ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon cycle  (6)
  • Methane  (5)
  • American Geophysical Union  (10)
  • Wiley  (1)
  • American Physical Society (APS)
  • MDPI Publishing
  • 2020-2023  (11)
  • 1940-1944
  • 1
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sanders‐DeMott, R., Eagle, M., Kroeger, K., Wang, F., Brooks, T., Suttles, J., Nick, S., Mann, A., & Tang, J. Impoundment increases methane emissions in Phragmites‐invaded coastal wetlands. Global Change Biology, 28(15), (2022): 4539– 4557. https://doi.org/10.1111/gcb.16217.
    Description: Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls and scaling of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here, we (1) examine how carbon fluxes vary across a salinity gradient (4–25 psu) in impounded and natural, tidally unrestricted Phragmites wetlands using static chambers and (2) probe drivers of carbon fluxes within an impounded coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, but effects on carbon dioxide (CO2) were less pronounced with uptake generally enhanced in the fresher, impounded sites. The impounded wetland experienced little variation in water-table depth or salinity during the growing season and was a strong CO2 sink of −352 g CO2-C m−2 year−1 offset by CH4 emission of 11.4 g CH4-C m−2 year−1. Growing season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal cycle with a night-time minimum that was not reflected in opaque chamber measurements. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for example by applying a scaling factor developed here of ~0.6 to mid-day chamber measurements. Taken together, these results suggest that although freshened, impounded wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 production and enhance their climate regulating benefits.
    Description: This project was supported by USGS-NPS Natural Resources Preservation Program #2021-07, U.S. Geological Survey Coastal & Marine Hazards and Resources Program and the USGS Land Change Science Program's LandCarbon program, and NOAA National Estuarine Research Reserve Science Collaborative NA14NOS4190145. R Sanders-DeMott was supported by a USGS Mendenhall Fellowship and partnership with Restore America's Estuaries.
    Keywords: Blue carbon ; Coastal wetland ; Dike ; Eddy covariance ; Impoundment ; Methane ; Net ecosystem exchange ; Phragmites ; Restoration ; Static chambers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-06
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(5), (2022): e2022GB007388, https://doi.org/10.1029/2022gb007388.
    Description: The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3 sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid-phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3 dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid-phase CaCO3 flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.
    Description: This work was funded by NSF OCE-1220301 to W.B., NSF OCE-1220600 to J.F.A., and startup funding for A.V.S.
    Description: 2022-11-06
    Keywords: Calcium carbonate ; Dissolution ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(1), (2021): e2019JG005621, https://doi.org/10.1029/2019JG005621.
    Description: Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small short‐term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Mid‐Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4‐derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 ± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A first‐order approximation of the input rate of ancient‐derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Mid‐Atlantic Bight further suggests that oxidation of ancient CH4‐derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.
    Description: This study was sponsored by U.S. Department of Energy (DE‐FE0028980, awarded to J. D. K; DE‐FE0026195 interagency agreement with C. D. R.). We thank the crew of the R/V Hugh R. Sharp for their support, G. Hatcher, J. Borden, and M. Martini of the USGS for assistance with the LADCP, and Zach Bunnell, Lillian Henderson, and Allison Laubach for additional support at sea.
    Description: 2021-06-23
    Keywords: Radiocarbon ; Methane ; DIC ; Ocean acidification ; Climate change ; U.S Mid-Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.
    Description: We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.
    Description: This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).
    Description: 2021-10-24
    Keywords: Carbon cycle ; Climate change ; Deep water ; Glaciation ; Meridional overturning circulation ; Paleosalinity ; Porewater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(11), (2021): e2021GL093178, https://doi.org/10.1029/2021GL093178.
    Description: The effects of heterogeneous reactions between river-borne particles and the carbonate system were studied in the plumes of the Mississippi and Brazos rivers. Measurements within these plumes revealed significant removal of dissolved inorganic carbon (DIC) and total alkalinity (TA). After accounting for all known DIC and TA sinks and sources, heterogeneous reactions (i.e., heterogeneous CaCO3 precipitation and cation exchange between adsorbed and dissolved ions) were found to be responsible for a significant fraction of DIC and TA removal, exceeding 10% and 90%, respectively, in the Mississippi and Brazos plume waters. This finding was corroborated by laboratory experiments, in which the seeding of seawater with the riverine particles induced the removal of the DIC and TA. The combined results demonstrate that heterogeneous reactions may represent an important controlling mechanism of the seawater carbonate system in particle-rich coastal areas and may significantly impact the coastal carbon cycle.
    Description: This research was funded by the National Science Foundation (NSF) and the Bi-National Science Foundation U.S-Israel award number OCE-BSF 1635388.
    Description: 2021-11-20
    Keywords: Calcium carbonate ; Carbon cycle ; Carbonate chemistry ; Heterogeneous reactions ; Mississippi ; River mouths
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hayes, C. T., Costa, K. M., Anderson, R. F., Calvo, E., Chase, Z., Demina, L. L., Dutay, J., German, C. R., Heimburger-Boavida, L., Jaccard, S. L., Jacobel, A., Kohfeld, K. E., Kravchishina, M. D., Lippold, J., Mekik, F., Missiaen, L., Pavia, F. J., Paytan, A., Pedrosa-Pamies, R., Petrova, M., V., Rahman, S., Robinson, L. F., Roy-Barman, M., Sanchez-Vidal, A., Shiller, A., Tagliabue, A., Tessin, A. C., van Hulten, M., & Zhang, J. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochemical Cycles, 35(4), (2021): e2020GB006769, https://doi.org/10.1029/2020GB006769.
    Description: Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep-sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep-sea budgets. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
    Description: This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US-NSF. The work grew out of a 2018 workshop in Aix-Marseille, France, funded by PAGES, GEOTRACES, SCOR, US-NSF, Aix Marseille Université, and John Cantle Scientific, and the authors would like to acknowledge all attendees of this meeting. The authors acknowledge the participants of the 68th cruise of RV Akademik Mstislav Keldysh for helping acquire samples. Christopher T. Hayes acknowledges support from US-NSF awards 1658445 and 1737023. Some data compilation on Arctic shelf seas was supported by the Russian Science Foundation, grant number 20-17-00157. This work was also supported through project CRESCENDO (grant no. 641816, European Commission). Zanna Chase acknowledges support from the Australian Research Council’s Discovery Projects funding scheme (project DP180102357). Christopher R. German acknowledges US-NSF awards 1235248 and 1234827. Some colorbars used in the figures were designed by Kristen Thyng et al. (2016) and Patrick Rafter.
    Keywords: Barium ; Carbon cycle ; Marine atlas ; Mercury ; Opal ; Sediment burial
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(10), (2021): e2021GL092904, https://doi.org/10.1029/2021GL092904.
    Description: We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C values in seawater collected from the Southern Ocean and eastern Pacific GOSHIP cruise P18 in 2016/2017. The aging of 14C in DOC in circumpolar deep water northward from 69°S to 20°N was similar to that measured in dissolved inorganic carbon in the same samples, indicating that the transport of deep waters northward is the primary control of 14C in DIC and DOC. Low DOC ∆14C and δ13C measurements between 1,200 and 3,400 m depth may be evidence of a source of DOC produced in nearby hydrothermal ridge systems (East Pacific Rise).
    Description: This work was supported by NSF (OCE-1458941 and OCE-1951073 to Ellen R. M. Druffel), Fred Kavli Foundation, Keck Carbon Cycle AMS Laboratory, NSF/NOAA funded GO-SHIP Program, Canada Research Chairs program (to Brett D. Walker) and American Chemical Society Petroleum Research Fund New Directions (55,430-ND2 to Ellen R. M. Druffel and Brett D. Walker).
    Description: 2021-11-24
    Keywords: 13C ; Carbon cycle ; Circumpolar deep water ; Dissolved inorganic carbon ; Dissolved organic carbon ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(8), (2019): 7525-7537, doi: 10.1029/2019JB018186.
    Description: The proliferation of drilling expeditions focused on characterizing natural gas hydrate as a potential energy resource has spawned widespread interest in gas hydrate reservoir properties and associated porous media phenomena. Between 2017 and 2019, a Special Section of this journal compiled contributed papers elucidating interactions between gas hydrate and sediment based on laboratory, numerical modeling, and field studies. Motivated mostly by field observations in the northern Gulf of Mexico and offshore Japan, several papers focus on the mechanisms for gas hydrate formation and accumulation, particularly with vapor phase gas, not dissolved gas, as the precursor to hydrate. These studies rely on numerical modeling or laboratory experiments using sediment packs or benchtop micromodels. A second focus of the Special Section is the role of fines in inhibiting production of gas from methane hydrate, controlling the distribution of hydrate at a pore scale, and influencing the bulk behavior of seafloor sediments. Other papers fill knowledge gaps related to the physical properties of hydrate‐bearing sediments and advance new approaches in coupled thermal‐mechanical modeling of these sediments during hydrate dissociation. Finally, one study addresses the long‐standing question about the fate of methane hydrate at the molecular level when CO2 is injected into natural reservoirs under hydrate‐forming conditions.
    Description: C. R. was supported by the U.S. Geological Survey's Energy Resources Program and the Coastal/Marine Hazards and Resources Program, as well as by DOE Interagency Agreement DE‐FE0023495. C. R. thanks W. Waite and J. Jang for discussions and suggestions that improved this paper and L. Stern for a helpful review. J. Y. Lee was supported by the Ministry of Trade, Industry, and Energy (MOTIE) through the Project “Gas Hydrate Exploration and Production Study (19‐1143)” under the management of the Gas Hydrate Research and Development Organization (GHDO) of Korea and the Korea Institute of Geoscience and Mineral Resources (KIGAM). Any use of trade, firm, or product name is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Gas hydrate ; Methane ; Reservoir properties ; Multiphase flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015989, doi:10.1029/2019JC015989.
    Description: Relatively minor amounts of methane, a potent greenhouse gas, are currently emitted from the oceans to the atmosphere, but such methane emissions have been hypothesized to increase as oceans warm. Here, we investigate the source, distribution, and fate of methane released from the upper continental slope of the U.S. Mid‐Atlantic Bight, where hundreds of gas seeps have been discovered between the shelf break and ~1,600 m water depth. Using physical, chemical, and isotopic analyses, we identify two main sources of methane in the water column: seafloor gas seeps and in situ aerobic methanogenesis which primarily occurs at 100–200 m depth in the water column. Stable isotopic analyses reveal that water samples collected at all depths were significantly impacted by aerobic methane oxidation, the dominant methane sink in this region, with the average fraction of methane oxidized being 50%. Due to methane oxidation in the deeper water column, below 200 m depth, surface concentrations of methane are influenced more by methane sources found near the surface (0–10 m depth) and in the subsurface (10–200 m depth), rather than seafloor emissions at greater depths.
    Description: This research was supported by DOE Grant (DE‐FE0028980) to J. K. and by DOE‐USGS Interagency Agreement DE‐FE0026195.
    Description: 2020-10-04
    Keywords: Methane ; Ocean ; Isotopes ; Gas seeps ; Mid Atlantic bight ; Oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47 (2020): e2020GL087669, doi:10.1029/2020GL087669.
    Description: We present a year‐round time series of dissolved methane (CH4), along with targeted observations during ice melt of CH4 and carbon dioxide (CO2) in a river and estuary adjacent to Cambridge Bay, Nunavut, Canada. During the freshet, CH4 concentrations in the river and ice‐covered estuary were up to 240,000% saturation and 19,000% saturation, respectively, but quickly dropped by 〉100‐fold following ice melt. Observations with a robotic kayak revealed that river‐derived CH4 and CO2 were transported to the estuary and rapidly ventilated to the atmosphere once ice cover retreated. We estimate that river discharge accounts for 〉95% of annual CH4 sea‐to‐air emissions from the estuary. These results demonstrate the importance of resolving seasonal dynamics in order to estimate greenhouse gas emissions from polar systems.
    Description: All data generated by the authors that were used in this article are available on PANGAEA (https://doi.org/10.1594/PANGAEA.907159) and model code for estimating CH4 transport is available on GitHub (https://doi.org/10.5281/zenodo.3785893). We acknowledge the use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov), part of the NASA Earth Observing System Data and Information System (EOSDIS), and data from Ocean Networks Canada, and Environment Canada. We thank everyone involved in the fieldwork including C. Amegainik, Y. Bernard, A. Cranch, F. Emingak, S. Marriott, and A. Pedersen. Laboratory analysis and experiments were performed by A. Cranch, R. McCulloch, A. Morrison, and Z. Zheng. We thank J. Brinckerhoff, the Arctic Research Foundation, and the staff of the Canadian High Arctic Research Station for support with field logistics. Funding for the work was provided by MEOPAR NCE funding to B. Else, a WHOI Interdisciplinary Award to A. Michel., D. Nicholson. and S. Wankel, and Canadian NSERC grants to P. Tortell. and B. Else. Authors received fellowships, scholarships, and travel grants including an NSERC postdoctoral fellowship to C. Manning, an NDSEG fellowship to V. Preston, NSERC PGS‐D and Izaak Walton Killam Pre‐Doctoral scholarships to S. Jones, and Northern Scientific Training Program funds (Polar Knowledge Canada, administered by the Arctic Institute of North America, University of Calgary) to S. Jones and P. Duke. We also thank Polar Knowledge Canada (POLAR) and Nunavut Arctic College for laboratory space and field logistics support.
    Description: 2020-10-23
    Keywords: Greenhouse gases ; Biogeochemistry ; Arctic coastal waters ; Biogeochemical sensing ; Seasonal cycles ; Methane
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 124(8), (2019): 2582-2594, doi: 10.1029/2019JG005107.
    Description: To assess the influences of carbon sources and transport processes on the 14C age of organic matter (OM) in continental margin sediments, we examined a suite of samples collected along a river‐shelf‐deep ocean transect in the East China Sea (ECS). Ramped pyrolysis‐oxidiation was conducted on suspended particulate matter in the Yangtze River and on surface sediments from the ECS shelf and northern Okinawa Trough. 14C ages were determined on OM decomposition products within different temperature windows. These measurements suggest that extensive amounts of pre‐old (i.e., millennial age) organic carbon (OC) are subject to degradation within and beyond the Yangtze River Delta, and this process is accompanied by an exchange of terrestrial and marine OM. These results, combined with fatty acid concentration data, suggest that both the nature and extent of OM preservation/degradation as well as the modes of transport influence the 14C ages of sedimentary OM. Additionally, we find that the age of (thermally) refractory OC increases during across‐shelf transport and that the age offset between the lowest and highest temperature OC decomposition fractions also increases along the shelf‐to‐trough transect. Amplified interfraction spread or 14C heterogeneity is the greatest in the Okinawa Trough. Aged sedimentary OM across the transect may be a consequence of several reasons including fossil OC input, selective degradation of younger OC, hydrodynamic sorting processes, and aging during lateral transport. Consequently, each of them should be considered in assessing the 14C results of sedimentary OM and its implications for the carbon cycle and interpretation of sedimentary records.
    Description: This study was supported by Doc. Mobility Fellowship (P1EZP2_159064; R. B.) from the Swiss National Science Foundation (SNSF). This study was also supported by SNF “CAPS‐LOCK” project 200021_140850 (T. I. E.), by the National Natural Science Foundation of China (NSFC; grants 41520104009 and 41630966, M. Z.), and by the “111” project (B13030). We are grateful for support of the NOSAMS staff in the execution of this project. We also appreciate the assistance from Yushuang Zhang (Ocean University of China) at NOSAMS and members of the Laboratory for Ion Beam Physics at ETH Zurich for AMS measurements. We acknowledge Lei Xing, Haidong Zhang, Guodong Song, Meng Yu, Yonghao Jia, and Shanshan Duan (Ocean University of China) for sampling assistance on the cruises. Assistance at sea by the crews of R/V Dongfanghong II and R/V Hakuhu Maru is also acknowledged. Readers can access or find the data from figures and tables in the supporting information.
    Keywords: Radiocarbon ; Carbon cycle ; Sediments ; Organic carbon ; Hydrodynamic processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...