ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion  (29)
  • Springer  (29)
  • 2010-2014  (16)
  • 2005-2009  (13)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: A temporary seismic network composed of 11 stations was installed in the city of Potenza (Southern Italy) to record local and regional seismicity within the context of a national project funded by the Italian Department of Civil Protection (DPC). Some stations were moved after a certain time in order to increase the number of measurement points, leading to a total of 14 sites within the city by the end of the experiment. Recordings from 26 local earthquakes (Ml 2.2−3.8 ) were analyzed to compute the site responses at the 14 sites by applying both reference and non-reference site techniques. Furthermore, the Spectral Intensity (SI) for each local earthquake, as well as their ratios with respect to the values obtained at a reference site, were also calculated. In addition, a field survey of 233 single station noise measurements within the city was carried out to increase the information available at localities different from the 14 monitoring sites. By using the results of the correlation analysis between the horizontal-to-vertical spectral ratios computed from noise recordings (NHV) at the 14 selected sites and those derived by the single station noise measurements within the town as a proxy, the spectral intensity correction factors for site amplification obtained from earthquake analysis were extended to the entire city area. This procedure allowed us to provide a microzonation map of the urban area that can be directly used when calculating risk scenarios for civil defence purposes. The amplification factors estimated following this approach show values increasing along the main valley toward east where the detrital and alluvial complexes reach their maximum thickness.
    Description: Published
    Description: 493-516
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: site effect ; seismic noise ; spectral intensity ; correlation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-26
    Description: One of the main objectives of the ITACA (ITalian ACcelerometric Archive) strong motion database, promoted by the Italian Department of Civil Protection, was to improve the characterization of the recording sites from a geological and geophysical point of view and to provide their seismic classification according to the seismic norms pertinent to Italy, namely the Eurocode 8 and the National Technical Norms for Constructions. A standard format to summarize the available information for the recording stations was first produced, in terms of a technical report dynamically linked to the database, i.e., some of the relevant information is automatically updated when the corresponding fields of the database are modified. Then, an important activity of collection, qualification and synthesis of available data was carried out, especially for stations that recorded the strongest earthquakes in Italy in the last 40 years, and for which a relevant number of studies have been published. In spite of this activity, among the more than 700 strong motion stations present in the ITACA database, only a limited number of them could be characterized by quantitative information on subsurface soil properties. For this reason, a dual seismic site classification criterion was implemented, either based on the standard Vs,30 scheme, or, in the absence of such information, based on an expert opinion supported by shallow geology maps, mostly at 1:100,000 scale, and when available on the H/V ratios calculated on recordings. Owing to the relevance in the Italian geographic and morphological context, a special care was also given to the topographic classification of stations, based on suitable criteria developed within a GIS environment.
    Description: Published
    Description: 1779-1796
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: ITACA database ; Strong motion station ; General characterization ; Site classification ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Previous works based mainly on strong-motion recordings of large Japanese earthquakes showed that site amplification and soil fundamental frequency could vary over long and short time scales. These phenomena were attributed to non-linear soil behaviour: the starting fundamental frequency and amplification were both instantaneously decreasing and then recovering for a time varying from few seconds to several months. The recent April 6, 2009 earthquake (M W 6.3), occurred in the L’Aquila district (central Italy), gave us the possibility to test hypotheses on time variation of amplification function and soil fundamental frequency, thanks to the recordings provided by a pre-existing strong-motion array and by a large number of temporary stations. We investigated the intra- and inter-event soil frequency variations through different spectral analyses, including time-frequency spectral ratios and S-Transform (Stockwell et al. in IEEE Trans Signal Process 44:998–1001, 1996). Finally, analyses on noise recordings were performed, in order to study the soil behaviour in linear conditions. The results provided puzzling evidences. Concerning the long time scale, little variation was observed at the permanent stations of the Aterno Valley array. As for the short time-scale variation, the evidence was often contrasting, with some station showing a time-varying behavior, while others did not change their frequency with respect to the one evaluated from noise measurements. Even when a time-varying fundamental frequency was observed, it was difficult to attribute it to a classical, softening non-linear behaviour. Even for the strongest recorded shocks, with peak ground acceleration reaching 0.7 g, variations in frequency and amplitude seems not relevant from building design standpoint. The only exception seems to be the site named AQV, where the analyses evidence a fundamental frequency of the soil shifting from 3 Hz to about 1.5 Hz during the mainshock.
    Description: Published
    Description: 869-892
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Strong motion ; Subsoil non-linearity ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f^0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.
    Description: Published
    Description: 717-739
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Generalized Inversion Technique ; 2009 L'Aquila earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The selection of specific elastic response spectra according to soil categories is the easiest way to account for site effects in engineering projects and general-purpose hazard maps. Most of the international seismic codes make use of the average shear wave velocity of the upper 30 m (Vs,30) to discriminate soil categories, although some doubts arose about the capability of Vs,30 to predict actual soil amplification. In this work we propose two soil classifications in which the soil fundamental frequency (f0) becomes either an alternative or a complement to Vs,30. The performance of the derived categorizations is achieved through the estimation of the standard deviation associated to ground motion prediction equations of acceleration response spectra, considering recordings extracted from the Italian strong motion data base. The results indicate that there is a significant reduction of the standard deviation when the classification is based on the couple of variables Vs,30–f0, although a classification based of the single f0 also leads to satisfactory results, comparable with those obtained assuming a classification scheme based on Vs,30.
    Description: Published
    Description: 1877-1898
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: site effects ; soil classification ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-24
    Description: The S1 pecial Issue of the Bulletin of Earthquake Engineering devoted to the new 2 Italian strong motion database ITACA (ITalian ACelerometric Archive) is introduced in this 3 foreword. An overview of the papers published in this issue is presented, providing an idea of 4 the number of problems encountered in the compilation of a database as rich of information 5 as ITACA, of the solutions adopted and of the possible research and practical applications. 6 Most of the contents, though specifically addressed to ITACA and to its accelerograms, can 7 be usefully thought of as an exemplification of approaches and methods that can be used for, 8 and extended to, similar databases in other countries
    Description: Published
    Description: 1717-1721
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: reserved
    Keywords: Strong motion database ; ITACA ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0◦ –90◦ . Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding syn- thetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal compo-nents have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90◦ . The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.
    Description: Published
    Description: 761-781
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: site effect, 2D synthetic seismograms, spectral ratios, reversal of velocity, L'Aquila ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-24
    Description: The 2009 Mw 6.3 L’Aquila event caused extensive damage in the city of L’Aquila and in some small towns in its vicinity. The most severe damage was recognized SE of L’Aquila town along the Aterno river valley. Although building vulnerability and near-source effects are strongly responsible for the high level of destruction, site effects have been invoked to explain the damage heterogeneities and the similarities between the 2009 macroseismic field with the intensities of historical earthquakes. The small village of Onna is settled on quaternary alluvium and suffered during the L’Aquila event an extremely heavy damage in the masonry structures with intensity IX–X on the Mercalli-Cancani-Sieberg (MCS) scale. The village of Monticchio, far less than 1.3 km from Onna, is mostly situated on Meso- zoic limestone and suffered a smaller level of damaging (VI MCS). In the present paper, we analyze the aftershock recordings at seismic stations deployed in a small area of the middle-Aterno valley including Onna and Monticchio. The aim is to investigate local ampli-fication effects caused by the near-surface geology. Because the seismological stations are close together, vulnerability and near-source effects are assumed to be constant. The wave- form analysis shows that the ground motion at Onna is systematically characterized by large high-frequency content. The frequency resonance is varying from 2 to 3 Hz and it is related to alluvial sediments with a thickness of about 40 m that overlay a stiffer Pleistocene substrate. The ground motion recordings of Onna are well reproduced by the predictive equation for the Italian territory.
    Description: Published
    Description: 783-807
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Description: reserved
    Keywords: L’Aquila 2009 earthquake · Site effects · Onna · Seismic microzoning · Ground motion prediction equations ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-05
    Description: A detailed analysis of the earthquake effects on the urban area of Rome has been conducted for the L’Aquila sequence, which occurred in April 2009, by using an on-line macroseismic questionnaire. Intensity residuals calculated using the mainshock and four aftershocks are analyzed in the light of a very accurate and original geological reconstruction of the subsoil of Rome based on a large amount of wells. The aim of this work is to highlight ground motion amplification areas and to find a correlation with the geological settings at a sub-regional scale, putting in evidence the extreme complexity of the phenomenon and the difficulty of making a simplified model. Correlations between amplification areas and both near-surface and deep geology were found. Moreover, the detailed scale of investigation has permitted us to find a correlation between seismic amplification in recent alluvial settings and subsiding zones, and between heard seismic sound and Tiber alluvial sediments.
    Description: Published
    Description: 425-443
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Earthquakes ; Intensity residuals ; Urban geosciences ; Macroseismic effects ; Amplification areas ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-03
    Description: The Italian strong-motion database was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian Civil Protection). The aim of the project was the collection, homogenization and distribution of strong motion data acquired in Italy in the period 1972–2004 by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC. Recently the strong-motion data relative to the 23th December 2009, Parma (Mw = 5.4 and Mw = 4.9) and to the April 2009 L’Aquila sequences (13 earthquakes with 4.1 ≤ Mw ≤ 6.3) were included in the Italian Accelerometric Archive (ITACA) database (beta release). The database contains 7,038 waveforms from analog and digital instruments, generated by 1.019 earthquakes with magnitude up to 6.9 and can be accessed on-line at the web site http://itaca. mi.ingv.it. The strong motion data are provided in the unprocessed and processed versions. This article describes the steps followed to process the acceleration time series recorded by analogue and digital instruments. The procedures implemented involve: baseline removal, instrumental correction, band pass filtering with acausal filters, integration of the corrected acceleration in order to obtain velocity and displacement waveforms, computation of accel- eration response spectra and strong motion parameters. This procedure is applied to each accelerogram and it is realised to preserve the low frequency content of the records.
    Description: Published
    Description: 1175-1187
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: Strong motion ; processing ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The Italian Accelerometic Archive (ITACA) was created in 2007 during a joint project between the Italian Institute for Geophysics and Vulcanology (Istituto Nazionale di Geofisica e Vulcanologia, INGV) and the Italian Civil Protection (Dipartimento della Protezione Civile, DPC). The project, started in 2006, had the aim of filling the data gap of existing strong motion databases and facilitating strong motion data users in obtaining good quality waveforms, through the collection, homogenization and distribution of strong motion data acquired during the period 1972–2004 in Italy by different institutions (Ente Nazionale per l’Energia Elettrica, ENEL, Italian electricity company; Ente per le Nuove tecnologie, l’Energia e l’Ambiente, ENEA, Italian energy and environment organizationDPC). The compiled database contains 2,182 three-component waveforms generated by 1,008 earthquakes with a maximum moment magnitude of 6.9 (1980 Irpinia earthquake) and can be accessed on-line at the portal denominated ITACAat the site http://itaca.mi.ingv.it,where a wide range of search tools enables the user to interactively retrieve events, recording stations and waveforms with particular characteristics, whose parameters can be specified, as needed, through user friendly interfaces. A range of display options allows users to view data in different contexts, extract and download time series and spectral data. This article describes the state of the art up to 2006 and the activities which led to the completion of the project.
    Description: Published
    Description: 1159-1174
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: strong motion ; database ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Italy is a country characterized by high seismic hazard so strong-motion monitoring represents a relevant issue. Several strong-motion networks have been installed in the Italian territory during the last decades, with the aim of recording the ground motion generated by moderate to strong events or to monitor single regions. The collection of the strong-motion recordings of the Italian earthquakes was recently fulfilled and data are distributed through the ITACA database (http://itaca.mi.ingv.it). The new data set was used to develop a set of ground motion prediction equations (hereinafter GMPEs) for the Italian territory (Bindi et al., 2009), in order to update the well known GMPEs developed by Sabetta and Pugliese. The recent Mw 6.3 earthquake that occurred in central Italy on April 2009 and the upgrades of the ITACA database gave us the possibility to validate the predictive capability of the newly developed GMPEs and to explore the regional variability inside the Italian territory.
    Description: Published
    Description: 53-70
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: strong motion data ; Prediction equation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: A temporary network of 33 seismic stations was deployed in the area struck by the 6th April 2009, Mw 6.3, L’Aquila earthquake (central Italy), with the aim to investigate the site amplification within the Aterno river Valley. The seismograms of 18 earthquakes recorded by 14 of the 33 stations were used to evaluate the average horizontal to vertical spectral ratio (HVSR) for each site and the standard horizontal spectral ratio (SSR) between a site and a reference station. The obtained results have been compared to the geological and geophysical information in order to explain the resonance frequencies and the amplification levels with respect to surface geology of the valley. The result indicate that there is no uniform pattern of amplification, due to the complex geologic setting, as the thickness and degree of cementation of the deposits is highly variable. As consequence, a large number of the local site response is observed, therefore it is very difficult to elaborate a unique model that can explain such a variability of the amplification.
    Description: Published
    Description: 697-715
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: partially_open
    Keywords: l'Aquila earthquake ; microzoning ; ground shaking ; site effects ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-24
    Description: The April 6, 2009 L’Aquila earthquake was responsible for an “anomalous”, relatively high degree of damage (i.e. Is 7 MCS scale) at Castelvecchio Subequo (CS). Indeed, the village is located at source-to-site distance of about 40 km, and it is surrounded by other inhabited centres to which considerably lower intensities, i.e. Is 5-6, have been attributed. Moreover, the damage was irregularly distributed within CS, being mainly concentrated in the uppermost portion of the old village. Geophysical investigations (ambient seismic noise and weak ground motions analyses) revealed that site effects occurred at CS. Amplifications of the ground motion, mainly striking NE-SW, have been detected at the uppermost portion of the carbonate ridge on which the village is built. Geological/structural and geomechanical field surveys defined that the CS ridge is affected by sets of fractures, joints and shear planes – mainly roughly NW-SE and N-S trending – that are related to the deformation zone of the Subequana valley fault system and to transfer faults linking northward the mentioned tectonic feature with the Middle Aterno Valley fault system. In particular, our investigations highlight that seismic amplifications occur where joints set NW-SE trending are open. On the other hand, no amplification is seen in portions of the ridge where the bedrock is densely fractured but no open joints occur. The fracture opening seems related to the toppling tendency of the bedrock slabs, owing to the local geomorphic setting. These investigations suggest that the detected amplification of the ground motion is probably related to the polarization of the seismic waves along the Castelvecchio Subequo ridge, with the consequent oscillation of the rock slabs perpendicularly to the fractures azimuth.
    Description: Published
    Description: 841-868
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Site effects ; Rock site ; Ambient seismic noise ; Structural characteristics ; Geomechanical analyses ; Jointing ; Castelvecchio Subequo ; 2009 L'Aquila earthquake ; central Italy ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Moderate-magnitude shallow earthquakes in the Atlantic Ocean, hundreds of kilometres southwest of Lisbon, can generate efficient suboceanic Rayleigh waves (SRW) that are well recorded in Portugal. Here we compare moderate-size earthquakes recorded by seismic stations in Portugal with the Tyrrhenian Sea earthquakes recorded in peninsular Italy where SRW were recently observed. In spite of a different behaviour of high frequencies due to the different tectonic setting of the two areas, similar results are found in the intermediate-period range, suggesting that this effect, if extrapolated to a magnitude larger than 8, could be devastating at regional distance in terms of ground motion amplitude and duration. Through 1D models, we explore the hypothesis that the high level of destruction and the long duration of shaking felt during the Great 1755 Lisbon earthquake were caused by SRW. In this preliminary study, we check the role of critical model parameters. We find that duration and amplitude are largest when the average thickness of the water layer is 2 km and shear-wave velocity of the ocean floor is close to the speed of sound in the water. Both conditions are realistic for a source in the Atlantic Ocean, few hundreds of kilometres southwest of Lisbon. Moreover, the propagation of SRW at regional distances accounts for durations of more than ten minutes as the effect of a single large earthquake.
    Description: Published
    Description: 283-295
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: ground motion ; surface waves ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Experimental data and numerical modelling were used to study the effect of local geology on the seismic response of the Catania area. The town extends on a marly clays bedrock and terraced deposits made up by coastal sands and alluvial conglomerates. This sedimentary substratum is deeply entrenched by paleo-valleys filled by lava flows and pyroclastics. Available borehole data and elastic parameters were used to reconstruct a geotechnical model in order to perfome 1D numerical modeling. Seismic urban scenarios were simulated considering destructive (Mw = 7.0), strong (Mw = 6.2) and moderate (Mw = 5.7) earthquakes to assess the shaking level of the different outcropping formations. For each scenario seven real accelerograms were selected from the European Strong Motion Database to assess the expected seismic input at the bedrock. PGA and spectral acceleration at different periods were obtained in the urban area through the equivalent linear numerical code EERA, and contour maps of different levels of shaking were drawn. Standard and horizontal-to-vertical spectral ratios were achieved making use of a dataset of 172 seismic events recorded at ten sites located on the main outcropping lithotypes. Spectral ratios inferred from earthquake data were compared with theoretical transfer functions. Both experimental and numerical results confirm the role of the geological and morphologic setting of Catania. Amplification of seismic motion mainly occurs in three different stratigraphic conditions: (a) sedimentary deposits mainly diffused in the south of the study area; (b) spots of soft sediments surrounded by lava flows; (c) intensely fractured and scoriaceous basaltic lavas.
    Description: In press
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Scenario earthquake ; 1D modelling ; PGA values ; Earthquake records ; spectral ratios ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-11-16
    Description: Geological, geophysical and geotechnical investigations, for the characterization of the strong-motion recording sitesmanaged by the ItalianCivil Protection, have been carried out in the framework of the project “Italian strong-motion database in the period 1972–2004”. The project aimed at creating an updated database of strong-motion data acquired in Italy by different institutions in the time span 1972–2004, and at improving the quality of disseminated data. This article illustrates the state of the recording site characterization before the beginning of the project, explains the criteria adopted to select the sites where geophysical/ geotechnical investigation have been performed and describes the results of the promoted field surveys.
    Description: Published
    Description: 1189–1207
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: site ; characterization ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: The Italian strong-motion database was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian Civil Protection). The aim of the project was the collection, homogenization and distribution of strong motion data acquired in Italy in the period 1972-2004 by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC. Recently the strong-motion data relative to the 23th December 2009, Parma (Mw=5.4 and Mw=4.9) and to the 2009 L’Aquila sequence (13 earthquakes with 4.1Mw6.3) were included in the ITACA database (beta release). The database contains 7038 waveforms from analog and digital instruments, generated by 1019 earthquakes with magnitude up to 6.9 and can be accessed on-line at the web site http://itaca.mi.ingv.it. The strong motion data are provided in the unprocessed and processed versions. This article describes the steps followed to process the acceleration time series recorded by analogue and digital instruments. The procedures implemented involve: baseline removal, instrumental correction, band pass filtering with acausal filters, integration of the corrected acceleration in order to obtain velocity and displacement waveforms, computation of acceleration response spectra and strong motion parameters. This procedure is applied to each accelerogram, is realised to preserve the low frequency content of the records.
    Description: In press
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: strong-motion ; processing ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: A revised Italian strong motion archive has become available since July 2007, including all the records of the strongest events occurred from 1972 to 2004. It contains the uncorrected and corrected accelerograms and the metadata relevant to seismic events, recording stations and instruments added after a careful revision. The availability of this archive allowed us to perform a first step towards an update of the reference ground motion prediction equations for Italy, which were evaluated by Sabetta and Pugliese in (Bull Seismol Soc Am 77:1491–1513, 1987), for peak ground acceleration and velocity, and subsequently extended to the 5% damped pseudovelocity response spectra in 1996. A subset with the 27 major earthquakes occurred in Italy from 1972 to 2002, in the magnitude range 4.6–6.9, was extracted and 235 good quality waveforms were selected, recorded at distances up to 183 km. The goodness of fit of the Sabetta and Pugliese (Bull Seismol Soc Am 86:337–352, 1996) model was explored using two independent statistical approaches (Spudich et al. Bull Seismol Soc Am 89:1156–1170, 1999 and Scherbaum et al. Bull Seismol Soc Am 94:2164– 2185, 2004). The results obtained show that the Sabetta and Pugliese (Bull Seismol Soc Am 77:1491–1513, 1987) does not adequately fit the new strong-motion data set, for its small standard deviation and its non-zero bias. In particular, the most noteworthy result is that the Sabetta and Pugliese (Bull Seismol Soc Am 77:1491–1513, 1987) over-predicts peak ground acceleration and velocity at rock sites. New coefficients for the prediction of horizontal peak ground acceleration, peak ground velocity and acceleration response spectra, adopting the same functional form in Sabetta and Pugliese (Bull Seismol Soc Am 77:1491–1513, 1987), were then evaluated in order to fit the new data set. This paper illustrates the steps made to update the existing ground motion prediction equations for Italy, discusses their limitations and provides the basis for future developments.
    Description: Published
    Description: 591–608
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: ground motion prediction ; equation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: The Italian Accelerometic Archive (ITACA) was created in 2007 during a joint project between the Italian Institute for Geophysics and Vulcanology (Istituto Nazionale di Geofisica e Vulcanologia, INGV) and the Italian Civil Protection (Dipartimento della Protezione Civile, DPC). The project, started in 2006, had the aim of filling the data gap of existing strong motion databases and facilitating strong motion data users in obtaining good quality waveforms, through the collection, homogenization and distribution of strong motion data acquired during the period 1972-2004 in Italy by different institutions (Ente Nazionale per l’Energia Elettrica, ENEL, Italian electricity company; Ente per le Nuove tecnologie, l’Energia e l’Ambiente, ENEA, Italian energy and environment organization DPC). The compiled database contains 2182 three-component waveforms generated by 1008 earthquakes with a maximum moment magnitude of 6.9 (1980 Irpinia earthquake) and can be accessed on-line at the portal denominated ITACA at the site http://itaca.mi.ingv.it, where a wide range of search tools enables the user to interactively retrieve events, recording stations and waveforms with particular characteristics, whose parameters can be specified, as needed, through user friendly interfaces. A range of display options allows users to view data in different contexts, extract and download time series and spectral data. This article describes the state of the art up to 2006 and the activities which led to the completion of the project.
    Description: In press
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: JCR Journal
    Description: open
    Keywords: strong-motion ; database ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: A set of Ground Motion Prediction Equations (GMPEs) for the Italian territory is proposed, exploiting a new strong-motion data set become available since July 2007 through the Italian Accelerometric Archive (ITACA). The data set is composed by 561 three-component waveforms from 107 earthquakes with moment magnitude in the range 4.0–6.9, occurred in Italy from 1972 to 2007 and recorded by 206 stations at distances up to 100 km. The functional form used to derive GMPEs in Italy (Sabetta and Pugliese in Bull Seismol Soc Am 86(2):337–352, 1996) has been modified introducing a quadratic term for magnitude and a magnitude-dependent geometrical spreading. The coefficients for the prediction of horizontal and vertical peak ground acceleration, peak ground velocity and 5% damped acceleration response spectra are evaluated. This paper illustrates the new data set, the regression analysis and the comparisons with recently derived GMPEs in Europe and in the Next Generation Attenuation of Ground Motions (NGA) Project.
    Description: In press
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: ground motion ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-06-21
    Description: Earthquake early warning systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in re- ducing vulnerability and/or exposure of buildings and lifelines. Indeed, seismologists have recently developed efficient methods for real-time es- timation of an event’s magnitude and location based on limited informa- tion of the P-waves. Therefore, when an event occurs, estimates of magni- tude and source-to-site distance are available, and the prediction of the structural demand at the site may be performed by Probabilistic Seismic Hazard Analysis (PSHA) and then by Probabilistic Seismic Demand Analysis (PSDA) depending upon EEWS measures. Such an approach contains a higher level of information with respect to traditional seismic risk analysis and may be used for real-time risk management. However, this kind of prediction is performed in very uncertain conditions which may affect the effectiveness of the system and therefore have to be taken into due account. In the present study the performance of the EWWS under development in the Campania region (southern Italy) is assessed by simu- lation. The earthquake localization is formulated in a Voronoi cells ap- proach, while a Bayesian method is used for magnitude estimation. Simu- lation has an empirical basis but requires no recorded signals. Our results, in terms of hazard analysis and false/missed alarm probabilities, lead us to conclude that the PSHA depending upon the EEWS significantly improves seismic risk prediction at the site and is close to what could be produced if magnitude and distance were deterministically known.
    Description: Published
    Description: 211-232
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Earthquake Early ; Campania Region ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: In order to empirically obtain the scaling relationships for the high-frequency ground motion in the Western Alps (NW Italy), regressions are carried out on more than 7500 seismograms from 957 regional earthquakes. The waveforms were selected from the database of 6 three-component stations of the RSNI (Regional Seismic network of Northwestern Italy). The events,MW ranging between 1.2 and 4.8, were recorded within a hypocentral distance of 200 km during the time period: 1996–2001. The peak ground velocities are measured in selected narrow-frequency bands, between 0.5 and 14 Hz. Results are presented in terms of a regional attenuation function for the vertical ground motion, a set of vertical excitation terms at the reference station STV2 (hard-rock), and a set of site terms (vertical and horizontal), all relative to the vertical component of station STV2. The regional propagation of the ground motion is modeled after quantifying the expected duration of the seismic motion as a function of frequency and hypocentral distance. A simple functional form is used to take into account both the geometrical and the anelastic attenuation: a multi-variable grid search yielded a quality factor Q( f ) = 310 f 0.20, together with a quadri-linear geometrical spreading at low frequency. A simpler, bilinear geometrical spreading seems to be more appropriate at higher frequencies (f 〉 1.0 Hz). Excitation terms are matched by using a Brune spectral model with variable, magnitude-dependent stress drop: at Mw 4.8, we used σ = 50MPa. A regional distanceindependent attenuation parameter is obtained (κ0 = 0.012 s) by modelling the average spectral decay at high frequency of small earthquakes. In order to predict the absolute levels of ground shaking in the region, the excitation/attenuation model is used through the Random Vibration Theory (RVT) with a stochastic point-source model. The expected peak-ground accelerations (PGA) are compared with the ones derived by Ambraseys et al. (1996) for the Mediterranean region and by Sabetta and Pugliese (1996) for the Italian territory.
    Description: Published
    Description: 315-333
    Description: JCR Journal
    Description: reserved
    Keywords: Attenuation ; Ground motion ; Western Alps ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: For early-warning applications in particular, the reliability and efficiency of rapid scenario generation strongly depend on the availability of reliable strong ground-motion prediction tools. If shake maps are used to represent patterns of potential damage as a consequence of large earthquakes, attenuation relations are used as a tool for predicting peak ground-motion parameters and intensities. One of the limitations in the use of attenuation relations is that these have only rarely been retrieved from data collected in the same tectonic environment in which the prediction has to be performed. As a consequence, strong ground motion can result in underestimations or overestimations with respect to the recorded data. This also holds for Italy, and in particular for the Southern Apennines, due to limitations in the available databases, both in terms of distances and magnitude. Moreover, for “real-time” early-warning applications, it is important to have attenuation models for which the parameters can be easily upgraded when new data are collected, whether this has to be done during the earthquake rupture occurrence or in the post-event, when all the strong motion waveforms are available. Here we present a strong-motion attenuation relation for early-warning applications in the Campania region (Southern Apennines), Italy. The model has a classical analytical formulation, and its coefficients were retrieved from a synthetic strong-motion database created by using a stochastic approach. The input parameters for the simulation technique were obtained through the spectral analysis of waveforms of earthquakes recorded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) network for a magnitude range Md (1.5,5.0) in the last fifteen years, and they have been extrapolated to cover a larger range. To validate the inferred relation, comparisons with two existing attenuation relations are presented. The results show that the calibration of the attenuation parameters, i.e., geometric spreading, quality factor Q, static stress drop values along with their uncertainties, are the main concern.
    Description: Published
    Description: 133-152
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: A Strong Motion ; Earlywarning ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: In the framework of an ongoing project financed by the Campania Region, a prototype system for seismic early and post-event warning is being developed and tested, based on a dense, wide dynamic seismic network (ISNet) and under installation in the Apennine belt region. This paper reports the characteristics of the seismic network, focussing on the required technological innovation of the different seismic network components (data-logger, sensors and data communication). To ensure a highly dynamic recording range, each station is equipped with two types of sensors: a strong-motion accelerometer and a velocimeter. Data acquisition at the seismic stations is performed using Osiris-6 model data-loggers made by Agecodagis. Each station is supplied with two (120 W) solar panels and two 130 Ah gel cell batteries, ensuring 72-h autonomy for the seismic and radio communication equipment. The site is also equipped with a GSM/GPRS programmable control/alarm system connected to several environmental sensors (door forcing, solar panel controller, battery, fire, etc) and through which the site status is known in real time. The data are stored locally on the hard-disk and, at the same time, continuously transmitted by the SeedLink protocol to local acquisition/analysis nodes (Local Control Center) via Wireless LAN bridge. At each LCC site runs a linux Earthworm system which stores and manages the acquired data stream. The real-time analysis system will perform event detection and localization based on triggers coming from data-loggers and parametric information coming from the other LCCs. Once an event is detected, the system will performs automatic magnitude and focal mechanism estimations. In the immediate post-event period, the RISSC performs shaking map calculations using parameters from the LCCs and/or data from the event database. The recorded earthquake data are stored into an event database, to be available for distribution and visualization for further off-line analyses. The seismic network will be completed in two stages: • Deployment of 30 seismic stations along the southern Apennine chain (to date almost completed) • Setting up a carrier-class radio communication system for fast and reliable data transmission, and installation of 10 additional seismic stations.
    Description: Published
    Description: 325 - 341
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Monitoring Infrastructure ; Early-warning Applications ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The area of Serravalle, sited in the northern part of the town of Vittorio Veneto (TV), NE Italy, has been the target of a seismic microzonation campaign. 10 seismic stations have been deployed for a 7 months period to record in continuous mode. Three stations were installed on bedrock outcrops and seven on sedimentary sites with variable cover thickness. Spectral analyses have been performed on the collected data-set using the Generalized Inversion Technique (GIT, e.g. Andrews, 1986). In particular, spectral ratios have been calculated for each station relatively to the average of the three reference, bedrock sites. The spectral ratios provide quantitative estimates of the seismic motion amplifications which occur in each of the monitored sites. Two sites show high values of amplification, 5 times larger than signal amplitude at the reference sites, in correspondence of well discernible peak frequencies of 5 Hz. Results for the other stations show smaller amounts of site amplification spreading over a broad range of frequencies. Sites where the highest amplifications were recorded all lie on the left bank of the Meschio River and in areas farther away from its outlet into the plain correlating with the presence of thick layers of Quaternary deposits.
    Description: Published
    Description: 31-49
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: spectral ratios ; reference sites ; site effects ; earthquake grounf motion ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: A prototype system for earthquake early warning and rapid shake map evaluation is being developed and tested in southern Italy based on a dense, dynamic seismic network (accelerometers + seismometers) under installation in the Apenninic belt region (Irpinia Seismic Network). It can be classified as a regional Earthquake Early Warning System consisting of a broad-based seismic sensor network covering a portion or the entire area which is threatened by the quake's strike. The real time magnitude estimate will take advantage from the high spatial density of the network in the source region and the broad dynamic range of installed instruments. Based on the offline analysis of high quality strong-motion data bases recorded in Italy, several methods are envisaged, using different observed quantities (peak amplitude, dominant frequency, square velocity integral, …) to be measured on seismograms, as a function of time, both on P and early-S wave signals. Results from the analysis of the Italian strong motion database point out the possibility of using low-pass filtered displacement and velocity peak amplitudes measured in time windows lasting less than 3-4 sec after the first P- or S-wave arrivals. These parameters show they are robustly correlated with moment magnitude. The correlation found of 3Hz low-pass filtered PGV and PGD with magnitude is discussed and interpreted in terms of plausible dynamic models of the earthquake rupture process during its initial stage.
    Description: Published
    Description: 45-63
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Real-time Estimation ; Magnitude ; Seismic Early Warning ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Various authors, analysing the set of accelerograms recorded at Gubbio Piana (GBP) (central Italy), have demonstrated that strong amplification occurs at this accelerometric station, which is installed within an alluvial basin. In particular, Ambraseys et al. [(2005a), Bull Earthq Eng 3:1–53; (2005b), Bull Earth Eng 3:55–73] observed that the strong motion peaks at GBP greatly exceed the median values predicted by the attenuation relationships they derived for Europe. In this work, we analyse and discuss some characteristics of the ground motion recorded at the GBP station. We show that the ground motion parameters, such as peak-ground acceleration and peak-ground velocity, are strongly influenced by the presence of locally induced surface waves that produce both a lengthening of the significant shaking duration and an increase in the peak values with respect to a nearby bedrock site. The basin-induced surface waves are observed in the three components of motion and their effects on the peak values are particularly evident in the vertical component. In the frequency domain, the energy of the surface waves is mostly restricted to the frequency band 0.4–0.8Hz for both the horizontal and vertical components. The horizontal and vertical Fourier amplitudes are also very similar, and this indicates that the H/V spectral ratio technique is not applicable to describing the site response due to the propagation of seismic wave in a complex 2D/3D geological structure. Finally, a preliminary polarization analysis shows that the directions of polarization, as well as the degree of elliptical polarization, exhibit a strong variability with time, that may be related to a complex propagation of Love and Rayleigh waves within the basin.
    Description: Published
    Description: 27-43
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: partially_open
    Keywords: site amplification ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-24
    Description: Various authors, analysing the set of accelerograms recorded at Gubbio Piana (GBP) (central Italy), have demonstrated that strong amplification occurs at this accelerometric station, which is installed within an alluvial basin. In particular, Ambraseys et al. [(2005a), Bull Earthq Eng 3:1–53; (2005b), Bull Earth Eng 3:55–73] observed that the strong motion peaks at GBP greatly exceed the median values predicted by the attenuation relationships they derived for Europe. In this work, we analyse and discuss some characteristics of the ground motion recorded at the GBP station. We show that the ground motion parameters, such as peak-ground acceleration and peak-ground velocity, are strongly influenced by the presence of locally induced surface waves that produce both a lengthening of the significant shaking duration and an increase in the peak values with respect to a nearby bedrock site. The basin-induced surface waves are observed in the three components of motion and their effects on the peak values are particularly evident in the vertical component. In the frequency domain, the energy of the surface waves is mostly restricted to the frequency band 0.4–0.8Hz for both the horizontal and vertical components. The horizontal and vertical Fourier amplitudes are also very similar, and this indicates that the H/V spectral ratio technique is not applicable to describing the site response due to the propagation of seismic wave in a complex 2D/3D geological structure. Finally, a preliminary polarization analysis shows that the directions of polarization, as well as the degree of elliptical polarization, exhibit a strong variability with time, that may be related to a complex propagation of Love and Rayleigh waves within the basin.
    Description: Published
    Description: JCR Journal
    Description: reserved
    Keywords: Strong motion ; Alluvial basin effects ; Site effects ; Gubbio plain ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...