ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) is predicted to be a major driver of ocean biodiversity change. At projected rates of change, sensitive marine taxa may not have time to adapt. Their persistence may depend on pre-existing inter-individual variability. We investigated individual male reproductive performance under present-day and OA conditions using two representative broadcast spawners, the sea urchins Lytechinus pictus and Heliocidaris erythrogramma. Under the non-competitive individual ejaculate scenario, we examined sperm functional parameters (e.g. swimming speed, motility) and their relationship with fertilization success under current and near-future OA conditions. Significant inter-individual differences in almost every parameter measured were identified. Importantly, we observed strong inverse relationships between individual fertilization success rate under current conditions and change in fertilization success under OA. Individuals with a high fertilization success under current conditions had reduced fertilization under OA, while individuals with a low fertilization success under current conditions improved. Change in fertilization success ranged from −67% to +114% across individuals. Our results demonstrate that while average population fertilization rates remain similar under OA and present-day conditions, the contribution by different males to the population significantly shifts, with implications for how selection will operate in a future ocean.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Average path velocity; Average path velocity, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Curvilinear velocity; Curvilinear velocity, standard deviation; Echinodermata; Event label; EXP; Experiment; Fertilization success rate; Fertilization success rate, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Heliocidaris erythrogramma; Laboratory experiment; Linearity, standard deviation; Linearity index; Lytechinus pictus; Milk_Beach; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Registration number of species; Reproduction; Salinity; Salinity, standard error; Single species; South Pacific; Species; Sperm motility; Sperm motility, standard deviation; Straight line velocity; Straight line velocity, standard error; Straightness; Straightness, standard deviation; Temperate; Temperature, water; Temperature, water, standard error; Treatment; Type; Uniform resource locator/link to reference; Wobble; Wobble, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 372 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Ocean acidification can affect the ability of calcifying organisms to build and maintain mineralized tissue. In decapod crustaceans, the exoskeleton is a multilayered structure composed of chitin, protein, and mineral, predominately magnesian calcite or amorphous calcium carbonate (ACC). We investigated the effects of acidification on the exoskeleton of mature (post-terminal-molt) female southern Tanner crabs, Chionoecetes bairdi. Crabs were exposed to one of three pH levels—8.1, 7.8, or 7.5—for two years. Reduced pH led to a suite of body-region-specific effects on the exoskeleton. Microhardness of the claw was 38% lower in crabs at pH 7.5 compared with those at pH 8.1, but carapace microhardness was unaffected by pH. In contrast, reduced pH altered elemental content in the carapace (reduced calcium, increased magnesium), but not the claw. Diminished structural integrity and thinning of the exoskeleton was observed at reduced pH in both body regions; internal erosion of the carapace was present in most crabs at pH 7.5, and the claws of these crabs showed substantial external erosion, with tooth-like denticles nearly or completely worn away. Using infrared spectroscopy, we observed a shift in the phase of calcium carbonate present in the carapace of pH-7.5 crabs: a mix of ACC and calcite was found in the carapace of crabs at pH 8.1, whereas the bulk of calcium carbonate had transformed to calcite in pH-7.5 crabs. With limited capacity for repair, the exoskeleton of long-lived crabs that undergo a terminal molt, such as C. bairdi, may be especially susceptible to ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arthropoda; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calcium; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Category; Chiniak_Bay; Chionoecetes bairdi; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Magnesium; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Pollex damage score; Salinity; Salinity, standard deviation; Sample ID; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strontium; Temperate; Temperature, water; Temperature, water, standard deviation; Thickness; Treatment: pH; Type of study; v2 peak position, Calcium carbonate; Vickers Hardness
    Type: Dataset
    Format: text/tab-separated-values, 1244 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: We examined the effect of long-term (2 year) exposure to decreased seawater pH (7.8 and 7.5, PCO2 ~ 760 and 1550 µatm, respectively) on exoskeletal properties in post-terminal-molt female Chionoecetes opilio. Since the effects of OA vary among body regions in decapods, exoskeletal properties (microhardness, thickness, and elemental composition) were measured in five body regions: the carapace, both claws, and both third walking legs.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Arthropoda; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcium; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chionecetes opilio; Coast and continental shelf; Comment; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Magnesium; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Polar; Position; Salinity; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strontium; Temperature, water; Thickness; Treatment: pH; Type of study; Vickers Hardness
    Type: Dataset
    Format: text/tab-separated-values, 3154 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Ecology Progress Series 553 (2016): 155-162, doi:10.3354/meps11739.
    Description: Covering behavior refers to the propensity of echinoids (Echinoidea) to lift materials from the surrounding environment onto their aboral surfaces using their tube feet and spines. This behavior has been widely documented in regular echinoids from a variety of well-lit, shallow-marine habitats. Covering behavior in the deep sea, however, is rarely observed, and the functional significance of covering when it does occur remains speculative. During a photographic survey of the seafloor off Anvers Island and Marguerite Bay along the western Antarctic Peninsula, we imaged 11 benthic transects at depths ranging from 390 to 2100 m. We recorded the number of echinoid species, incidence of covering behavior, types of materials used for covering, potential predators of echinoids, and potential prey items for predators. The echinoid Sterechinus spp. was found at all depths, and the percentage of individuals exhibiting covering behavior increased with depth between 390 and 1500 m. There was a significant positive correlation between the incidence of covering behavior in Sterechinus spp. and the density of king crabs (Anomura: Lithodidae), crushing predators that may be expanding their bathymetric range up the Antarctic continental slope as a consequence of ongoing climatic warming. In contrast, covering behavior was not positively correlated with the densities of non-crab predators, the total densities of predators, or the availability of prey. Our results document rarely observed covering behavior in echinoids living in the deep sea and suggest that covering could be a behavioral response to predation pressure by king crabs.
    Description: Funding was provided by grants from the US National Science Foundation to R.B.A. (ANT- 1141877) and J.B.M. (ANT-1141896).
    Keywords: Antarctic Peninsula ; Echinoid ; Covering behavior ; Echinodermata ; King crab ; Lithodidae
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Defne, Z., Aretxabaleta, A. L., Ganju, N. K., Kalra, T. S., Jones, D. K., & Smith, K. E. L. A geospatially resolved wetland vulnerability index: synthesis of physical drivers. Plos One, 15(1), (2020): e0228504, doi:10.1371/journal.pone.0228504.
    Description: Assessing wetland vulnerability to chronic and episodic physical drivers is fundamental for establishing restoration priorities. We synthesized multiple data sets from E.B. Forsythe National Wildlife Refuge, New Jersey, to establish a wetland vulnerability metric that integrates a range of physical processes, anthropogenic impact and physical/biophysical features. The geospatial data are based on aerial imagery, remote sensing, regulatory information, and hydrodynamic modeling; and include elevation, tidal range, unvegetated to vegetated marsh ratio (UVVR), shoreline erosion, potential exposure to contaminants, residence time, marsh condition change, change in salinity, salinity exposure and sediment concentration. First, we delineated the wetland complex into individual marsh units based on surface contours, and then defined a wetland vulnerability index that combined contributions from all parameters. We applied principal component and cluster analyses to explore the interrelations between the data layers, and separate regions that exhibited common characteristics. Our analysis shows that the spatial variation of vulnerability in this domain cannot be explained satisfactorily by a smaller subset of the variables. The most influential factor on the vulnerability index was the combined effect of elevation, tide range, residence time, and UVVR. Tide range and residence time had the highest correlation, and similar bay-wide spatial variation. Some variables (e.g., shoreline erosion) had no significant correlation with the rest of the variables. The aggregated index based on the complete dataset allows us to assess the overall state of a given marsh unit and quickly locate the most vulnerable units in a larger marsh complex. The application of geospatially complete datasets and consideration of chronic and episodic physical drivers represents an advance over traditional point-based methods for wetland assessment.
    Description: This study was part of the Estuarine Physical Response to Storms project (GS2-2D awarded to NKG), supported by the Department of the Interior Hurricane Sandy Recovery program. Support was also provided by the U.S. Geological Survey, Coastal and Marine Hazards/Resources Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 8 (2017): 10.1002/ecs2.2017, doi:10.1002/ecs2.2017.
    Description: Historically low temperatures have severely limited skeleton-breaking predation on the Antarctic shelf, facilitating the evolution of a benthic fauna poorly defended against durophagy. Now, rapid warming of the Southern Ocean is restructuring Antarctic marine ecosystems as conditions become favorable for range expansions. Populations of the lithodid crab Paralomis birsteini currently inhabit some areas of the continental slope off Antarctica. They could potentially expand along the slope and upward to the outer continental shelf, where temperatures are no longer prohibitively low. We identified two sites inhabited by different densities of lithodids in the slope environment along the western Antarctic Peninsula. Analysis of the gut contents of P. birsteini trapped on the slope revealed them to be opportunistic invertivores. The abundances of three commonly eaten, eurybathic taxa—ophiuroids, echinoids, and gastropods—were negatively associated with P. birsteini off Marguerite Bay, where lithodid densities averaged 4280 ind/km2 at depths of 1100–1499 m (range 3440–5010 ind/km2), but not off Anvers Island, where lithodid densities were lower, averaging 2060 ind/km2 at these depths (range 660–3270 ind/km2). Higher abundances of lithodids appear to exert a negative effect on invertebrate distribution on the slope. Lateral or vertical range expansions of P. birsteini at sufficient densities could substantially reduce populations of their benthic prey off Antarctica, potentially exacerbating the direct impacts of rising temperatures on the distribution and diversity of the contemporary shelf benthos.
    Description: Division of Polar Programs Grant Numbers: ANT-0838466, ANT-0838844, ANT-1141877, ANT-1141896; Vetenskapsrådet Grant Number: 824-2008-6429; H2020 Marie Skłodowska-Curie Actions Grant Number: 704895; U.S. National Science Foundation; European Commission; University of Alabama at Birmingham
    Keywords: Antarctica ; Bathyal ; Benthic ; Climate change ; Echinoidea ; Lithodidae ; Ophiuroidea ; Paralomis ; Polar emergence ; Predation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-21
    Description: The calving of A-68, the 5,800-km2, 1-trillion-ton iceberg shed from the Larsen C Ice Shelf in July 2017, is one of over 10 significant ice-shelf loss events in the past few decades resulting from rapid warming around the Antarctic Peninsula. The rapid thinning, retreat, and collapse of ice shelves along the Antarctic Peninsula are harbingers of warming effects around the entire continent. Ice shelves cover more than 1.5 million km2 and fringe 75% of Antarctica's coastline, delineating the primary connections between the Antarctic continent, the continental ice, and the Southern Ocean. Changes in Antarctic ice shelves bring dramatic and large-scale modifications to Southern Ocean ecosystems and continental ice movements, with global-scale implications. The thinning and rate of future ice-shelf demise is notoriously unpredictable, but models suggest increased shelf-melt and calving will become more common. To date, little is known about sub-ice-shelf ecosystems, and our understanding of ecosystem change following collapse and calving is predominantly based on responsive science once collapses have occurred. In this review, we outline what is known about (a) ice-shelf melt, volume loss, retreat, and calving, (b) ice-shelf-associated ecosystems through sub-ice, sediment-core, and pre-collapse and post-collapse studies, and (c) ecological responses in pelagic, sympagic, and benthic ecosystems. We then discuss major knowledge gaps and how science might address these gaps. This article is categorized under: Climate, Ecology, and Conservation 〉 Modeling Species and Community Interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-28
    Description: Cold-water conditions have excluded durophagous (skeleton-breaking) predators from the Antarctic seafloor for millions of years. Rapidly warming seas off the western Antarctic Peninsula could now facilitate their return to the continental shelf, with profound consequences for the endemic fauna. Among the likely first arrivals are king crabs (Lithodidae), which were discovered recently on the adjacent continental slope. During the austral summer of 2010‒2011, we used underwater imagery to survey a slope-dwelling population of the lithodid Paralomis birsteini off Marguerite Bay, western Antarctic Peninsula for environmental or trophic impediments to shoreward expansion. The population density averaged ∼4.5 individuals × 1,000 m−2 within a depth range of 1,100‒1,500 m (overall observed depth range 841–2,266 m). Images of juveniles, discarded molts, and precopulatory behavior, as well as gravid females in a trapping study, suggested a reproductively viable population on the slope. At the time of the survey, there was no thermal barrier to prevent the lithodids from expanding upward and emerging on the outer shelf (400- to 550-m depth); however, near-surface temperatures remained too cold for them to survive in inner-shelf and coastal environments (
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-09
    Print ISSN: 0923-4861
    Electronic ISSN: 1572-9834
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-23
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of Ecological Society of America.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...