that is well below its short-term strength over an extended period of time; a process known as brittle creep. Here we present the first experimental measurements of brittle creep in a basic igneous rock (a basalt from Mt. Etna volcano) under triaxial stress conditions. Results from conventional creep experiments show that creep strain rates are highly dependent on the level of applied stress (and can be equally well fit by a power law or an exponential law); with a 20% increase in stress producing close to three orders of magnitude increase in creep strain rate. Results from stress-stepping creep experiments show that creep strain rates are also influenced by the imposed effective confining pressure. We show that only part of this change can be attributed to the purely mechanical influence of an increase in effective pressure, with the remainder interpreted as due to a reduction in stress corrosion reactions; the result of a reduction in crack aperture that restricts the rate of transport of reactive species to crack tips. Overall, our results also suggest that a critical level of crack damage is required before the deformation starts to accelerate to failure, regardless of the level of applied stress and the time taken to reach this point. The experimental results are discussed in terms of microstructural observations and fits to a macroscopic creep law, and compared with the observed deformation history at Mt. Etna volcano.
    Description: Published
    Description: 71–82
    Description: JCR Journal
    Description: restricted
    Keywords: stress corrosion ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-02-24
    Description: An understanding of how tuff deforms and fails is of importance in the mechanics of volcanic eruption as well as geotechnical and seismic applications related to the integrity of tuff structures and repositories. Previous rock mechanics studies have focused on the brittle strength. We conducted mechanical tests on nominally dry and water-saturated tuff samples retrieved from the Colli Albani drilling project, in conjunction with systematic microstructural observations on the deformed samples so as to elucidate the micromechanics of brittle failure and inelastic compaction. The phenomenological behavior was observed to be qualitatively similar to that in a porous sedimentary rock. Synthesizing published data, we observe a systematic trend for both uniaxial compressive strength and pore collapse pressure of nonwelded tuff to decrease with increasing porosity. To interpret the compaction behavior in tuff, we extended the cataclastic pore collapse model originally formulated for a porous carbonate rock to a dual porosity medium made up of macropores and micropores or microcracks.
    Description: Published
    Description: B06209
    Description: JCR Journal
    Description: restricted
    Keywords: Alban Hills ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: This report presents a retrospective methodology to validate a long-term hazard map related to lava-flow invasion at Mount Etna, the most active volcano in Europe. A lava-flow hazard map provides the probability that a specific point will be affected by potential destructive volcanic processes over the time period considered. We constructed this lava-flow hazard map for Mount Etna volcano through the identification of the emission regions with the highest probabilities of eruptive vents and through characterization of the event types for the numerical simulations and the computation of the eruptive probabilities. Numerical simulations of lavaflow paths were carried out using the MAGFLOW cellular automata model. To validate the methodology developed, a hazard map was built by considering only the eruptions that occurred at Mount Etna before 1981. On the basis of the probability of coverage by lava flows, the map was divided into ten classes, and two fitting scores were calculated to measure the overlap between the hazard classes and the actual shapes of the lava flows that occurred after 1981.
    Description: Published
    Description: 634-640
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: Lava-flow paths, MAGFLOW simulator, Fitting scores, Temporal validation. ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: First-order moving least-squares are typically used in conjunction with smoothed particle hydrodynamics in the form of post-processing filters for density fields, to smooth out noise that develops in most applications of smoothed particle hydrodynamics. We show how an approach based on higher-order moving least-squares can be used to correct some of the main limitations in gradient and second-order derivative computation in classic smoothed particle hydrodynamics formulations. With a small increase in computational cost, we manage to achieve smooth density distributions without the need for post-processing and with higher accuracy in the computation of the viscous term of the Navier–Stokes equations, thereby reducing the formation of spurious shockwaves or other streaming effects in the evolution of fluid flow. Numerical tests on a classic two-dimensional dam-break problem confirm the improvement of the new approach.
    Description: Published
    Description: 622-633
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: Algorithms and implementation, Smoothed particle hydrodynamics, Moving least-squares, Mesh-free ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: In the crust, the orientation of a dike is controlled by the orientation of the principal stresses, with the dike orthogonal to the least compressive stress. At shallower levels, the presence of a volcanic edifice introduces significant deviations from expected patterns. The load of the edifice focuses the stresses above the center of a magma chamber, promoting the development of a central vent system. But the location and orientation of the dikes may be also controlled by the shape of the edifice, or by the presence of scarps along the volcano slopes, commonly produced by sector collapses. Therefore, while dike propagation in areas without prominent relief is usually controlled by regional tectonism, the propagation of dikes in volcanic edifices depends upon the shape and topography of the edifice, as well as the stress conditions within shallow magma reservoirs.
    Description: Published
    Description: 53-56
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: reserved
    Keywords: dike ; hazard ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-03
    Description: The Campi Flegrei caldera is a resurgent, nested structure formed mainly after two collapses related to the Campanian Ignimbrite (37 ka) and the Neapolitan Yellow Tuff (12 ka) eruptions. The structural boundaries of both calderas are partly controlled by reactivation of earlier regional fault systems. There has been ongoing resurgence inside the youngest caldera since its collapse, through a complex simple-shear mechanism. This resurgence has disjointed the caldera floor in blocks through long-term deformations over the past 12 ka. During this period volcanism occurred along the marginal faults of the youngest caldera and in the northeastern part of the resurgent block. Although large part of the caldera floor is deformed, the conditions for magmas to rise to surface were not established in the southwestern sector of the resurgent block. The caldera has shown signs of unrest in the last 27 years with short-term deformations that have generated a maximum net uplift of 3.5 m. The short-term deformations are interpreted as the result of a brittle and a ductile component. The long-term deformations likely represent the summation of the permanent, mostly brittle component of each short-term deformational event.
    Description: Published
    Description: 71 - 89
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: restricted
    Keywords: Campi Flegrei Caldera ; Resurgent Structure ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: Volcanic edifices are often unable to support their own load, triggering the instability of their flanks. Many analogue models have been aimed, especially in the last decade, at understanding the processes leading to volcano flank instability; general behaviors were defined and the experimental results were compared to nature. However, available data at well-studied unstable volcanoes may allow a deeper understanding of the specific processes leading to instability, providing insights also at the local scale. Etna (Italy) constitutes a suitable example for such a possibility, because of its well-monitored flank instability, for which different triggering factors have been proposed in the last two decades. Among these factors, recent InSAR data highlight the role played by magmatic intrusions and a weak basement, under a differential unbuttressing at the volcano base. This study considers original and recently published experimental data to test these factors possibly responsible for flank instability, with the final aim to better understand and summarize the conditions leading to flank instability at Etna. In particular, we simulate the following processes: a) the longterm activity of a lithospheric boundary, as the Malta Escarpment, separating the Ionian oceanic lithosphere from the continental Sicilian lithosphere, below the most unstable east flank of the volcano; b) spreading due to a weak basement, with different boundary conditions; c) the pressurization of a magmatic reservoir, as that active during the 1994–2001 inflation period; d) dike emplacement, as observed during the major 2001 and 2002–2003 eruptions. The experimental results suggest that: 1) the long-term activity of a lithospheric tectonic boundary may create a topographic slope which provides a differential buttressing at the volcano base, a preparing factor to drive longer-term (〉105 years) instability on the east flank of the volcano; 2) volcano spreading (b104 years) has limited effect on flank instability at Etna; 3) magmatic intrusions (b101 years), both in the form of Mogi-like sources or dikes, provide the most important conditions to trigger flank instability on the shorter-term.
    Description: Thisworkwas partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 98-111
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano instability ; analogue modeling ; Etna ; unbuttressing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: Since January 2008, several geophysical parameters have evidenced a recharging phase at Mt. Etna volcano culminating with an effusive eruption that began on May 13, 2008. Seismic activity recorded at Mt. Etna from January 2007 to May 2008 was analyzed in order to provide seismological constraints to the volcano dynamics leading to the eruption. A total of 336 selected earthquakes, withML≥1.5, were used as data source for this study. Specifically, we calculated 3D velocity and attenuation tomography, including a 3D relocation of the events, and we computed 53 selected fault plane solutions (FPSs) that were used for stress tensor inversion. The most important result obtained from the joint analysis of VP, VP/VS and P-wave attenuation is an anomalous zone with normal to high VP (values between 3.5 and 4.5 km/s) and low VP/VS (values≤1.64), which partially overlaps with a low QP (values≤50) volume located along a NS trending channel beneath the central crater. This can be interpreted as a shallow volume characterized by high temperature where the magma is located with the presence of supercritical fluids. The analysis of seismic stress tensor evidenced an extensional regime in the depth range 3–13 km with a vertically oriented σ1. This finding may suggest an extensional stress regime, probably related to the kinematic response of the volcanic edifice to both a deep magmatic intrusion and a condition of decreased regional compressive stress facilitated by sliding processes of the eastern flank of the volcano.
    Description: Published
    Description: 50–63
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; Volcanic eruptions ; Stress Tensor ; Velocity tomography ; Attenuation tomography ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: The morphological evolution of the Sciara del Fuoco, Stromboli, is described from a time series dataset formed by Digital Elevation Models and orthophotos derived by digitising historical contour maps compiled in 1868 and 1937 and by processing data from aerial surveys carried out between 1954 and 2009. All maps were coregistered in the same reference system and used to build a quantitative reconstruction of the morphological changes of the Sciara del Fuoco slope. The changes mainly relate to the emplacement of many lava flows and their successive erosion. A comparative quantitative analysis yields estimates of areas and volumes of the lava fields formed on the sub-aerial part of the Sciara del Fuoco during a number of effusive events between 1937 and 2001, some of them never assessed before. The results of the analysis constrain the interpretation of the evolution and the magnitude of the recent effusive activity at the Stromboli volcano. Despite some uncertainties due to widely spaced observation periods, the results integrate all available topographic knowledge and contribute to an understanding of the main characteristics of the recent effusive eruptive styles at Stromboli volcano.
    Description: Published
    Description: 231-248
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; Lava flow eruptions ; Digital Elevation Models ; Sciara del Fuoco ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: Strombolian eruptions, common at basaltic volcanoes, are mildly explosive events that are driven by a large bubble of magmatic gas (a slug) rising up the conduit and bursting at the surface. Gas overpressure within the bursting slug governs explosion dynamics and vigor and is the main factor controlling associated acoustic and seismic signals. We present a theoretical investigation of slug overpressure based on magma-static and geometric considerations and develop a set of equations that can be used to calculate the overpressure in a slug when it bursts, slug length at burst, and the depth at which the burst process begins. We find that burst overpressure is controlled by two dimensionless parameters: V′, which represents the amount of gas in the slug, and A′, which represents the thickness of the film of magma that falls around the rising slug. Burst overpressure increases nonlinearly as V′ and A′ increase. We consider two eruptive scenarios: (1) the “standard model,” in which magma remains confined to the vent during slug expansion, and (2) the “overflow model,” in which slug expansion is associated with lava effusion, as occasionally observed in the field. We find that slug overpressure is higher for the overflow model by a factor of 1.2–2.4. Applying our model to typical Strombolian eruptions at Stromboli, we find that the transition from passive degassing to explosive bursting occurs for slugs with volume 〉24–230 m3, depending on magma viscosity and conduit diameter, and that at burst, a typical Strombolian slug (with a volume of 100–1000 m3) has an internal gas pressure of 1–5 bars and a length of 13–120 m. We compare model predictions with field data from Stromboli for low-energy “puffers,” mildly explosive Strombolian eruptions, and the violently explosive 5 April 2003 paroxysm. We find that model predictions are consistent with field observations across this broad spectrum of eruptive styles, suggesting a common slug-driven mechanism; we propose that paroxysms are driven by unusually large slugs (large V′).
    Description: Published
    Description: B02206
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli ; Taylor bubble ; basaltic volcanoes ; falling film ; gas slug ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: The Educational & Outreach Group (EOG) of the Istituto Nazionale di Geofisica & Vulcanologia created a portable museum to provide educational opportunities in volcanology, volcanic risk and Earth science for students and visitors. The EOG developed this project for the "Festival della Scienza", organized in Genoa, Italy, in October - November, 2007, which was a parade of over 200 events, including scientific and technological exhibitions, workshops, meetings, lectures, books and video presentations. In this museum visitors can successively see many posters and movies and play with interactive exhibits. A little 3D-movie shows the Big Bang, the formation of Solar System and, in particular the formation of the Earth. Many interactive exhibits illustrate why, where and when earthquakes and volcanic eruptions occur around the world and allow to introduce the visitor to the plate tectonics theory. A 3D magnetic plate tectonic puzzle can be put down and reconstructed by visitors to understand the Earth’s surface configuration. Then two other 3D Earth models show what drives the plates and the inner Earth structure. An interactive program illustrates where and when earthquakes and volcanic eruptions occur in accelerated time on maps of various areas around the world. Playing with a block diagram it is possible to produce an earthquake along a 1 meter long strike slip fault in a destroying all the man-made constructions close to it. A little movie introduces to volcanoes’ world. Two small interactive exhibits allow visitors to understand the mechanism for the explosive and the effusive eruptions. Two other exciting interactive exhibits allow visitors to “create” two different eruptions: the explosive and the effusive ones. It is possible to get inside a volcano (a 2 meter high interactive exhibit) to attend an eruption from the magmatic chamber to the Earth surface. A big hall is completed dedicated to Italian volcanoes (Vesuvio, Campi Flegrei, Etna, Stromboli, Vulcano, Colli Albani); some of them are reproduced with 3D models or described by short movies. The museum finishes with the visit of the volcanic survey hall of Stromboli, seeing - in real time - seismic data, three different webcams, geochemical and strain data. The INGV Museum had remarkably successful, reaching more than 7,500 children and adults yet in 13 days, also thanks to 30 volcanologists as very special guides. The Educational & Outreach Group: M. Pignone, A. Tertulliani, M. De Lucia, M. Di Vito, P. Landi, P. Madonia, M. Martini, R. Nave, M. Neri, P. Scarlato, J. Taddeucci, R. Moschillo, S. Tarquini, G. Vilardo, A. Bonforte, L. Calderone, F. Cannavò, W. De Cesare, P. Ficeli, S. Inguaggiato, M. Mattia, G. Puglisi, S. Morici, D. Reitano, D. Richichi, G. Scarpato, B. Angioni, F. Di Laura, S. Palone, D. Riposati
    Description: Published
    Description: EGU General Assembly 2009, held 19-24 April, 2009 in Vienna, Austria http://meetings.copernicus.org/egu2009
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: Festival della Scienza ; museum ; 3D-movie shows the Big Bang ; Solar System ; volcanic survey of Stromboli ; real time seismic data ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: Signals with Very Long Periods (VLP) (1-60s) have been recorded on many active volcanoes. They are related with various dynamical processes in the volcano feeding system. Stromboli was one of the first volcanoes where such signals have been observed and analyzed. After the beginning of an anomalous eruptive activity in December 2002, a permanent broadband seismic network was deployed, by INGV-Osservatorio Vesuviano, in January 2003. Currently the network consists in 11 stations. Seismic data are continuously acquired by the INGV-Osservatorio Vesuviano in Naples, where they are analyzed in real time and stored. Preliminary results are immediately published on public web pages. In this paper we focus on the method used for detecting and locating VLP events. Such events have not a clear onset, so classical methods for automatic picking and location fails. Compared to common earthquakes signals, VLPs shows a high waveform coherence among different stations and a clear radial polarization toward the hypocenter. Using these features, hypocenters may be found searching for the points in the space having the highest coherence in the radial component. This is quantified using a modified semblance function over band-pass filtered (2-20 s) signals. The point having the highest semblance function value is the hypocenter. The semblance function is computed continuously for 10 s time windows over a regular grid centered on Stromboli, having a volume of 8000x8000x2000 m and a spacing of 100x100x50 m. VLP events are detected when the maximum value of the semblance function exceed a given threshold value. This task require heavy computation efforts. For this reason we use a 64 processor parallel computer for performing real-time analysis.
    Description: Published
    Description: Nice 25-30 April, 2004
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: AUTOMATIC ; REAL-TIME DETECTION ; LOCATION ; VERY LONG PERIOD ; STROMBOLI ; parallel computer ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, final runout, and damage can be explained by the emplacement of an unsteady, stratified pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will influence the definition and predictive mapping of hazards on blast-dangerous volcanoes worldwide.
    Description: Published
    Description: 535-538
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic blast ; multiphase model ; Mount St. Helens ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-03
    Description: An Advanced Very-High-Resolution Radiometer (AVHRR) routine for hotspot detection and effusion rate estimation (AVHotRR) using AVHRR infrared space-borne images is presented here for the monitoring of active lava flow. AVHotRR uses directly broadcast National Oceanic and Atmospheric Administration (NOAA)-AVHRR remotely sensed data. The 2006 summit eruption of Mount Etna provided the opportunity to test the products generated by AVHotRR for monitoring purposes. Low spatial and high temporal resolution products can also be used as inputs of flow models to drive numerical simulations of lava-flow paths and thus to provide quantitative hazard assessment and volcanic risk mitigation.
    Description: Published
    Description: 522-534
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: open
    Keywords: Remote sensing ; Volcano monitoring ; NOAA-AVHRR ; Hot-spot detection ; Lava-flow effusion rate ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-03
    Description: This special issue of Annals of Geophysics contains seventeen peer-reviewed papers that cover a wide variety of topics related to the V3-LAVA Project funded by the Italian Dipartimento della Protezione Civile in the framework of the 2007– 2009 Agreement with the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The frequent eruptions of Mount Etna can produce lava flows that can cover distances long enough to invade vulnerable areas on the flanks of the volcano. These require improvements to our forecasting tools for the effective assessment of lava-flow hazards, to help the local authorities to make the necessary decisions during a volcanic eruption. The LAVA Project aims to develop, validate and unify methods for mapping the areas around Etna that are threatened by lava invasion within the next 50 years, and also within the immediate days after an eruption has begun. Both timescales of lava-hazard mapping call for estimations of the probabilities of vent openings – using geological evidence over the long-term, and monitoring data over the short-term.
    Description: Published
    Description: 462-463
    Description: JCR Journal
    Description: open
    Keywords: V3-LAVA Project ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-03
    Description: This paper presents the results of a systematic historical study of the seismic, bradyseismic and eruptive activity of the Campi Flegrei caldera. The aim is to make a revised historical data available for accurate volcanological interpretation, supplying additional data and highlighting spurious previous data. The analysis begins with the supposed 1198 eruption, which did not actually take place. No information is available for the thirteenth and fourteenth centuries. As far as the fifteenth and sixteenth centuries are concerned, only direct sources were examined for this paper, and they include many different types of evidence. The chronological breadth of the analysis has also provided information about the seismic crises and bradyseisms prior to the eruption of 1538. The exceptional nature of this 1538 eruption attracted the attention of intellectuals, diplomats and natural philosophers, who left valuable accounts, which we have analysed, and which include many that are still available in their original manuscript form. The previous studies concerning the 1538 eruption were based on 23 (variously used) sources. We have examined 35 additional sources bringing the overall corpus of sources analysed to 58. The results provide a more precise scenario of events preceding the 1538 eruption, including bradyseismic activity starting from the end of the fifteenth century. The chronology of the phenomena described comprises the core result of this study, and has been constructed so as to clarify the time, location and impact of each event. For the 1538 eruption, a countdown is included which may also have a predictive value. For the last 36 hours before eruption began, the countdown is hour-by-hour. The effects of the eruption and earthquakes on people, structures and society are also described for Pozzuoli, Agnano and Naples. The areas where heavy materials and ash fell are likewise indicated, as well are the earth tremors felt by the population from the eruptive crisis up to 1582.
    Description: Published
    Description: 655-677
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera. ; historical data ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: A 4-year geochemical survey of some fumaroles at the Voragine summit crater of Mt Etna was performed in combination with synchronous monitoring of peripheral gas emissions at the base of the volcano. This was the first geochemical study at Mt Etna to have included the abundances of Ar, He, and C isotopes. Once the effects of postmagmatic shallow processes were identified and quantitatively removed, the He–Ar–CO2 systematics of the Voragine crater fumaroles and peripheral gas emissions described the same degassing path. Combining the carbon-isotope composition with information about noble gases provided evidence that the crater fumaroles are fed from a two-endmember mixture composed of a deep member coming from pressures between 200 and 400 MPa (depending on time), and a shallower one exsolved at 130 MPa. Similar mixing processes probably also occur in gases from peripheral vents. The simultaneous assessment of d13CCO2 and He/Ar values of crater fumaroles over time has identified simple changes in the mixing proportion between the two endmembers and, moreover, periods during which the exsolution pressure of the deep fluid increased. These periods seem to be linked to pre-eruptive phases of the volcano. The identified open-system degassing processes are indicative of efficient bubble–melt decoupling at depth, whereas the mixing process requires a convective transfer of the deeply exsolved fluids toward shallower levels of magma where further vapor is exsolved. In agreement with the most recent geophysical and petrological data from Mt Etna, these observations allow inferences about a deep portion of the plumbing system (5 to 12 km b.s.l.), comprising sill-like reservoirs connected by small vertical structures, and a main reservoir at 2–3 km b.s.l. that is probably fluxed by magmatic volatiles. 2012 Elsevier Ltd. All rights reserved.
    Description: Published
    Description: 380-394
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: gas geochemistry, isotopes, degassing, modelling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: We analyzed crater SO2 fluxes from Mt Etna, together with soil CO2 effluxes from the volcano's flanks, in the period from 2001 to 2005. Between the 2001 and 2002–2003 eruptions, persistently low values of both parameters suggest that no new gas-rich magma was accumulating at shallow depth (b5 km) within Etna's central conduit, whereas very high SO2 sin-eruptive fluxes during the two eruptions indicated sudden decompression of an un-degassed magma rising along newly-formed eccentric conduits. In November 2003, soil CO2 data indicate migration of gas-rich magma from deep (〉10 km) to shallow (b5 km) portions of the feeding conduits, preceded by an increase in crater SO2 fluxes. A similar behavior was observed also during and after the following 2004–2005 eruption. This degassing style matches a period of increased structural instability of the volcanic edifice caused by acceleration of spreading that affected both its eastern and southern flanks. Spreading could have triggered progressively deeper depressurization in the central conduit, inducing release of the more soluble gas (SO2) first, and then of CO2, contrary to what was observed before the 2001 eruption. This suggests that the edifice has depressurized, promoting ascent of fresh-magma and increasing permeability favouring release of CO2 flux. By integrating geochemical and structural data, previous degassing models developed at Mt. Etna have been updated to advance the understanding of eruptive events that occurred in recent years.
    Description: This work was funded by grants from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and from the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 90-97
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemical modeling ; volcano monitoring ; volcanic gases ; Tectonics and magmatism ; flank collapse ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: After the beginning of the eruptive crisis that has interested the Stromboli volcano (Southern Italy) at the end of 2002, starting the second half of January 2003 it has been installed on the island a centralized broadband seismic network, at present composed by 11 stations, all equipped with Guralp CMG-40T (0,02-60 s period). The network is one of the first designed to monitor and analyze in real time the very long periods (VLP) events, which are produced, in the case of the Stromboli volcano, at a rate of hundreds per day. The disposition of the stations has been chosen in order to realize an azimuth and distance homogeneously distribution regarding possible seismic sources situated along the upper part of feeding system of the volcano. The network shows a distribution of stations that encircle the volcanic structure to various levels regarding the area of craters and the eruptive vents, with distance of the stations from the emission centers that vary between some hundreds of meters to about 2 kilometers. The signals, acquired using 24 bits A/D data loggers designed by INGV - CNT, are transmitted via UHF radiomodems to two intermediate centralization sites . The first one is the Observatory of S. Vincenzo where are centralized the stations installed on the northern side of the island, the second is the Observatory INGV in the Lipari island, where are centralized all the other stations. From these two intermediate centralization sites the data are transmitted via TCP/IP protocol, using the Italian scientific-academic internet network GARR, towards the INGV monitoring centers of Catania and Observatory Vesuviano (Naples), where the broadband signals are monitored and processed, using a 64 CPU computer cluster to perform the VLP real-time analysis.
    Description: Published
    Description: Vienna
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: eruptive crisis ; centralized broadband seismic network ; monitor and analyze in real time the very long periods ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-02-24
    Description: Etna volcano is affected by a downward sliding of its eastern flank, as rapid as a few cm/year, whose nature is highly debated. Recently collected marine geological and geophysical data allows a detailed image of the morphostructural setting of the continental margin facing the volcano. Here, a large bulge offsets the margin that is deeply affected by widespread semicircular steps, interpreted as evidence of large-scale gravitational instability. Such features permeate the whole margin and extend inshore to the volcano sector where the larger ground deformations are measured. Both submarine instability and subaerial flank sliding are bounded by two regional tectonic lineaments interpreted as weakness lines. These cross the coastline to accommodate the basinward movement of this large sector of the continental margin topped by the Etna volcanic pile. The new data allows re-interpreting the tectonic setting of the coastal belt and proposing a novel structural model, highlighting the active role of the continental margin instability to drive the seaward sliding of the volcano's eastern flank. This model may suggest why a very active basaltic volcano has so unusually developed in front of an active thrust belt.
    Description: Published
    Description: 57–64
    Description: JCR Journal
    Description: restricted
    Keywords: volcano sliding ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-02-24
    Description: The morphometry of a great number of scoria cones, belonging to volcanic fields of various geodynamic settings, has been measured and analyzed, addressing the question whether there is a relation between the prevalent cone shape in a given field and the geodynamic setting of the field itself. Morphometric analysis was carried out on freely downloadable digital elevation models (DEMs). The accuracy of the used DEMs and the associated error in scoria cone morphometry were determined by cross-comparing high-resolution LIDAR-derived DEMs, USGS NED, TINITALY DEM and ASTER GDEM. The 10-m TINITALY/01 and USGS NED DEMs are proven to be suitable for scoria cone morphometry, whereas ASTER GDEM can be used reliably for cones with volume greater than 30 × 106 m3. According to a detailed morphometry of all scoria cones, we propose that the cones related to subductional setting show relatively higher values of Hco/Wco and lower values of Wcr/Wco than the cones related to extensional setting. The detected differences can be imputable to peculiar eruption dynamics resulting in slight but systematic changes in shape, and differences in lithological and sedimentological characteristics that govern post-eruptive erosion. To constrain the pathway of scoria cone erosion, the detected morphometric changes were also interpreted using a simple linear degradation model. Utilizing the obtained simulation results, the inferred initial cone base, and the age of scoria cones, we calculated a diffusion coefficient (K) for several dated cones, which are related to the prevalent climate. Our results, despite the high error associated, allow to assess the median K for all volcanic fields. Due to the complexity of the factors behind, it is not easy to understand if the prevalent shape characterizing a certain volcanic field is due mainly to sin-eruptive or post-eruptive mechanisms; however, our distinction between the two main geodynamic settings may be the first step to decipher these factors.
    Description: Published
    Description: 56-72
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: restricted
    Keywords: Scoria cone ; Digital elevation models (DEMs) ; Morphometry ; Volcanic field ; Cone degradation simulation ; Geodynamic setting ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-02-24
    Description: Hydrothermal fluid circulation may cause measurable gravity changes and ground deformation. We extend our previous studies and increase the number of observable parameters to include gas temperature, the rate of diffuse degassing, the extent of the degassing area, and electrical conductivity. We have carried out simulations using TOUGH2/EOS2 of a large scale hydrothermal system, then we have calculated observables arising from changes in hydrothermal fluid circulation. Our results show that fluids affect many observable parameters generating detectable signals. However, a more detailed description of the shallow subsurface is necessary to properly calculate electrical conductivity. Studies at Solfatara volcano (Campi Flegrei caldera, Italy) highlight the presence of an unsaturated layer at depth and allow to determine the position of the water table. Then, we present results from a new, small scale simulation, focused on the crater, and carried out with a new, refined meshgrid taking into account the real topography. Aim of the work is to calculate a detailed electrical conductivity map and reproduce the main features of the Solfatara crater.
    Description: Published
    Description: 93–105
    Description: JCR Journal
    Description: restricted
    Keywords: Electrical conductivity ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-02-24
    Description: Volcanogenic deformations during periods of unrest are related to volcanic seismicity in various ways. Magmas or geothermal fluids intrude beneath volcanoes and cause deformations at the surface gradually or rapidly. Mechanical energies of the intrusions are converted to deformation energy, earthquakes, and also explosions under certain circumstances. Partition among the three kinds of energies provides information of the internal processes and yields a clue to their origin. From the above standpoint, deformations accompanying seismicity at Campi Flegrei, Rabaul and Usu are discussed with the aid of published data. To quantitatively correlate the deformations and the seismicity, we discuss the time-derivatives of uplift and release of seismic energy, which are energetically interrelated. The correlation between them is moderate at Campi Flegrei, somewhat higher at Rabaul and high at Usu, but the data sets are not always equal in quality. The deformation volumes are also different among the three volcanoes. In order to standardize the volumes, seismic energies released by unit volume of each deformation are compared. The specific seismic energy is found to increase from Campi Flegrei through Rabaul to Usu. Such different behavior in seismodeformations among the three volcanoes is interpreted as differences in the mechanism of volcanic activity, and in physical properties of the mediums involved.
    Description: Published
    Description: 411-424
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-02-24
    Description: Detailed stratigraphic and micropalaeontological analyses of samples from boreholes at the Somma-Vesuvius apron, between Pompeii and the sea, allowed reconstruction of Late Quaternary palaeoenvironmental evolution of the Sarno coastal plain. In all, 116 samples were recovered from seven boreholes drilled from 2–10 m a.s.l. to 16.5–26 m b.s.l. Microfossil assemblages, with special regard to benthic foraminifers and ostracods, were used to reconstruct the depositional palaeoenvironment. Fossil remains show that all the pre-79 AD fossiliferous sediments from 2 to − 24 m a.s.l. were deposited in shallow marine waters for a long time despite an appreciable sea level rise. The data indicate alternation of both shallow marine and subaerial conditions during the last ~ 15 kyr, evidencing ground uplift of the area of about 75 m at a rate of ~ 5 mm/year. Marine sediment accumulation (~ 6 m/kyr) and tectonic uplift long offset the sea level rise, and as a consequence, submerged areas remained the same as well.
    Description: Published
    Description: 211–227
    Description: JCR Journal
    Description: restricted
    Keywords: ground uplift; Somma-Vesuvius; Pleistocene; Palaeoecology; benthic foraminifers; ostracods ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-02-24
    Description: We report simultaneous laboratory measurements of seismic velocities and fluid permeability on lava flow basalt from Etna (Italy). Results were obtained for dry and saturated samples deformed under triaxial compression. During each test, the effective pressure was first increased up to 190 MPa to investigate the effect of pre-existing crack closure on seismic properties. Then, the effective pressure was unloaded down to 20 MPa, a pressure which mirrors the stress field acting under a lava pile of approximately 1.5–2 km thick, and deviatoric stress was increased until failure of the specimens. Using an effective medium model, the measured elastic wave velocities were inverted in terms of two crack densities: ρi the crack density of the pre-existing thermal cracks and ρv the crack density of the stress-induced cracks. In addition a link was established between elastic properties (elastic wave velocities Vp and Vs) and permeability using a statistical permeability model. Our results show that the velocities increase with increasing hydrostatic pressure up to 190 MPa, due to the closure of the pre-existing thermal cracks. This is interpreted by a decrease of the crack density ρi from ~ 1 to 0.2. The effect of pre-existing cracks closure is also highlighted by the permeability evolution which decreases of more than two orders of magnitude. Under deviatoric loading, the velocities signature is interpreted, in the first stage of the loading, by the closure of the pre-existing thermal cracks. However, with increasing deviatoric loading newly-formed vertical cracks nucleate and propagate. This is clearly seen from the velocity signature and its interpretation in term of crack density, from the location of the acoustic emission sources, and from microstructural observations. This competition between pre-existing cracks closure and propagation of vertical cracks is also seen from the permeability evolution, and our study shows that mechanically-induced cracks has lesser influence on permeability change than pre-existing thermal cracks.
    Description: Published
    Description: 60–74
    Description: JCR Journal
    Description: restricted
    Keywords: Elastic wave velocity ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-03-02
    Description: In this paper we provide a geochemical investigation on 34 groundwater samples in the Mt. Vulture volcanic aquifer representing one of the most important groundwater resources of the southern Italy pumped for drinking and irrigation supply. The present study includes the first data on the abundance and mobility of minor and trace elements and the thermodynamic considerations on water–rock interaction processes in order to evaluate the conditions of alkali basalt weathering by waters enriched in magma-derived CO2. The results highlight the occurrence of two hydrofacies: bicarbonate alkaline-earth and alkaline waters deriving from low-temperature leaching of volcanic rocks of Mt. Vulture, and bicarbonate-sulfate-alkaline waters (high-salinity waters) related to prolonged water circulation in alkali and feldspathoids-rich pyroclastic layers interbedded with clay deposits. The Al-normalized relative mobility (RM) of metals in Vulture's aquifer varies over a wide range (10− 1 〈 RM 〈 104), confirming that the basalt weathering is not a congruent and isochemical process. Chemical equilibrium studies show that the bicarbonate alkaline-earth and alkaline waters, having a short interaction with silicate minerals, plot very close to the kaolinite–smectite stability boundary, whereas the high-salinity waters fall in the stability field of smectite and muscovite because of prolonged interaction with alkali and feldspathoids-rich pyroclastic layers. Overall, for the bicarbonate alkaline-earth and alkaline waters, the release of toxic metals in solutions is related to the spatial variation of host-rock geochemistry, the high-salinity waters, collected near urban areas, show values higher than legal limits for Ni and As, likely as a consequence of anthropogenic contribution.
    Description: Published
    Description: 233-244
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic aquifer system ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-04
    Description: A suite of twelve vesuviante samples...
    Description: Published
    Description: 369-364
    Description: JCR Journal
    Description: reserved
    Keywords: Somma Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-12-06
    Description: Volcanic ash (tephra) erupted from the frequently active Campi Flegrei volcano forms layers in many palaeoenvironmental archives across Italy and the Mediterranean. Proximal deposits of 50 of the post-15 ka eruptions have been thoroughly sampled and analysed to produce a complete database of glass compositions (〉1900 analyses) to aid identification of these units. The deposits of individual eruptions are compositionally diverse and this variability is often greater than that observed between different units. Many of the tephra units do not have a unique glass chemistry, with compositionally similar tephra often erupted over long periods of time (1000s years). Thus, glass chemistry alone is not enough to robustly correlate most of the tephra from Campi Flegrei, especially in the last 10 kyrs. In order to reliably correlate the eruption units it is important to take into account the stratigraphy, chronology, magnitude, and dispersal of the eruptions, which has been collated to aid identification. An updated chronology is also presented, which was constrained using Bayesian analysis (OxCal) of published radiocarbon dates and 40Ar/39Ar ages. All the data presented can be employed to help correlate post-15 ka tephra units preserved in archaeological and Holocene palaeoenvironmental archives. The new database of proximal glass compositions has been used to correlate proximal volcanic deposits through to distal tephra layers in the Lago di Monticchio record ( [Wulf et al., 2004] and [Wulf et al., 2008]) and these correlations provide information on eruption stratigraphy and the tempo of volcanism at Campi Flegrei.
    Description: Published
    Description: 3638–3660
    Description: JCR Journal
    Description: restricted
    Keywords: Tephrochronology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-12-15
    Description: Some of the most structurally innovative concrete vaults built in imperial Rome employed lightweight volcanic rocks to reduce the lateral thrust on the supporting walls, the most famous being the Pantheon. Roman concrete (opus caementicium) was made up of mortar binding together pieces of large aggregate (caementa) usually ranging from 10 to 20 cm long, which were hand laid in the mortar (as opposed to being poured as is typical in modern concrete), so that it resembles mortared rubble. A key aspect of the development of large-scale concrete vaulting was the ability to regulate the weight of the ingredients in order to reduce the weight of the vaults and to control the forces within the structure. The volcanic environment along the west coast of Italy provided numerous stones of different weights and physical properties from which the builders could choose (Fig. 1), including pumice and scoria, which were the most common choices for the lightweight caementa of the most innovative vaulted structures. Because these materials were produced by many of the Italian volcanoes, our goal was to establish the provenance of those used in vaults in Rome in order to understand better the supply network. We first used thin sections to narrow the potential sources and then we submitted selected samples to X-ray fluorescence
    Description: Published
    Description: 707-727
    Description: JCR Journal
    Description: restricted
    Keywords: concrete vault ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-12-06
    Description: We apply a novel computational approach to assess, for the first time, volcanic ash dispersal during the Campanian Ignimbrite (Italy) super-eruption providing insights into eruption dynamics and the impact of this gigantic event. The method uses a 3D time-dependent computational ash dispersion model, a set of wind fields, and more than 100 thickness measurements of the CI tephra deposit. Results reveal that the CI eruption dispersed 250–300 km3 of ash over 3.7 million km2. The injection of such a large quantity of ash (and volatiles) into the atmosphere would have caused a volcanic winter during the Heinrich Event 4, the coldest and driest climatic episode of the Last Glacial period. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle-Early Upper Paleolithic groups in Southern and Eastern Europe.
    Description: Published
    Description: L10310
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Campanian Ignimbrire ; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-12-06
    Description: Voluminous rhyolitic eruptions from Toba, Indonesia, and Taupo Volcanic Zone (TVZ), New Zealand have dispersed volcanic ash over vast areas in the late Quaternary. The w74 ka Youngest Toba Tuff (YTT) eruption deposited ash over the Bay of Bengal and the Indian subcontinent to the west. The w340 ka Whakamaru eruption (TVZ) deposited the widespread Rangitawa Tephra, dominantly to the southeast (in addition to occurrences northwest of vent), extending across the landmass of New Zealand, and the South Pacific Ocean and Tasman Sea with distal terrestrial exposures on the Chatham Islands. These super-eruptions involved w2500 km3 and w1500 km3 of magma (dense-rock equivalent; DRE), respectively. Ultra-distal terrestrial exposures of YTT at two localities in India, Middle Son Valley, Madhya Pradesh, and Jurreru River Valley, Andhra Pradesh, at distances of 〉2000 km from the source caldera, show a basal ‘primary’ ashfall unit w4 cm thick, although deposits containing reworked ash are up to w3 m in total thickness. Exposures of Rangitawa Tephra on the Chatham Islands, 〉900 km from the source caldera, are w15e30 cm thick. At more proximal localities (w200 km from source), Rangitawa Tephra is w55e70 cm thick and characterized by a crystal-rich basal layer and normal grading. Both distal tephra deposits are characterized by very-fine ash (with high PM10 fractions) and are crystal-poor. Glass chemistry, stratigraphy and grain-size data for these distal tephra deposits are presented with comparisons of their correlation, dispersal and preservation. Using field observations, ash transport and deposition were modeled for both eruptions using a semi-analytical model (HAZMAP), with assumptions concerning average wind direction and strength during eruption, column shape and vent size. Model outputs provide new insights into eruption dynamics and better estimates of eruption volumes associated with tephra fallout. Modeling based on observed YTT distal tephra thicknesses indicate a relatively low (〈40 km high), very turbulent eruption column, consistent with deposition from a co-ignimbrite cloud extending over a broad region. Similarly, the Whakamaru eruption was modeled as producing a predominantly Plinian column (w45 km high), with dispersal to the southeast by strong prevailing winds. Significant ash fallout of the main dispersal direction, to the northwest of source, cannot be replicated in this modeling. The widespread dispersal of large volumes of fine ash from both eruptions may have had global environmental consequences, acutely affecting areas up to thousands of kilometers from vent.
    Description: Published
    Description: 54–79
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Toba eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-11-18
    Description: Morphologic data for 147 cinder cones in southern Guatemala andwestern El Salvador are comparedwith data from the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan–Guanajuato volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 110+/-50 m, an average basal diameter of 660+/-230 m and an average top diameter of 180+/-150 m. The generalmorphology of these cones can be described by their average cone angle of slope (24+/-7), average heightto- radius ratio (0.33+/-0.09) and their flatness (0.24+/-0.18). Although the mean values for the Guatemalan cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, California; Michoácan–Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of morphologies encompasses almost all of those observed worldwide for cinder cones. Three new 40Ar/39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El Salvador. There is no indication that the morphologies of these cones have changed over the last 500–1000 ka. Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of those studied) is there clear evidence of degradation with age. Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of eruption.
    Description: Support for Walker was provided by NSF MARGINS grant OCE- 0405666.
    Description: Published
    Description: 39-52
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: cinder cones ; morphology ; age dating ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: We examine recent and historical sources with a view to reconstructing the circumstances leading in 1854 to the opening of the natural harbour of Ischia, the execution phases of the works and the morphological changes arising. Since the late 17th century Ischia, an active volcanic island, has been a major European destination for spa treatment. It underwent a period of change after the harbour was opened up, which represented not only an outlet towards the mainland but also an important factor of social and cultural aggregation for the island. Our analysis also accounts of the geology of Ischia Harbour, the observations of the current state of the island and issues concerning the increase in volcanic and seismic risk resulting from urban expansion and the increase in tourism since the first half of the 20th century.
    Description: Published
    Description: Pisa
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: open
    Keywords: Ischia harbour ; Ischia history ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: Gaetano Ponte (1876-1955), docente di vulcanologia presso lʼUniversità di Catania dal 1919 al 1951, rappresenta una figura di notevole spessore nel panorama mondiale degli studi sulle scienze della Terra. Le idee e i risultati delle ricerche da lui condotte sono ben noti attraverso la sua vasta produzione scientifica. È invece meno noto il suo patrimonio fotografico,costituito da oltre 2500 immagini realizzate dalla fine del 1800 fino al 1950. Questa pregevole raccolta di fotografie, che rappresenta un patrimonio unico di documentazione storica dell'attività dei vulcani siciliani,è stata recuperata e valorizzata attraverso una collaborazione fra l'Archivio Fotografico Toscano di Prato e l'Istituto Nazionale di Geofisica e Vulcanologia, che hanno realizzato un catalogo informatico disponibile su internet. In questo libro sono selezionate e presentate le più significative immagini di carattere vulcanologico, geologico e paesaggistico dei vulcani siciliani. Le fotografie di questo libro ricostruiscono un affascinante viaggio attraverso la storia eruttiva dellʼEtna e di Stromboli durante la prima metà del XX secolo e, insieme ai cambiamenti e alle modifiche del paesaggio etneo e siciliano, raccontano il lungo percorso culturale e scientifico della vita di Gaetano Ponte dove arte e scienza si fondono nella fotografia.
    Description: Published
    Description: 5.8. TTC - Biblioteche ed editoria
    Description: open
    Keywords: Gaetano Ponte ; Fotografia storica ; Etna ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Verlag der Buchandlung Walther Konig, Koln
    Publication Date: 2017-04-04
    Description: The first traces of a scientific study of volcanology and the earth sciences in Antiquity can be found among the Greeks,a small...
    Description: Published
    Description: 10-37
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: reserved
    Keywords: Monte Vesuvio ; Volcanology ; origins ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. Both radon and thoron anomalies were located in areas affected by relatively deep (5e10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquakes depth and intensity can give some hints on the source of gas and/or on fault dynamics.
    Description: Published
    Description: 863-870
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: radon ; fault ; seismic hazard ; Etna ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: We investigate the dynamics of turbulent pyroclastic density currents (PDCs) by adopting a 3D, Eulerian-Eulerian multiphase flow model, in which solid particles are treated as a continuum and the grain-size distribution is simplified by assuming two particulate phases. The turbulent sub-grid stress of the gas phase is modelled within the framework of Large-Eddy Simulation (LES) by means of a eddy-viscosity model together with a wall closure. Despite the significant numerical diffusion associated to the upwind method adopted for the Finite-Volume discretization, numerical simulations demonstrate the need of adopting a Sub-Grid Scale (SGS) model, while revealing the complex interplay between the grid and the SGS filter sizes. We also analyse the relationship between the averaged flow dynamic pressure and the action exerted by the PDC on a cubic obstacle, to evaluate the impact of a PDC on a building. Numerical results suggest that the average flow dynamic pressure can be used as a proxy for the force per unit surface acting on the building envelope (Fig. 5), even for such steeply stratified flows. However, it is not possible to express such proportionality as a constant coefficient such as the drag coefficient in a steady-state current. The present results indeed indicate that the large epistemic and aleatory uncertainty on initial and boundary conditions has an impact on the numerical predictions which is comparable to that of grid resolution.
    Description: Published
    Description: 161-170
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: Large-Eddy Simulation ; pyroclastic density currents ; numerical simulation ; multiphase flows ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Istituto nazionale di Geofisica e Vulcanologia, sezione Osservatorio Vesuviano
    Publication Date: 2017-04-04
    Description: The present guidebook was prepared for the fieldtrip during the Kick off meeting of the project titled “Strategies and tools for Real Time Earthquake RisK ReducTion” (REAKT). It reports information on the geology of the Somma-Vesuvius volcanic area and illustrates the sites visited during the field excursion. The guide mostly benefited of contributions coming from some previous guidebooks (Cioni et al., 1995; Orsi et al., 1998); it also includes some interesting results available in the main and most recent literature. The fieldtrip will be devoted to illustrating i) the major morphological and structural features of the Somma-Vesuvius volcano, and ii) the deposits of the eruptions and their impact on the territory. The trip will end with the tour of the Osservatorio Vesuviano edifice that preserves the memory of the oldest volcanological observatory in the world and hosts a museum and two scientific exibitions.
    Description: Published
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: Somma-Vesuvius ; Volcano ; Observatory ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-03
    Description: Si tratta di un Tour "virtuale" tra i vulcani attivi dell'Italia meridionale: Campi Flegrei, Somma-Vesuvio, Stromboli, Panarea, Lipari Vulcano, Etna e di un tour vulcanico antico nel territorio del Brasile
    Description: Petrobras
    Description: Unpublished
    Description: Museu Nacional, Quinta da Boavista – Rio de Janeiro, Brasil
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: open
    Keywords: Vulcani Attivi Italiani, Vulcani antichi del Brasile ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: Forecasting the lava flow invasion hazard in near‐real time is a primary challenge for volcano monitoring systems. The paroxysmal episode at Mount Etna on 12–13 January 2011 produced in ∼4 hours lava fountains and fast‐moving lava flows 4.3 km long. We produced timely predictions of the areas likely to be inundated by lava flows while the eruption was still ongoing. We employed infrared satellite data (MODIS, AVHRR, SEVIRI) to estimate in near‐realtime lava eruption rates (peak value of 60 m3 s−1). These time‐varying discharge rates were then used to drive MAGFLOW simulations to chart the spread of lava as a function of time. Based on a classification on durations and lava volumes of ∼130 paroxysms at Etna in the past 13 years, and on lava flow path simulations of expected eruptions, we constructed a lava flow invasion hazard map for summit eruptions, providing a rapid response to the impending hazard. This allowed key at‐risk areas to be rapidly and appropriately identified.
    Description: We are grateful to EUMETSAT for SEVIRI data, to NASA for MODIS data, and toNOAAfor AVHRR data. The authors thank one anonymous reviewer and V. Acocella for their helpful and constructive comments. This study was performed with the financial support from the V3‐LAVA project (INGV‐DPC 2007‐2009 contract).
    Description: Published
    Description: L13317
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: lava hazard ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-04
    Description: no abstract
    Description: Published
    Description: Pisa
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: mathematical model ; numerical simulation ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: no abstract
    Description: Published
    Description: Pisa
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: numerical simulations ; mathematical models ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ = 0.7 ± 0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for α 〉 5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
    Description: This work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 153-164
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; dike intrusion ; flank instability ; poro-elasticity ; analytical modelling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: The row of pyroclastic cones named Mts. Sartorius, outcropping on the NE flank of Etna, formed in 1865 during a lateral eruption that lasted about 6 months. The event was eye witnessed and described by numerous scientists and reporters. In this work, we use their observations to reconstruct the eruption chronology and scenario, and carry out a detailed geomorphologic survey to identify the eruptive features and pyroclastic deposits. The 1865 eruption began on 29 January along a segment of the main system of fractures oriented ENE–WSW, radial to the central conduit. After 30 January, a secondary system of fractures trending NNW–SSE was simultaneously active. The six larger Mts. Sartorius cones developed since 3 February along the lower extension of the radial system. They are markedly asymmetric due to the persistent winds blowing at the time and to the pre-existing topography formed on underlying deposits, previously unreported, that we have recognized. Now, about 150 years after the eruption, most of the eruptive vents and fractures are no longer observable in the field, being mostly hidden by products of subsequent phases of the eruption and by younger epiclastic deposits.
    Description: Published
    Description: 1155-1162
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mts. Sartorius ; 1865 lateral eruption ; Etna volcano ; Italy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Gangemi Editore
    Publication Date: 2017-04-04
    Description: la storia della formazione del Vesuvio,specialmente nelle sue prime manifestazioni di vita,ci è nota solo a grandi linee,nonostante...
    Description: Published
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: open
    Keywords: formazione ; Somma-Vesuvio ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: Natural radioactivity measurements represent an interesting tool to study geodynamical events or soil geophysical characteristics. In this direction we carried out, in the last years, several radionuclide monitoring both in the volcanic and tectonic areas of the oriental Sicily. In particular we report in-soil Radon investigations, in a tectonic area, including both laboratory and in-site measurements, applying three different methodologies, based on both active and passive detection systems. The active detection devices consisted of solid-state silicon detectors equipped in portable systems for short-time measurements and for long-time monitoring. The passive technique consisted of solid-state nuclear track detectors (SSNTD), CR-39 type, and allowed integrated measurements. The performances of the three methodologies were compared according to different kinds of monitoring. In general the results obtained with the three methodologies seem in agreement with each other and reflect the tectonic settings of the investigated area.
    Description: Published
    Description: 911-914
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Radionuclides ; Radon detection ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-04-04
    Description: The individuation of areas that are more likely to be affected by new events in volcanic regions is of fundamental relevance for the mitigation of the possible consequences, both in terms of loss of human life and material properties. Here, we describe a methodology for defining flexible high-detail lava-hazard maps and a technique for the validation of the results obtained. The methodology relies on: (i) an accurate analysis of the past behavior of the volcano; (ii) a new version of the SCIARA model for lava-flow simulation (based on the macroscopic cellular automata paradigm); and (iii) high-performance parallel computing for increasing computational efficiency. The new release of the SCIARA model introduces a Bingham-like rheology as part of the minimization algorithm of the differences for the determination of outflows from a generic cell, and an improved approach to lava cooling. The method is here applied to Mount Etna, the most active volcano in Europe, and applications to landuse planning and hazard mitigation are presented.
    Description: This study was sponsored by the Italian National Civil Defence Department and the Istituto Nazionale di Geofisica e Vulcanologia (INGV), project V3_6/09 "V3_6 – Etna".
    Description: Published
    Description: 568-578
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: volcanic risk ; cellular automata ; Algorithms and implementation ; Statistical analysis ; Data processing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-04-04
    Description: Unique volcanic structures, known in the literature as “lava trees” and “tree molds”, have formed at several sites on Mt. Etna volcano (northeastern Sicily, Italy). They form when a fluid lava flow runs over a tree, wraps around it and, while the wood burns off, solidifies forming a hollow cast of the tree. The inhabitants of the Etna area call these formations “pietre cannone” (“cannon stones”) because of their cylindrical shape. The first documentation of lava trees is from Hawaii, but the first eye-witnessed accounts of their formation are, to our knowledge, from Etna’s 1865 eruption. Although many of the literature examples of lava trees and tree molds formed in pahoehoe, many of those reported in this work formed in a’a. The sites where we have found the lava tree molds are located within the territory of the Etna Regional Park; most occur next to walking trails and have a high potential for geotourism.
    Description: Published
    Description: 633–638
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Lava trees ; Tree molds ; Etna volcano ; Italy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-02-24
    Description: Mount Etna produces frequent eruptions from its summit craters and from fissures on its flanks. The flank fissures trend approximately radially to the summit, and are mainly concentrated in three rift zones that are located on the NE, S and W flanks. Many flank eruptions result from lateral magma transfer from the central conduit into fractures intersecting the flanks, although some eruptions are fed through newly formed conduits that are not directly linked to the central conduit. We analyzed the structural features of eruptions from 1900 to the present, one of the most active periods in the documented eruptive history of Etna, which comprised 35 summit and 33 flank events. Except for a small eruption on the W flank in 1974, all of the flank eruptions in this interval occurred on or near the NE and S rifts. Eruptions in the NE sector were generally shorter, but their fissure systems developed more rapidly and were longer than those in the S sector. In contrast, summit eruptions had longer mean durations, but generally lower effusion rates (excluding paroxysmal events characterized by very high effusion rates that lasted only a few hours). This database was examined considering the main parameters (frequency and strike) of the eruptive fissures that were active over the last ~2 ka. The distribution in time and space of summit and flank eruptions appears to be closely linked to the dynamics of the unstable E to S flank sector of Etna, which is undergoing periodic displacements induced by subvolcanic magma accumulation and gravitational pull. In this framework, magma accumulation below Etna exerts pressure against the unbuttressed E and S flanks, which have moved away from the rest of the volcano. This has caused an extension to the detachment zones, and has facilitated magma transfer from the central conduit into the flanks.
    Description: This work was sponsored by the Italian National Civil Defence Department and INGV (Istituto Nazionale di Geofisica e Vulcanologia), project V3-LAVA (RU01–Team 01C).
    Description: Published
    Description: 464-479
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: JCR Journal
    Description: open
    Keywords: dike ; magmas ; tectonics ; structural geology ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-04
    Description: A calibration method has been applied on satellite data in the visible infrared spectral range from which spectral reflectance and emissivity may be retrieved. This dissertation describes the steps needed for multispectral/hyperspectral data calibration and a number of algorithms for reflectance and emissivity retrieval. The methodology is applied to retrieve reflectance and emissivity of volcano Teide and is validated through a comparison with “ground truth”. The “ground truth” spectra have been acquired during a field campaign carried on September 2007. As application of calibrated-validated data, the classification of the volcano Teide and the temperature map are discussed.
    Description: Università di Parma
    Description: Published
    Description: 1.10. TTC - Telerilevamento
    Description: restricted
    Keywords: Calibration ; Classification ; Hyperspectral data ; Remote Sensing ; Validation ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-04-04
    Description: In this paper we examine recent and historical sources with a view.....
    Description: Published
    Description: Napoli
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: open
    Keywords: Ischia harbour ; Ischia history ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-04
    Description: Elasto-plastic models for pressure sources in heterogeneous domain were constructed to describe, assess, and interpret observed deformation in volcanic regions. We used the Finite Element Method (FEM) to simulate the deformation in a 3D domain partitioned to account for the volcano topography and the heterogeneous material properties distribution. Firstly, we evaluated the extent of a heated zone surrounding the magmatic source calculating the temperature distribution by a thermo-mechanical numerical model. Secondly, we included around the pressurized magma source an elasto-plastic zone, whose dimension is related to the temperature distribution. This elasto-plastic model gave rise to deformation comparable with that obtained from elastic and viscoelastic models, but requiring a geologically satisfactory pressure. We successfully applied the method to review the ground deformation accompanying the 1993–1997 inflation period on Mt Etna. The model considerably reduces the pressure of a magma chamber to a few tens of MPa to produce the observed surface deformation. Results suggest that the approach presented here can lead to more accurate interpretations and inferences in future modeling-based assessments of volcano deformation.
    Description: Published
    Description: 311-318
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: ground deformation elasto-plastic rheology finite element method Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-04
    Description: A hybrid approach for forward and inverse geophysical modeling, based on Artificial Neural Networks (ANN) and Finite Element Method (FEM), is proposed in order to properly identify the parameters of volcanic pressure sources from geophysical observations at ground surface. The neural network is trained and tested with a set of patterns obtained by the solutions of numerical models based on FEM. The geophysical changes caused by magmatic pressure sources were computed developing a 3-D FEM model with the aim to include the effects of topography and medium heterogeneities at Etna volcano. ANNs are used to interpolate the complex non linear relation between geophysical observations and source parameters both for forward and inverse modeling. The results show that the combination of neural networks and FEM is a powerful tool for a straightforward and accurate estimation of source parameters in volcanic regions.
    Description: Published
    Description: 273-282
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: FEM, ANN, Etna volcano ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-04-04
    Description: A procedure, based on the Finite Element Method (FEM) for high-resolution geodetic data inversion, was developed to estimate non-uniform slip distribution during the 2002 September 22 M3.7 earthquake rupture occurring only one month before the 2002–2003 eruption of Etna volcano. FEM-generated synthetic Green’s functions are combined with an inverse algorithm to simulate deformation of the earthquake for a 3-D problem domain that takes into account heterogeneity of material properties in the volcanic edifice. The inversion of DInSAR data shows complex kinematics of the northeastern flank of theEtna volcano involving the Pernicana fault system. We detailed the coseismic shear-rupture mechanism and highlighted a tensile mechanism, never observed before, related to a first attempt of magma intrusion, which preceded the following October 26 eruption.
    Description: Published
    Description: 765-773
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Numerical solutions; Radar interferometry; Volcanic hazards and risks. ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-04
    Description: A uni ed modelling procedure is proposed to jointly interpret the variations observed in geophysical data and to properly take into account the relation- ship between the intrusive processes and the geophysical variations expected at the ground surface. We focus on the joint inversion of geophysical data by a procedure based on Arti cial Neural Network (ANN) for the estimation of the volcanic source parameters. As forward model, we develop a 3D numerical model based on Finite Element Method (FEM) for computing ground deforma- tion, magnetic and gravity changes caused by magmatic overpressure sources, with the aim to consider a more realistic description of Etna volcano, including the e ects of topography and medium heterogeneities.
    Description: Published
    Description: 177-182
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Identification, Modeling, Numerical methods. ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...