ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate change  (17)
  • Sediment transport  (11)
  • John Wiley & Sons  (24)
  • Springer  (3)
  • American Institute of Physics (AIP)
  • IUCN, International Union for Conservation of Nature, Bangladesh Country Office
  • 2015-2019  (28)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Animal Ecology 87 (2018): 906-920, doi:10.1111/1365-2656.12827.
    Description: Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long‐lived migratory seabird breeding in the southern ocean: the black‐browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: “Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?” We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry‐over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at‐sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre‐breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry‐over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle.
    Description: NSF Grant Number: OPP‐1246407; European Research Council Advanced Grant Grant Numbers: ERC‐2012‐ADG_20120314, 322989
    Keywords: Birds ; Climate change ; Foraging behaviours ; Non‐breeding season ; Phenotypic traits ; Pre‐breeding season ; Timing of breeding ; Wing length
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 4933-4943, doi:10.1029/2018GL078056.
    Description: Seagrasses are marine flowering plants that strongly impact their physical and biological surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled‐Ocean‐Atmosphere‐Wave‐Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long‐term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
    Description: 2018-10-30
    Keywords: Seagrass ; Sediment transport ; COAWST ; Salt marsh ; Ecosystems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 4693-4719, doi:10.1029/2018JC013930.
    Description: We present a new methodology that is able to concurrently resolve free surface wavefield, bottom boundary layer, and sediment transport processes throughout the entire water column. The new model, called SedWaveFoam, is developed by integrating an Eulerian two‐phase model for sediment transport, SedFoam, and a surface wave solver, InterFoam/waves2Foam, in the OpenFOAM framework. SedWaveFoam is validated with a large wave flume data for sheet flow driven by monochromatic nonbreaking waves. To isolate the effect of free surface, SedWaveFoam results are contrasted with one‐dimensional‐vertical SedFoam results, where the latter represents the oscillating water tunnel condition. Results demonstrate that wave‐averaged total sediment fluxes in both models are onshore‐directed; however, this onshore transport is significantly enhanced under surface waves. Onshore‐directed near‐bed sediment flux is driven by a small mean current mainly associated with velocity skewness. More importantly, progressive wave streaming drives onshore transport mostly in suspended load region due to an intrawave sediment flux. Further analysis suggests that the enhanced onshore transport in suspended load is due to a “wave‐stirring” mechanism, which signifies a nonlinear interaction between waves, streaming currents, and sediment suspension. We present some preliminary efforts to parameterize the wave‐stirring mechanism in intrawave sediment transport formulations.
    Description: Office of Naval Research Grant Number: N00014‐16‐1‐2853; NSF Grant Numbers: OCE‐1635151, OCE‐1356855
    Description: 2019-01-05
    Keywords: Sediment transport ; Multiphase flow ; Surface waves ; Boundary layer streaming ; Sheet flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 122 (2017): 2042–2063, doi:10.1002/2017JF004337.
    Description: Observations and a numerical model are used to characterize sediment transport in the tidal Hudson River. A sediment budget over 11 years including major discharge events indicates the tidal fresh region traps about 40% of the sediment input from the watershed. Sediment input scales with the river discharge cubed, while seaward transport in the tidal river scales linearly, so the tidal river accumulates sediment during the highest discharge events. Sediment pulses associated with discharge events dissipate moving seaward and lag the advection speed of the river by a factor of 1.5 to 3. Idealized model simulations with a range of discharge and settling velocity were used to evaluate the trapping efficiency, transport rate, and mean age of sediment input from the watershed. The seaward transport of suspended sediment scales linearly with discharge but lags the river velocity by a factor that is linear with settling velocity. The lag factor is 30–40 times the settling velocity (mm s−1), so transport speeds vary by orders of magnitude from clay (0.01 mm s−1) to coarse silt (1 mm s−1). Deposition along the tidal river depends strongly on settling velocity, and a simple advection-reaction equation represents the loss due to settling on depositional shoals. The long-term discharge record is used to represent statistically the distribution of transport times, and time scales for settling velocities of 0.1 mm s−1 and 1 mm s−1 range from several months to several years for transport through the tidal river and several years to several decades through the estuary.
    Description: Hudson River Foundation Grant Number: 004/13A; National Science Foundation Grant Number: 1325136
    Description: 2018-05-02
    Keywords: Tidal river ; Sediment age ; Trapping efficiency ; Estuary ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 8721–8738, doi:10.1002/2017JC012808.
    Description: Mechanisms relating offshore geologic framework to shoreline evolution are determined through geologic investigations, oceanographic deployments, and numerical modeling. Analysis of shoreline positions from the past 50 years along Fire Island, New York, a 50 km long barrier island, demonstrates a persistent undulating shape along the western half of the island. The shelf offshore of these persistent undulations is characterized with shoreface-connected sand ridges (SFCR) of a similar alongshore length scale, leading to a hypothesis that the ridges control the shoreline shape through the modification of flow. To evaluate this, a hydrodynamic model was configured to start with the US East Coast and scale down to resolve the Fire Island nearshore. The model was validated using observations along western Fire Island and buoy data, and used to compute waves, currents and sediment fluxes. To isolate the influence of the SFCR on the generation of the persistent shoreline shape, simulations were performed with a linearized nearshore bathymetry to remove alongshore transport gradients associated with shoreline shape. The model accurately predicts the scale and variation of the alongshore transport that would generate the persistent shoreline undulations. In one location, however, the ridge crest connects to the nearshore and leads to an offshore-directed transport that produces a difference in the shoreline shape. This qualitatively supports the hypothesized effect of cross-shore fluxes on coastal evolution. Alongshore flows in the nearshore during a representative storm are driven by wave breaking, vortex force, advection and pressure gradient, all of which are affected by the SFCR.
    Description: United States Geological Survey Coastal Change Processes Project; United States Geological Survey Mendenhall Research Fellowship
    Keywords: Surface waves ; Sediment transport ; Shoreline change ; Longshore transport ; Sand ridges ; Fire Island
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 8 (2017): 10.1002/ecs2.2017, doi:10.1002/ecs2.2017.
    Description: Historically low temperatures have severely limited skeleton-breaking predation on the Antarctic shelf, facilitating the evolution of a benthic fauna poorly defended against durophagy. Now, rapid warming of the Southern Ocean is restructuring Antarctic marine ecosystems as conditions become favorable for range expansions. Populations of the lithodid crab Paralomis birsteini currently inhabit some areas of the continental slope off Antarctica. They could potentially expand along the slope and upward to the outer continental shelf, where temperatures are no longer prohibitively low. We identified two sites inhabited by different densities of lithodids in the slope environment along the western Antarctic Peninsula. Analysis of the gut contents of P. birsteini trapped on the slope revealed them to be opportunistic invertivores. The abundances of three commonly eaten, eurybathic taxa—ophiuroids, echinoids, and gastropods—were negatively associated with P. birsteini off Marguerite Bay, where lithodid densities averaged 4280 ind/km2 at depths of 1100–1499 m (range 3440–5010 ind/km2), but not off Anvers Island, where lithodid densities were lower, averaging 2060 ind/km2 at these depths (range 660–3270 ind/km2). Higher abundances of lithodids appear to exert a negative effect on invertebrate distribution on the slope. Lateral or vertical range expansions of P. birsteini at sufficient densities could substantially reduce populations of their benthic prey off Antarctica, potentially exacerbating the direct impacts of rising temperatures on the distribution and diversity of the contemporary shelf benthos.
    Description: Division of Polar Programs Grant Numbers: ANT-0838466, ANT-0838844, ANT-1141877, ANT-1141896; Vetenskapsrådet Grant Number: 824-2008-6429; H2020 Marie Skłodowska-Curie Actions Grant Number: 704895; U.S. National Science Foundation; European Commission; University of Alabama at Birmingham
    Keywords: Antarctica ; Bathyal ; Benthic ; Climate change ; Echinoidea ; Lithodidae ; Ophiuroidea ; Paralomis ; Polar emergence ; Predation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 9387–9398, doi:10.1002/2017JC012949.
    Description: Sea surface temperatures of the northwest Atlantic have warmed dramatically over the last several decades, while benthic temperatures have increased at a slower pace. Here we analyze a subset of the CMIP5 global Earth system model ensemble using a statistical downscaling approach to determine potential future changes in benthic temperatures on the northwest Atlantic continental shelf and slope (〈500 m). We put future changes in the context of possible impacts of ocean warming on the high-value, wild-caught American Lobster (Homarus americanus) fishery. Future bottom temperatures of the northwest Atlantic under a business-as-usual (RCP8.5) and a climate-policy (RCP4.5) scenario are projected to increase by 0–1.5°C and 1.2–2.4°C by 2050 and 0–1.9°C and 2.3–4.3°C by the end of the century for RCP4.5 and RCP8.5, respectively. H. americanus experiences thermal stress at temperatures above 20°C, and projected increases in temperature is likely to result in changes in the distribution of optimal thermal egg hatching and settlement indicators. Inshore regions of southern New England, where H. americanus biomass and catch have been declining historically, will likely become inhospitable under either future scenario, while thermal egg hatching and settlement indicators will expand offshore and in the Gulf of Maine. These changes imply that members of the fishery based in southern New England may need to recapitalize to larger vessels to prepare for potential changes brought on by future climate warming. Results from the downscaling presented here can be useful in preparing for potential changes to other fisheries or in future climate vulnerability analyses.
    Description: John D. and Catherine T. MacArthur Foundation Grant Number: 14-106159-000-CFP; NASA Grant Number: NNX14AP62A; “National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)”; National Ocean Partnership Program Grant Number: NOPP RFP NOAA-NOS IOOS-2014-2003803; NOAA Integrated Ocean Observing System (IOOS) Program Office
    Keywords: Benthic temperature ; Climate change ; Warming ; American Lobster
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 9399–9414, doi:10.1002/2017JC012953.
    Description: The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.
    Description: John D. and Catherine T. MacArthur Foundation Grant Number: 14–106159-000-CFP; National Aeronautics and Space Administration Grant Number: NNX14AP62A
    Keywords: Benthic habitat ; New England ; Warming ; Climate change ; Satellite remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 7 (2017): 2449–2460, doi:10.1002/ece3.2863.
    Description: Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (〉25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%–50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization—over an order of magnitude or more than warming-induced rates—significantly alter the capacity for tundra CO2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.
    Description: NASA Terrestrial Ecology Grant Number: NNX12AK83G; National Science Foundation Division of Graduate Education Grant Number: DGE-11-44155
    Keywords: Arctic ; Climate change ; Ecosystem function ; Ecosystem respiration ; Gross primary productivity ; Net ecosystem ; CO2 exchange ; Plant diversity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2017. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 98 (2017): 940-951, doi:10.1002/ecy.1749.
    Description: Evidence of climate-change-driven shifts in plant and animal phenology have raised concerns that certain trophic interactions may be increasingly mismatched in time, resulting in declines in reproductive success. Given the constraints imposed by extreme seasonality at high latitudes and the rapid shifts in phenology seen in the Arctic, we would also expect Antarctic species to be highly vulnerable to climate-change-driven phenological mismatches with their environment. However, few studies have assessed the impacts of phenological change in Antarctica. Using the largest database of phytoplankton phenology, sea-ice phenology, and Adélie Penguin breeding phenology and breeding success assembled to date, we find that, while a temporal match between Penguin breeding phenology and optimal environmental conditions sets an upper limit on breeding success, only a weak relationship to the mean exists. Despite previous work suggesting that divergent trends in Adélie Penguin breeding phenology are apparent across the Antarctic continent, we find no such trends. Furthermore, we find no trend in the magnitude of phenological mismatch, suggesting that mismatch is driven by interannual variability in environmental conditions rather than climate-change-driven trends, as observed in other systems. We propose several criteria necessary for a species to experience a strong climate-change-driven phenological mismatch, of which several may be violated by this system.
    Description: Funding to H. J. Lynch and C. Youngflesh was provided by the National Science Foundation Grant OPP/GSS 1255058, to S. Jenouvrier, H. J. Lynch, C. Youngflesh, Y. Li, and R. Ji by the National Science Foundation Grant 1341474, to S. Jenouvrier, Y. Li, and R. Ji by NASA grant NNX14AH74G, to D. G. Ainley, G. Ballard, and K. M. Dugger by the National Science Foundation Grants OPP 9526865, 9814882, 0125608, 0944411 and 0440643, to P. O’B. Lyver by New Zealand’s Ministry of Business, Innovation, and Employment Grants C09X0510 and C01X1001, and Ministry of Primary Industry grants with logistic support from Antarctica New Zealand.
    Keywords: Anna Karenina Principle ; Antarctica ; Asynchrony ; Bayesian hierarchical model ; Climate change ; Phenology ; Pygoscelis adeliae ; Quantile regression
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 4333–4353, doi:10.1002/2016GC006582.
    Description: Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.
    Description: 2017-05-04
    Keywords: Permafrost ; Arctic Ocean ; Climate change ; Borehole logging ; Gas hydrates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 40 (2017): 22-36, doi:10.1007/s12237-016-0138-5.
    Description: Geomorphology is a fundamental control on ecological and economic function of estuaries. However, relative to open coasts, there has been little quantification of storm-induced bathymetric change in back-barrier estuaries. Vessel-based and airborne bathymetric mapping can cover large areas quickly, but change detection is difficult because measurement errors can be larger than the actual changes over the storm timescale. We quantified storm-induced bathymetric changes at several locations in Chincoteague Bay, Maryland/Virginia, over the August 2014 to July 2015 period using fixed, downward-looking altimeters and numerical modeling. At sand-dominated shoal sites, measurements showed storm-induced changes on the order of 5 cm, with variability related to stress magnitude and wind direction. Numerical modeling indicates that the predominantly northeasterly wind direction in the fall and winter promotes southwest-directed sediment transport, causing erosion of the northern face of sandy shoals; southwesterly winds in the spring and summer lead to the opposite trend. Our results suggest that storm-induced estuarine bathymetric change magnitudes are often smaller than those detectable with methods such as LiDAR. More precise fixed-sensor methods have the ability to elucidate the geomorphic processes responsible for modulating estuarine bathymetry on the event and seasonal timescale, but are limited spatially. Numerical modeling enables interpretation of broad-scale geomorphic processes and can be used to infer the long-term trajectory of estuarine bathymetric change due to episodic events, when informed by fixed-sensor methods.
    Keywords: Bathymetric change ; Sediment transport ; Numerical modeling ; Back-barrier estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 31 (2017): 96–113, doi:10.1002/2016GB005374.
    Description: Using the Community Earth System Model, we explore the role of human land use and land cover change (LULCC) in modifying the terrestrial carbon budget in simulations forced by Representative Concentration Pathway 8.5, extended to year 2300. Overall, conversion of land (e.g., from forest to croplands via deforestation) results in a model-estimated, cumulative carbon loss of 490 Pg C between 1850 and 2300, larger than the 230 Pg C loss of carbon caused by climate change over this same interval. The LULCC carbon loss is a combination of a direct loss at the time of conversion and an indirect loss from the reduction of potential terrestrial carbon sinks. Approximately 40% of the carbon loss associated with LULCC in the simulations arises from direct human modification of the land surface; the remaining 60% is an indirect consequence of the loss of potential natural carbon sinks. Because of the multicentury carbon cycle legacy of current land use decisions, a globally averaged amplification factor of 2.6 must be applied to 2015 land use carbon losses to adjust for indirect effects. This estimate is 30% higher when considering the carbon cycle evolution after 2100. Most of the terrestrial uptake of anthropogenic carbon in the model occurs from the influence of rising atmospheric CO2 on photosynthesis in trees, and thus, model-projected carbon feedbacks are especially sensitive to deforestation.
    Description: National Science Foundation Grant Numbers: AGS 1049033, CCF-1522054
    Description: 2017-07-23
    Keywords: Carbon cycle ; Climate change ; Land use and land cover change ; Earth system models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carbon Balance and Management 12 (2017): 10, doi:10.1186/s13021-017-0077-x.
    Description: Determining national carbon stocks is essential in the framework of ongoing climate change mitigation actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, climate change and other factors, as well as alteration of linkages and C-exchange between continental and oceanic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other countries with different characteristics, which are Pakistan and the United Kingdom. Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particularly over continental margins—could be considered as part of national GHG inventories. This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential implications for the management of human activities on coastal environments and for their GHG inventories.
    Description: We acknowledge research support from ETH Zurich and the Swiss National Science Foundation.
    Keywords: Carbon stocks ; Sediments ; Oceans ; Climate change ; Exclusive Economic Zone ; Carbon inventory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    IUCN, International Union for Conservation of Nature, Bangladesh Country Office | Dhaka, Bangladesh
    Publication Date: 2021-05-19
    Description: Fossil-fuel combustion releases carbon dioxide to the atmosphere, leading to a warmer climate. Increasing atmospheric CO2 is changing the global ocean’s chemistry, as one-fourth of the anthropogenic CO2 is absorbed by the ocean. In addition, ocean absorbs CO2 from the respiration and breakdown of dead organic matter. When CO2 dissolves in seawater, it forms carbonic acid, decreasing both ocean pH and the concentration of the carbonate ion. The historical trends analysis showed an increasing water temperature with a decreasing pH levels over the period which may lead substantial effect on the biodiversity of the Bay of Bengal. The Institute of Marine Sciences and Fisheries (IMSF) in Chittagong University have been contributed in research and data generation from the coastal and marine ecosystems of Bangladesh. In addition, Bangladesh Navy, Bangladesh Inland Water Transport Authority and Coast Guard have been significantly contributed in hydrographical data collection and monitoring of the shelf water of Bangladesh in the Bay of Bengal. Ocean acidification could affect marine
    Description: Published
    Keywords: Ocean acidification ; Carbon dioxide ; Climate change ; CO2
    Repository Name: AquaDocs
    Type: Report , Refereed
    Format: vi + 55pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 8208–8224, doi:10.1002/2017JC012985.
    Description: Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These “elevators” at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.
    Description: National Science Foundation Grant Numbers: OCE-1736633 , OCE-1534618 , OCE-0961713; National Oceanic and Atmospheric Administration Grant Number: NA10OAR4310135
    Description: 2018-04-27
    Keywords: Vertical velocity ; Vertical transport ; Vertical exchange ; Ocean state estimate ; Climate change ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ambio 46, Supple. 1 (2017): 160-173, doi:10.1007/s13280-016-0870-x.
    Description: Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3°C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness.
    Description: The Toolik research was supported in part by NSF Grants DEB 0207150, DEB 1026843, ARC 1107701, and ARC 1504006.
    Keywords: Alaska Toolik ; Climate change ; Ecological effects ; Greenland Zackenberg ; Medium pass filter ; Vegetation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 5888–5904, doi:10.1002/2016JC012344.
    Description: This paper presents a modeling investigation of the hydrodynamic and sediment transport response of Chincoteague Bay (VA/MD, USA) to Hurricane Sandy using the Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system. Several simulation scenarios with different combinations of remote and local forces were conducted to identify the dominant physical processes. While 80% of the water level increase in the bay was due to coastal sea level at the peak of the storm, a rich spatial and temporal variability in water surface slope was induced by local winds and waves. Local wind increased vertical mixing, horizontal exchanges, and flushing through the inlets. Remote waves (swell) enhanced southward flow through wave setup gradients between the inlets, and increased locally generated wave heights. Locally generated waves had a negligible effect on water level but reduced the residual flow up to 70% due to enhanced apparent roughness and breaking-induced forces. Locally generated waves dominated bed shear stress and sediment resuspension in the bay. Sediment transport patterns mirrored the interior coastline shape and generated deposition on inundated areas. The bay served as a source of fine sediment to the inner shelf, and the ocean-facing barrier island accumulated sand from landward-directed overwash. Despite the intensity of the storm forcing, the bathymetric changes in the bay were on the order of centimeters. This work demonstrates the spectrum of responses to storm forcing, and highlights the importance of local and remote processes on back-barrier estuarine function.
    Description: Department of Interior Hurricane Sandy Recovery program
    Keywords: Chincoteague Bay ; Hurricane Sandy ; Numerical modeling ; Back-barrier bay ; Wave setup ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 1476–1501, doi:10.1002/2015JC011449.
    Description: A new planktonic ecosystem model was constructed for the Eastern Bering Sea based on observations from the 2007–2010 BEST/BSIERP (Bering Ecosystem Study/Bering Sea Integrated Ecosystem Research Program) field program. When run with forcing from a data-assimilative ice-ocean hindcast of 1971–2012, the model performs well against observations of spring bloom time evolution (phytoplankton and microzooplankton biomass, growth and grazing rates, and ratios among new, regenerated, and export production). On the southern middle shelf (57°N, station M2), the model replicates the generally inverse relationship between ice-retreat timing and spring bloom timing known from observations, and the simpler direct relationship between the two that has been observed on the northern middle shelf (62°N, station M8). The relationship between simulated mean primary production and mean temperature in spring (15 February to 15 July) is generally positive, although this was found to be an indirect relationship which does not continue to apply across a future projection of temperature and ice cover in the 2040s. At M2, the leading direct controls on total spring primary production are found to be advective and turbulent nutrient supply, suggesting that mesoscale, wind-driven processes—advective transport and storminess—may be crucial to long-term trends in spring primary production in the southeastern Bering Sea, with temperature and ice cover playing only indirect roles. Sensitivity experiments suggest that direct dependence of planktonic growth and metabolic rates on temperature is less significant overall than the other drivers correlated with temperature described above.
    Description: This work was supported by the National Science Foundation through grants ARC-1107187, ARC-1107303, and ARC-1107588, for BEST Synthesis, and PLR-1417365.
    Description: 2016-08-20
    Keywords: Phytoplankton bloom ; Climate change ; Bering Sea ; Microzooplankton ; Ecosystem model ; Phenology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 121 (2016): 442–464, doi:10.1002/2015JF003699.
    Description: Using energetics-based formulations for wave-driven sediment transport, we develop a robust methodology for estimating the morphodynamic evolution of a cross-shore sandy coastal profile. In our approach, wave-driven cross-shore sediment flux depends on three components: two onshore-directed terms (wave asymmetry and wave streaming) and an offshore-directed slope term. In contrast with previous work, which applies shallow water wave assumptions across the transitional zone of the lower shoreface, we use linear Airy wave theory. The cross-shore sediment transport formulation defines a dynamic equilibrium profile and, by perturbing about this steady state profile, we present an advection-diffusion formula for profile evolution. Morphodynamic Péclet analysis suggests that the shoreface is diffusionally dominated. Using this depth-dependent characteristic diffusivity timescale, we distinguish a morphodynamic depth of closure for a given time envelope. Even though wave-driven sediment transport can (and will) occur at depths deeper than this morphodynamic closure depth, the rate of morphologic bed changes in response to shoreline change becomes asymptotically slow. Linear wave theory suggests a shallower shoreface depth of closure and much sharper break in processes than shallow water wave assumptions. Analyzing hindcasted wave data using a weighted frequency-magnitude approach, we determine representative wave conditions for selected sites along the U.S. coastline. Computed equilibrium profiles and depths of closure demonstrate reasonable similarities, except where inheritance is strong. The methodology espoused in this paper can be used to better understand the morphodynamics at the lower shoreface transition with relative ease across a variety of sites and with varied sediment transport equations.
    Description: This research has been supported by the National Science Foundation grant CNH-0815875, the Strategic Environment Research and Development Program, and the Coastal Ocean Institute of the Woods Hole Oceanographic Institution.
    Description: 2016-08-27
    Keywords: Sediment transport ; Morphodynamic evolution ; Wave base
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 6137-6158, doi:10.1002/2016JC011784.
    Description: Early ice retreat and ocean warming are changing various facets of the Arctic marine ecosystem, including the biogeographic distribution of marine organisms. Here an endemic copepod species, Calanus glacialis, was used as a model organism, to understand how and why Arctic marine environmental changes may induce biogeographic boundary shifts. A copepod individual-based model was coupled to an ice-ocean-ecosystem model to simulate temperature- and food-dependent copepod life history development. Numerical experiments were conducted for two contrasting years: a relatively cold and normal sea ice year (2001) and a well-known warm year with early ice retreat (2007). Model results agreed with commonly known biogeographic distributions of C. glacialis, which is a shelf/slope species and cannot colonize the vast majority of the central Arctic basins. Individuals along the northern boundaries of this species' distribution were most susceptible to reproduction timing and early food availability (released sea ice algae). In the Beaufort, Chukchi, East Siberian, and Laptev Seas where severe ocean warming and loss of sea ice occurred in summer 2007, relatively early ice retreat, elevated ocean temperature (about 1–2°C higher than 2001), increased phytoplankton food, and prolonged growth season created favorable conditions for C. glacialis development and caused a remarkable poleward expansion of its distribution. From a pan-Arctic perspective, despite the great heterogeneity in the temperature and food regimes, common biogeographic zones were identified from model simulations, thus allowing a better characterization of habitats and prediction of potential future biogeographic boundary shifts.
    Description: National Science Foundation Polar Programs Grant Number: (PLR-1417677, PLR-1417339, and PLR-1416920)
    Description: 2017-02-20
    Keywords: Arctic Ocean ; Marine ecosystem ; Climate change ; Biogeography ; Individual-based model ; C. glacialis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4028–4047, doi:10.1002/2014JC010425.
    Description: The interactions between waves, tidal currents, and bathymetry near New River Inlet, NC, USA are investigated to understand the effects on the resulting hydrodynamics and sediment transport. A quasi-3-D nearshore community model, NearCoM-TVD, is used in this integrated observational and modeling study. The model is validated with observations of waves and currents at 30 locations, including in a recently dredged navigation channel and a shallower channel, and on the ebb tidal delta, for a range of flow and offshore wave conditions during May 2012. In the channels, model skills for flow velocity and wave height are high. Near the ebb tidal delta, the model reproduces the observed rapid onshore (offshore) decay of wave heights (current velocities). Model results reveal that this sharp transition coincides with the location of the breaker zone over the ebb tidal delta, which is modulated by semidiurnal tides and by wave intensity. The modulation of wave heights is primarily owing to depth changes rather than direct wave-current interaction. The modeled tidally averaged residual flow patterns show that waves play an important role in generating vortices and landward-directed currents near the inlet entrance. Numerical experiments suggest that these flow patterns are associated with the channel-shoal bathymetry near the inlet, similar to the generation of rip currents. Consistent with other inlet studies, model results suggest that tidal currents drive sediment fluxes in the channels, but that sediment fluxes on the ebb tidal delta are driven primarily by waves.
    Description: Funding was provided by the Office of Naval Research (N00014-13-1–0120 and N00014-14-1-0586) and the Office of the Assistant Secretary of Defense for Research and Engineering.
    Description: 2015-12-07
    Keywords: Wave-current interaction ; Sediment transport ; New River ; Morphological evolution ; Tidal inlet
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7992–8000, doi:10.1002/2015GL065980.
    Description: Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.
    Description: U.S. Geological Survey Coastal and Marine Geology Program; Global Change and Land Use Program
    Keywords: Sediment transport ; Tidal wetlands ; Wetland stability ; Wetland vulnerability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 3 (2015): 49–65, doi:10.1002/2014EF000274.
    Description: How climate controls hurricane variability has critical implications for society is not well understood. In part, our understanding is hampered by the short and incomplete observational hurricane record. Here we present a synthesis of intense-hurricane activity from the western North Atlantic over the past two millennia, which is supported by a new, exceptionally well-resolved record from Salt Pond, Massachusetts (USA). At Salt Pond, three coarse grained event beds deposited in the historical interval are consistent with severe hurricanes in 1991 (Bob), 1675, and 1635 C.E., and provide modern analogs for 32 other prehistoric event beds. Two intervals of heightened frequency of event bed deposition between 1400 and 1675 C.E. (10 events) and 150 and 1150 C.E. (23 events), represent the local expression of coherent regional patterns in intense-hurricane–induced event beds. Our synthesis indicates that much of the western North Atlantic appears to have been active between 250 and 1150 C.E., with high levels of activity persisting in the Caribbean and Gulf of Mexico until 1400 C.E. This interval was one with relatively warm sea surface temperatures (SSTs) in the main development region (MDR). A shift in activity to the North American east coast occurred ca. 1400 C.E., with more frequent severe hurricane strikes recorded from The Bahamas to New England between 1400 and 1675 C.E. A warm SST anomaly along the western North Atlantic, rather than within the MDR, likely contributed to the later active interval being restricted to the east coast.
    Description: Funding was provided by US National Science Foundation (awards 0903020 and 1356708), the Risk Prediction Initiative at the Bermuda Institute for Ocean Sciences (BIOS), US Department of Energy National Institute for Climate Change Research, National Oceanic and Atmospheric Administration (award NA11OAR431010), and the Dalio Explore Fund.
    Keywords: Tropical cyclones ; Climate change ; Holocene ; Common era ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 4324–4339, doi:10.1002/2014JC010547.
    Description: In the coastal ocean off the Northeast U.S., the sea surface temperature (SST) in the first half of 2012 was the highest on the record for the past roughly 150 years of recorded observations. The underlying dynamical processes responsible for this extreme event are examined using a numerical model, and the relative contributions of air-sea heat flux versus lateral ocean advective heat flux are quantified. The model accurately reproduces the observed vertical structure and the spatiotemporal characteristics of the thermohaline condition of the Gulf of Maine and the Middle Atlantic Bight waters during the anomalous warming period. Analysis of the model results show that the warming event was primarily driven by the anomalous air-sea heat flux, while the smaller contribution by the ocean advection worked against this flux by acting to cool the shelf. The anomalous air-sea heat flux exhibited a shelf-wide coherence, consistent with the shelf-wide warming pattern, while the ocean advective heat flux was dominated by localized, relatively smaller-scale processes. The anomalous cooling due to advection primarily resulted from the along-shelf heat flux divergence in the Gulf of Maine, while in the Middle Atlantic Bight the advective contribution from the along-shelf and cross-shelf heat flux divergences was comparable. The modeling results confirm the conclusion of the recent analysis of in situ data by Chen et al. (2014a) that the changes in the large-scale atmospheric circulation in the winter of 2011–2012 primarily caused the extreme warm anomaly in the spring of 2012. The effect of along-shelf or cross-shelf ocean advection on the warm anomalies from either the Scotian Shelf or adjacent continental slope was secondary.
    Description: K.C. was supported by the Woods Hole Oceanographic Institution Postdoctoral Scholar program, the Coastal Ocean Institute, and the National Science Foundation (NSF) under grant OCE-1435602. G.G.G. was supported by NSF grants OCE-1435602 and OCE-1129125. Y.-O.K. was supported by the NSF grant OCE-1435602. W.G.Z. was supported by the NSF grant OCE-1129125.
    Description: 2015-12-15
    Keywords: Extreme temperature ; Heat budget ; Northeast U.S. coastal ocean ; Numerical modeling ; Air-sea interaction ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5698–5709, doi:10.1002/2015JC010872.
    Description: Recent field investigations of the damping of ocean surface waves over fluid muds have revealed waves on the interface between the thin layer of fluid mud and the overlying much thicker column of clear water, accompanied by bed forms on the erodible seabed beneath the fluid mud. The frequencies and wavelengths of the observed interfacial waves are qualitatively consistent with the linear dispersion relationship for long interfacial waves, but the forcing mechanism is not known. To understand the forcing, a linear model is proposed, based on the layer-averaged hydrostatic equations for the fluid mud, together with the Meyer-Peter-Mueller equation for the sediment transport within the underlying seabed, both subject to oscillatory forcing by the surface waves. If the underlying seabed is nonerodible and flat, the model indicates parametric instability to interfacial waves, but the threshold for instability is not met by the observations. If the underlying seabed is erodible, the model indicates that perturbations to the seabed elevation in the presence of the oscillatory forcing create interfacial waves, which in turn produce stresses within the fluid mud that force a net transport of sediment within the seabed toward the bed form crests, thus causing growth of both bed forms and interfacial waves. The frequencies, wavelengths, and growth rates are in qualitative agreement with the observations. A competition between mixing created by the interfacial waves and gravitational settling might control the thickness, density, and viscosity of the fluid muds during periods of strong forcing.
    Description: This study was supported by the Coastal Geodynamics Program at the Office of Naval Research and by the Physical Oceanography Program at the National Science Foundation.
    Keywords: Sediment transport ; Fluid mud ; Instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 6363–6383, doi:10.1002/2015JC010754.
    Description: A better understanding of flow and sediment dynamics in the lowermost portions of large-tropical rivers is essential to constraining estimates of worldwide sediment delivery to the ocean. Flow velocity, salinity, and suspended-sediment concentration were measured for 25 h at three cross sections in the tidal Song Hau distributary of the Mekong River, Vietnam. Two campaigns took place during comparatively high-seasonal and low-seasonal discharge, and estuarine conditions varied dramatically between them. The system transitioned from a tidal river with ephemeral presence of a salt wedge during high flow to a partially mixed estuary during low flow. The changing freshwater input, sediment sources, and estuarine characteristics resulted in seaward sediment export during high flow and landward import during low flow. The Dinh An channel of the Song Hau distributary exported sediment to the coast at a rate of about 1 t s−1 during high flow and imported sediment in a spatially varying manner at approximately 0.3 t s−1 during low flow. Scaling these values results in a yearly Mekong sediment discharge estimate about 65% smaller than a generally accepted estimate of 110 Mt yr−1, although the limited temporal and spatial nature of this study implies a relatively high degree of uncertainty for the new estimate. Fluvial advection of sediment was primarily responsible for the high-flow sediment export. Exchange-flow and tidal processes, including local resuspension, were principally responsible for the low-flow import. The resulting bed-sediment grain size was coarser and more variable during high flow and finer during low, and the residual flow patterns support the maintenance of mid-channel islands.
    Description: Office of Naval Research Grant Numbers: N00014-12-1-0181 , N00014-13-1-0127 , N00014-13-1-0781, and National Defense Science and Engineering
    Description: 2016-03-23
    Keywords: Sediment transport ; Tidal river ; Estuarine dynamics ; Mekong delta ; Tropical river ; Sediment discharge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 831–838, doi:10.1002/2014GL062522.
    Description: Internal waves (IWs) generated in the Luzon Strait propagate into the Northern South China Sea (NSCS), enhancing biological productivity and affecting coral reefs by modulating nutrient concentrations and temperature. Here we use a state-of-the-art ocean data assimilation system to reconstruct water column stratification in the Luzon Strait as a proxy for IW activity in the NSCS and diagnose mechanisms for its variability. Interannual variability of stratification is driven by intrusions of the Kuroshio Current into the Luzon Strait and freshwater fluxes associated with the El Niño–Southern Oscillation. Warming in the upper 100 m of the ocean caused a trend of increasing IW activity since 1900, consistent with global climate model experiments that show stratification in the Luzon Strait increases in response to radiative forcing. IW activity is expected to increase in the NSCS through the 21st century, with implications for mitigating climate change impacts on coastal ecosystems.
    Description: This work was supported by NSF award 1220529 to Anne Cohen, by the Academia Sinica (Taiwan) through a thematic project grant to G.T.F.W. and Anne Cohen, by the Alfred P. Sloan Foundation and the WHOI Oceans and Climate Change Institute/Moltz Fellowship through awards to K.B.K., and by an NSF Graduate Research Fellowship to T.M.D.
    Description: 2015-08-10
    Keywords: Internal waves ; Climate change ; Coral reefs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...