ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science
  • American Institute of Physics (AIP)
  • Cambridge University Press
  • Periodicals Archive Online (PAO)
  • 2020-2023  (40)
  • 2015-2019  (68,311)
  • 1935-1939  (17,846)
Collection
Publisher
Language
Years
Year
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, L., Roberts, M., Elder, K., Hansman, R., Gagnon, A., & Kurz, M. Radiocarbon in dissolved organic carbon by UV oxidation: an update of procedures and blank characterization at NOSAMS. Radiocarbon, 64(1), (2022): 195-199, https://doi.org/10.1017/rdc.2022.4.
    Description: This note describes improvements of UV oxidation method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). The procedural blank is reduced to 2.6 ± 0.6 μg C, with Fm of 0.42 ± 0.10 and δ13C of –28.43 ± 1.19‰. The throughput is improved from one sample per day to two samples per day.
    Description: We gratefully acknowledge support from the U.S. National Science Foundation, via NSF-OCE-1755125.
    Keywords: Blank ; Dissolved organic carbon ; Radiocarbon ; UV-oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-22
    Description: Pliocene–Quaternary faults are relevant structures with which to constrain the seismotectonic context and contribute to the evaluation of the seismic hazard of a region. Many of these faults, however, do not show clear surface evidence even when releasing earthquakes. For these reasons they can be extremely dangerous as they receive relatively little attention and can be difficult to identify. From among the various surface geology studies and/or palaeoseismological investigations, we focus our attention on the integration of different datasets such as seismic reflection profiles, surface kinematic data and the relocation of seismological data, which make it possible to identify and characterize active faults whose dimension and earthquake potential would otherwise not be large enough to make them identifiable. We take as an example the Montespertoli NE-trending fault in southern Tuscany (central Italy) with which we associate the 2016 M=3.9 Castelfiorentino earthquake. This structure is part of a wider (in the order of 15–20 km) crustal-scale shear zone, which may be responsible for strong historical earthquakes in the area.
    Description: Published
    Description: 853 - 872
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: active faults ; seismic faults ; Earthquakes ; strike-slip faults ; inner Northern Apennines ; solid earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, C.-Z., Dick, H. J. B., Mitchell, R. N., Wei, W., Zhang, Z.-Y., Hofmann, A. W., Yang, J.-F., & Li, Y. Archean cratonic mantle recycled at a mid-ocean ridge. Science Advances, 8(22), (2022): eabn6749, https://doi.org/10.1126/sciadv.abn6749.
    Description: Basalts and mantle peridotites of mid-ocean ridges are thought to sample Earth’s upper mantle. Osmium isotopes of abyssal peridotites uniquely preserve melt extraction events throughout Earth history, but existing records only indicate ages up to ~2 billion years (Ga) ago. Thus, the memory of the suspected large volumes of mantle lithosphere that existed in Archean time (〉2.5 Ga) has apparently been lost somehow. We report abyssal peridotites with melt-depletion ages up to 2.8 Ga, documented by extremely unradiogenic 187Os/188Os ratios (to as low as 0.1095) and refractory major elements that compositionally resemble the deep keels of Archean cratons. These oceanic rocks were thus derived from the once-extensive Archean continental keels that have been dislodged and recycled back into the mantle, the feasibility of which we confirm with numerical modeling. This unexpected connection between young oceanic and ancient continental lithosphere indicates an underappreciated degree of compositional recycling over time.
    Description: This study was financially supported by the National Science Fund for Distinguished Young Scholars 42025201 (to C.-Z.L.), the National Key Research and Development Project of China 2020YFA0714801 (to C.-Z.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010106 (to C.-Z.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDB42020301 (to C.-Z.L.), and NSF grants 2114652 and 1657983 (to H.J.B.D.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McNichol, A., Key, R., & Guilderson, T. Global ocean radiocarbon programs. Radiocarbon, (2022): 1–13, https://doi.org/10.1017/rdc.2022.17.
    Description: The importance of studying the radiocarbon content of dissolved inorganic carbon (DI14C) in the oceans has been recognized for decades. Starting with the GEOSECS program in the 1970s, 14C sampling has been a part of most global survey programs. Early results were used to study air-sea gas exchange while the more recent results are critical for helping calibrate ocean general circulation models used to study the effects of climate change. Here we summarize the major programs and discuss some of the important insights the results are starting to provide.
    Description: Authors received funding from the National Science Foundation OCE-85865400 (APM) and a Woods Hole Oceanographic Technical Staff Award (APM).
    Keywords: Dissolved inorganic carbon ; Ocean models ; Oceanography ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Druffel, E., Beaupre, S., Grotheer, H., Lewis, C., McNichol, A., Mollenhauer, G., & Walker, B. Marine organic carbon and radiocarbon – present and future challenges. Radiocarbon, (2022): 1-17, https://doi.org/10.1017/RDC.2021.105.
    Description: We discuss present and developing techniques for studying radiocarbon in marine organic carbon (C). Bulk DOC (dissolved organic C) Δ14C measurements reveal information about the cycling time and sources of DOC in the ocean, yet they are time consuming and need to be streamlined. To further elucidate the cycling of DOC, various fractions have been separated from bulk DOC, through solid phase extraction of DOC, and ultrafiltration of high and low molecular weight DOC. Research using 14C of DOC and particulate organic C separated into organic fractions revealed that the acid insoluble fraction is similar in 14C signature to that of the lipid fraction. Plans for utilizing this methodology are described. Studies using compound specific radiocarbon analyses to study the origin of biomarkers in the marine environment are reviewed and plans for the future are outlined. Development of ramped pyrolysis oxidation methods are discussed and scientific questions addressed. A modified elemental analysis (EA) combustion reactor is described that allows high particulate organic C sample throughput by direct coupling with the MIniCArbonDAtingSystem.
    Keywords: CSRA ; Dissolved organic carbon ; Methodology ; Organic carbon ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Priscu, J. C., Kalin, J., Winans, J., Campbell, T., Siegfried, M. R., Skidmore, M., Dore, J. E., Leventer, A., Harwood, D. M., Duling, D., Zook, R., Burnett, J., Gibson, D., Krula, E., Mironov, A., McManis, J., Roberts, G., Rosenheim, B. E., Christner, B. C., Kasic, K., Fricker, H. A., Lyons, W. B., Barker, J., Bowling, M., Collins, B., Davis, C., Gagnon, A., Gardner, C., Gustafson, C., Kim, O-S., Li, W., Michaud, A., Patterson, M. O., Tranter, M., Ryan Venturelli, R., Trista Vick-Majors, T., & Elsworth, C. Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Annals of Glaciology, 62(85–86), (2021): 340–352, https://doi.org/10.1017/aog.2021.10.
    Description: The Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes 〉0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.
    Description: This material is based upon work supported by the US National Science Foundation, Section for Antarctic Sciences, Antarctic Integrated System Science program as part of the interdisciplinary (Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated study of carbon cycling in hydrologically-active subglacial environments) project (NSF-OPP 1543537, 1543396, 1543405, 1543453 and 1543441). Ok-Sun Kim was funded by the Korean Polar Research Institute. We are particularly thankful to the SALSA traverse personnel for crucial technical and logistical support. The United States Antarctic Program enabled our fieldwork; the New York Air National Guard and Kenn Borek Air provided air support; UNAVCO provided geodetic instrument support. Hot water drilling activities, including repair and upgrade modifications of the WISSARD hot water drill system, for the SALSA project were supported by a subaward from the Ice Drilling Program of Dartmouth College (NSF-PLR 1327315) to the University of Nebraska-Lincoln. J. Lawrence assisted with manuscript preparation. Finally, we are grateful to C. Dean, the SALSA Project Manager, and R. Ricards, SALSA Project Coordinator at McMurdo Station, for their organizational skills, and B. Huber of Lamont-Doherty Earth Observatory for providing the SBE39 PT sensors and the Nortek Aquadopp current meter and assisting with interpretation of the data. B. Huber also provided helpful input on programing and calibrating the SBE19PlusV2 6112 CTD.
    Keywords: Antarctic glaciology ; Basal ice ; Biogeochemistry ; Glacial sedimentology ; Subglacial lakes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48), (2021): eabj2515, https://doi.org/10.1126/sciadv.abj2515.
    Description: Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.
    Description: Y.Z. acknowledges funding from the National Science Foundation of China (91958213), the Chinese Academy of Sciences (XDB42020402), and the Shandong Provincial Natural Science Foundation, China (ZR2020QD068). This study was supported in part by the U.S. National Science Foundation NSF EAR 1826673 to E.G. and G.A.G. and OCE 1756349 to E.G.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2022: Impacts, adaptation and vulnerability. Contribution of the WGII to the 6th assessment report of the intergovernmental panel on climate change, ,, IPCC AR6 WGII, https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_Chapter03.pdf, Cambridge University Press
    Publication Date: 2022-08-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2022: Impacts, adaptation and vulnerability. Contribution of the WGII to the 6th assessment report of the intergovernmental panel on climate change, IPCC AR6 WGII, Climate Change 2022: Impacts, adaptation and vulnerability. Contribution of the WGII to the 6th assessment report of the intergovernmental panel on climate change, IPCC AR6 WGII, https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_Chapter02.pdf, Cambridge University Press, 5 p., pp. 22-26
    Publication Date: 2022-06-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2022-06-09
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Freeman, D. H., & Ward, C. P. Sunlight-driven dissolution is a major fate of oil at sea. Science Advances, 8(7), (2022): eabl7605, https://doi.org/10.1126/sciadv.abl7605.
    Description: Oxygenation reactions initiated by sunlight can transform insoluble components of crude oil at sea into water-soluble products, a process called photo-dissolution. First reported a half century ago, photo-dissolution has never been included in spill models because key parameters required for rate modeling were unknown, including the wavelength and photon dose dependence. Here, we experimentally quantified photo-dissolution as a function of wavelength and photon dose, making possible a sensitivity analysis of environmental variables in hypothetical spill scenarios and a mass balance assessment for the 2010 Deepwater Horizon (DwH) spill. The sensitivity analysis revealed that rates were most sensitive to oil slick thickness, season/latitude, and wavelength and less sensitive to photon dose. We estimate that 3 to 17% (best estimate 8%) of DwH surface oil was subject to photo-dissolution, comparable in magnitude to other widely recognized fate processes. Our findings invite a critical reevaluation of surface oil budgets for both DwH and future spills at sea.
    Description: This work was supported by the Fisheries and Oceans Canada Multi-Partner Research Initiative award to C.P.W. (project #1.06), the NSF Graduate Research Fellowship awarded to D.H.F. (award #174530), and NSF-OCE grant #1841092 to C.P.W.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-07-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tan, S., Pratt, L. J., Voet, G., Cusack, J. M., Helfrich, K. R., Alford, M. H., Girton, J. B., & Carter, G. S. Hydraulic control of flow in a multi-passage system connecting two basins. Journal of Fluid Mechanics, 940, (2022): A8, https://doi.org/10.1017/jfm.2022.212.
    Description: When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.
    Description: This work was supported by the National Science Foundation under grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657795, OCE-1657870 and OCE-1658027.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-07-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peng, Q., Xie, S.-P., Wang, D., Huang, R. X., Chen, G., Shu, Y., Shi, J.-R., & Liu, W. Surface warming-induced global acceleration of upper ocean currents. Science Advances, 8(16), (2022): eabj8394, https://doi.org/10.1126/sciadv.abj8394.
    Description: How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.
    Description: Q.P. is supported by the National Natural Science Foundation of China (42005035), the Science and Technology Planning Project of Guangzhou (202102020935), and the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ2102). D.W. is supported by the National Natural Science Foundation of China (92158204), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311020004). S.-P.X. is supported by the National Science Foundation (AGS-1934392). Y.S. is supported by the National Key Research and Development Program of China (2016YFC1401702). G.C. is supported by National Natural Science Foundation of China (41822602). The numerical simulation is supported by the High-Performance Computing Division and HPC managers of W. Zhou and D. Sui in the South China Sea Institute of Oceanology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Antarctic Science, Cambridge University Press, 33(6), pp. 575-595, ISSN: 0954-1020
    Publication Date: 2022-01-13
    Description: The waters along the West Antarctic Peninsula (WAP) have experienced warming and increased freshwater inputs from melting sea ice and glaciers in recent decades. Challenges exist in understanding the consequences of these changes on the inorganic carbon system in this ecologically important and highly productive ecosystem. Distributions of dissolved inorganic carbon (CT), total alkalinity (AT) and nutrients revealed key physical, biological and biogeochemical controls of the calcium carbonate saturation state (Ωaragonite) in different water masses across the WAP shelf during the summer. Biological production in spring and summer dominated changes in surface water Ωaragonite (ΔΩaragonite up to +1.39; ∼90%) relative to underlying Winter Water. Sea-ice and glacial meltwater constituted a minor source of AT that increased surface water Ωaragonite (ΔΩaragonite up to +0.07; ∼13%). Remineralization of organic matter and an influx of carbon-rich brines led to cross-shelf decreases in Ωaragonite in Winter Water and Circumpolar Deep Water. A strong biological carbon pump over the shelf created Ωaragonite oversaturation in surface waters and suppression of Ωaragonite in subsurface waters. Undersaturation of aragonite occurred at 〈 ∼1000 m. Ongoing changes along the WAP will impact the biologically driven and meltwater-driven processes that influence the vulnerability of shelf waters to calcium carbonate undersaturation in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [Schiller, C. M., Whitlock, C., Elder, K. L., Iverson, N. A., & Abbott, M. B. Erroneously old radiocarbon ages from terrestrial pollen concentrates in Yellowstone Lake, Wyoming, USA. Radiocarbon, 63(1), (2021): 321-342, https://doi.org/10.1017/RDC.2020.118.
    Description: Accelerator mass spectrometry (AMS) dating of pollen concentrates is often used in lake sediment records where large, terrestrial plant remains are unavailable. Ages produced from chemically concentrated pollen as well as manually picked Pinaceae grains in Yellowstone Lake (Wyoming) sediments were consistently 1700–4300 cal years older than ages established by terrestrial plant remains, tephrochronology, and the age of the sediment-water interface. Previous studies have successfully utilized the same laboratory space and methods, suggesting the source of old-carbon contamination is specific to these samples. Manually picking pollen grains precludes admixture of non-pollen materials. Furthermore, no clear source of old pollen grains occurs on the deglaciated landscape, making reworking of old pollen grains unlikely. High volumes of CO2 are degassed in the Yellowstone Caldera, potentially introducing old carbon to pollen. While uptake of old CO2 through photosynthesis is minor (F14C approximately 0.99), old-carbon contamination may still take place in the water column or in surficial lake sediments. It remains unclear, however, what mechanism allows for the erroneous ages of highly refractory pollen grains while terrestrial plant remains were unaffected. In the absence of a satisfactory explanation for erroneously old radiocarbon ages from pollen concentrates, we propose steps for further study.
    Description: This research was supported by NSF Grant No. 1515353 to C. Whitlock and sampling in Yellowstone National Park was conducted under permits YELL-SCI-0009 and YELL-SCI-5054.
    Keywords: AMS dating ; Chronology ; Contamination ; Paleoecology ; Pine
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Teleseismic earthquake wavefields observed on the Ross Ice Shelf. Journal of Glaciology, 67(261), (2021): 58-74, https://doi.org/10.1017/jog.2020.83.
    Description: Observations of teleseismic earthquakes using broadband seismometers on the Ross Ice Shelf (RIS) must contend with environmental and structural processes that do not exist for land-sited seismometers. Important considerations are: (1) a broadband, multi-mode ambient wavefield excited by ocean gravity wave interactions with the ice shelf; (2) body wave reverberations produced by seismic impedance contrasts at the ice/water and water/seafloor interfaces and (3) decoupling of the solid Earth horizontal wavefield by the sub-shelf water column. We analyze seasonal and geographic variations in signal-to-noise ratios for teleseismic P-wave (0.5–2.0 s), S-wave (10–15 s) and surface wave (13–25 s) arrivals relative to the RIS noise field. We use ice and water layer reverberations generated by teleseismic P-waves to accurately estimate the sub-station thicknesses of these layers. We present observations consistent with the theoretically predicted transition of the water column from compressible to incompressible mechanics, relevant for vertically incident solid Earth waves with periods longer than 3 s. Finally, we observe symmetric-mode Lamb waves generated by teleseismic S-waves incident on the grounding zones. Despite their complexity, we conclude that teleseismic coda can be utilized for passive imaging of sub-shelf Earth structure, although longer deployments relative to conventional land-sited seismometers will be necessary to acquire adequate data.
    Description: This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151, 1246416 and OPP-1744852 and 1744856.
    Keywords: Glacier geophysics ; Ice shelves ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gomaa, F., Utter, D. R., Powers, C., Beaudoin, D. J., Edgcomb, V. P., Filipsson, H. L., Hansel, C. M., Wankel, S. D., Zhang, Y., & Bernhard, J. M. Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments. Science Advances, 7(22), (2021): eabf1586, https://doi.org/10.1126/sciadv.abf1586.
    Description: Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.
    Description: his project was funded by the U.S. NSF IOS 1557430 and 1557566. H.L.F. acknowledges support from the Swedish Research Council VR (grant number 2017-04190).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Le Roux, V., Urann, B. M., Brunelli, D., Bonatti, E., Cipriani, A., Demouchy, S., & Monteleone, B. D. Postmelting hydrogen enrichment in the oceanic lithosphere. Science Advances, 7(24), (2021): eabf6071, https://doi.org/10.1126/sciadv.abf6071.
    Description: The large range of H2O contents recorded in minerals from exhumed mantle rocks has been challenging to interpret, as it often records a combination of melting, metasomatism, and diffusional processes in spatially isolated samples. Here, we determine the temporal variations of H2O contents in pyroxenes from a 24-Ma time series of abyssal peridotites exposed along the Vema fracture zone (Atlantic Ocean). The H2O contents of pyroxenes correlate with both crustal ages and pyroxene chemistry and increase toward younger and more refractory peridotites. These variations are inconsistent with residual values after melting and opposite to trends often observed in mantle xenoliths. Postmelting hydrogen enrichment occurred by ionic diffusion during cryptic metasomatism of peridotite residues by low-degree, volatile-rich melts and was particularly effective in the most depleted peridotites. The presence of hydrous melts under ridges leads to widespread hydrogen incorporation in the oceanic lithosphere, likely lowering mantle viscosity compared to dry models.
    Description: Funding for this study was supported by NSF EAR-P&G 1524311 and 1839128 to V.L.R. and the Andrew W. Mellon Foundation Award for Innovative Research to V.L.R. A.C. and D.B. were funded by the Italian Programma di Rilevante Interesse Nazionale PRIN 20178LPCPW and PRIN2017KY5ZX8, respectively. Revisions were performed within the duration of a “Visiting Scholar at SCIENCE 2020” award to V.L.R. (University of Copenhagen, Denmark), with support from the Department of Geosciences and Natural Resource Management, Section for Geology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N., Nilsson-Kerr, K., Rosenthal, Y., Anand, P., & McGrath, S. M. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions. Science Advances, 7(23), (2021): eabg3848, https://doi.org/10.1126/sciadv.abg3848.
    Description: South Asian precipitation amount and extreme variability are predicted to increase due to thermodynamic effects of increased 21st-century greenhouse gases, accompanied by an increased supply of moisture from the southern hemisphere Indian Ocean. We reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume. South Asian precipitation and runoff are strongly coherent with, and lag, atmospheric carbon dioxide changes at Earth’s orbital eccentricity, obliquity, and precession bands and are closely tied to cross-equatorial wind strength at the precession band. We find that the projected monsoon response to ongoing, rapid high-latitude ice melt and rising carbon dioxide levels is fully consistent with dynamics of the past 0.9 million years.
    Description: S.C.C. and S.M.M. were supported by U.S. NSF OCE1634774. M.Y. was funded by JSPS grants JPMXS05R2900001 and 19H05595 and JAMSTEC Exp. 353 postcruise study. K.N.-K. and P.A. were supported by UK-IODP, Open University, and NERC (NE/L002493/1), K.T. was supported by the Technology and Research Initiative Fund, Arizona Board of Regents.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seltzer, A. M., Bekaert, D. V., Barry, P. H., Durkin, K. E., Mace, E. K., Aalseth, C. E., Zappala, J. C., Mueller, P., Jurgens, B., & Kulongoski, J. T. Groundwater residence time estimates obscured by anthropogenic carbonate. Science Advances, 7(17), (2021): eabf3503, https://doi.org/10.1126/sciadv.abf3503.
    Description: Groundwater is an important source of drinking and irrigation water. Dating groundwater informs its vulnerability to contamination and aids in calibrating flow models. Here, we report measurements of multiple age tracers (14C, 3H, 39Ar, and 85Kr) and parameters relevant to dissolved inorganic carbon (DIC) from 17 wells in California’s San Joaquin Valley (SJV), an agricultural region that is heavily reliant on groundwater. We find evidence for a major mid-20th century shift in groundwater DIC input from mostly closed- to mostly open-system carbonate dissolution, which we suggest is driven by input of anthropogenic carbonate soil amendments. Crucially, enhanced open-system dissolution, in which DIC equilibrates with soil CO2, fundamentally affects the initial 14C activity of recently recharged groundwater. Conventional 14C dating of deeper SJV groundwater, assuming an open system, substantially overestimates residence time and thereby underestimates susceptibility to modern contamination. Because carbonate soil amendments are ubiquitous, other groundwater-reliant agricultural regions may be similarly affected.
    Description: his work was conducted as a part of the USGS National Water Quality Assessment Program (NAWQA) Enhanced Trends Project (https://water.usgs.gov/nawqa/studies/gwtrends/). Measurements at Argonne National Laboratory were supported by Department of Energy, Office of Science under contract DE-AC02-06CH11357. Measurements at Pacific Northwest National Laboratory were part of the Ultra-Sensitive Nuclear Measurements Initiative conducted under the Laboratory Directed Research and Development Program. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. This work was also partially supported by NSF award OCE-1923915 (to A.M.S. and P.H.B. at WHOI).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trembath-Reichert, E., Shah Walter, S. R., Ortiz, M. A. F., Carter, P. D., Girguis, P. R., & Huber, J. A. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Science Advances, 7(18), (2021): eabg0153, https://doi.org/10.1126/sciadv.abg0153.
    Description: Biogeochemical processes occurring in fluids that permeate oceanic crust make measurable contributions to the marine carbon cycle, but quantitative assessments of microbial impacts on this vast, subsurface carbon pool are lacking. We provide bulk and single-cell estimates of microbial biomass production from carbon and nitrogen substrates in cool, oxic basement fluids from the western flank of the Mid-Atlantic Ridge. The wide range in carbon and nitrogen incorporation rates indicates a microbial community well poised for dynamic conditions, potentially anabolizing carbon and nitrogen at rates ranging from those observed in subsurface sediments to those found in on-axis hydrothermal vent environments. Bicarbonate incorporation rates were highest where fluids are most isolated from recharging bottom seawater, suggesting that anabolism of inorganic carbon may be a potential strategy for supplementing the ancient and recalcitrant dissolved organic carbon that is prevalent in the globally distributed subseafloor crustal environment.
    Description: The Gordon and Betty Moore Foundation sponsored most of the observatory components at North Pond through grant GBMF1609. This work was supported by the National Science Foundation through grants NSF OCE-1745589, OCE-1635208, and OCE-1062006 to J.A.H. and NSF OCE-1635365 to P.R.G. and S.R.S.W.; NASA Postdoctoral Fellowship with the NASA Astrobiology Institute to E.T.-R.; L’Oréal USA For Women in Science Fellowship to E.T.-R.; and Woods Hole Partnership Education Program, sponsored by the Woods Hole Diversity Initiative to M.A.F.O. The Center for Dark Energy Biosphere Investigations (C-DEBI OCE-0939564) also supported the participation of J.A.H. and P.D.C. This is C-DEBI contribution number 564.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tison, J.-L., Maksym, T., Fraser, A. D., Corkill, M., Kimura, N., Nosaka, Y., Nomura, D., Vancoppenolle, M., Ackley, S., Stammerjohn, S., Wauthy, S., Van der Linden, F., Carnat, G., Sapart, C., de Jong, J., Fripiat, F., & Delille, B. Physical and biological properties of early winter Antarctic sea ice in the Ross Sea. Annals of Glaciology, 61(83), (2020): 241–259, https://doi.org/10.1017/aog.2020.43.
    Description: This work presents the results of physical and biological investigations at 27 biogeochemical stations of early winter sea ice in the Ross Sea during the 2017 PIPERS cruise. Only two similar cruises occurred in the past, in 1995 and 1998. The year 2017 was a specific year, in that ice growth in the Central Ross Sea was considerably delayed, compared to previous years. These conditions resulted in lower ice thicknesses and Chl-a burdens, as compared to those observed during the previous cruises. It also resulted in a different structure of the sympagic algal community, unusually dominated by Phaeocystis rather than diatoms. Compared to autumn-winter sea ice in the Weddell Sea (AWECS cruise), the 2017 Ross Sea pack ice displayed similar thickness distribution, but much lower snow cover and therefore nearly no flooding conditions. It is shown that contrasted dynamics of autumnal-winter sea-ice growth between the Weddell Sea and the Ross Sea impacted the development of the sympagic community. Mean/median ice Chl-a concentrations were 3–5 times lower at PIPERS, and the community status there appeared to be more mature (decaying?), based on Phaeopigments/Chl-a ratios. These contrasts are discussed in the light of temporal and spatial differences between the two cruises.
    Description: S. Stammerjohn was supported by the PIPERS and LTER Programs of the U.S. National Science Foundation, ANT-1341606 (S. Stammerjohn and J. Cassano, U Colorado) and ANT-0823101 (H. Ducklow, LDEO/Columbia University), respectively. Steve Ackley (UTSA) was supported by the PIPERS program of the U.S. National Science Foundation ANT-1341717 and by NASA Grant 80NSSC19M0194 to the Center for Adv. Meas. in Extreme Environments at UTSA.Ted Maksym (WHOI) was supported by the PIPERS program of the U.S. National Science Foundation ANT-1341513. This research was supported by the Belgian F.R.S-FNRS (project ISOGGAP and IODIne, contract T.0268.16 and J.0262.17, respectively). Fanny Van der Linden, Sarah Wauthy, Gauthier Carnat, Célia Sapart and Bruno Delille are PhD students, postdoctoral researchers and research associate, respectively, of the Belgian F.R.S.-FNRS. This work was also supported by the Australian Government's Cooperative Research Centre program through the Antarctic Climate & Ecosystems Cooperative Research Centre, and by the Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership (Project ID SR140300001). Daiki Nomura was supported by grants from the Japan Society for the Promotion of Science (#17H04715) and the National Institute for Polar Research through Project Research KP-303 (ROBOTICA) and #28-14.
    Keywords: Antarctic glaciology ; biogeochemistry ; sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, A. C., Ostrander, C. M., Romaniello, S. J., Reinhard, C. T., Greaney, A. T., Lyons, T. W., & Anbar, A. D. Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth. Science Advances, 7(40), (2021): eabj0108, https://doi.org/10.1126/sciadv.abj0108.
    Description: Evidence continues to emerge for the production and low-level accumulation of molecular oxygen (O2) at Earth’s surface before the Great Oxidation Event. Quantifying this early O2 has proven difficult. Here, we use the distribution and isotopic composition of molybdenum in the ancient sedimentary record to quantify Archean Mo cycling, which allows us to calculate lower limits for atmospheric O2 partial pressures (PO2) and O2 production fluxes during the Archean. We consider two end-member scenarios. First, if O2 was evenly distributed throughout the atmosphere, then PO2 〉 10–6.9 present atmospheric level was required for large periods of time during the Archean eon. Alternatively, if O2 accumulation was instead spatially restricted (e.g., occurring only near the sites of O2 production), then O2 production fluxes 〉0.01 Tmol O2/year were required. Archean O2 levels were vanishingly low according to our calculations but substantially above those predicted for an abiotic Earth system.
    Description: We would like to thank our funding sources, including FESD “Dynamics of Earth System Oxygenation” (NSF EAR 1338810 to A.D.A.), NASA Earth and Space Science Fellowship awarded to A.C.J. (80NSSC17K0498), NSF EAR PF to A.C.J. (1952809), and WHOI Postdoctoral Fellowship to C.M.O. C.T.R. acknowledges support from the NASA Astrobiology Institute. We also acknowledge support from the Metal Utilization and Selection across Eons (MUSE) Interdisciplinary Consortium for Astrobiology Research, sponsored by the National Aeronautics and Space Administration Science Mission Directorate (19-ICAR19_2-0007).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bekaert, D. V., Auro, M., Shollenberger, Q. R., Liu, M.-C., Marschall, H., Burton, K. W., Jacobsen, B., Brennecka, G. A., McPherson, G. J., von Mutius, R., Sarafian, A., & Nielsen, S. G. Fossil records of early solar irradiation and cosmolocation of the CAI factory: a reappraisal. Science Advances, 7(40), (2021): eabg8329, https://doi.org/10.1126/sciadv.abg8329.
    Description: Calcium-aluminum–rich inclusions (CAIs) in meteorites carry crucial information about the environmental conditions of the nascent Solar System prior to planet formation. Based on models of 50V–10Be co-production by in-situ irradiation, CAIs are considered to have formed within ~0.1 AU from the proto-Sun. Here, we present vanadium (V) and strontium (Sr) isotopic co-variations in fine- and coarse-grained CAIs and demonstrate that kinetic isotope effects during partial condensation and evaporation best explain V isotope anomalies previously attributed to solar particle irradiation. We also report initial excesses of 10Be and argue that CV CAIs possess essentially a homogeneous level of 10Be, inherited during their formation. Based on numerical modeling of 50V–10Be co-production by irradiation, we show that CAI formation during protoplanetary disk build-up likely occurred at greater heliocentric distances than previously considered, up to planet-forming regions (~1AU), where solar particle fluxes were sufficiently low to avoid substantial in-situ irradiation of CAIs.
    Description: This study was funded by NASA Emerging Worlds grant NNX16AD36G to S.G.N. and prepared by LLNL under contract DE-AC52-07NA27344 with release number LLNL-JRNL-819045. M.C.L acknowledges the support by the NASA grant 80NSSC20K0759. The UCLA ion microprobe facility is partially supported by a grant from the NSF Instrumentation and Facilities program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    In:  EPIC3Science, American Association for the Advancement of Science, 371(6531), pp. 811-818
    Publication Date: 2022-10-01
    Description: Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion 41 to 42 thousand years ago (ka). We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DiBenedetto, M., Qin, Z., & Suckale, J. Crystal aggregates record the pre-eruptive flow field in the volcanic conduit at Kilauea, Hawaii. Science Advances, 6(49), (2020): eabd4850, doi:10.1126/sciadv.abd4850.
    Description: Developing reliable, quantitative conduit models that capture the physical processes governing eruptions is hindered by our inability to observe conduit flow directly. The closest we get to direct evidence is testimony imprinted on individual crystals or bubbles in the conduit and preserved by quenching during the eruption. For example, small crystal aggregates in products of the 1959 eruption of Kīlauea Iki, Hawaii contain overgrown olivines separated by large, hydrodynamically unfavorable angles. The common occurrence of these aggregates calls for a flow mechanism that creates this crystal misorientation. Here, we show that the observed aggregates are the result of exposure to a steady wave field in the conduit through a customized, process-based model at the scale of individual crystals. We use this model to infer quantitative attributes of the flow at the time of aggregate formation; notably, the formation of misoriented aggregates is only reproduced in bidirectional, not unidirectional, conduit flow.
    Description: M.D. acknowledges support the Stanford Gerald J. Lieberman Fellowship and the Postdoctoral Scholarship from Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Torres, J. P., Lin, Z., Watkins, M., Salcedo, P. F., Baskin, R. P., Elhabian, S., Safavi-Hemami, H., Taylor, D., Tun, J., Concepcion, G. P., Saguil, N., Yanagihara, A. A., Fang, Y., McArthur, J. R., Tae, H. S., Finol-Urdaneta, R. K., Özpolat, B. D., Olivera, B. M., & Schmidt, E. W. Small-molecule mimicry hunting strategy in the imperial cone snail, Conus imperialis. Science Advances, 7(11), (2021): eabf2704, https://doi.org/10.1126/sciadv.abf2704.
    Description: Venomous animals hunt using bioactive peptides, but relatively little is known about venom small molecules and the resulting complex hunting behaviors. Here, we explored the specialized metabolites from the venom of the worm-hunting cone snail, Conus imperialis. Using the model polychaete worm Platynereis dumerilii, we demonstrate that C. imperialis venom contains small molecules that mimic natural polychaete mating pheromones, evoking the mating phenotype in worms. The specialized metabolites from different cone snails are species-specific and structurally diverse, suggesting that the cones may adopt many different prey-hunting strategies enabled by small molecules. Predators sometimes attract prey using the prey’s own pheromones, in a strategy known as aggressive mimicry. Instead, C. imperialis uses metabolically stable mimics of those pheromones, indicating that, in biological mimicry, even the molecules themselves may be disguised, providing a twist on fake news in chemical ecology.
    Description: Research reported in this publication was supported by NIH R35GM12252, with contributions to biological work from NIH Fogarty International Center U19TW008163, NIH P01GM48677, and DOD CDMRP W81XWH-17-1-0413. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Guillermic, M., Cameron, L. P., De Corte, I., Misra, S., Bijma, J., de Beer, D., Reymond, C. E., Westphal, H., Ries, J. B., & Eagle, R. A. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Science Advances, 7(2), (2021): eaba9958, https://doi.org/10.1126/sciadv.aba9958.
    Description: The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation—the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.
    Description: R.A.E. and J.B.R. acknowledge support from National Science Foundation grants OCE-1437166 and OCE-1437371. The work was also supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19), cofunded by a grant from the French government under the program “Investissements d’Avenir,” and an IAGC student grant 2017. R.A.E. acknowledges financial and logistical support from the Pritzker Endowment to UCLA IoES, and J.B.R. acknowledges support from the ZMT and the Hanse-Wissenschaftskolleg Fellowship Program and the NSF OCE award #1437371.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Skinner, C., Mill, A. C., Fox, M. D., Newman, S. P., Zhu, Y., Kuhl, A., & Polunin, N. V. C. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Science Advances, 7(8), (2021): eabf3792, https://doi.org/10.1126/sciadv.abf3792.
    Description: Coral reefs were traditionally perceived as productive hot spots in oligotrophic waters. While modern evidence indicates that many coral reef food webs are heavily subsidized by planktonic production, the pathways through which this occurs remain unresolved. We used the analytical power of carbon isotope analysis of essential amino acids to distinguish between alternative carbon pathways supporting four key reef predators across an oceanic atoll. This technique separates benthic versus planktonic inputs, further identifying two distinct planktonic pathways (nearshore reef-associated plankton and offshore pelagic plankton), and revealing that these reef predators are overwhelmingly sustained by offshore pelagic sources rather than by reef sources (including reef-associated plankton). Notably, pelagic reliance did not vary between species or reef habitats, emphasizing that allochthonous energetic subsidies may have system-wide importance. These results help explain how coral reefs maintain exceptional productivity in apparently nutrient-poor tropical settings, but also emphasize their susceptibility to future ocean productivity fluctuations.
    Description: Sample analysis funding was provided by NERC LSMSF grant BRIS/102/0717 and BRIS/125/1418. C.S. was supported by a Newcastle University SAgE DTA studentship and a cooperative agreement with Banyan Tree.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sadai, S., Condron, A., DeConto, R., & Pollard, D. Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming. Science Advances, 6(39), (2020): eaaz1169, doi:10.1126/sciadv.aaz1169.
    Description: Meltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. Here, we report on multi-century (present–2250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. Accounting for Antarctic discharge raises subsurface ocean temperatures by 〉1°C at the ice margin relative to simulations ignoring discharge. In contrast, expanded sea ice and 2° to 10°C cooler surface air and surface ocean temperatures in the Southern Ocean delay the increase of projected global mean anthropogenic warming through 2250. In addition, the projected loss of Arctic winter sea ice and weakening of the Atlantic Meridional Overturning Circulation are delayed by several decades. Our results demonstrate a need to accurately account for meltwater input from ice sheets in order to make confident climate predictions.
    Description: This research was supported by the NSF Office of Polar Programs through NSF grant 1443347, the Biological and Environmental Research (BER) division of the U.S. Department of Energy through grant DE-SC0019263, the NSF through ICER 1664013, and by a grant to the NASA Sea Level Science Team 80NSSC17K0698.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foukal, N. P., Gelderloos, R., & Pickart, R. S. A continuous pathway for fresh water along the East Greenland shelf. Science Advances, 6(43), (2020): eabc4254, doi:10.1126/sciadv.abc4254.
    Description: Export from the Arctic and meltwater from the Greenland Ice Sheet together form a southward-flowing coastal current along the East Greenland shelf. This current transports enough fresh water to substantially alter the large-scale circulation of the North Atlantic, yet the coastal current’s origin and fate are poorly known due to our lack of knowledge concerning its north-south connectivity. Here, we demonstrate how the current negotiates the complex topography of Denmark Strait using in situ data and output from an ocean circulation model. We determine that the coastal current north of the strait supplies half of the transport to the coastal current south of the strait, while the other half is sourced from offshore via the shelfbreak jet, with little input from the Greenland Ice Sheet. These results indicate that there is a continuous pathway for Arctic-sourced fresh water along the entire East Greenland shelf from Fram Strait to Cape Farewell.
    Description: Funding for this work comes from the NSF under grant numbers OCE-1756361 and OCE-1558742 (N.P.F. and R.S.P.) and grant numbers OCE-1756863 and OAC-1835640 (R.G.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roberts, Mark L., Elder, Kathryn L., Jenkins, William J., Gagnon, Alan R., Xu, Li, Hlavenka, Joshua D., & Longworth, Brett E. C-14 Blank Corrections for 25-100 mu G samples at the National Ocean Sciences AMS Laboratory. Radiocarbon, 61(5), (2019): 1403-1411, Doi: 10.1017/RDC.2019.74.
    Description: Replicate radiocarbon (14C) measurements of organic and inorganic control samples, with known Fraction Modern values in the range Fm = 0–1.5 and mass range 6 μg–2 mg carbon, are used to determine both the mass and radiocarbon content of the blank carbon introduced during sample processing and measurement in our laboratory. These data are used to model, separately for organic and inorganic samples, the blank contribution and subsequently “blank correct” measured unknowns in the mass range 25–100 μg. Data, formulas, and an assessment of the precision and accuracy of the blank correction are presented.
    Description: This work is supported by a Cooperative Agreement (OCE-1755125) with the U.S. National Science Foundation.
    Keywords: AMS ; AMS dating ; Blank corrections
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Anthony, R. E., Chaput, J., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf. Journal of Glaciology, 65(254), (2019): 912-925, doi:10.1017/jog.2019.64.
    Description: The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.
    Description: This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151 and 1246416. JC was additionally supported by Yates funds in the Colorado State University Department of Mathematics. PDB also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107. We thank Reinhard Flick and Patrick Shore for their support during field work, Tom Bolmer in locating stations and preparing maps, and the US Antarctic Program for logistical support. The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data collected are available through the IRIS Data Management Center under RIS and DRIS network code XH. The PSD-PDFs presented in this study were processed with the IRIS Noise Tool Kit (Bahavar and others, 2013). The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR-1261681 and the DOE National Nuclear Security Administration. The authors appreciate the support of the University of Wisconsin-Madison Automatic Weather Station Program for the data set, data display and information; funded under NSF grant number ANT-1543305. The Ross Ice Shelf profiles were generated using the Antarctic Mapping Tools (Greene and others, 2017). Regional maps were generated with the Generic Mapping Tools (Wessel and Smith, 1998). Topography and bathymetry data for all maps in this study were sourced from the National Geophysical Data Center ETOPO1 Global Relief Model (doi:10.7289/V5C8276M). We thank two anonymous reviewers for suggestions on the scope and organization of this paper.
    Keywords: Antarctic glaciology ; Ice shelves ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ackley, S. F., Stammerjohn, S., Maksym, T., Smith, M., Cassano, J., Guest, P., Tison, J., Delille, B., Loose, B., Sedwick, P., DePace, L., Roach, L., & Parno, J. Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign. Annals of Glaciology, 61(82), (2020): 181-195, doi:10.1017/aog.2020.31.
    Description: The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous.
    Description: NSF supported PIPERS award numbers: ANT-1341717 (S.F. Ackley, UTSA); ANT-1341513 (E. Maksym, WHOI); ANT-1341606 (S. Stammerjohn and J. Cassano, U Colorado); ANT-1341725 (P. Guest, NPS). P. Sedwick was supported by NSF ANT-1543483. S.F. Ackley was also supported by NASA Grant 80NSSC19M0194 to the Center for Advanced Measurements in Extreme Environments at UTSA. S. Stammerjohn was also supported by the LTER Program under NFS award number ANT-0823101 (H. Ducklow, LDEO/Columbia University). Additional support was by the Belgian F.R.S-FNRS (project ISOGGAP and IODIne, contract T.0268.16 and J.0262.17, respectively). Bruno Delille is a research associate of the F.R.S.-FNRS. Terra-Sar-X quicklook imagery was coordinated by Kathrin Hoeppner at DLR, and Andy Archer (with the Antarctic Support Contractor) provided selected (cloud-free) MODIS scenes and daily maps of AMSR2 sea-ice concentration.
    Keywords: Atmosphere/ice/ocean interactions ; Ice/ocean interactions ; Sea ice ; Sea-ice growth and decay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hughen, K. A., & Heaton, T. J. Updated Cariaco Basin C-14 calibration dataset from 0-60 cal kyr BP. Radiocarbon, 62(4), (2020): 1001-1043, doi:10.1017/RDC.2020.53.
    Description: We present new updates to the calendar and radiocarbon (14C) chronologies for the Cariaco Basin, Venezuela. Calendar ages were generated by tuning abrupt climate shifts in Cariaco Basin sediments to those in speleothems from Hulu Cave. After the original Cariaco-Hulu calendar age model was published, Hulu Cave δ18O records have been augmented with increased temporal resolution and a greater number of U/Th dates. These updated Hulu Cave records provide increased accuracy as well as precision in the final Cariaco calendar age model. The depth scale for the Ocean Drilling Program Site 1002D sediment core, the primary source of samples for 14C dating, has been corrected to account for missing sediment from a core break, eliminating age-depth anomalies that afflicted the earlier calendar age models. Individual 14C dates for the Cariaco Basin remain unchanged from previous papers, although detailed comparisons of the Cariaco calibration dataset to those from Hulu Cave and Lake Suigetsu suggest that the Cariaco marine reservoir age may have shifted systematically during the past. We describe these recent changes to the Cariaco datasets and provide the data in a comprehensive format that will facilitate use by the community.
    Description: K.A. Hughen was supported by funds from U.S. NSF grant #OCE-1657191, and by the Investment in Science Fund at WHOI. T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9, “Improving the Measurement of Time Using Radiocarbon”.
    Keywords: Calibration ; Climate ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ackley, S. F., Perovich, D. K., Maksym, T., Weissling, B., & Xie, H. Surface flooding of Antarctic summer sea ice. Annals of Glaciology, 61(82), (2020): 117-126, doi:10.1017/aog.2020.22.
    Description: The surface flooding of Antarctic sea ice in summer covers 50% or more of the sea-ice area in the major summer ice packs, the western Weddell and the Bellingshausen-Amundsen Seas. Two CRREL ice mass-balance buoys were deployed on the Amundsen Sea pack in late December 2010 from the icebreaker Oden, bridging the summer period (January–February 2011). Temperature records from thermistors embedded vertically in the snow and ice showed progressive increases in the depth of the flooded layer (up to 0.3–0.35 m) on the ice cover during January and February. While the snow depth was relatively unchanged from accumulation (〈10 cm), ice thickness decreased by up to a meter from bottom melting during this period. Contemporaneous with the high bottom melting, under-ice water temperatures up to 1°C above the freezing point were found. The high temperature arises from solar heating of the upper mixed layer which can occur when ice concentration in the local area falls and lower albedo ocean water is exposed to radiative heating. The higher proportion of snow ice found in the Amundsen Sea pack ice therefore results from both winter snowfall and summer ice bottom melt found here that can lead to extensive surface flooding.
    Description: This work was supported by the National Science Foundation grant to UTSA, ANT-0839053-Sea Ice System in Antarctic Summer (S.F. Ackley, H. Xie and B. Weissling), and to WHOI, ANT-1341513 (T. Maksym), and by the NASA Center for Advanced Measurements in Extreme Environments or NASA-CAMEE at UTSA, NASA #80NSSC19M0194 (S.F. Ackley, H. Xie, B.Weissling).
    Keywords: Ice/ocean interactions ; Sea ice ; Sea-ice growth and decay ; Snow/ice surface processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Buentgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Koehler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., & Talamo, S. The Intcal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon, 62(4), (2020): 725-757, doi:10.1017/RDC.2020.41.
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Description: We would like to thank the National Natural Science Foundation of China grants NSFC 41888101 and NSFC 41731174, the 111 program of China (D19002), U.S. NSF Grant 1702816, and the Malcolm H. Wiener Foundation for support for research that contributed to the IntCal20 curve. The work on the Swiss and German YD trees was funded by the German Science foundation and the Swiss National Foundation (grant number: 200021L_157187). The operation in Aix-en-Provence is funded by the EQUIPEX ASTER-CEREGE, the Collège de France and the ANR project CARBOTRYDH (to EB). The work on the correlation of tree ring 14C with ice core 10Be was partially supported by the Swedish Research Council and the Knut and Alice Wallenberg foundation. M. Butzin was supported by the German Federal Ministry of Education and Research (BMBF) as Research for Sustainable Development (FONA; http://www.fona.de) through the PalMod project (grant number: 01LP1505B). S. Talamo and M. Friedrich are funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement No. 803147-RESOLUTION, awarded to ST). CA. Turney would like to acknowledge support of the Australian Research Council (FL100100195 and DP170104665). P. Reimer and W. Austin acknowledge the support of the UKRI Natural Environment Research Council (Grant NE/M004619/1). T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9. Other datasets and the IntCal20 database were created without external support through internal funding by the respective laboratories. We also would like to thank various institutions that provided funding or facilities for meetings.
    Keywords: Calibration curve ; Radiocarbon ; IntCal20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Praetorius, S. K., Condron, A., Mix, A. C., Walczak, M. H., McKay, J. L., & Du, J. The role of northeast pacific meltwater events in deglacial climate change. Science Advances, 6(9), (2020): eaay2915, doi:10.1126/sciadv.aay2915.
    Description: Columbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.
    Description: The research was partly supported by the NSF through grants ARC-257 1204045 and PLR-1417667. The numerical model simulations used resources from the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. The United States' contribution of plastic waste to land and ocean. Science Advances, 6(44), (2020): eabd0288, doi:10.1126/sciadv.abd0288.
    Description: Plastic waste affects environmental quality and ecosystem health. In 2010, an estimated 5 to 13 million metric tons (Mt) of plastic waste entered the ocean from both developing countries with insufficient solid waste infrastructure and high-income countries with very high waste generation. We demonstrate that, in 2016, the United States generated the largest amount of plastic waste of any country in the world (42.0 Mt). Between 0.14 and 0.41 Mt of this waste was illegally dumped in the United States, and 0.15 to 0.99 Mt was inadequately managed in countries that imported materials collected in the United States for recycling. Accounting for these contributions, the amount of plastic waste generated in the United States estimated to enter the coastal environment in 2016 was up to five times larger than that estimated for 2010, rendering the United States’ contribution among the highest in the world.
    Description: This work was funded by Ocean Conservancy through support from the Arthur Vining Davis Foundations.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Richter, M., Nebel, O., Maas, R., Mather, B., Nebel-Jacobsen, Y., Capitanio, F. A., Dick, H. J. B., & Cawood, P. A. An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 6(44), (2020): eabb4340, doi:10.1126/sciadv.abb4340.
    Description: Earth’s upper mantle, as sampled by mid-ocean ridge basalts (MORBs) at oceanic spreading centers, has developed chemical and isotopic heterogeneity over billions of years through focused melt extraction and re-enrichment by recycled crustal components. Chemical and isotopic heterogeneity of MORB is dwarfed by the large compositional spectrum of lavas at convergent margins, identifying subduction zones as the major site for crustal recycling into and modification of the mantle. The fate of subduction-modified mantle and if this heterogeneity transmits into MORB chemistry remains elusive. Here, we investigate the origin of upper mantle chemical heterogeneity underneath the Western Gakkel Ridge region in the Arctic Ocean through MORB geochemistry and tectonic plate reconstruction. We find that seafloor lavas from the Western Gakkel Ridge region mirror geochemical signatures of an Early Cretaceous, paleo-subduction zone, and conclude that the upper mantle can preserve a long-lived, stationary geochemical memory of past geodynamic processes.
    Description: O.N. was supported by the Australian Research Council (grant FT140101062). P.A.C. was supported by the Australian Research Council (grant FL160100168). H.J.B.D. was supported by the NSF (grants PLR 9912162, PLR 0327591, OCE 0930487, and OCE 1434452). M.R. was supported by a graduate scholarship of Monash University and the SEAE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Heaton, T. J., Koehler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Ramsey, C. B., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., & Skinner, L. C. Marine20-the marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon, 62(4), (2020): 779-820, doi:10.1017/RDC.2020.68.
    Description: The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.
    Description: We would like to thank Jeremy Oakley and Richard Bintanja for informative discussions during the development of this work. T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9, “Improving the Measurement of Time Using Radiocarbon”. M Butzin is supported by the German Federal Ministry of Education and Research (BMBF), as Research for Sustainability initiative (FONA); www.fona.de through the PalMod project (grant numbers: 01LP1505B, 01LP1919A). E. Bard is supported by EQUIPEX ASTER-CEREGE and ANR CARBOTRYDH. Meetings of the IntCal Marine Focus group have been supported by Collège de France. Data are available on the PANGAEA database at doi:10.159/ANGAEA.914500.
    Keywords: Bayesian modeling ; calibration ; carbon cycle ; computer model ; marine environment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Special publications of the International Union of Geodesy and Geophysics
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉The effectiveness of streak modes in controlling the oblique-type breakdown in a supersonic boundary-layer at Mach 2.0 is investigated using direct numerical simulations. Investigations in the literature have shown the effectiveness of streak modes in delaying the onset of transition dominated by two-dimensional waves, but in oblique breakdown, three-dimensional waves and a strong streak mode dominate the transition process. Paredes 〈span〉et al.〈/span〉 (〈span〉J. Fluid Mech.〈/span〉, vol. 831, 2017, pp. 524–553) discussed the possible stabilization of supersonic boundary layers by optimally growing streaks using parabolized stability equations. However, no study has as yet been reported regarding direct nonlinear control of oblique breakdown. This study deals with the effects of large-amplitude decaying streak modes generated by a blowing–suction strip at the wall to control full breakdown in a reference case. Modes with four to five times the fundamental wavenumber are found to be beneficial for controlling the transition. In the first region after the control-mode forcing, the beneficial mean-flow distortion (MFD), generated by inducing the control mode, is solely responsible for hampering the growth of the fundamental-mode. On the whole, the MFD and the three-dimensional part of the control contribute equally towards controlling the oblique breakdown. The results show significant suppression of transition, and substantial improvements have been observed in the levels of the skin-friction coefficient and wall-temperature in comparison to the uncontrolled case. Moreover, refreshing the control using an additional downstream control strip increases the gain. However, the forcing amplitude must be carefully chosen in order not to introduce a generalized inflection point in the spanwise averaged mean flow invoking enhanced disturbance growth.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉The problem of interaction between disturbances and shock waves was solved by a theoretical approach called linear interaction analysis in the mid-twentieth century. More recently, great progress has been made in analysing shock–turbulence interactions by direct numerical simulation. However, an unsolved theoretical problem remains: What happens when no acoustic waves are stimulated behind the shock wave? The concept of a damped wave is introduced, which is a type of excited plane wave. Based on this, the dispersion and amplitude relationships between any incident plane wave and resulting stimulated waves are constructed analytically, systematically and comprehensively. The physical essence of damped waves and the existence of critical angles are clarified. It is demonstrated that a damped wave is a complex number space solution to the acoustic dispersion relationship under certain conditions. It acts as a bridge connecting fast and slow acoustic waves at the position where the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628130807083-0762:S0022112019004385:S0022112019004385_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 component of the group velocity is zero. There are two critical angles that can excite fast and slow acoustic waves, which determine the conditions that stimulate a damped wave. Our results show good agreement with theoretical and simulation results. The contribution of each excited wave to the transmission coefficient is evaluated, the distribution of the transmission coefficient is analysed and application to an engineering wedge model is performed.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉The onset of thermal convection in a rapidly rotating spherical shell is studied by linear stability analysis based on the fully compressible Navier–Stokes equations. Compressibility is quantified by the number of density scale heights 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, which measures the intensity of density stratification of the motionless, polytropic base state. The nearly adiabatic flow with polytropic index 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is considered, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the adiabatic polytropic index. By investigating the stability of the base state with respect to the disturbance of specified wavenumber, the instability process is found to be sensitive to the Prandtl number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. For large 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and small 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, the quasi-geostrophic columnar mode loses stability first; while for relatively small 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 a new quasi-geostrophic compressible mode is identified, which becomes unstable first under strong density stratification. The inertial mode can also occur first for relatively small 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and a certain intensity of density stratification in the parameter range considered. Although the Rayleigh numbers 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for the onsets of the quasi-geostrophic compressible mode and columnar mode are different by several orders of magnitude, we find that they follow very similar scaling laws with the Taylor number. The critical 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for convection onset is found to be always positive, in contrast with previous results based on the widely used anelastic model that convection can occur at negative 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline12.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. By evaluating the relative magnitude of the time derivative of density perturbation in the continuity equation, we show that the anelastic approximation in the present system cannot be applied in the small-〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline13.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and large-〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628092857401-0357:S0022112019004361:S0022112019004361_inline14.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 regime.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We study the breakup of confined fluid threads at low flow rates to understand instability mechanisms. To determine the critical conditions between the earlier quasi-stable necking stage and the later unstable collapse stage, simulations and experiments are designed to operate at an extremely low flow rate. The critical mean radii at the neck centres are identified by the stop-flow method for elementary microfluidic configurations. Two distinct origins of capillary instabilities are revealed for different confinement situations. One is the gradient of capillary pressure induced by the confinements of geometry and external flow, whereas the other is the competition between the capillary pressure and internal pressure determined by the confinements.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We report on a combined experimental and numerical study of convective heat transfer along ratchet surfaces in vertical natural convection (VC). Due to the asymmetry of the convection system caused by the asymmetric ratchet-like wall roughness, two distinct states exist, with markedly different orientations of the large-scale circulation roll (LSCR) and different heat transport efficiencies. Statistical analysis shows that the heat transport efficiency depends on the strength of the LSCR. When a large-scale wind flows along the ratchets in the direction of their smaller slopes, the convection roll is stronger and the heat transport is larger than the case in which the large-scale wind is directed towards the steeper slope side of the ratchets. Further analysis of the time-averaged temperature profiles indicates that the stronger LSCR in the former case triggers the formation of a secondary vortex inside the roughness cavity, which promotes fluid mixing and results in a higher heat transport efficiency. Remarkably, this result differs from classical Rayleigh–Bénard convection (RBC) with asymmetric ratchets (Jiang 〈span〉et al.〈/span〉, 〈span〉Phys. Rev. Lett.〈/span〉, vol. 120, 2018, 044501), wherein the heat transfer is stronger when the large-scale wind faces the steeper side of the ratchets. We reveal that the reason for the reversed trend for VC as compared to RBC is that the flow is less turbulent in VC at the same 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628072522266-0966:S0022112019004464:S0022112019004464_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. Thus, in VC the heat transport is driven primarily by the coherent LSCR, while in RBC the ejected thermal plumes aided by gravity are the essential carrier of heat. The present work provides opportunities for control of heat transport in engineering and geophysical flows.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We explore the dynamics of inclined temporal gravity currents using direct numerical simulation, and find that the current creates an environment in which the flux Richardson number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, gradient Richardson number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and turbulent flux coefficient 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 are constant across a large portion of the depth. Changing the slope angle 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 modifies these mixing parameters, and the flow approaches a maximum Richardson number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 as 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 at which the entrainment coefficient 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. The turbulent Prandtl number remains 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for all slope angles, demonstrating that 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is not caused by a switch-off of the turbulent buoyancy flux as conjectured by Ellison (〈span〉J. Fluid Mech.〈/span〉, vol. 2, 1957, pp. 456–466). Instead, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 occurs as the result of the turbulence intensity going to zero as 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, due to the flow requiring larger and larger shear to maintain the same level of turbulence. We develop an approximate model valid for small 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline12.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 which is able to predict accurately 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline13.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline14.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline15.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 as a function of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline16.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and their maximum attainable values. The model predicts an entrainment law of the form 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190627132031350-0413:S0022112019004300:S0022112019004300_inline17.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, which is in good agreement with the simulation data. The simulations and model presented here contribute to a growing body of evidence that an approach to a marginally or critically stable, relatively weakly stratified equilibrium for stratified shear flows may well be a generic property of turbulent stratified flows.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Ice scallops are a small-scale (5–20 cm) quasi-periodic ripple pattern that occurs at the ice–water interface. Previous work has suggested that scallops form due to a self-reinforcing interaction between an evolving ice-surface geometry, an adjacent turbulent flow field and the resulting differential melt rates that occur along the interface. In this study, we perform a series of laboratory experiments in a refrigerated flume to quantitatively investigate the mechanisms of scallop formation and evolution in high resolution. Using particle image velocimetry, we probe an evolving ice–water boundary layer at sub-millimetre scales and 15 Hz frequency. Our data reveal three distinct regimes of ice–water interface evolution: a transition from flat to scalloped ice; an equilibrium scallop geometry; and an adjusting scallop interface. We find that scalloped-ice geometry produces a clear modification to the ice–water boundary layer, characterized by a time-mean recirculating eddy feature that forms in the scallop trough. Our primary finding is that scallops form due to a self-reinforcing feedback between the ice-interface geometry and shear production of turbulent kinetic energy in the flow interior. The length of this shear production zone is therefore hypothesized to set the scallop wavelength.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Direct numerical simulation (DNS) is performed for two wall-bounded flow configurations: laminar Couette flow at 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and turbulent channel flow at 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the shear stress at the wall. The top wall is smooth and the bottom wall is a realistically rough superhydrophobic surface (SHS), generated from a three-dimensional surface profile measurement. The air–water interface, which is assumed to be flat, is simulated using the volume-of-fluid (VOF) approach. The two flow cases are studied with varying interface heights 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 to understand its effect on slip and drag reduction (〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉). For the laminar Couette flow case, the presence of the surface roughness is felt up to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 of the channel height in the wall-normal direction. Nonlinear dependence of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 on 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is observed with three distinct regions. A nonlinear curve fit is obtained for gas fraction 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 as a function of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 determines the amount of slip area exposed to the flow. A power law fit is obtained from the data for the effective slip length as a function of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline12.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and is compared to those derived for structured geometry. For the turbulent channel flow, statistics of the flow field are compared to that of a smooth wall to understand the effects of roughness and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline13.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. Four cases are simulated ranging from fully wetted to fully covered and two intermediate regions in between. Scaling laws for slip length, slip velocity, roughness function and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline14.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 are obtained for different penetration depths and are compared to past work for structured geometry. 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190628070320625-0031:S0022112019004191:S0022112019004191_inline15.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is shown to depend on a competing effect between slip velocity and turbulent losses due to the Reynolds shear stress contribution. Presence of trapped air in the cavities significantly alters near-wall flow physics where we examine near-wall structures and propose a physical mechanism for their behaviour. The fully wetted roughness increases the peak value of turbulent intensities, whereas the presence of the interface suppresses them. The pressure fluctuations have competing contributions between turbulent pressure fluctuations and stagnation due to asperities, the near-wall structure is altered and breaks down with increasing slip. Overall, there exists a competing effect between the interface and the asperities, the interface suppresses turbulence whereas the asperities enhance them. The present work demonstrates DNS over a realistic multiphase SHS for the first time, to the best of our knowledge.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We developed a numerical method for the set of equations governing fully compressible convection in the limit of infinite Prandtl numbers. Reduced models have also been analysed, such as the anelastic approximation and the anelastic liquid approximation. The tests of our numerical schemes against self-consistent criteria have shown that our numerical simulations are consistent from the point of view of energy dissipation, heat transfer and entropy budget. The equation of state of an ideal gas has been considered in this work. Specific effects arising because of the compressibility of the fluid are studied, like the scaling of viscous dissipation and the scaling of the heat flux contribution due to the mechanical power exerted by viscous forces. We analysed the solutions obtained with each model (fully compressible model, anelastic and anelastic liquid approximations) in a wide range of dimensionless parameters and determined the errors induced by each approximation with respect to the fully compressible solutions. Based on a rationale on the development of the thermal boundary layers, we can explain reasonably well the differences between the fully compressible and anelastic models, in terms of both the heat transfer and viscous dissipation dependence on compressibility. This could be mostly an effect of density variations on thermal diffusivity. Based on the different forms of entropy balance between exact and anelastic models, we find that a necessary condition for convergence of the anelastic results to the exact solutions is that the product 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190625082702251-0920:S0022112019004208:S0022112019004208_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 must be small compared to unity, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190625082702251-0920:S0022112019004208:S0022112019004208_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the ratio of the superadiabatic temperature difference to the adiabatic difference, and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190625082702251-0920:S0022112019004208:S0022112019004208_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the ratio of the superadiabatic heat flux to the heat flux conducted along the adiabat. The same condition seems also to be associated with a convergence of the computed heat fluxes. Concerning the anelastic liquid approximation, we confirm previous estimates by Anufriev 〈span〉et al.〈/span〉 (〈span〉Phys. Earth Planet. Inter.〈/span〉, vol. 152, 2005, pp. 163–190) and find that its results become generally close to those of the fully compressible model when 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190625082702251-0920:S0022112019004208:S0022112019004208_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is small compared to unity, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190625082702251-0920:S0022112019004208:S0022112019004208_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the isobaric thermal expansion coefficient, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190625082702251-0920:S0022112019004208:S0022112019004208_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the temperature (here 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190625082702251-0920:S0022112019004208:S0022112019004208_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for an ideal gas) and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190625082702251-0920:S0022112019004208:S0022112019004208_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the dissipation number.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Progress in roughness research, mapping any given roughness geometry to its fluid dynamic behaviour, has been hampered by the lack of accurate and direct measurements of skin-friction drag, especially in open systems. The Taylor–Couette (TC) system has the benefit of being a closed system, but its potential for characterizing irregular, realistic, three-dimensional (3-D) roughness has not been previously considered in depth. Here, we present direct numerical simulations (DNSs) of TC turbulence with sand grain roughness mounted on the inner cylinder. The model proposed by Scotti (〈span〉Phys. Fluids〈/span〉, vol. 18, 031701, 2006) has been modified to simulate a random rough surface of monodisperse sand grains. Taylor numbers range from 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉(corresponding to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉) to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 (〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉). We focus on the influence of the roughness height 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 in the transitionally rough regime, through simulations of TC with rough surfaces, ranging from 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 up to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. We analyse the global response of the system, expressed both by the dimensionless angular velocity transport 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and by the friction factor 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. An increase in friction with increasing roughness height is accompanied with enhanced plume ejection from the inner cylinder. Subsequently, we investigate the local response of the fluid flow over the rough surface. The equivalent sand grain roughness 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is calculated to be 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline12.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the size of the sand grains. We find that the downwards shift of the logarithmic layer, due to transitionally rough sand grains exhibits remarkably similar behaviour to that of the Nikuradse (〈span〉VDI-Forsch.〈/span〉, vol. 361, 1933) data of sand grain roughness in pipe flow, regardless of the Taylor number dependent constants of the logarithmic layer. Furthermore, we find that the dynamical effects of the sand grains are contained to the roughness sublayer 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline13.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 with 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621104521411-0582:S0022112019003768:S0022112019003768_inline14.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Geometric, kinematic and dynamic properties of focusing deep-water surface gravity wave packets are examined in a simplified model with the intent of deriving a wave breaking threshold parameter. The model is based on the spatial modified nonlinear Schrödinger equation of Dysthe (〈span〉Proc. R. Soc. Lond.〈/span〉 A, vol. 369 (1736), 1979, pp. 105–114). The evolution of initially narrow-banded and weakly nonlinear chirped Gaussian wave packets are examined, by means of a trial function and a variational procedure, yielding analytic solutions describing the approximate evolution of the packet width, amplitude, asymmetry and phase during focusing. A model for the maximum free surface gradient, as a function of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621105221417-0357:S0022112019004282:S0022112019004282_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621105221417-0357:S0022112019004282:S0022112019004282_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621105221417-0357:S0022112019004282:S0022112019004282_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 the linear prediction of the maximum slope at focusing and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621105221417-0357:S0022112019004282:S0022112019004282_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 the non-dimensional packet bandwidth, is proposed and numerically examined, indicating a quasi-self-similarity of these focusing events. The equations of motion for the fully nonlinear potential flow equations are then integrated to further investigate these predictions. It is found that a model of this form can characterize the bulk partitioning of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621105221417-0357:S0022112019004282:S0022112019004282_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 phase space, between non-breaking and breaking waves, serving as a breaking criterion. Application of this result to better understanding air–sea interaction processes is discussed.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We conduct direct numerical simulations (DNS) of the Cahn–Hilliard–Navier–Stokes (CHNS) equations to investigate the statistical properties of a turbulent phase-separating symmetric binary-fluid mixture. Turbulence causes an arrest of the phase separation which leads to the formation of a statistically steady emulsion. We characterise turbulent velocity fluctuations in an emulsion for different values of the Reynolds number and the Weber number. Our scale-by-scale kinetic energy budget analysis shows that the interfacial terms in the CHNS equations provide an alternative route for the kinetic energy transfer. By studying the probability distribution function (p.d.f.) of the energy dissipation rate, the vorticity magnitude and the joint-p.d.f. of the velocity-gradient invariants we show that the statistics of the turbulent fluctuations do not change with the Weber number.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉With the aim to characterize the near-wall flow structures and their interaction with large-scale motions in the log-law region, time-resolved planar and volumetric flow field measurements were performed in the near-wall and log-law region of an adverse pressure gradient turbulent boundary layer following a zero pressure gradient turbulent boundary layer at a friction Reynolds number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621113954055-0112:S0022112019004087:S0022112019004087_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. Due to the high spatial and temporal resolution of the measurements, it was possible to resolve and identify uniform-momentum zones in the region 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621113954055-0112:S0022112019004087:S0022112019004087_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 or 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621113954055-0112:S0022112019004087:S0022112019004087_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and to relate them with well known coherent flow motions near the wall. The space–time results confirm that the turbulent superstructures have a strong impact even on the very near-wall flow motion and also their alternating appearance in time and intensity could be quantified over long time sequences. Using the time record of the velocity field, rare localized separation events appearing in the viscous sublayer were also analysed. By means of volumetric particle tracking velocimetry their three-dimensional topology and dynamics could be resolved. Based on the results, a conceptual model was deduced that explains their rare occurrence, topology and dynamics by means of a complex interaction process between low-momentum turbulent superstructures, near-wall low-speed streaks and tilted longitudinal and spanwise vortices located in the near-wall region.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We experimentally investigate the extensional flow of a sheet – or curtain – of viscoelastic liquid falling freely from a slot at constant flow rate under gravity. Extruded liquids are aqueous solutions of flexible polyethylene oxide (PEO) and of semi-rigid partially hydrolysed polyacrylamide (HPAM) with low shear viscosities. Velocimetry measurements reveal that the mean velocity field 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 (where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the distance from the slot exit) does not reduce to a free fall. More precisely, we show that the liquid falls initially with sub-gravitational accelerations up to a distance from the slot which scales as 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 (where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is gravity and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the extensional relaxation time of the liquid) due to the stretching of polymer molecules. Beyond this elastic length, inertia dominates and the local acceleration reaches the asymptotic free-fall value 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. The length of the sub-gravitational part of the curtain is shown to be much larger than the equivalent viscous length 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for Newtonian liquids of density 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and dynamic viscosity 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 which is usually small compared to the curtain length. By analogy with Newtonian curtains, we show that the velocity field 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621102720940-0917:S0022112019003896:S0022112019003896_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 rescales on a master curve. Besides, the flow is shown to be only weakly affected by the history of polymer deformations in the die upstream of the curtain. Furthermore, investigations on the curtain stability reveal that polymer addition reduces the minimum flow rate required to maintain a continuous sheet of liquid.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Previous experiments have revealed that shock waves driven through dissipative media may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The current paper addresses this problem of shock stability at the Euler and Navier–Stokes continuum levels in a system of disks (two-dimensional) undergoing activated inelastic collisions. The dynamics of shock formation and stability is found to be in very good agreement with earlier molecular dynamic simulations (Sirmas & Radulescu, 〈span〉Phys. Rev.〈/span〉 E, vol. 91, 2015, 023003). It was found that the modelling of shock instability requires the introduction of molecular noise for its development and sustenance. This is confirmed in two stability problems. In the first, the evolution of shock formation dynamics is monitored without noise, with only initial noise and with continuous molecular noise. Only the latter reproduces the results of shock instability of molecular dynamics simulations. In the second problem, the steady travelling wave solution is obtained for the shock structure in the inviscid and viscous limits and its nonlinear stability is studied with and without molecular fluctuations, again showing that instability can be sustained only in the presence of fluctuations. The continuum results show that instability takes the form of a rippled front of a wavelength comparable with the relaxation thickness of the steady shock wave, at scales at which molecular fluctuations become important, in excellent agreement with the molecular dynamic simulations.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We performed two-way coupled direct numerical simulations of turbulent channel flow with Lagrangian tracking of small, heavy spheres at a dimensionless gravitational acceleration of 0.077 in wall units, which is based on the flow condition in the experiment by Gerashchenko 〈span〉et al.〈/span〉 (〈span〉J. Fluid Mech.〈/span〉, vol. 617, 2008, pp. 255–281). We removed deposited particles after several collisions with the lower wall and then released new particles near the upper wall to observe direct interactions between particles and coherent structures of near-wall turbulence during gravitational settling through the mean shear. The results indicate that when the Stokes number is approximately 1 on the basis of the Kolmogorov time scale of the flow (〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190624134045701-0463:S0022112019004002:S0022112019004002_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉), the so-called preferential sweeping occurs in association with coherent streamwise vortices, while the effect of crossing trajectories becomes significant for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190624134045701-0463:S0022112019004002:S0022112019004002_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. Consequently, in either case, the settling particles deposit on the wall without strong accumulation in low-speed streaks in the viscous sublayer. When particles settle through near-wall turbulence from the upper wall, more small-scale vortical structures are generated in the outer layer as low-speed fluid is pulled farther in the direction of gravity, while the opposite is true near the lower wall.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Streaks have been found to be an important part of wall-turbulence dynamics. In this paper, we extend the analysis for unbounded shear flows, in particular a Mach 0.4 round jet, using measurements taken using dual-plane, time-resolved, stereoscopic particle image velocimetry (PIV) taken at pairs of jet cross-sections, allowing the evaluation of the cross-spectral density of streamwise velocity fluctuations resolved into azimuthal Fourier modes. From the streamwise velocity results, two analyses are performed: the evaluation of wavenumber spectra (assuming Taylor’s hypothesis for the streamwise coordinate) and a spectral proper orthogonal decomposition (SPOD) of the velocity field using PIV planes in several axial stations. The methods complement each other, leading to the conclusion that large-scale streaky structures are also present in turbulent jets where they experience large growth in the streamwise direction, energetic structures extending up to eight diameters from the nozzle exit. Leading SPOD modes highlight the large-scale, streaky shape of the structures, whose aspect ratio (streamwise over azimuthal length) is approximately 15. The data were further analysed using SPOD, resolvent and transient growth analyses, good agreement being observed between the models and the leading SPOD mode for the wavenumbers considered. The models also indicate that the lift-up mechanism is active in turbulent jets, with streamwise vortices leading to streaks. The results show that large-scale streaks are a relevant part of the jet dynamics.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We study single-phase and particle-laden turbulent channel flows bounded by two incompressible hyper-elastic walls with different deformability at bulk Reynolds number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621111752900-0025:S0022112019004130:S0022112019004130_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. The solid volume fraction of finite-size neutrally buoyant rigid spherical particles considered is 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621111752900-0025:S0022112019004130:S0022112019004130_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. The elastic walls are assumed to be of a neo-Hookean material. A fully Eulerian formulation is employed to model the elastic walls together with a direct-forcing immersed boundary method for the coupling between the fluid and the particles. The data show a significant drag increase and the enhancement of the turbulence activity with growing wall elasticity for both the single-phase and particle-laden flows when compared with the single-phase flow over rigid walls. Drag reduction and turbulence attenuation is obtained, on the other hand, with highly elastic walls when comparing the particle-laden flow with the single-phase flow for the same wall properties; the opposite effect, drag increase, is observed upon adding particles to the flow over less elastic walls. This is explained by investigating the near-wall turbulence, where the strong asymmetry in the magnitude of the wall-normal velocity fluctuations (favouring positive 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621111752900-0025:S0022112019004130:S0022112019004130_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉), is found to push the particles towards the channel centre. The particle layer close to the wall contributes to turbulence production by increasing the wall-normal velocity fluctuations, so that in the absence of this layer, smaller wall deformations and in turn turbulence attenuation is observed. For a moderate wall elasticity, we increase the particle volume fraction up to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621111752900-0025:S0022112019004130:S0022112019004130_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and find that particle migration away from the wall is the cause of turbulence attenuation with respect to the flow over rigid walls. However, for this higher volume fractions, the particle induced stress compensates for the decreasing Reynolds shear stress, resulting in a higher overall drag for the case with elastic walls. The effect of the wall elasticity on the overall drag reduces significantly with increasing particle volume fraction.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We present large-eddy simulation (LES) of flow past different airfoils with 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, based on the free-stream velocity and airfoil chord length, ranging from 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. To avoid the challenging resolution requirements of the near-wall region, we develop a virtual wall model in generalized curvilinear coordinates and incorporate the non-equilibrium effects via proper treatment of the momentum equations. It is demonstrated that the wall model dynamically captures the instantaneous skin-friction vector field on arbitrary curved surfaces at the resolved scale. By combining the present wall model with the stretched-vortex subgrid-scale model, we apply the wall-modelled LES approach to three different airfoil cases, spanning different geometrical parameters, different attack angles and low to high 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. The numerical results are verified with direct numerical simulation (DNS) at low 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, and validated with experiment data at higher 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, including typical aerodynamic properties such as pressure coefficient distributions, velocity components and also more challenging measurements such as skin-friction coefficient and Reynolds stresses. All comparisons show reasonable agreement, providing a measure of validity that enables us to further probe simulation results into aspects of flow physics that are not available from experiments. Two techniques to quantify hitherto unexplored physics of flows past airfoils are employed: one is the construction of the anisotropy invariant map, and the second is skin-friction portraits with emphasis on flow transition and unsteady separation along the airfoil surface. The anisotropy maps for all three 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 cases, show clearly that a portion of the flow field is aligned along the axisymmetric expansion line, corresponding to the turbulent boundary layer log-law behaviour and the appearance of turbulent transition. The instantaneous skin-friction portraits reveal a monotonic shrinking of the near wall structure scale. At 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, the interaction between the primary separation bubble and the secondary separation bubble contributes to turbulent transition, similar to the case of flow past a cylinder. At higher 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, the primary separation breaks into several small separation bubbles. At even higher 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190621103821391-0158:S0022112019003604:S0022112019003604_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, near the turbulent separation, the skin-friction lines show small-scale reversal flows that are similar to those observed in DNS of the flat plate turbulent separation. A notable feature of turbulent separation in flow past an airfoil is the appearance of turbulence structures and small-scale reversal flows in the spanwise direction due to the vortex shedding behaviour.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉In the framework of the complete formulation of the conjugate problem, the liquid–gas flow structure arising upon local heating using thermal sources is investigated numerically. The two-layer system is confined by solid impermeable walls. The Navier–Stokes equations in the Boussinesq approximation in the ‘streamfunction–vorticity’ variables are used to describe the media motion. The dynamic conditions at the interface are formulated in terms of the tangential and normal velocities, while the temperature conditions at the external boundaries of the system take into account the presence of local heaters. The influence of the number of heaters and heating modes on the dynamics and character of the appearing convective regimes is analysed. The steady and commutated heating modes for one and two heaters arranged at the lower boundary are investigated. The heating initiates convective and thermocapillary mechanisms causing the fluid motion. Transient regimes with the successive formation of two-vortex, quadruple-vortex and two-vortex flows are observed before the stabilization of the system in the uniform heating mode. A stable thermocapillary deflection appears at the interface above the heater. The commutated mode of heating entails oscillations of the interface with a change in the deflection form and the formation of travelling vortices in the fluids. The impact of particular mechanisms on the flow patterns is analysed. The paper presents typical distributions of the velocity and temperature fields in the system and the position of the interface for the considered cases.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉In the context of dynamic wetting, wall slip is often treated as a microscopic effect for removing viscous stress singularity at a moving contact line. In most drop spreading experiments, however, a considerable amount of slip may occur due to the use of polymer liquids such as silicone oils, which may cause significant deviations from the classical Tanner–de Gennes theory. Here we show that many classical results for complete wetting fluids may no longer hold due to wall slip, depending crucially on the extent of de Gennes’s slipping ‘foot’ to the relevant length scales at both the macroscopic and microscopic levels. At the macroscopic level, we find that for given liquid height 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and slip length 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, the apparent dynamic contact angle 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 can change from Tanner’s law 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 to the strong-slip law 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the capillary number and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the macroscopic length scale. Such a no-slip-to-slip transition occurs at the critical capillary number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, accompanied by the switch of the ‘foot’ of size 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 from the inner scale to the outer scale with respect to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline12.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. A more generalized dynamic contact angle relationship is also derived, capable of unifying Tanner’s law and the strong-slip law under 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline13.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. We not only confirm the two distinct wetting laws using many-body dissipative particle dynamics simulations, but also provide a rational account for anomalous departures from Tanner’s law seen in experiments (Chen, 〈span〉J. Colloid Interface Sci〈/span〉., vol. 122, 1988, pp. 60–72; Albrecht 〈span〉et al.〈/span〉, 〈span〉Phys. Rev. Lett.〈/span〉, vol. 68, 1992, pp. 3192–3195). We also show that even for a common spreading drop with small macroscopic slip, slip effects can still be microscopically strong enough to change the microstructure of the contact line. The structure is identified to consist of a strongly slipping precursor film of length 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline14.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 followed by a mesoscopic ‘foot’ of width 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline15.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 ahead of the macroscopic wedge, where 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline16.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is the molecular length. It thus turns out that it is the ‘foot’, rather than the film, contributing to the microscopic length in Tanner’s law, in accordance with the experimental data reported by Kavehpour 〈span〉et al.〈/span〉 (〈span〉Phys. Rev. Lett.〈/span〉, vol. 91, 2003, 196104) and Ueno 〈span〉et al.〈/span〉 (〈span〉Trans. ASME J. Heat Transfer〈/span〉, vol. 134, 2012, 051008). The advancement of the microscopic contact line is still led by the film whose length can grow as the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline17.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 power of time due to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619140754267-0248:S0022112019003525:S0022112019003525_inline18.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, as supported by the experiments of Ueno 〈span〉et al.〈/span〉 and Mate (〈span〉Langmuir〈/span〉, vol. 28, 2012, pp. 16821–16827). The present work demonstrates that the behaviour of a moving contact line can be strongly influenced by wall slip. Such slip-mediated dynamic wetting might also provide an alternative means for probing slippery surfaces.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We numerically investigated the unsteady dynamics of a two-dimensional airfoil undergoing a continuous, prescribed pitch-up motion and freely translating as a response to aerodynamic forces and the gravity field. The pitch-up motion was applied about an axis located 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190619142124772-0727:S002211201900421X:S002211201900421X_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 chord away from the leading edge and was parameterized using the shape change number, with a Reynolds number set to 2000. It was shown that the minimum kinetic energy reached by the airfoil depends stochastically and asymptotically on shape change numbers for values below and above 1, respectively. Very low kinetic energy levels (close to zero) can be reached in both stochastic and asymptotic regions but high shape change numbers are accompanied by significant gain in altitude which may be undesirable from a practical perspective. Rather, shape change numbers in the range [0.1–0.3] allow us to reach relatively low levels of kinetic energy for close perching locations. We showed that highly nonlinear fluid–structure interactions induced by massive flow separations and strong vortices are conducive to low kinetic energy, but responsible for the stochastic dependence of kinetic energy to shape change number, which can make perching manoeuvres hardly controllable for flying vehicles.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We present a dynamic decomposition analysis of the wake flow in fluid–structure interaction (FSI) systems under both laminar and turbulent flow conditions. Of particular interest is to provide the significance of low-dimensional wake flow features and their interaction dynamics to sustain the free vibration of a square cylinder at a relatively low mass ratio. To obtain the high-dimensional data, we employ a body-conforming variational FSI solver based on the recently developed partitioned iterative scheme and the dynamic subgrid-scale turbulence model for a moderate Reynolds number (〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327055129472-0988:S002211201900140X:S002211201900140X_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉). The snapshot data from high-dimensional FSI simulations are projected to a low-dimensional subspace using the proper orthogonal decomposition (POD). We utilize each corresponding POD mode to detect features of the organized motions, namely, the vortex street, the shear layer and the near-wake bubble. We find that the vortex shedding modes contribute solely to the lift force, while the near-wake and shear layer modes play a dominant role in the drag force. We further examine the fundamental mechanism of this dynamical behaviour and propose a force decomposition technique via low-dimensional approximation. To elucidate the frequency lock-in, we systematically analyse the decomposed modes and their dynamical contributions to the force fluctuations for a range of reduced velocity at low Reynolds number laminar flow. These quantitative mode energy contributions demonstrate that the shear layer feeds the vorticity flux to the wake vortices and the near-wake bubble during the wake–body synchronization. Based on the decomposition of wake dynamics, we suggest an interaction cycle for the frequency lock-in during the wake–body interaction, which provides the interrelationship between the high-amplitude motion and the dominating wake features. Through our investigation of wake–body synchronization below critical 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327055129472-0988:S002211201900140X:S002211201900140X_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 range, we discover that the bluff body can undergo a synchronized high-amplitude vibration due to flexibility-induced unsteadiness. Owing to the wake turbulence at a moderate Reynolds number of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327055129472-0988:S002211201900140X:S002211201900140X_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, a distorted set of POD modes and the broadband energy distribution are observed, while the interaction cycle for the wake synchronization is found to be valid for the turbulent wake flow.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We use resolvent analysis to design active control techniques for separated flows over a NACA 0012 airfoil. Spanwise-periodic flows over the airfoil at a chord-based Reynolds number of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190325174522297-0677:S0022112019001630:S0022112019001630_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and a free-stream Mach number of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190325174522297-0677:S0022112019001630:S0022112019001630_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 are considered at two post-stall angles of attack of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190325174522297-0677:S0022112019001630:S0022112019001630_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190325174522297-0677:S0022112019001630:S0022112019001630_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. Near the leading edge, localized unsteady thermal actuation is introduced in an open-loop manner with two tunable parameters of actuation frequency and spanwise wavelength. To provide physics-based guidance for the effective choice of these control input parameters, we conduct global resolvent analysis on the baseline turbulent mean flows to identify the actuation frequency and wavenumber that provide large perturbation energy amplification. The present analysis also considers the use of a temporal filter to limit the time horizon for assessing the energy amplification to extend resolvent analysis to unstable base flows. We incorporate the amplification and response mode from resolvent analysis to provide a metric that quantifies momentum mixing associated with the modal structure. This metric is compared to the results from a large number of three-dimensional large-eddy simulations of open-loop controlled flows. With the agreement between the resolvent-based metric and the enhancement of aerodynamic performance found through large-eddy simulations, we demonstrate that resolvent analysis can predict the effective range of actuation frequency as well as the global response to the actuation input. We believe that the present resolvent-based approach provides a promising path towards mean flow modification by capitalizing on the dominant modal mixing.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉In this work we present and demonstrate the reliability of a theoretical framework for the study of thermally driven turbulence. It consists of scale-by-scale budget equations for the second-order velocity and temperature structure functions and their limiting cases, represented by the turbulent kinetic energy and temperature variance budgets. This framework represents an extension of the classical Kolmogorov and Yaglom equations to inhomogeneous and anisotropic flows, and allows for a novel assessment of the turbulent processes occurring at different scales and locations in the fluid domain. Two relevant characteristic scales, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327124217270-0217:S0022112019001198:S0022112019001198_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for the velocity field and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327124217270-0217:S0022112019001198:S0022112019001198_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 for the temperature field, are identified. These variables separate the space of scales into a quasi-homogeneous range, characterized by turbulent kinetic energy and temperature variance cascades towards dissipation, and an inhomogeneity-dominated range, where the production and the transport in physical space are important. This theoretical framework is then extended to the context of large-eddy simulation to quantify the effect of a low-pass filtering operation on both resolved and subgrid dynamics of turbulent Rayleigh–Bénard convection. It consists of single-point and scale-by-scale budget equations for the filtered velocity and temperature fields. To evaluate the effect of the filter length 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327124217270-0217:S0022112019001198:S0022112019001198_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 on the resolved and subgrid dynamics, the velocity and temperature fields obtained from a direct numerical simulation are split into filtered and residual components using a spectral cutoff filter. It is found that when 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327124217270-0217:S0022112019001198:S0022112019001198_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is smaller than the minimum values of the cross-over scales given by 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327124217270-0217:S0022112019001198:S0022112019001198_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, the resolved processes correspond to the exact ones, except for a depletion of viscous and thermal dissipations, and the only role of the subgrid scales is to drain turbulent kinetic energy and temperature variance to dissipate them. On the other hand, the resolved dynamics is much poorer in the near-wall region and the effects of the subgrid scales are more complex for filter lengths of the order of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327124217270-0217:S0022112019001198:S0022112019001198_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 or larger. This study suggests that classic eddy-viscosity/diffusivity models employed in large-eddy simulation may suffer from some limitations for large filter lengths, and that alternative closures should be considered to account for the inhomogeneous processes at subgrid level. Moreover, the theoretical framework based on the filtered Kolmogorov and Yaglom equations may represent a valuable tool for future assessments of the subgrid-scale models.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Motivated by recent studies that have revealed the existence of trapped acoustic waves in subsonic jets (Towne 〈span〉et al.〈/span〉, 〈span〉J. Fluid Mech.〈/span〉, vol. 825, 2017, pp. 1113–1152), we undertake a more general exploration of the physics associated with acoustic modes in jets and wakes, using a double vortex-sheet model. These acoustic modes are associated with eigenvalues of the vortex-sheet dispersion relation; they are discrete modes, guided by the vortex sheet; they may be either propagative or evanescent; and under certain conditions they behave in the manner of acoustic-duct modes. By analysing these modes we show how jets and wakes may both behave as waveguides under certain conditions, emulating ducts with soft or hard walls, with the vortex-sheet impedance providing effective ‘wall’ conditions. We consider, in particular, the role that upstream-travelling acoustic modes play in the dispersion-relation saddle points that underpin the onset of absolute instability. The analysis illustrates how departure from duct-like behaviour is a necessary condition for absolute instability, and this provides a new perspective on the stabilising and destabilising effects of reverse flow, temperature ratio and compressibility; it also clarifies the differing symmetries of jet (symmetric) and wake (antisymmetric) instabilities. An energy balance, based on the vortex-sheet impedance, is used to determine stability conditions for the acoustic modes: these may become unstable in supersonic flow due to an energy influx through the shear layers. Finally, we construct the impulse response of flows with zero and finite shear-layer thickness. This allows us to show how the long-time wavepacket behaviour is indeed determined by interaction between Kelvin–Helmholtz and acoustic modes.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Following the recent observation that turbulent pipe flow can be relaminarised by a relatively simple modification of the mean velocity profile, we here carry out a quantitative experimental investigation of this phenomenon. Our study confirms that a flat velocity profile leads to a collapse of turbulence and in order to achieve the blunted profile shape, we employ a moving pipe segment that is briefly and rapidly shifted in the streamwise direction. The relaminarisation threshold and the minimum shift length and speeds are determined as a function of Reynolds number. Although turbulence is still active after the acceleration phase, the modulated profile possesses a severely decreased lift-up potential as measured by transient growth. As shown, this results in an exponential decay of fluctuations and the flow relaminarises. While this method can be easily applied at low to moderate flow speeds, the minimum streamwise length over which the acceleration needs to act increases linearly with the Reynolds number.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We investigate the gravity-driven flow of a thin film of liquid metal on a conducting conical substrate in the presence of a strong toroidal magnetic field (transverse to the flow and parallel to the substrate). We solve the leading-order governing equations in a physically relevant asymptotic limit to find the free-surface profile. We find that the leading-order fluid flow rate is a non-monotonic bounded function of the film height, and this can lead to singularities in the free-surface profile. We perform a detailed stability analysis and identify values of the relevant geometric, hydrodynamic and magnetic parameters such that the flow is stable.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We present a local stability analysis to investigate the effects of differential diffusion between momentum and density (quantified by the Schmidt number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉) on the three-dimensional, short-wavelength instabilities in planar vortices with a uniform stable stratification along the vorticity axis. Assuming small diffusion in both momentum and density, but arbitrary values for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, we present a detailed analytical/numerical analysis for three different classes of base flows: (i) an axisymmetric vortex, (ii) an elliptical vortex and (iii) the flow in the neighbourhood of a hyperbolic stagnation point. While a centrifugally stable axisymmetric vortex remains stable for any 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, it is shown that 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 can have significant effects in a centrifugally unstable axisymmetric vortex: the range of unstable perturbations increases when 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is taken away from unity, with the extent of increase being larger for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 than for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. Additionally, for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, we report the possibility of oscillatory instability. In an elliptical vortex with a stable stratification, 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is shown to non-trivially influence the three different inviscid instabilities (subharmonic, fundamental and superharmonic) that have been previously reported, and also introduce a new branch of oscillatory instability that is not present at 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. The unstable parameter space for the subharmonic (instability IA) and fundamental (instability IB) inviscid instabilities are shown to be significantly increased for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline12.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, respectively. Importantly, for sufficiently small and large 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline13.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, respectively, the maximum growth rate for instabilities IA and IB occurs away from the inviscid limit. The new oscillatory instability (instability III) is shown to occur only for sufficiently small 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline14.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, the signature of which is nevertheless present with zero growth rate in the inviscid limit. The Schmidt number is then shown to play no role in the evolution of transverse perturbations on the flow around a hyperbolic stagnation point with a stable stratification. We conclude by discussing the physical length scales associated with the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190327085207695-0702:S0022112019001472:S0022112019001472_inline15.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 instabilities, and their potential relevance in various realistic settings.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Instabilities and flow characteristics in the far wake of a circular cylinder are examined through direct numerical simulations. The transitions to the two-layered and secondary vortex streets are quantified by a new method based on the time-averaged transverse velocity field. Two processes for the transition to the secondary vortex street are observed: (i) the merging of two same-sign vortices over a range of low Reynolds numbers (〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉) between 200 and 300, and (ii) the pairing of two opposite-sign vortices, followed by the merging of the paired vortices into subsequent vortices, over a range of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 between 400 and 1000. Single vortices may be generated between the merging cycles due to mismatch of the vortices. The irregular merging process results in flow irregularity and an additional frequency signal 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 (in addition to the primary vortex shedding frequency 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉) in the two-layered and secondary vortex streets. In particular, a gradual energy transfer from 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 with distance downstream is observed in the two-layered vortex street prior to the merging. The frequency spectra of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 are broad-band for 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉–300 but become increasingly sharp-peaked with increasing 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 because the vortex merging process becomes increasingly regular. The ratio of the sharp-peaked frequencies 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190326132244592-0183:S0022112019001678:S0022112019001678_inline11.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 is equal to the ratio of the numbers of vortices observed after and before the merging. The general conclusions drawn from a circular cylinder are expected to be applicable to other bluff bodies.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Results are presented from a laboratory study on the free-surface signal generated over an array of submerged circular cylinders, representative of submerged aquatic vegetation. We aim to understand whether aquatic ecosystems generate a surface signature that is indicative of both what is beneath the water surface as well as how it is altering the flow. A shear layer forms over the canopy, generating coherent vortex structures which eventually manifest in the free-surface slope field. We connect the vortex properties measured at the surface with measurements of the bulk flow, and show that correlations between these quantities are adequate to create a parameterized model in which the interior velocity profile can be predicted solely from measurements taken at the free surface. Experimental surface observations yield a Strouhal number that is twice the most amplified mode predicted by linear stability theory, suggesting that vortices may evolve between generation at the canopy height and their manifestation at the water surface. Additionally, the surface signal continues evolving with distance downstream, with vortices becoming spread farther apart and the passage frequency gradually decreasing. By the trailing edge of the canopy, surface-impacting boils emerge for canopies with higher submergence ratios, suggesting a transition from coherent two-dimensional rollers to transversely varying structures.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Results of experimental and numerical investigations of a supersonic flow around a cylinder with a frontal gas-permeable insert made of a high-porosity cellular material are presented. The measurements are performed in a T-327 supersonic blowdown wind tunnel at the free-stream Mach numbers 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190325181423329-0720:S0022112019001654:S0022112019001654_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, 7 and 21 in the range of the unit Reynolds numbers 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20190325181423329-0720:S0022112019001654:S0022112019001654_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉. The drag coefficients for a cylinder with an aerospike and a cylinder with a frontal gas-permeable porous insert are obtained. For the cylinder with the frontal gas-permeable porous insert, variations of the insert length, cylinder diameter and pore size are considered, and the mechanism of drag reduction is found, which includes two supplementary processes: attenuation of the bow shock wave in a system of weaker shock waves, and formation of an effective pointed body. The experiments are accompanied by numerical simulations of the flow around the cylinder with the frontal high-porosity insert: the fields of parameters of the external flow and the flow inside the porous insert are obtained, the drag coefficients are calculated, and the shape of the effective body for the examined model is found. The structure of the high-porosity material is modelled by a system of staggered rings of different diameters aligned in the radial and longitudinal directions (skeleton model of a porous medium). Numerical simulations of the problem are performed by means of solving two-dimensional Reynolds-averaged Navier–Stokes equations written in an axisymmetric form. The experimental and numerical data reveal significant drag reduction in a wide range of supersonic flow conditions. The results obtained on the drag coefficient for the cylinder are generalized with the use of a parameter which includes the ratio of the cylinder diameter to the pore diameter in the insert and the Mach number. This parameter is proposed as a similarity criterion for the problem of a supersonic flow around a cylinder with a frontal high-porosity insert.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Decay of honeycomb-generated turbulence in a duct with a static transverse magnetic field is studied via direct numerical simulations. The simulations follow the revealing experimental study of Sukoriansky 〈span〉et al.〈/span〉 (〈span〉Exp. Fluids〈/span〉, vol. 4 (1), 1986, pp. 11–16), in particular the paradoxical observation of high-amplitude velocity fluctuations, which exist in the downstream portion of the flow when the strong transverse magnetic field is imposed in the entire duct including the honeycomb exit, but not in other configurations. It is shown that the fluctuations are caused by the large-scale quasi-two-dimensional structures forming in the flow at the initial stages of the decay and surviving the magnetic suppression. Statistical turbulence properties, such as the energy decay curves, two-point correlations and typical length scales are computed. The study demonstrates that turbulence decay in the presence of a magnetic field is a complex phenomenon critically depending on the state of the flow at the moment the field is introduced.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Faults in the Roer Valley Rift System (RVRS) act as barriers to horizontal groundwater flow. This causes steep cross-fault groundwater level steps (hydraulic head differences). An overview of the size and distribution of fault-related groundwater level steps and associated fault zone permeabilities is thus far lacking. Such an overview would provide useful insights for nature restoration projects in areas with shallow groundwater levels (〈span〉wijstgronden〈/span〉) on the foot wall of fault zones. In this review study, data on fault zone permeabilities and cross-fault hydraulic head differences were compiled from 39 sources of information, consisting of literature (starting from 1948), internal reports (e.g. from research institutes and drinking water companies), groundwater models, a geological database and new fieldwork. The data are unevenly distributed across the RVRS. Three-quarters of the data sources are related to the Peel Boundary Fault zone (PBFZ). This bias is probably caused by the visibility of fault scarps and fault-adjacent wet areas for the PBFZ, with the characteristic iron-rich groundwater seepage. Most data demonstrate a cross-fault phreatic groundwater level step of 1.0 to 2.5 m. Data for the Feldbiss Fault zone (FFZ) show phreatic cross-fault hydraulic head differences of 1.0 to 2.0 m. 〈span〉In situ〈/span〉 measured hydraulic conductivity data (K) are scarce. Values vary over three orders of magnitude, from 0.013 to 22.1 m d〈span〉−1〈/span〉, are non-directional and do not take into account heterogeneity caused by fault zones. The hydraulic conductivity (and hydraulic resistance) values used in three different groundwater models are obtained by calibration using field measurements. They also cover a large range, from 0.001 to 32 m d〈span〉−1〈/span〉 and from 5 to 100,000 days. Heterogeneity is also not taken into account in these models. The overview only revealed locations with a clear cross-fault groundwater level step, and at many locations the faults are visible on aerial photographs as cropmarks or as soil moisture contrasts at the surface. Therefore, it seems likely that all faults have a reduced permeability, which determines the size of the groundwater level steps. In addition, our results show that cross-fault hydraulic head gradients also correlate with topographic, fault-induced offsets, for both the Peel Boundary and the Feldbiss fault zone.〈/p〉〈/div〉
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2019
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2019
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉〈img orientation="portrait" mimesubtype="gif" mimetype="image" position="float" type="simple" href="S0022112019008000_figAb" src="http://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112019008000/resource/name/S0022112019008000_figAb.gif?pub-status=live"〉〈/p〉〈/div〉 〈div data-abstract-type="normal"〉〈p〉We consider a Stokeslet applied to a viscous fluid next to an infinite, flat wall, or in between two parallel walls. We calculate the forces exerted by the resulting flow on the confining boundaries, and use the results obtained to estimate the hydrodynamic contribution to the pressure exerted on boundaries by force-free self-propelled particles.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉〈img orientation="portrait" mimesubtype="gif" mimetype="image" position="float" type="simple" href="S0022112019007973_figAb" src="http://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0022112019007973/resource/name/S0022112019007973_figAb.gif?pub-status=live"〉〈/p〉〈/div〉 〈div data-abstract-type="normal"〉〈p〉By means of three-dimensional direct numerical simulations, we investigate the influence of the regular roughness of heated and cooled plates on the mean heat transport in a cylindrical Rayleigh–Bénard convection cell of aspect ratio one. The roughness is introduced by a set of isothermal obstacles, which are attached to the plates and have a form of concentric rings of the same width. The considered Prandtl number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline1.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 equals 1, the Rayleigh number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline2.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 varies from 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline3.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 to 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline4.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, the number of rings on each plate is 1, 2, 4, 8 or 10, the height of the rings is varied from 1.5 % to 49 % of the cylinder height and the gap between the rings is varied from 1.5 % to 18.8 % of the cell diameter. Totally, 135 different cases are analysed. Direct numerical simulations show that with small 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline5.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 and wide roughness rings, a small reduction of the mean heat transport (the Nusselt number 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline6.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉) is possible, but, in most cases, the presence of the heated and cooled obstacles generally leads to an increase of 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline7.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉, compared to the case of classical Rayleigh–Bénard convection with smooth plates. When the rings are very tall and the gaps between them are sufficiently wide, the effective mean heat flux can be several times larger than in the smooth case. For a fixed geometry of the obstacles, the scaling exponent in the 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline8.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 versus 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline9.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 scaling first increases with growing 〈span〉〈span〉〈img data-mimesubtype="gif" data-type="simple" src="http://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20191105072504660-0909:S0022112019007973:S0022112019007973_inline10.gif"〉 〈span data-mathjax-type="texmath"〉 〈/span〉 〈/span〉〈/span〉 up to approximately 0.5, but then smoothly decreases back towards the exponent in the no-obstacle case.〈/p〉〈/div〉
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉A stacked aeolian sequence with intercalated soils is presented from the southern Netherlands, which fully covers the Late Weichselian and Holocene periods. An integrated sedimentological (sedimentary structures, grain size), palynological (pollen) and dating approach (radiocarbon, optically stimulated luminescence (OSL)) was applied to unravel climatic and human forcing factors. The dating results of soils and sediments are compatible, and no large hiatuses between the radiocarbon-dated top of the soils and OSL-dated overlying sands were observed. It is argued that the peaty top of wet-type podzols can be used for reliable radiocarbon dating. This study reveals more phases than previously known of landscape stability (Usselo Soil and two podzol soils) and instability (Younger Coversand I and II, two drift-sand units) that are related to Late Weichselian climate change and Holocene human occupation. Regional aeolian deposition in source-bordering (river) dunes (Younger Coversand II) took place in the second part of the Younger Dryas, after 12.3 ka cal. BP, implying a delayed response to Younger Dryas cooling, vegetation cover decline and river pattern change of the Scheldt. The onset of podzolisation and development of ericaceous vegetation occurred prior to the introduction of Neolithic farming, which is earlier than previously assumed. Early podzolisation was followed by a short phase of local drift-sand deposition, at 〈span〉c〈/span〉.5500 cal. BP, that possibly relates to agriculture. Strong human impact on the landscape by deforestation and agriculture resulted in a second phase of widespread drift-sand deposition covering the younger podzol soil after AD 1000.〈/p〉〈/div〉
    Print ISSN: 0016-7746
    Electronic ISSN: 1573-9708
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Early-maturing provitamin A (PVA) quality protein maize (QPM) hybrids with combined drought and low soil nitrogen (low-N) tolerance are needed to address malnutrition and food security problems in sub-Saharan Africa (SSA). The current study's objectives were to (i) examine combining ability of selected early maturing PVA-QPM inbreds for grain yield and other agronomic traits under drought, low-N, optimal environments and across environments, (ii) determine gene action conditioning PVA accumulation under optimal environments, (iii) classify inbreds into heterotic groups and identify testers and (iv) assess yield and stability of hybrids across environments. Ninety-six hybrids generated from 24 inbred lines using the North Carolina Design II together with four commercial hybrid controls were evaluated under drought, low-N and optimal environments in Nigeria in 2016 and 2017. Fifty-four selected hybrids were assayed for PVA carotenoid and tryptophan content. Additive genetic effects were greater than non-additive effects for grain yield and most agronomic traits under each and across environments. The gene action conditioning accumulation of PVA carotenoids under optimal growing conditions followed a pattern similar to that of grain yield and other yield-related traits. The inbred lines were categorized into four heterotic groups consistent with the pedigree records and with TZEIORQ 29 identified as the best male and female tester for heterotic group IV. No tester was found for the other groups. Hybrid TZEIORQ 24 × TZEIORQ 41 was the highest yielding and most stable across environments and should be further tested for consistent performance for commercialization in SSA.〈/p〉〈/div〉
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉〈span〉Hordeum marinum〈/span〉 commonly known as sea barley is a salinity-tolerant species of grass. In the current study, 150 lines from ten populations of 〈span〉H. marinum〈/span〉 ssp. 〈span〉marinum〈/span〉 collected from five Tunisian bioclimatic sites were screened for polymorphism with 13 selected random amplified polymorphic DNA primers. Results exhibited a high level of polymorphism (160 polymorphic bands with an average of 12.46 per primer) and a high level of genetic diversity in all the studied populations (on average 〈span〉UHe〈/span〉 = 0.247 and 〈span〉I〈/span〉 = 0.358). High discrimination capacity was found for the 13 primers and a combination of three allowed assignation of a unique profile for each of the 150 lines. The partition of genetic diversity with Analysis of Molecular Variance suggested that the majority of genetic variation (67%) was within populations. The components between-populations within ecoregions and between-ecoregions explained 21 and 12%, respectively, of the total genetic variance. There was no significant association of population differentiation (Ф〈span〉PT〈/span〉) with geographical distance or altitudinal difference. Results also showed that the 150 lines grouped into three clusters with no respect to geographic origin. A sub-set of 13 lines was identified, which captured the maximum genetic diversity of the entire collection. The genetic variation found in this collection of 〈span〉H. marinum〈/span〉 is deemed to be useful in formulating conservation strategies for this species.〈/p〉〈/div〉
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2019
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Potential planting area for tuber mustard was simulated using the Maxent model under current and future conditions based on 591 coordinates and 22 environmental layers. Model accuracy was excellent, with area under the receiving operator curve values of 0.967 and 0.958 for model training and testing, respectively. Dominant factors were mean diurnal range, mean temperature of the coldest quarter, annual mean temperature and minimum temperature of the coldest month, with thresholds of 6.5–7.5, 5.5–9, 16–19 and 2.0–6.5 °C, respectively. Under current conditions, suitable habitat areas (2.16% of total land in China) were concentrated mainly in Central, Southwest and East China, which can be defined as three occurrence and diffusion centres. In the 2050s and 2070s, suitable habitat areas are predicted to change to 3.72 and 3.92%, and 3.60 and 3.73% under scenarios RCP4.5 and RCP6.0, respectively, indicating that suitable habitat areas will increase slightly. However, future distribution of tuber mustard was predicted to differ among provinces or cities, i.e. predicted suitable habitat areas in Sichuan Province increased up to the 2050s but remained relatively unchanged between the 2050s and 2070s; in Chongqing city they first increased and then decreased; in Hunan, Anhui, Jiangsu, Zhejiang and Fujian Provinces they increased continuously; and in Guizhou, Hubei, Jiangxi Provinces and Shanghai city they first decreased, and then increased. The results from the current study provide useful information for management decisions of tuber mustard.〈/p〉〈/div〉
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉A completely randomized experiment was designed to evaluate the effects of 〈span〉α〈/span〉-amylase (AMY) and glucoamylase (GLU) on total losses, fermentative profile, chemical composition and amylolytic activity of rehydrated maize. Eighty-four experimental silos of rehydrated maize [0.33 litres/kg ground maize, 4-mm theoretical particle size, and 625 g/kg dry matter (DM)] were assigned to the following treatments: (1) control (CON), no enzyme addition; (2) GLU added at 300 µl/kg of ground maize (as-fed); and (3) AMY added at 300 µl/kg of ground maize. Seven silos from each treatment were opened after 7, 14, 21 and 28 days. Differences among treatments were evaluated through orthogonal contrasts (CON 〈span〉v.〈/span〉 enzymes, and AMY 〈span〉v.〈/span〉 GLU). Time effects were decomposed using polynomial regression. Glucoamylase silage exhibited greater total losses than AMY. Enzymes increased acetate and lactic acid concentrations and decreased ethanol concentration. Regardless of treatment, gas, effluent and total fermentative losses linearly increased, whereas DM recovery linearly decreased with higher storage length. Glucoamylase silage had lower ammonia nitrogen and higher lactic acid concentrations than AMY. Enzyme treatments decreased silage neutral detergent fibre content and increased 〈span〉in vitro〈/span〉 DM degradation. Glucoamylase silage exhibited a more moderate starch content and greater 〈span〉in vitro〈/span〉 DM degradation than AMY. Storage time linearly decreased DM, starch and fibre content of rehydrated maize. 〈span〉In vitro〈/span〉 degradation of DM linearly increased as the storage length increased. This study showed evidence that enzymes with amylolytic activity, particularly GLU, improve the fermentative profile and DM degradation of rehydrated maize silage.〈/p〉〈/div〉
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉We argue in this article that the social and economic conditions in the Angkorian society of the tenth century or earlier contributed to the decline in status of some middle-level officials, as is evident from the mid-eleventh century. Many Angkorian inscriptions written between the late ninth and late twelfth centuries record purchases and donations of lands acquired for religious foundations. The texts often contain details of transactions and disputes seeking to validate title to these holdings. The buyers include middle-ranking 〈span〉loñ〈/span〉 and 〈span〉vāp〈/span〉, and increasingly, higher-ranking officials. An analysis of the roles and activities of the officials reveals something of their relative status and helps explain the disappearance of 〈span〉vāp〈/span〉 from the inscriptions in the eleventh century, and the relegation of 〈span〉loñ〈/span〉 to temple roles by the twelfth century. The transfer of communal lands and lands owned by these officials to elites is attributed to hierarchical restrictions on land purchases, a reduction in fiscal immunities, and the need for taxes to be paid to the centre with high-value goods in Angkor's moneyless economy.〈/p〉〈/div〉
    Print ISSN: 0022-4634
    Electronic ISSN: 1474-0680
    Topics: Geosciences , Political Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉The importance of spring grass in the diet of early lactation dairy cows has been widely acknowledged. Numerous studies completed on a plot/paddock basis have identified methods of increasing herbage availability in spring, but little focus was placed on how this impacts animal production. The aim of the current study was to investigate the impact of opening farm cover (OFC; grass availability on farm at turnout in spring; 1036 (high), 748 (medium) and 544 (low) kg DM/ha) and spring rotation length (fast – 56 days and normal – 63 days) on animal performance in early lactation and herbage production and quality. Spring rotation length had little effect on animal performance, herbage variables or sward composition. High OFC increased pre-grazing herbage mass, allowing for increased daily herbage allowance (DHA) compared to medium and low OFC. There was a reduced proportion of leaf in the sward of the high OFC compared to the low OFC, resulting in lower organic matter digestibility. Despite the reduction in sward quality observed as a consequence of achieving high OFC in spring, the greater DHA available to animals increased milk production (+1.4 kg milk/cow/day). Additionally, animals grazing a medium or low OFC had a greater requirement for silage supplementation in spring (+1.3 kg DM/cow/day). The benefits of the higher DHA highlighted in the current study suggest that autumn grazing management must be adapted to increase herbage availability in spring. However, the benefits observed in milk production did not persist beyond the first grazing rotation.〈/p〉〈/div〉
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Lord Reid played a vital role as chairman in a Commonwealth commission in framing the Malayan Independence constitution between 1956 and 1957. The Scottish Lord of Appeal sought to ensure the commission's impartiality and to achieve a fair balance between the demands of the various interest groups. The Federation of Malaya was a complex emerging nation-state with a diverse population and the framers had to manage competing interests and demands. This article, through a close examination of the primary constitutional documents, considers Reid's influence on the framing of the Malayan (and hence, Malaysian) federal constitution. The article begins with a brief discussion of Lord Reid's appointment to head the commission and then considers in some depth areas where his influence on the framing of the draft constitution is evident. The article argues that Reid was the main playmaker and moderator during the constitution-framing process and played a critical role in ensuring a balance was achieved between the competing demands of the federal government and the states, safeguarding the fundamental rights of the citizens against the state, and in moderating the various communal demands.〈/p〉〈/div〉
    Print ISSN: 0022-4634
    Electronic ISSN: 1474-0680
    Topics: Geosciences , Political Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Successive wars and the establishment of a border between the kingdom of Burma and British India in the nineteenth century challenged Burmese conceptions of sovereignty and political space. This essay investigates how European, and more specifically Anglo-American, notions of race, nation, and consular protection to nationals, progressively informed the Burmese concepts of ‘categories of people’ 〈span〉(lumyo)〈/span〉 and ‘subject’ 〈span〉(kyun)〈/span〉. First, I present the semantic evolution of these concepts in the 1820s–1830s, following the annexation of the western Burmese province of Arakan by British India in 1824. Then, I argue that the Burmese concept of 〈span〉lumyo〈/span〉 was progressively associated with the European concept of ‘nations’ in the 1850s–1860s, following the annexation of Lower Burma in 1852. Finally, I uncover developments in the 1870s, when British consular protection extended to several freshly categorised ‘nations’, such as Shan, Karenni, and Kachin.〈/p〉〈/div〉
    Print ISSN: 0022-4634
    Electronic ISSN: 1474-0680
    Topics: Geosciences , Political Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉This volume contains an introduction and eight papers presented at an international symposium ‘Let's Talk about Trees’, which was organised by Ritsuko Kikusawa and hosted by the National Museum of Ethnology of Osaka, Japan, in February 2013. The stated purpose of the meeting was to evaluate the pros and cons of the classic tree model of historical linguistics in describing the order of splits within a language family. Because the problem of modelling relationships of descent is common to other disciplines, contributors were invited from a range of academic disciplines, including not only linguistics, but also what is described on page one as ‘cladistics’, ‘biology’ and ‘genetics’, although cladistics is clearly a part of biological taxonomy, and not an independent discipline.〈/p〉〈/div〉
    Print ISSN: 0022-4634
    Electronic ISSN: 1474-0680
    Topics: Geosciences , Political Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2019
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2019
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉The dynamics of a marine ice sheet's grounding lines determine the rate of ice discharge from the grounded part of ice sheet into surrounding oceans. In many locations in West Antarctica ice flows into ice shelves through ice streams experiencing low driving stress. However, existing simple theories of marine ice sheets are developed under the assumption of high basal and driving stress. Here we analyze the grounding line behavior of marine ice streams experiencing low basal shear and driving stress. We find that in this regime, the ice flux at the grounding line is a complex function of the geometry of the ice-stream bed, net accumulation rate and gradient of the net accumulation rate. Our analysis shows that the stability of distinct steady states is determined by the same parameters, suggesting a more complex (in)stability criterion than what is commonly referred to within the context of the ‘marine ice-sheet instability hypothesis’. We also determine characteristic timescales (〈span〉e〈/span〉-folding time) of ice-sheet configurations perturbed from their steady states. These timescales can be used to determine whether particular configurations can be considered in isolation from other components of the climate system or whether their effects and feedbacks between the ice sheet and the rest of the climate system have to be taken into account.〈/p〉〈/div〉
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Although archaeological studies focusing on 19th-century sealing have been performed over the past 30 years, its history and sites have traditionally had low visibility in Antarctic narratives and the Antarctic Treaty System policymaking on heritage. Researchers face the challenge of increasing the visibility of sealers’ history and public awareness of the importance of conserving the oldest sites of Antarctica. In this paper, we propose that identifying patterns of tourism activity in the South Shetland Islands, specifically in their temporal and spatial dimensions, could help protect these sites and engage visitors with the early history of Antarctica. Data collected by the International Association of Antarctica Tour Operators were used to calculate landing point usage trends over time and the frequency of passenger landings from 2003–2004 to 2015–2016. We defined six different visitation patterns with temporal tendencies of passenger landings that varied from increasing, constant, or decreasing trends over time, differing in the magnitude and intensity of visitation. This information was used to assess the situation of particular sites located in the vicinity of tourism landing points. We set priorities for their conservation and management decisions and highlighted their relative potential to engage visitors with the stories of 19th-century sealing in Antarctica.〈/p〉〈/div〉
    Print ISSN: 0032-2474
    Electronic ISSN: 1475-3057
    Topics: Ethnic Sciences , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Print ISSN: 0032-2474
    Electronic ISSN: 1475-3057
    Topics: Ethnic Sciences , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉Glaciological ablation is computed from point-scale data at a few ablation stakes that are usually regressed as a function of elevation and averaged over the area-elevation distribution of a glacier. This method is contingent on a tight control of elevation on local ablation. However, in debris-covered glaciers, systematic and random spatial variations of debris thickness modify the ablation rates. We propose and test a method to compute sub-debris ablation where stake data are interpolated as a function of debris-thickness alone and averaged over the debris-thickness distribution at different parts of the glacier. We apply this method on Satopanth Glacier located in Central Himalaya utilising ~1000 ablation measurements obtained from a network of up to 56 stakes during 2015–2017. The estimated mean sub-debris ablation ranges between 1.5±0.2 to 1.7±0.3 cm d〈span〉−1〈/span〉. We show that the debris-thickness-dependent regression describes the spatial variability of the sub-debris ablation better than the elevation dependent regression. The uncertainties in ablation estimates due to the corresponding uncertainties in the measurement of ablation and debris-thickness distribution, and those due to interpolation procedures are estimated using Monte Carlo methods. Possible biases due to a finite number of stakes used are also investigated.〈/p〉〈/div〉
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2019
    Print ISSN: 0376-8929
    Electronic ISSN: 1469-4387
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2019
    Print ISSN: 0376-8929
    Electronic ISSN: 1469-4387
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...