ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 1305-1310 
    ISSN: 0887-624X
    Keywords: poly(ether sulfone)amides ; naphthalene poly(ether sulfone)amides ; thermal behavior ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: High molecular-weight aromatic polyamides were obtained from 1,5- and 2,6-bis-(4′-carboxy-4-phenylenoxy-sulfonyl)naphthalene by direct polycondensation reaction in N-methyl-2-pyrrolidone with various aromatic diamines, using triphenyl phosphite and pyridine as condensing agents. The polymers were characterized by elemental analysis, thermogravimetric analysis, differential scanning calorimetry, and infrared analysis. The polyamides, obtained in quantitative yield, possessed inherent viscosities in the range 0.42-1.70 dL/g, glass transition temperatures between 245-310°C, and 10% weight loss temperatures in nitrogen and air above 435 and 424°C, respectively. Most of the polymers were soluble in aprotic solvents. The effect of the structure on properties, such as solubility, Tg, and thermal behavior, were also studied. © 1996 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 843-847 
    ISSN: 0887-624X
    Keywords: poly(arylene ether)s ; heterocyclic poly(arylene ether)s ; thermal behavior ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A series of new poly(arylene ether)s, containing naphthalene, pyridine, and quinoline units have been prepared by solution condensation polymerization. The synthesis involves nucleophilic displacement of aromatic dihalides with aromatic potassium bisphenates in an anhydrous dipolar aprotic solvent at elevated temperatures. The polymers, having inherent viscosity from 0.24 to 1.32 dL/g, were obtained in quantitative yield, have excellent thermal stability as shown by 10% weight loss temperatures in nitrogen and air (above 450 and 430°C, respectively) and high glass transition temperatures (in the range of 150-220°C). The introduction of quinoline moieties in the polymer backbone positively influences the thermal properties, such as high Tg/Tm ratios. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 4933-4943, doi:10.1029/2018GL078056.
    Description: Seagrasses are marine flowering plants that strongly impact their physical and biological surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled‐Ocean‐Atmosphere‐Wave‐Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long‐term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.
    Description: 2018-10-30
    Keywords: Seagrass ; Sediment transport ; COAWST ; Salt marsh ; Ecosystems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 123 (2018): 2647–2662, doi:10.1029/2018JF004617.
    Description: The current paradigm is that salt marshes and their important ecosystem services are threatened by global climate change; indeed, large marsh losses have been documented worldwide. Morphological changes associated with salt marsh erosion are expected to influence the hydrodynamics and sediment dynamics of coastal systems. Here the influence of salt marsh erosion on the tidal hydrodynamics and sediment storage capability of shallow bays is investigated. Hydrodynamics, sediment transport, and vegetation dynamics are simulated using the numerical framework Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport in the Barnegat Bay‐Little Egg Harbor system, USA. We show that salt marsh erosion influences the propagation of tides into back‐barrier basins, reducing the periodic inundation and sediment delivery to marsh platforms. As salt marshes erode, the sediment trapping potential of marsh platforms decreases exponentially. In this test case, up to 50% of the sediment mass trapped by vegetation is lost once a quarter of the marsh area is eroded. Similarly, without salt marshes the sediment budget of the entire bay significantly declines. Therefore, a positive feedback might be triggered such that as the salt marsh retreats the sediment storage capacity of the system declines, which could in turn further exacerbate marsh degradation.
    Description: Department of the Interior/U.S.Geological Survey Grant Number: G16AC00455
    Description: 2019-04-27
    Keywords: Salt marsh erosion ; Tidal propagation ; Sediment trapping ; COAWST ; Vegetation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Donatelli, C., Kalra, T. S., Fagherazzi, S., Zhang, X., & Leonardi, N. Dynamics of marsh-derived sediments in lagoon-type estuaries. Journal of Geophysical Research: Earth Surface, 125(12), (2020): e2020JF005751, doi:10.1029/2020JF005751.
    Description: Salt marshes are valuable ecosystems that must trap sediments and accrete in order to counteract the deleterious effect of sea level rise. Previous studies have shown that the capacity of marshes to build up vertically depends on both autogenous and exogenous processes including ecogeomorphic feedbacks and sediment supply from in‐land and coastal ocean. There have been numerous efforts to quantify the role played by the sediments coming from marsh edge erosion on the resistance of salt marshes to sea level rise. However, the majority of existing studies investigating the interplay between lateral and vertical dynamics use simplified modeling approaches, and they do not consider that marsh retreat can affect the regional‐scale hydrodynamics and sediment retention in back‐barrier basins. In this study, we evaluated the fate of the sediments originating from marsh lateral loss by using high‐resolution numerical model simulations of Jamaica Bay, a small lagoonal estuary located in New York City. Our findings show that up to 42% of the sediment released during marsh edge erosion deposits on the shallow areas of the basin and over the vegetated marsh platforms, contributing positively to the sediment budget of the remaining salt marshes. Furthermore, we demonstrate that with the present‐day sediment supply from the ocean, the system cannot keep pace with sea level rise even accounting for the sediment liberated in the bay through marsh degradation. Our study highlights the relevance of multiple sediment sources for the maintenance of the marsh complex.
    Description: This study was supported by the Department of the Interior Hurricane Sandy Recovery program (ID G16AC00455, subaward to University of Liverpool). S. F. was partly supported by NSF awards 1637630 (PIE LTER) and 1832221 (VCR LTER). We thank Robert Chant from Rutgers University for sharing the hydrodynamic measurements in Jamaica Bay.
    Keywords: Marsh erosion ; Sediment recycling ; Sea level rise ; Jamaica Bay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Donatelli, C., Zhang, X., Ganju, N. K., Aretxabaleta, A. L., Fagherazzi, S., & Leonardi, N. A nonlinear relationship between marsh size and sediment trapping capacity compromises salt marshes' stability. Geology, 48(10), (2020): 966-970, doi:10.1130/G47131.1.
    Description: Global assessments predict the impact of sea-level rise on salt marshes with present-day levels of sediment supply from rivers and the coastal ocean. However, these assessments do not consider that variations in marsh extent and the related reconfiguration of intertidal area affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. We conducted a meta-analysis of six bays along the United States East Coast to show that a reduction in the current salt marsh area decreases the sediment availability in estuarine systems through changes in regional-scale hydrodynamics. This positive feedback between marsh disappearance and the ability of coastal bays to retain sediments reduces the trapping capacity of the whole tidal system and jeopardizes the survival of the remaining marshes. We show that on marsh platforms, the sediment deposition per unit area decreases exponentially with marsh loss. Marsh erosion enlarges tidal prism values and enhances the tendency toward ebb dominance, thus decreasing the overall sediment availability of the system. Our findings highlight that marsh deterioration reduces the sediment stock in back-barrier basins and therefore compromises the resilience of salt marshes.
    Description: Support was provided by the U.S. Department of the Interior Hurricane Sandy Recovery program G16AC00455 and associated award to the University of Liverpool (UK). Zhang and Fagherazzi were also funded by U.S. National Science Foundation awards 1832221 (Virginia Coast Reserve Long-Term Ecological Research [VCR LTER]) and 1637630 (Plum Island LTER) and the China Scholarship Council (201606140044). We thank the editor, Philip Orton, and two anonymous reviewers for critical revision of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 121 (2016): 1861–1875, doi:10.1002/2016JF003975.
    Description: Herein, we investigate the relationship between wind waves, salt marsh erosion rates, and the planar shape of marsh boundaries by using aerial images and the numerical model Coupled-Ocean-Atmosphere-Wave-Sediment-Transport Modeling System (COAWST). Using Barnegat Bay, New Jersey, as a test site, we found that salt marsh erosion rates maintain a similar trend in time. We also found a significant relationship between salt marsh erosion rates and the shape of marsh boundaries which could be used as a geomorphic indicator of the degradation level of the marsh. Slowly eroding salt marshes are irregularly shaped with fractal dimension higher than rapidly deteriorating marshes. Moreover, for low-wave energy conditions, there is a high probability of isolated and significantly larger than average failures of marsh portions causing a long-tailed distribution of localized erosion rates. Finally, we confirm the existence of a significant relationship between salt marsh erosion rate and wind waves exposure. Results suggest that variations in time in the morphology of salt marsh boundaries could be used to infer changes in frequency and magnitude of external agents.
    Description: Department of the Interior Hurricane Sandy Recovery program Grant Number: GS2-2D; NSF DEB Grant Number: 0621014; OCE Grant Number: 1238212
    Description: 2017-04-22
    Keywords: Wind waves ; Salt marsh ; Fractal dimension ; Erosion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Donatelli, C., Ganju, N. K., Kalra, T. S., Fagherazzi, S., & Leonardi, N. (2019). Dataset of numerical modelling results of wave thrust on salt marsh boundaries with different seagrass coverages in a shallow back-barrier estuary. Data in Brief, 25, 104197, doi:10.1016/j.dib.2019.104197.
    Description: This article contains data on the effects of seagrass decline on wave energy along the shoreline of Barnegat Bay (USA) previously evaluated in Donatelli et al., 2019. This study was carried out applying the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modelling framework to six historical maps of seagrass distribution. A new routine recently implemented in COAWST was used, which explicitly computes the wave thrust acting on salt marsh boundaries. The numerical modelling results are reported in terms of wind-wave heights for different seagrass coverages, wind speeds and directions. From a comparison with a numerical experiment without submerged aquatic vegetation, we show how the computed wave thrust on marsh boundaries can be reduced by seagrass beds.
    Description: This study was supported by the Department of the Interior Hurricane Sandy Recovery program (ID G16AC00455, sub-award to University of Liverpool). S.F. was partly supported by NSF awards 1637630 (PIE LTER) and 1832221 (VCR LTER). We further acknowledge partial support from the Environmental Change Research group at University of Liverpool, and University of Liverpool library for publication fees.
    Keywords: Vegetation ; COAWST ; Wave thrust
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-20
    Description: Coastal wetland ecosystems and biodiversity are susceptible to changes in salinity brought about by the local effects of climate change, meteorological extremes, coastal evolution and human intervention. This study investigates changes in the salinity of surface water and the associated impacts on back-barrier wetlands as a result of breaching of a barrier beach and under the compound action of different surge heights, accelerated sea-level rise (SLR), river discharge and rainfall. We show that barrier breaching can have significant effects in terms of vegetation die-back even without the occurrence of large storm surges or in the absence of SLR, and that rainfall alone is unlikely to be sufficient to mitigate increased salinity due to direct tidal flushing. Results demonstrate that an increase in sea level corresponding to the RCP8.5 scenario for year 2100 causes a greater impact in terms of reedbed loss than storm surges up to 2 m with no SLR. In mitigation of the consequent changes in wetland ecology, regulation of relatively small and continuous river discharge can be regarded as a strategy for the management of coastal back-barrier wetland habitats and for the maintenance of brackish ecosystems. As such, this study provides a tool for scoping the potential impacts of storms, climate change and alternative management strategies on existing wetland habitats and species.
    Print ISSN: 0277-5212
    Electronic ISSN: 1943-6246
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-22
    Description: Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...